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Abstract

What is the impact of sample selection on the inference payoff of an evaluator testing

a simple hypothesis based on the outcome of a location experiment? Compared to a ran-

dom data point, data selected as the highest of several observations is less dispersed and

thus always increases the evaluator’s welfare if and only if quantile density of the noise

distribution is less elastic than for the Gumbel distribution, as with logistic or normal noise.

More generally, we characterize the welfare impact of sample selection depending on its

effect on local dispersion. Also, we show that extreme selection benefits the evaluator. The

results are applied to the analysis of strategic sample selection by a biased researcher who

strategically selects the most favorable of several observations.
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1 Introduction

As analysts have long recognized, observational data are often nonrandomly selected, because

of two main selection mechanisms: either self selection is induced by choices made by the

subjects under investigation, or selection originates from sample inclusion decisions made by

data analysts themselves when carrying out the study.1 Experimental data can also suffer from

selection problems: either because the study population is not representative of the population

of interest (challenging external validity),2 or because the randomized allocation to treatment

rather than control is subverted (challenging internal validity).3 Whatever the source of selec-

tion, it is natural to wonder about the impact of sample selection on the quality of statistical

inference.

This paper provides a framework to characterize the information value of sample selection.

To set the stage, Section 2 considers an evaluator assessing a binary hypothesis regarding the

treatment effect θ . Observing evidence θ + ε , the evaluator suspects some degree of sample

selection which biases upward the distribution of the noise term ε . The model for ε influences

the evaluation of the evidence and the ensuing conclusion reached by the evaluator. To study

the impact of selection, we initially focus attention on the case where this model is correct given

the actual extent of sample selection. Does greater selection benefit or harm the evaluator? The

answer depends on the distribution of the un-selected ε .

We assume that sample selection manifests itself through observation of the highest out of k

realizations. The noise term follows a given log-concave distribution F .4 Log-concavity implies

1For instance, Heckman (1979) refers from the outset to these two sources of selection.
2In this regard, Alcott (2015) documents the presence of hard-to-control-for selection of the experimental sites

in the context of experiments conducted by utility companies to evaluate the effectiveness of energy-savings poli-

cies.
3See Schulz (1995), Schulz et al. (1995), and Berger (2005) for extensive accounts and examples of subversion

of randomization in clinical trials. As explained by Berger (2005), the practice of blocking to ensure an equal

number of patients in the control and in the treatment group tends to make allocation to control/treatment more

predictable toward the end of the block, allowing researchers to subvert the assignment of individual patients

depending on the outcomes they expect for individual patients.
4Di Tillio, Ottaviani and Sørensen (2015) compare different types of selection in the context of a illustrative
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that the evaluator takes higher actions when the observation is higher, for given model. This

property is inherited by the distribution of the maximum of k i.i.d. realizations, Fk, where k

measures the extent of selection.

The evaluator makes a binary choice to accept or reject. In this hypothesis testing problem, a

central role is played by the type I error rate (false acceptance) α and the type II error rate (false

rejection) β . The relative decision weight attached to α represents the evaluator’s preference

against false acceptance. Efficient use of the evidence yields a convex relationship of β as a

function of α , which we call the information constraint of the experiment. Sample selection

affects the evaluator through the change in this information constraint.

Section 3 characterizes a necessary and sufficient conditions under which the highest or-

der statistics (among k observations) is less dispersed than a random observation, and further

dispersion is monotonically decreasing in the number of observations. Our first main result

(Theorem 1) shows that the distribution Fk+1 of the maximum of k+1 observations is less dis-

persed than the distribution Fk of the maximum of k observations if and only if − log(− logF)

is convex, or equivalently whenever the quantile density of F is less elastic than for Gumbel’s

extreme value distribution. Thus, under this condition, increase in selection shifts up the entire

information constraint for every α . Given that less dispersed noise results in an unambiguous

increase in the payoff of the evaluator, this result characterizes the class of distributions F for

which the evaluator’s payoff must be increasing (or decreasing) in the extent k of selection.

Equivalently, this criterion says that the right tail of the distribution F is thinner than for the

Gumbel distribution. For example, the condition implies that the evaluator always gains from

sample selection when F is normal or logistic, but always loses when F is exponential.5

The proof of Theorem 1 applies Lehmann’s (1988) dispersion order to compare distribu-

model with binary errors, which violate log-concavity.
5Previous results in the literature on stochastic ordering of order statistics only covered distributions with de-

creasing hazard rate—the only logconcave distribution to which they apply is the exponential distribution for which

selection monotonically hurts the evaluator—see Section 3’s discussion of Khaledi and Kochar (2000). Our char-

acterization, instead, also covers the relevant case of distribution with increasing hazard rate, which is implied by

logconcavity of the distribution.
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tions.6 It is easier to estimate θ through observation of θ + ε when the noise term ε is less

dispersed. It may seem intuitive that the maximum of k variables tends to be more concentrated

toward the top and less concentrated toward the bottom. However, with the correct model of

selection, the evaluator can adjust for the upward bias. The question is whether the distribution

becomes less dispersed after this adjustment. Gumbel’s extreme value distribution is precisely

such that its shape is unaffected by selection. For distribution functions with quantile density

less elastic than for the Gumbel distribution, their upper tails are brought leftward by the evalu-

ator’s adjustment for selection, and hence the evaluator benefits.

The criterion in Theorem 1 asks for a monotone change in the evaluator’s payoff, uniformly

across possible preference parameters and prior beliefs. It therefore only permits a partial com-

parison of experiments affected by selection. For many distributions of interest, the preference

of the evaluator for more or less selection depends on the parameters. Section 4 turns to a local

comparison of the value of information based on the notion of dispersion. Our second main

contribution (Theorem 2) provides a tool for comparing experiments whose information con-

straints cross. To compare two experiments for a neighborhood of parameter values, it suffices

to check for dispersion in a corresponding neighborhood of the distributions underlying the

two experiments (Proposition 2). This local dispersion criterion thus provides a generalization

of Lehmann’s results for dichotomies; Appendix B develops a more generally applicable result

that uses local dispersion to compare experiments that have quantile difference with an arbitrary

non-monotonic pattern.

If, for instance, the quantile density is inelastic (relative to the Gumbel) at low quantiles but

elastic at high quantiles, then selection harms evaluators with a strong preference against false

acceptance. Intuitively, those evaluators set an acceptance threshold at high observations of

θ +ε , corresponding to the top part of the distribution of ε , and thus are harmed by the increase

in mass for high quantiles created by selection. Overall, the evaluator is harmed when the data

distribution has sufficiently thick right tail (as for the Laplace distribution) and the hypothesis

6For dichotomies, Lehmann’s order corresponds to the well-known Blackwell ordering of experiments. How-

ever, Lehmann’s notion is more relevant for our study. Theorem 1 remains valid when the state variable is real—

however, the equivalence to Blackwell fails for general composite hypothesis testing problems.

4



would be rejected at the prior. Symmetrically, the evaluator is harmed by selection when the left

tail is sufficiently thin (as for the uniform distribution) and the prior is to accept the hypothesis.

Section 5 turns to analyze the case with large selection, when k tends to infinity. Drawing

on extreme value theory, Theorem 3 characterizes the limit impact of selection. For illustration,

when F is normal, we show that the evaluator in the limit is able to identify the true state on

the basis of one, extremely selected observation. In this case, the evaluator thus obtains the

highest possible payoff where both error rates are zero. By contrast, − log(− logF) is concave

for the exponential distribution, so selection increasingly harms the evaluator (Theorem 1) and

information in the limit is less than full. We show that for all strictly logconcave distributions

in the exponential power family achieves full information in the limit with extreme selection.

Thus, unless the noise distribution is exactly exponential in the upper tail, extreme selection

benefits the evaluator for all parameter values—however, the rate of convergence is extremely

slow.

Section 6 provides a strategic foundation for sample selection. A researcher aims at demon-

strating that a treatment is effective. The researcher’s incentives to bias upward the evalua-

tor’s inference through sample selection are anticipated in equilibrium by the evaluator. Under

the global condition of Theorem 1, we show that equilibrium selective sampling benefits also

the researcher in the empirically relevant case where the prior strongly favors rejection.7 In-

stead, when the errors have thick right tail and selection is mild (small k), equilibrium selective

sampling harms not only the evaluator but also the researcher when the prior strongly favors

rejection—generating a credibility crisis.8

We also endogenize the amount of selection in terms of costly investment by the researcher

in obtaining pre-sample k realizations from which selection is made. The evaluator’s anticipa-

tion of the extent of selection k and the resulting adjustment for selection bias at least partly

frustrates the researcher’s attempt to manipulate. When selection is fully anticipated in equilib-

7In this case, we also show that equilibrium selection harms the researcher when the prior strongly favors

acceptance.
8In this case, we also show that equilibrium selection benefits the researcher when the prior strongly favors

acceptance. The researcher is harmed by selection for intermediate priors.
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rium (for example because the researcher’s cost of pre-sample collection is known), pre-sample

collection and selection is a pure rat race whenever the noise follows a Gumbel distribution. In

that case, correctly anticipated presample collection and selection has no impact on the accep-

tance probability and decision payoffs of evaluator and researcher, and so results in a loss by

the researcher exactly equal to positive cost of presample collection. Thus, in Gumbel’s pure

rat race the researcher unambiguously benefits from commitment not to allow (or, equivalently

to disclose) presample collection.9

Section 7 turns to the welfare impact of unanticipated selection. Clearly, if the noise distrib-

ution is Gumbel, unanticipated selection always hurts the evaluator. We characterize conditions

under which unanticipated selection benefits the evaluator. We showcase a notable situation in

which unanticipated selection leaves the evaluator exactly indifferent: whenever the noise dis-

tribution is symmetric (as with normal, logistic, or uniform noise) and equipoise holds at the

prior (an ethical condition requiring indifference between acceptance and rejection), an evalua-

tor who observes the maximum of k= 2 realizations while expecting random realization obtains

the same payoff as when observing (and correctly expecting) a random realization. Intuitively,

unexpected selection results in an increased probability of acceptance—however, by symmetry,

the loss associated to the increase in false positives (higher α) is exactly offset by the bene-

fit associated to the reduction in false negatives (lower β ). In addition, Section 7 shows that

uncertainty in the extent of selection tends to damage the evaluator. Section 8 concludes by

contrasting our contribution to related work in the literature.

2 Statistical Setting

An evaluator is interested in the true value of an unknown binary state θ ∈ {θ L,θ H}, where θ L

and θ H > θ L are real numbers, and assigns prior probability p to state θ H . The evaluator faces

9More generally, selection is not completely self defeating, even when the evaluator correctly anticipates the

extent of selection k. Our results characterize the net impact of properly anticipated selection on acceptance

probability (the researcher’s decision payoff) and the evaluator’s decision payoff.
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a binary choice, to accept or to reject. Acceptance results in payoff θ , while rejection gives a

safety payoff R, where θ L < R< θ H .

Information and Optimal Decision. Before making a choice, the evaluator observes an infor-

mative signal about the true state, x= θ + ε . The noise term, ε , is independent of θ and drawn

from a known cumulative distribution function F admitting a log-concave density f , that is,

log( f ) is a concave function. This assumption implies the monotone likelihood ratio property—

the ratio `F(x) ≡ f (x− θ H)/ f (x− θ L) is increasing—and hence monotonicity of the optimal

decision.10 The evaluator accepts if and only if x is at least as large as some threshold x̄. The

optimal threshold is x̄∗F ≡min
{

x : `F(x)≥ ¯̀
}

, where

¯̀≡ 1− p

p

R−θ L

θ H−R
.

Reformulation. The evaluator’s problem can be viewed as a simple trade-off between correct

choices — rejection in state θ L and acceptance in state θ H . Any given threshold x̄ induces a

probability of incorrect acceptance α = 1−F(x̄−θ L) in state θ L and a probability of incorrect

rejection β = F(x̄− θ H) in state θ H . The corresponding payoff is, disregarding constants, a

linear and strictly decreasing function of α and β ,

− (1− p)(R−θ L)α− p(θ H−R)β .

Thus, we can view (1− p)(R− θ L) as the marginal cost of an incorrect acceptance (or the

marginal benefit of a correct rejection) and p(θ H − R) as the marginal cost of an incorrect

rejection (or the marginal benefit of a correct acceptance). The ratio ¯̀ then measures the relative

marginal cost of an incorrect acceptance (i.e. relative to an incorrect rejection). The evaluator

can achieve any pair (α,β ) such that α = 1−F(x̄−θ L) and β = F(x̄−θ H) for some x̄, or

β = β F(α)≡ F
(
F−1(1−α)+θ L−θ H

)
, (1)

which we call the information constraint of experiment F . Note that β F(α) ≤ 1−α , because

θ H > θ L. Moreover, β F(α) is decreasing and convex. Indeed, by decreasing the threshold x̄

10Since we consider location experiments with arbitrary θ H > θ L, the monotone likelihood ratio property is not

only necessary but also sufficient for log-concavity of the error distribution
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the evaluator accepts more often in both states, increasing α but decreasing β . Furthermore,

the relative rate of change, the slope of β F(α) at α = 1−F(x̄− θ L), is the negative of the

likelihood ratio at the threshold x̄, that is,

dβ F(α)

dα
=−

f
(
F−1(1−α)+θ L−θ H

)
f
(
F−1(1−α)

) =− f (x̄−θ H)

f (x̄−θ L)
.

We conclude that the problem of the evaluator is equivalent to choosing α and β to minimize

the linear objective function ¯̀α+β subject to the decreasing, convex constraint β = β F(α).

Random vs Selected Experiment. Our goal is to compare the following two scenarios in terms

of evaluator’s welfare. In the first scenario, the evaluator observes a random sample: the noise

term ε is drawn from a distribution F . In the second scenario, the evaluator observes the result

of a selected experiment, where ε is the maximum of k independent draws from F . In this case,

the cumulative distribution function of the noise term is Fk, with density kFk−1 f . The latter

inherits log-concavity from f , hence in the selected experiment the evaluator also uses a cutoff

rule, but the optimal threshold is higher, and increasing in k. The evaluator accepts if and only

if `Fk(x) = [F(x−θ H)/F(x−θ L)]
k−1`F(x) ≥ ¯̀, and the term in square brackets is increasing

in k for any x. By our reformulation, the evaluator’s optimal decision minimizes ¯̀α+β subject

to β = β Fk(α). Compared to the first scenario (k = 1), selection has two opposite effects on

the probability of acceptance in the two states, and hence contrasting effects on the value of

the evaluator’s problem. Raising the threshold tends to decrease acceptance in both states, that

is, decreases α and increases β . But Fk first-order stochastically dominates F , which tends to

increase acceptance in both states, increasing α and decreasing β .

3 Uniform Impact of Selection

How is the welfare impact of selection related to the noise distribution and to the parameters of

the evaluator’s problem? Toward a full answer to this question, we first provide a characteriza-

tion of noise distributions F for which the extent of selection, k, has a uniform and monotone

effect on the evaluator’s payoff—uniformly over all parameter values, an increase in k makes

the evaluator better off, or worse off.
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Dispersion Ordering of Selected Experiments. Our characterization is based on the following

notion of stochastic ordering, first proposed by Bickel and Lehmann (1979).11 An experiment

G is less dispersed than an experiment F if the quantile difference G−1(u)−F−1(u) is a weakly

decreasing function of u, that is,

f
(
F−1(u)

)
≤ g
(
G−1(u)

)
for all 0< u< 1. (2)

Our first theorem compares the dispersion of Fk as k varies. An increase in k results in lower

dispersion if the slope at any quantile becomes steeper, as in (2). This comparison of slopes at

quantiles is simplified if we first make a transformation of the distribution, such that changing

k determines a parallel shift of the transformed function. The suitable transformation of u= Fk

is given by the increasing function − log(− log(u)), for − log(− log(Fk)) =− log(− log(F))−

log(k). As k increases, the requisite slope is steeper precisely if − log(− log(F)) is convex.

Theorem 1. Fk is less dispersed the greater is k ≥ 1 if and only if − log(− log(F)) is convex.

Likewise, Fk is more dispersed the greater is k ≥ 1 if and only if − log(− log(F)) is concave.

Proof. Observe that − log(− log(u)) is a strictly increasing, differentiable function from (0,1)

to the real line. Convexity of − log(− log(F)) is equivalent to a non-decreasing derivative

of this function. Equivalently, for any ε1 < ε2 where 0 < F (ε1) < F (ε2) < 1, the slope of

− log(− log(F (ε))) is no smaller at ε2 than at ε1. That 0 < F (ε1) < F (ε2) < 1 is equivalent

to the existence of k > 1 such that F (ε1) = Fk (ε2). The slope of − log
(
− log

(
Fk (ε)

))
at

ε1 equals the slope of − log(− log(F (ε))) at ε2. When F (ε1) = Fk (ε2), a steeper slope of

− log
(
− log

(
Fk (ε)

))
at ε2 than of− log(− log(F (ε))) at ε1 is equivalent to a steeper slope of

Fk (ε) at ε2 than of F (ε) at ε1. By (2) this steeper slope of Fk is equivalent to less dispersion.

There is only one distribution F such that − log(− log(F)) is linear, namely Gumbel’s ex-

treme value distribution, F(ε) = exp(−exp(−ε)). This distribution, which plays a special role

in our ensuing analysis, is such that for every k the experiment Fk is neither less nor more

dispersed than F .

11They, in turn, credit Brown and Tukey (1946) for the essence of this definition.
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Next, note that the derivative of the transformation−log(−log(u)) is given by−1/(u log(u)).

Taking the next derivative, when f is differentiable, it is not hard to verify that convexity of

− log(− log(F)) can be restated as

f ′ (ε)/ f (ε)

f (ε)/F (ε)
>

1+ logF (ε)

logF (ε)
. (3)

This condition has another interpretation. Denote the quantile function by Q(u) = F−1 (u). Its

derivative is the quantile density q(u)= 1/ f
(
F−1 (u)

)
, also known as Tukey’s sparsity function.

The elasticity of the quantile density function is uq′ (u)/q(u). It can be directly computed that,

when q is differentiable,

uq′ (u)

q(u)
=−

u f ′
[
F−1 (u)

]
f 2 [F−1 (u)]

=−
f ′
(
F−1 (u)

)
/ f
(
F−1 (u)

)
f (F−1 (u))/F (F−1 (u))

.

For Gumbel’s extreme value distribution, the quantile function is Q(u) = − log(− logu) and

hence q(u) =−1/(u logu). Thus, the elasticity of its quantile density function is

uq′ (u)

q(u)
=−u(1+ logu)/(u logu)2

1/(u logu)
=−1+ logu

logu
.

Summing up, our key condition (3) can also be rephrased as requiring that distribution F has a

quantile density function that is less elastic than that of Gumbel’s extreme value distribution.

Finally, while we described selection with a natural number k, the interpretation—as well as

the statement in the theorem—for real numbers k> 1 is equally valid. If an experiment F is such

that selection monotonically benefits (or hurts) the evaluator, then Fk has the same property for

every real number k > 1. Compared to the distribution with selection k, the distribution with

more selection k′ > k is Fk′ = (Fk)k
′/k. The change is akin to starting from Fk and applying

selection of extent k′/k > 1.

Uniform Impact of Selection on Welfare. We now use Theorem 1 to characterize the distri-

butions F such that, for all values of the parameters of the problem, more selection benefits

the evaluator, and those such that more selection always hurts. The characterization exploits

Lehmann’s (1988) criterion for comparing location experiments. Consider two experiments, F

and G. An immediate separation argument shows that the evaluator is better off with the second

experiment, uniformly over all values of θ L, θ H , p and R, if and only if, for all values of θ L
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and θ H , the information constraint of G lies entirely below that of F . Lehmann (1988) proved

that this property holds if and only if G is less dispersed than F . Given this result, the next

proposition is an immediate consequence of Theorem 1.

Proposition 1. The evaluator is better off (worse off) with experiment Fk′ than with experiment

Fk, for all k′ ≥ k≥ 1 and all values of θ L, θ H , p and R, if and only if− log(− log(F)) is convex

(resp. concave).

The logic of Lehmann’s criterion is simple. Let x̄ be any cutoff that the evaluator may

choose in experiment F , with α = 1−F(x̄−θ L) and β =F(x̄−θ H) the corresponding incorrect

acceptance and rejection rates. Since β F(α)≤ 1−α and the quantile difference is decreasing,

G−1(1−α)−F−1(1−α)≤G−1(β )−F−1(β ). This inequality says that the cutoff adjustment

needed to induce the same α under G, is smaller than the one needed to induce the same β .

That is, defining x̄′ and x̄′′ by α = 1−G(x̄′−θ L) and β = G(x̄′′−θ H), we have x̄′′ ≥ x̄′. But

this means that in experiment G the evaluator can, by choosing x̄′, achieve the same probability

of incorrect acceptance as in F , namely α , but a lower probability of incorrect rejection, namely

G(x̄′−θ H)≤G(x̄′′−θ H) = β . In other words, the information constraint of G is always lower:

β G(α)≤ β F(α) for every α . When G= Fk and − log(− log(F)) is convex, this means that the

evaluator always prefers experiment Fk to experiment F .

If the noise follows Gumbel’s extreme value distribution, the evaluator is indifferent to se-

lection. An intuitive argument also shows this. With selection at extent k, the noise distribution

is Fk(ε) = exp(−k exp(−ε)) = F(ε − log(k)). Compared to a random sample, in the selected

experiment the noise is simply raised by the constant log(k). The evaluator adjusts for this

translation of the noise distribution, and is back to square one.12

Examples. For the normal distribution, it can be verified that condition (3) is met, and hence

more selection benefits the evaluator. A plot of the information constraints corresponding to F

and F2 illustrates this in the right panel of Figure 1. The left panel of Figure 1 allows us to

12It is well known that a location experiment is unaffected by a change of the location of the noise ε , but not to

a change in its scale. However, it can be seen by inspection of the elasticity of the quantile density function, that

the uniform criterion in Theorem 1 is unaffected by a change in scale.
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Figure 1: Comparison between F (blue) and F2 (red) for the normal distribution.

revisit the intuitive explanation of Theorem 1. Going from Fk to Fk1 where k1 > k is a simple

operation that takes Fk to the power k1/k > 1. As indicated by the horizontal guiding lines

in the figure, Lehmann’s dispersion notion requires that Fk1 is steeper than Fk when evaluated

at the same quantile Fk1 (ε2) = Fk (ε1). The slopes of the functions are easily found via the

implicit function theorem, and the comparison where the relative power k1/k tends to 1 provides

condition (3).

If the distribution is logistic, F (ε) = 1/(1+ e−ε), we have Q(u) = log [u/(1−u)] and

hence q(u) = 1/ [u(1−u)]. Thus

uq′(u)

q(u)
=−1−2u

1−u
<−1+ logu

logu
,

so F is more convex than the Gumbel distribution. Here, too, any amount of selection benefits

the evaluator, and benefits even more as k increases.

For the exponential distribution, F (ε) = 1− e−ε where ε ≥ 0, so Q(u) =− log(1−u) and

hence q(u) = 1/(1−u). Thus

uq′ (u)

q(u)
=

u

1−u
>−1+ logu

logu

so this distribution is more concave than the Gumbel distribution—any amount of selection

harms the evaluator, ever more as k increases. This result for the exponential distribution also
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follows from the sufficient condition obtained by Khaledi and Kochar’s (2000) Theorem 2.1, ac-

cording to which for any distribution with decreasing hazard rate higher order statistics are more

dispersed.13 Given that logconcavity implies that the hazard rate is increasing by Prekopa’s

theorem, the only logconcave distribution for which Khaledi and Kochar’s (2000) result ap-

plies is the exponential (loglinear) distribution, which has constant hazard rate.14 Theorem 1’s

characterization applies more generally to logconcave distributions—intuitively, it shows that

selection benefits the evaluator whenever the hazard rate is more increasing than in the Gumbel

distribution.

4 Local Comparison of Experiments

Lehmann’s comparison gives only a partial ordering of location experiments, because it imposes

a uniform criterion over evaluator preferences. For example, as we shall see, the comparison

fails for F and G = Fk when F is uniform or Laplace. In these cases, the quantile difference

is not monotonic. We develop a local version of Lehmann’s criterion and use it to develop a

complete characterization of when the evaluator gains or loses from selection.

Example: Selection with a Uniform Signal. How do we compare experiments whose quantile

difference is not monotonic? Does the pattern of the quantile difference still characterize the

evaluator’s preference, and does it allow us to pinpoint the region of parameter values where G

(or F) is preferred? Intuition based on Lehmann’s logic suggests an answer to these questions.

To illustrate this intuition, we start with a simple example. Suppose we are interested in

comparing F with G = F2 when F is uniform, F(ε) = ε for ε ∈ [0,1]. Since F2(ε) = ε2, the

quantile difference (F2)−1(u)−F−1(u) =
√

u− u is bell-shaped, and hence F and F2 are not

13According to Khaledi and Kochar’s (2000) Theorem 2.1, if Xi’s are i.i.d. with decreasing hazard rate, then Xi:n

is less dispersed than X j:m whenever i ≤ j and n− i ≥ m− j. Setting i = n = 1 and j = m = k, we have that the

maximum of k i.i.d. variables with decreasing hazard rate is more dispersed than the original variable.
14Theorem 1 also covers distributions with decreasing hazard rate, for which − log(− log(F)) is necessarily

concave.
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Figure 2: Comparison between F (blue) and F2 (red) for the uniform distribution.

comparable in the sense of Lehmann.

Now suppose that θ L = 0 and θ H = 1/2, so there is some overlap in the supports of signal

distributions F(x− θ L) and F(x− θ H), and hence also of signal distributions F2(x− θ L) and

F2(x− θ H).
15 The four signal distributions are depicted in the panel on the left-hand side of

Figure 2.

The information constraints of F and F2 are, respectively, β F(α) = 1/2−α (for 0 ≤ α ≤

1/2) and

β F2(α) =
(√

1−α−1/2
)2

(for 0≤ α ≤ 3/4).

The constraints cross only once, with β F2(α)≤ β F(α) for 0≤ α ≤ 7/16 and β F(α)≤ β F2(α)

for 7/16≤ α ≤ 1, as illustrated in the panel on the right-hand side of Figure 2. The picture tells

us that the evaluator prefers F to F2 when the relative weight attached to type I errors is less

than 1/2, and F2 to F when it is greater than 1/2. When the weight is exactly 1/2, we have

indifference, as the lowest iso-payoff line (the dashed line) touches both constraints.

The key observation is that, even without explicitly computing the information constraints,

we can infer their single crossing by the bell-shape of the quantile difference. Consider again the

15Our argument does not depend on the particular choice of θ L and θ H . In case θ H −θ L > 1, the evaluator is

indifferent between F and F2, as each experiment perfectly reveals the state.
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panel on the left-hand side of Figure 2. If the evaluator attaches a large relative weight to type

I errors, then in experiment F the optimal threshold of acceptance is x̂ = 1, which corresponds

to α = 0 and β = 1/2. By adopting the same threshold, x̂= 1, the evaluator obtains α = 0 also

in experiment F2. But the type II error is lower, β = 1/4 < 1/2, as highlighted by the vertical

arrow in the picture. By continuity of the information constraints, this implies that β F2(α)must

lie below β F(α) for small values of α . In other words, the evaluator prefers F2 to F when the

concern for type I errors is relatively high, that is, p is small or R is large.

Assume now that the evaluator attaches a small relative weight to type I errors. Then the

optimal threshold for F becomes x̂= 1/2, corresponding to α = 1/2 and β = 0. As the picture

illustrates, in order to obtain α = 1/2 under experiment F2 the evaluator must increase the

threshold to x̂= 1/
√

2. This time, however, the corresponding type II error is higher, β = (
√

2−

1)2/4 > 0. Thus, β F2(α) lies above β F(α) when α is large. This means that the evaluator

prefers F to F2 when type I errors are relatively less important, that is, p is large or R is small.

Finally, the bell-shape of the quantile difference guarantees that there is no gap between the

two regions of values of p and R identified above, that is, it guarantees that the information

constraints of F2 and F cross only once. Indeed, since (F2)−1(u)− F−1(u) is first strictly

increasing and then strictly decreasing, there exists a unique pair of thresholds x̂, x̂′ such that,

by adopting x̂ in experiment F and x̂′ in experiment G, both type I and type II errors are the

same, that is, F(x̂−θ L) = G(x̂′−θ L) and F(x̂−θ H) = G(x̂′−θ H).

Local Dispersion. Let us now consider a generic pair of experiments F and G. The example

above suggests that neighborhoods of values of u where G is locally less dispersed than F ,

that is, where the quantile difference G−1(u)− F−1(u) is decreasing, should correspond to

neighborhoods of values of α such that β G(α) ≤ β F(α). That is, they should correspond to

regions of parameter values such that, for those parameter values, G is better than F . Moreover,

if the neighborhood is a set of large values of u, then the corresponding region of parameters

should, in fact, be one where the evaluator finds it harder to accept, that is, a region where p is

small, or R is large.

Our next result shows that the argument illustrated in our example above indeed generalizes,
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to all cases where F and G have the same support and the slope of the quantile difference

G−1(u)−F−1(u) changes sign only once.16 With multiple changes of sign, the intuition above

remains essentially correct, but the correspondence between decreasing parts of the quantile

difference and regions of parameters where the evaluator prefers G to F becomes subtler. We

analyze this more general case in Appendix B.

Theorem 2. Let ū ∈ (0,1) and suppose that G−1(u)−F−1(u) is increasing for u ∈ (0, ū) and

decreasing for u ∈ (ū,1). Suppose also that F and G have either both unbounded supports, or

both the same, bounded support. Then for every θ L and θ H there exists K̄ > 0 such that F is

preferred to G for

1− p

p

R−θ L

θ H−R
> K̄,

and G is preferred to F for

1− p

p

R−θ L

θ H−R
< K̄.

Proof. It suffices to show that there exists ᾱ such that β G(α)−β F(α) is nonnegative for α ≥ ᾱ

and nonpositive for α ≤ ᾱ . Fix θ L and θ H > θ L. If the support of F and G is a bounded interval

of length smaller than θ H − θ L, then both F and G perfectly reveal the state. In this case,

β G(α)−β F(α) = 0 for every α . The evaluator is indifferent between F and G for all values of

q and R, and K̄ can be chosen arbitrarily. Otherwise, since G−1(u)−F−1(u) is increasing for

u ∈ (0, ū) and decreasing for u ∈ (ū,1), there exists ε̄ such that the difference[
G−1(F(ε+θ H−θ L))− (ε+θ H−θ L)

]
−
[
G−1(F(ε))− ε

]
is nonnegative for ε ≤ ε̄ and nonpositive for ε ≥ ε̄ . Changing variable to α = 1−F(ε+θ H −

θ L), this is the same as saying that there exists ᾱ such that β G(α)−β F(α) is nonnegative for

α ≥ ᾱ and nonpositive for α ≤ ᾱ .

Thus, when the quantile difference is first increasing and then decreasing (or vice versa), its

slope at small or large values of u determines the evaluator’s preference over G and F when the

16Graphically, like in the right panel of Figure 2, it is easy to see that the evaluator’s preference as a function of

the error trade-off parameter K switches from one experiment to the other if and only if the information constraints

cross between the touch-points of the tangent with slope K.
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relative weight attached to type I errors is small or large, respectively. For example, suppose

that we would like to check whether G is preferred to F for a given p and for all R above a

certain value (or for a given R and for all p below some value). The theorem highlights that

checking whether this preference indeed holds only requires us to verify that G−1(u)−F−1(u)

is decreasing for u above a certain bound. An immediate corollary of this observation is that,

perhaps remarkably, the same preference would then hold for any other distributions G′ and F ′

with the same shape as G and F above that bound.

Local Ordering of Order Statistics. Thanks to the local condition developed above, we can

now refine Theorem 1 by considering the following proposition. Since F and Fk have the same

support, the result is an immediate consequence of Theorem 2. Afterwards, we will illustrate

this method for the case of Laplace and uniform distributions.

Proposition 2. Let ū ∈ (0,1) and suppose that the elasticity of q is greater (less) than that of

the Gumbel distribution for u∈ (0, ū), and less (greater) for u∈ (ū,1). Then for every ` > k≥ 1

and every θ H > θ L there exists K̄ > 0 such that the evaluator is worse (better) off with F` than

with Fk when

1− p

p

R−θ L

θ H−R
< K̄,

and better (worse) off when

1− p

p

R−θ L

θ H−R
> K̄.

Intuitively, we may describe (F`)−1(u)−(Fk)−1(u) as bell-shaped when the elasticity of the

quantile density of F is greater than that of the Gumbel distribution for small values of u, and

smaller for large values of u. This case was illustrated by the uniform distribution in Section ??.

We now illustrate the opposite case, where the elasticity of q is first smaller, then greater

than that of the Gumbel distribution. Suppose again that ` = 2 and k = 1, and consider the

Laplace distribution where F (ε) = (1/2)eε for ε < 0 and F (ε) = 1− (1/2)e−ε for ε ≥ 0. In

the left-hand side panel of Figure 3 we plot F (blue) and F2 (red), which reveals the U-shape of

(F2)−1(u)−F−1(u). In this example, there is a bound to the posterior belief after seeing any

signal realization, and hence the information constraints are not tangent to the axes as α → 0
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Figure 3: Comparison between F (blue) and F2 (red) for the Laplace distribution.

and α → 1. As shown in the right-hand side panel of Figure 3, drawn for θ L = 0 and θ H = 1,

the evaluator prefers F2 to F when the ratio (1− p)(R−θ L)/[p(θ H−R)] is small, and F to F2

when it is large.

5 Extreme Selection

In this section, we examine the effect of extreme selection, k→∞, on the evaluator’s payoff. To

gain some initial intuition, recall from Theorem 1 that in the Gumbel distribution, the evaluator’s

payoff is constant in k. Next, the fundamental result in extreme value theory says that the

distribution of the maximum of k i.i.d. random variables, properly adjusted for location and scale

inflation, either does not converge weakly to any nondegenerate distribution (for any choice of

adjustment) or it converges weakly to a distribution F̄ that must belong to one of the following

three types: Gumbel, Extreme Weibull or Frechet. (See e.g. Leadbetter et al. (1983) for a

reference.) More precisely, for some sequence ak > 0 and bk,

Fk (bk+akε)→ F̄ (ε)

for every continuity point ε of F̄ .
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Note that Fk is decreasing in k wherever F ∈ (0,1). Hence, the distribution of ε is system-

atically shifted upwards as k increases, in the sense of first-order stochastic dominance. Hence,

the location adjustment sequence −bk is growing. However, the evaluator can adjust for any

translation of the error distribution without any impact on payoff.

The limit impact of selection thus hinges on whether the sequence ak shrinks to zero or not.

If ak→ 0, the error distribution is less and less dispersed, providing the evaluator with arbitrarily

precise information about the state.

To formalize this claim, denote by V k the payoff of the evaluator when selection is at level

k.

Theorem 3. If Fk (bk+akε)→ F̄ (ε) at every continuity point of F̄, with ak → 0, then V k →

pθ H+(1− p)R, the full information payoff. If ak = 1 for all k, then V k converges to the payoff

from observing one non-selected observation with error distribution F̄.

It is well known that many familiar distributions are in the basin of attraction of the Gumbel

distribution. Specifically, when F is normal—or half-normal, which has the same right tails—

then an must be decreasing to zero (an = (2logn)−1/2
works), and F̄ is the Gumbel distribution.

More generally, when F is exponential power (or folded exponential power) with shape

parameter b> 1, an must be decreasing to zero (an = (b logn)−(b−1)/b
works, as we show in the

appendix), and F̄ is the Gumbel distribution. This result is striking, because it is also known that

when F is the exponential distribution—or the Laplace distribution, since the two distributions

have the same right tails—then it also converges to the Gumbel distribution, but we can take

ak = 1 for each k. This is the exponential power distribution with shape parameter b= 1.

So, while extreme selection leads to full information as k→ ∞ for any b> 1 in this family,

the limit result is very different when b = 1. The uniformly negative impact of selection in

the exponential case discussed earlier is, in this sense, non-generic, as any arbitrarily close

distribution in the family reverses the conclusion.17

17Of course, as b approaches 1 from above, the convergence to full information gets slower.
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6 Strategic Selection and Equilibrium Impact on Researcher

Sample selection of the sort considered above naturally arises as an equilibrium phenomenon in

a strategic setting where the experiment is carried out by a researcher who is entirely indifferent

to the type I error α . Intuitively, such a researcher biased toward acceptance wants to select

an individual with a high error term—e.g., in the treatment effect setting, a good untreated

outcome—in order to bias upward the experimental result and thus increase the chances of

acceptance. As we have seen, an evaluator taking this behavior into account may suffer or

benefit, compared to the case of a random sample. In this section, we verify that the posited

behavior constitutes an equilibrium in this game, and we discuss how the researcher’s ability to

strategically select the sample affects the researcher’s own welfare, too.

Model. Consider the following timeline:

1. The researcher privately observes ε1, . . . ,εk and then chooses i ∈ {1, . . . ,k}.

2. The evaluator observes xi = θ + ε i and then chooses whether to accept or reject.

As before, the evaluator receives a fixed payoff R when rejecting, and θ when accepting.

The researcher receives 0 if the evaluator rejects, and 1 if the evaluator accepts.

Lemma 1. There exists a Bayes Nash equilibrium where the researcher chooses maximal se-

lection, i ∈ argmax1≤ j≤k ε j. The evaluator accepts for signals above the uniquely determined

threshold x̂k, defined by

Fk−1(x̂k−θ H) f (x̂k−θ H)

Fk−1(x̂k−θ L) f (x̂k−θ L)
=

1− p

p

R−θ L

θ H−R
. (4)

Note that the evaluator’s strategy is precisely the one we analyzed until now, when observing

x subjected to selection of degree k. The researcher’s strategy is a best response because the

evaluator will observe a higher signal and hence be more likely to accept.18

18The researcher is indifferent when max{ε1, . . . ,εk}< x̂−θ H or min{ε1, . . . ,εk}> x̂−θ L.
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Distribution of Evaluator’s Posterior Expectation. The equilibrium effect of changing the

distribution of ε works through its effect on the distribution of the rational evaluator’s posterior

belief. Given k ≥ 1 and an observation x, the posterior expectation of θ is

πk(x) :=
pFk−1(x−θ H) f (x−θ H)θ H+(1− p)Fk−1(x−θ L) f (x−θ L)θ L

pFk−1(x−θ H) f (x−θ H)+(1− p)Fk−1(x−θ L) f (x−θ L)
.

This is monotone increasing in the signal realization x, so it is easy to compute its c.d.f.,

F̃k(π) :=
∫

1{πk(x)≤π}dFk(x).

Lemma 2. The researcher’s expected payoff is

Uk(R) := 1− F̃k(R),

while the evaluator’s expected payoff is

V k(R) := R+
∫

θ H

R
[1− F̃k(r)]dr.

The evaluator accepts if and only if x≥ x̂k, which is the same as πk(x)≥ R. The researcher

gains 1 at acceptance. The evaluator gains πk(x)−R.

While payoffs depend on all exogenous parameters, here we have chosen to highlight their

dependence on R. We will analyze the impact of selection on both the evaluator’s and the

researcher’s welfare, as R varies between θ L and θ H (and hence as the relative weight attached

to type I errors, the ratio (1− p)(R−θ L)/[p(θ H−R)], varies between 0 and ∞).

Proposition 3. Assume − log(− log(F)) is convex. V k(R) is increasing in k for every R. More-

over, for every pair k′ > k ≥ 1 there exist R′,R′′ ∈ (θ L,θ H) such that Uk′(R) ≤ Uk(R) for

R ∈ [θ L,R
′] and Uk′(R)≥Uk(R) for R ∈ [R′′,θ H ].

In many special cases of interest, for k′ ≥ k the c.d.f.s of πk′ and πk cross only once—other

than at the extremes R= θ L and R= θ H—and hence the thresholds R′ and R′′ in Proposition 3

coincide. When our convexity condition holds, the crossing occurs from above. The evalua-

tor benefits from a larger k for every R, whereas the researcher benefits or loses according to

whether R is above or below a threshold. This happens, for instance, in the case of a normally
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Figure 4: Welfare impact of selection in the normal case, illustrated by the posterior expecta-

tion’s c.d.f.s F̃1 (blue) and F̃2 (red).

distributed error (cf. Figure 1), as illustrated in Figure 4 for k = 1 (blue) and k = 2 (red), with

θ L = 0 and θ H = 1.

When greater selection is not uniformly better for the evaluator, the c.d.f.s of the posterior

expectation corresponding to k and k′ > k must cross more than once, and the effect on the

researcher is more subtle. Consider again the case of a Laplace distribution. Recall that, in

this case, for the evaluator F2 is worse than F for large R but better for small R (cf. Figure 3).

A consequence of this is that the impact on the researcher’s welfare changes sign twice. The

researcher benefits from selection for small or large values of R, but loses for intermediate

values. The left-hand side panel of Figure 5 plots the cumulative distributions of the posterior

expectations π2 (red) and π1 (blue), illustrating this.

Next, recall the case of the uniform distribution discussed earlier, where the evaluator bene-

fits from selection for large R, but fares worse for small R (cf. Figure 2) Similarly to the case of

Laplace distribution, here the impact on the researcher’s welfare also changes sign twice as R

varies between θ L and θ H . However, the impact on the researcher’s welfare, just like that on the

evaluator’s, is exactly the opposite. Selection benefits the researcher for small or large values of

R, but harms for intermediate values, as illustrated in the right-hand side panel of Figure 5.

Finally, note that in the Gumbel case, the researcher’s selection has no impact on the error
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Figure 5: Comparison between F̃1 (blue) and F̃2 (red) for the Laplace distribution (left panel)

and uniform distribution (right panel).

rates (α,β ). In this case, properly anticipated selection has zero impact on the decision and

thus on the information value (evaluator’s payoff) and the acceptance probability (researcher’s

decision payoff).

Production of Data. Finally, it is natural to endogenize the number k of subjects among which

the researcher can select. Suppose that the researcher can secretly choose this number ex ante,

thus fixing the research procedure before errors (ε1, ...,εk) are drawn by nature. Suppose also

that there is no credible way to directly reveal any information about the true k. The researcher

bears costs C (k)which we assume to be an increasing, convex function — if we restrict attention

to natural numbers k, convexity means that C (k+1)−C (k) is increasing in k.

We look for a pure strategy equilibrium, where the evaluator correctly anticipates the k

that is optimally chosen by the researcher. In the subgame, the evaluator takes k as given and

best responds with the acceptance threshold x̂ defined by (4). In the first stage, the researcher

correctly anticipates threshold x̂, and chooses k in order to maximize the payoff

p

(
1−Fk (x̂−θ H)

)
+(1− p)

(
1−Fk (x̂−θ L)

)
−C (k) . (5)

Lemma 3. The researcher’s objective function is concave in k.

Proof. We have already assumed that the cost function is convex, so it suffices to check that the
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first two terms are concave in k. It suffices to take k as a real number. The first derivative of

ak is log(a)ak and the second derivative is (log(a))2 ak which is positive when a /∈ {0,1}. It is

easy to see that the first terms are instead constant in k, if the base is zero or one.

Concavity implies that the best response is defined by one (or both) of the integers closest

to solving the analytical first order condition

− p log(F (x̂−θ H))F
k (x̂−θ H)− (1− p) log(F (x̂−θ L))F

k (x̂−θ L) =C′ (k) . (6)

Considering a deviation from equilibrium, the researcher actually has a potential gain through

the upward shift of the realized observation x. This is to be weighed against the cost of looking

at more subjects, when already looking at k.

Lemma 4. The equilibrium is characterized through the solution (x̂,k) to the equation pair (4)

and (6).

Our main purpose is to remark three interesting properties of this equilibrium. We do not

need to fully solve the model for this purpose.

First, keeping all other parts of the model fixed, for every k ∈ N there exists an increasing

and convex cost function C such that k is the equilibrium choice of the researcher. Simply, fix k

and solve (as before) equation (4) for the evaluator’s best response x̂k. Then plug in x̂k and k on

the left hand side of (6) to determine the requisite C′ (k). Then choose the number γ > 0 such

that C′ (k) = 2γk, and use the quadratic cost function C (k) = γk2. This observation provides a

foundation for our approach so far where the number k was taken for given.

Second, and most importantly, this model exhibits a rat race effect: when the evaluator

correctly anticipates a greater degree k of selection, the researcher’s cost C (k) to manipulate

the experiment is largely wasted.19 To see the cleanest instance of this, consider the Gumbel

example. We have established above that the evaluator’s and researcher’s gross payoffs are

independent of k. The researcher’s total payoff, accounting for costs C (k), is then smaller when

these costs are greater. As follows from our first remark, any k is consistent with equilibrium.

19In general, rat race effects are described by Akerlof (1976) and Holmström (1999).
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This does not imply that costs can be arbitrarily large, but it does prove that the costs can

be positive. It also proves that the researcher may gain from tying the hands to be unable to

augment k. The researcher would also gain from being able to credibly prove the chosen k to

the evaluator. Going beyond the Gumbel example, these costs of manipulation could further

harm a researcher who was already harmed by the evaluator’s response. If the researcher stood

to gain from manipulation in Proposition 3, the endogenous costs will reduce this gain, perhaps

to a loss.

Third, note from (6) that the evaluator’s best response k may increase or decrease with the

evaluator’s standard x̂, depending on parameters. The sign of this slope depends on the sign of

the derivative of the left hand side in (6) with respect to x̂,

p(1+ k log(F (x̂−θ H)))F
k−1 (x̂−θ H) f (x̂−θ H)

+(1− p)(1+ k log(F (x̂−θ L)))F
k−1 (x̂−θ L) f (x̂−θ L) ,

which is negative when F (x̂−θ L) is sufficiently small, as happens when the prior strongly

favors acceptance. In that case, the best response k is a decreasing function of x̂. Conversely,

when the prior strongly favors rejection.

7 Impact of Unanticipated and Uncertain Selection

So far we consider situations in which the evaluator rationally predicts the correct k and there is

no uncertainty in the extent of selection, for example because the parameters of the model (such

as researcher’s bias and cost of presampling) are known. This is the most optimistic scenario

when evaluating the impact of selection. We now relax these assumptions to consider more

realistic scenarios.

Impact on Unwary Evaluator. Consider an unwary evaluator who wrongly anticipates a lower

k than true. Holding fixed the true k, clearly the evaluator is generally worse off by being

unwary than being rational. More interestingly, it is ambiguous whether an unwary evaluator

who expects k gains or loses when the true signal has k′ > k. If the rational evaluator would
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prefer k′ to k, this gain might be greater than the cost of irrationality.

In an important benchmark case, we find that the unwary evaluator is exactly indifferent

to an increase of selection from k = 1 to k = 2. Consider a situation of equipoise, whereby

at the prior the evaluator is indifferent between acceptance and rejection, (1− p)(R− θ L) =

p(θ H −R).20 Suppose that the noise distribution is symmetric, so that for some ε0 we have

F (ε0+ ε) = 1−F (ε0− ε) for all ε . Start from the approval standard x̄ = ε0+(θ L+ θ H)/2

optimal with no selection, k = 1, and consider how an increase in selection to k = 2 affect an

unwary evaluator who does maintains the approval standard unchanged at x̄. The probability of

acceptance then clearly increases, resulting in a change in the evaluator’s payoff equal to

−(1− p)
[
F (x̄−θ L)−F2 (x̄−θ L)

]︸ ︷︷ ︸
increase in FALSE POSITIVES

(R−θ L)+ p
[
F (x̄−θ H)−F2 (x̄−θ H)

]︸ ︷︷ ︸
reduction in FALSE NEGATIVES

(θ H−R) .

The two effects exactly cancel given that F (x̄−β L) = 1−F (x̄−β H) for x̄= ε0+(θ L+θ H)/2

by symmetry of F and equipoise, (1− p)(R−θ L) = p(θ H−R):

Proposition 4. Suppose that F is symmetric, F (ε0+ ε) = 1−F (ε0− ε), and that the evaluator

attaches equal weight to type I and type II errors, (1− p)(R− θ L) = p(θ H −R). Then the

unwary evaluator who anticipates no selection, k= 1, is indifferent to whether the true selection

is k = 1 or k = 2.

Thus under symmetry and equipoise an increase in selection from k= 1 to k= 2 necessarily

benefits a rational evaluator.

Impact of Uncertain Selection. In a natural extension of the selection model, the number k

is random. Again, the β (α) curve can be generally used to compare experiments. However,

the application of dispersion is harder. Suppose that ε is drawn from λFk+1+(1−λ )Fk where

λ ∈ (0,1) and Fk+1 is less dispersed than Fk. It might be natural to conjecture that the evaluator

is better off, the greater the weight λ attached to the less dispersed experiment. However, this

is generally false. To see this note that when F is Gumbel, both Fk and Fk+1 are Gumbel, but

20The condition of equipoise, requiring experimental subjects to be indifferent between treatment and control,

is an ethical prerequisite for carrying out a randomized experiment.
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λFk+1+(1−λ )Fk is not Gumbel. In fact, for every λ ∈ (0,1), λFk+1+(1−λ )Fk is worse

than Fk, for it is Blackwell worse than informing the evaluator about the outcome of the lottery

over Fk and Fk+1. Intuitively, the equivalence of Fk with Fk+1 rests on being able to remove

a constant bias from the distribution of ε , but this is not feasible when it is random whether ε

derives from one distribution or the other.21

8 Contribution to Literature

To the literature on optimal persuasion following Johnson and Myatt (2006), Rayo and Segal

(2010) and Kamenica and Gentzkow (2011) we contribute a signal-jamming model of persua-

sion.22 The researcher’s choice of the size k of the presample is akin to the agent’s effort

choice in Holmström’s (1999) classic career concern model. The twist here is that this effort

results in private information, which the researcher then uses to select the reported information.

As we show, information manipulation induces positive skewness in the distribution of treated

outcomes. Contrary to naive intuition, the evaluator is not necessarily hurt by information ma-

nipulation; actually, we characterize natural conditions under which the evaluator benefits. In

addition, we characterize situations in which the researcher ends up suffering from information

manipulation like in a rat race, even if we abstract away from the cost of acquiring information.

In a pioneering game theoretic analysis, Blackwell and Hodges (1957) analyze how an eval-

uator should optimally design a sequential experiment to minimize selection bias, defined as

the number of times an optimizing researcher is able to correctly forecast the treatment as-

signment.23 In the context of our single experiment, we characterize situations in which the

21Some advance may still be feasible by using the arithmetic-mean to geometric-mean inequality, and observing

that Fλ (k+1)F(1−λ )k is itself a power of F , as characterized in Theorem 1.
22See also Henry (2009), Dahm, González, and Porteiro (2009), and Felgenhauer and Schulte (2014) for per-

suasion models with endogenous information acquisition. In our setting, the researcher is constrained to disclose

a single observation, as in the limited-attention models proposed by Fishman and Hagerty (1990) and Hoffmann,

Inderst, and Ottaviani (2014).
23Blackwell and Hodges (1957) argue that selection bias is minimized by a truncated binomial design, according

to which the initial allocations to treatment and control are selected independently with a fair coin, until half of the
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selection bias that is present when the researcher is able to forecast the assignment actually

benefits the evaluator, contrary to what Blackwell and Hodges (1957) stipulate.

In a complementary approach to modeling conflicts of interest in statistical testing, Tetenov

(2016) analyzes a regulator’s optimal commitment to a decision rule when privately informed

proponents of innovations select into costly testing. Instead, we focus on the impact of a re-

searcher’s manipulation of the data on the welfare of an uncommitted evaluator. Henry and

Ottaviani (2015) analyze a dynamic model of persuasion with costly information acquisition à

la Wald (1950), where information is truthfully reported at the time of application.

While in general selected data are not Blackwell comparable to random data, we charac-

terized the welfare impact of selection on the basis of dispersion. Our results depend on the

features of the environment (conditional signal distribution and parameters of decision prob-

lem). Our notion of local dispersion, like Lehmann’s, applies to the case where the evaluator

observes only one outcome x. It is natural to generalize. The construction of the β (α) curve

is generally applicable, and the convex envelope generally allows for the comparison of experi-

ments, as explained in Section 4.

We leave to future work the design of experiments and policy responses in the presence

of strategic selection. A natural starting point in this direction is Chassang, Padró i Miquel,

and Snowberg’s (2012) characterization of experimental design when outcomes are affected by

experimental subjects’ unobserved actions.

subjects are allocated to either treatment or control; from that point on, allocation is deterministic. Efron (1971),

instead, characterizes the selection bias resulting from a biased coin design, according to which the probability of

current assignment to treatment is higher if previous randomizations resulted in excess balance of controls over

treatments.
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A Appendix: Proofs

A.1 Proof of Theorem 3

Fix any δ ∈ (0,(θ H−θ L)/2). Let εδ > 0 be such that F̄ (εδ )− F̄ (−εδ )≥ 1−δ/2. Choose k̂

so that for all k ≥ k̂,

akεδ < δ , Fk (bk+akεδ )≥ F̄ (εδ )−
δ

4
, and Fk (bk−akεδ )≤ F̄ (−εδ )+

δ

4
.

Then, for each θ , since x= θ +bk+akε ,

Pr
(
θ +bk−δ ≤ x≤ θ +bk+δ

∣∣ θ
)
≥ Pr

(
θ +bk−akεδ ≤ x≤ θ +bk+akεδ

∣∣ θ
)

= Fk (bk+akεδ )−Fk (bk−akεδ )

≥ F̄ (εδ )−
δ

4
− F̄ (−εδ )−

δ

4

≥ 1−δ .

In words, the distribution of observation x in state θ assigns at least probability 1−δ to a δ -ball

around the point θ +bk. Now, rejecting if and only if x< x̂= θ H+bk−δ gives

α = Pr
(
x≥ θ H+bk−δ

∣∣ θ L

)
≤ 1−Pr

(
θ L+bk−δ ≤ x≤ θ L+bk+δ

∣∣ θ L

)
≤ δ

and

β = Pr
(
x< θ H+bk−δ

∣∣ θ H

)
≤ 1−Pr

(
θ H+bk−δ ≤ x≤ θ H+bk+δ

∣∣ θ H

)
≤ δ .

As we can choose δ > 0 arbitrarily small, we can make ¯̀α+β arbitrarily small. The first claim

in the theorem follows.

To prove the second claim, consider the pair of error rates (α,β ) that result with threshold x̂

when the error is drawn from F̄ . Let (αk,β k) be the error rates that result with threshold x̂−bk

when the error is draw from Fk. The convergence Fk (bk+ ε)→ F̄ (ε) at both ε = x̂−θ H and

x̂− θ L implies that the sequence (αk,β k) converges to (α,β ). Since this is true for every x̂,

every point on the β (α) curve generated from F̄ is a limit point for the corresponding curves

for experiments Fk. For the convex curves in the compact space, this implies convergence of

the β (α) functions. This implies convergence of the evaluator’s payoff.
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A.2 Extreme Selection in the Exponential Power Case

In this appendix we show that if ε1,ε2, . . . are i.i.d. exponential power with shape b, location 0

and scale 1, then Mn =max{ε1, . . . ,εn} satisfies

Pr(Mn ≤ anε+bn)→ e−e−ε ∀ε (Gumbel),

where

an = (b logn)−
b−1

b

and

bn = (b logn)1/b−
b−1

b
log logn+ log(2Γ[1/b])

(b logn)
b−1

b

.

Here, Γ denotes the Gamma function.

Remark 1. For b= 1 (Laplace) we have an = 1 and

bn = logn− log(2Γ[1]) = logn− log2.

Remark 2. For b= 2 (normal) we have an = (2logn)−1/2
and

bn = (2logn)1/2−
1
2

log logn+ log(2Γ[1/2])

(2logn)1/2

= (2logn)1/2−
log logn+2log

(
2
√

π
)

2(2logn)1/2

= (2logn)1/2− log logn+ log4π

2(2logn)1/2
,

as in Leadbetter et al. (Note that an in that book corresponds to 1/an here.)

Remark 3. The calculations do not cover the case b = ∞ (uniform) because in this case the

relevant extreme value distribution is not Type I (Gumbel) but rather Type III (Weibull).

The proof follows closely and generalizes the one given by Leadbetter et al. (1983) for the

normal case b= 2.

Start by noticing that

f (ε)

εb−1[1−F (ε)]
→ 1 as ε → ∞.
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Fix ε and define yn for each n≥ 1 by

1−F (yn) =
e−ε

n
,

so that

e−ε

n

yb−1
n

f (yn)
→ 1 as n→ ∞. (7)

We may assume yn > 0 for all n. Then

f (yn) =
b

b−1
b

2Γ[1/b]
e−yb

n/b,

and hence, by (7),

− logn− ε+(b−1) logyn−
b−1

b
logb+ log(2Γ[1/b])+

yb
n

b
→ 0. (8)

From (8) we see that

− logn+(b−1) logyn+
yb

n

b
=− logn+o

(
yb

n/b
)
+

yb
n

b
→ a constant,

and hence that

−b logn

ub
n

+
o
(
yb

n/b
)

ub
n/b

+1→ 0,

that is

b logn

ub
n

→ 1,

or

b logyn− logb− log logn→ 0,

that is

logyn =
1

b
(logb+ log logn)+o(1) .

Using this fact in (8), we obtain

yb
n

b
= logn+ ε− b−1

b
(logb+ log logn)+

b−1

b
logb− log(2Γ[1/b])+o(1)

= logn+ ε− b−1

b
log logn− log(2Γ[1/b])+o(1) ,

or

yb
n = b logn

[
1+

ε− b−1
b

log logn− log(2Γ[1/b])

logn
+o

(
1

logn

)]
,
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or

yn = (b logn)1/b

[
1+

ε− b−1
b

log logn− log(2Γ[1/b])

logn
+o

(
1

logn

)]1/b

= (b logn)1/b
[

1+
ε− b−1

b
log logn− log(2Γ[1/b])

b logn
+o

(
1

logn

)]

= (b logn)1/b+
ε− b−1

b
log logn− log(2Γ[1/b])

(b logn)
b−1

b

+o

(
1

(logn)
b−1

b

)
= anε+bn+o(an) .

Thus

Pr(Mn ≤ anε+bn+o(an))→ e−e−ε

.

A.3 Proof of Proposition 3

It follows directly from Theorem 1 that V k(R) is increasing in k. Now, V k′(R)−V k(R) =∫
θ H

R [F̃k(r)− F̃k′(r)]dr. Hence, we must have F̃k′(R) ≤ F̃k(R) for all R sufficiently close to θ H .

By definition of Uk(R), then Uk′(R)≥Uk(R). A similar argument works at the other end of the

distribution. To see this, first recall that the expectation of πk is the same for every k, because it

must equal the prior expectation of θ . In other words, for every k we have∫
θ H

θ L

[1− F̃k(r)]dr = pθ H+(1− p)θ L.

Hence, V k′(R)−V k(R) =
∫ R

θ L
[F̃k′(r)− F̃k(r)]dr. It follows that F̃k′(r)≥ F̃k(r) and thus Uk′(R)≤

Uk(R) for R sufficiently close to θ L.

A.4 Proof of Proposition 4

The two assumptions imply that the unwary evaluator uses a symmetric threshold, x̄ = ε0+

(θ L+θ H)/2. The likelihood ratio of this threshold signal is

f (x̄−θ H)

f (x̄−θ L)
=

f (ε0+(θ L−θ H)/2)

f (ε0− (θ L−θ H)/2)
= 1,
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and F(x̄−θ L)+F(x̄−θ H) = 1 is satisfied. Now, the unwary’s utility gain due to selection is

(1− p)
[
F2(x̄−θ L)−F(x̄−θ L)

]
(R−θ L)+ p

[
F2(x̄−θ H)−F(x̄−θ H)

]
(R−θ H).

By assumption, (1− p)(R−θ L) = p(θ H−R), so the utility gain reduces to

(1− p)(R−θ L)
[
F2(x̄−θ L)−F(x̄−θ L)+F(x̄−θ H)−F2(x̄−θ H)

]
.

This is zero since F(x̄−θ L)+F(x̄−θ H) = 1.
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B Appendix: Local Comparison of Experiments with Multi-

ple Crossings

In this appendix we complement the characterization provided in Theorem 2 by dealing with

comparisons between experiments based on distributions that may not have the same support

(up to a location shift), or whose quantile difference may exhibit multiple increasing or decreas-

ing parts. As we explain shortly, dispensing with the requirements in our earlier theorem makes

it necessary to meet another requirement, namely that the difference θ H−θ L be not too large.

Let us illustrate why this additional requirement is needed, when the conditions in Theo-

rem 2 are not met. To see what happens when two experiments F and G do not have the same

support, suppose F is the uniform distribution on [0,1] and G is a piecewise-uniform distribution

on [0,5/4], say G(ε) = ε/2 for ε ∈ [0,1] and G(ε) = 1/2+2(ε−1) for ε ∈ [1,5/4]. Clearly, the

quantile difference G−1(u)−F−1(u) is strictly increasing for u< 1/2 and strictly decreasing for

u> 1/2. However, the information constraint of F is strictly below that of G if θ H−θ L is suf-

ficiently large. Indeed, β F(α) = 1−α− (θ H−θ L) while β G(α) = 5/8− (θ H−θ L)/2−α/4.

Thus, β G(α) > β F(α) for all α , provided that θ H > θ L+ 3/4. Intuitively, the difference be-

tween θ H and θ L is too large relative to the decreasing part of the quantile difference, which

is never relevant for the comparison between F and G. Similar examples can be constructed,

where the other requirement in Theorem 2, a single change of sign in the slope of the quantile

difference, is violated.

Theorem 4. Let N ≥ 1 and 0= u1 ≤ ·· · ≤ u2N+1 = 1. Suppose that, for all n= 1, . . . ,N,

f
(
F−1(u)

)
≤ g
(
G−1(u)

)
for all u ∈ (u2n−1,u2n),

f
(
F−1(u)

)
≥ g
(
G−1(u)

)
for all u ∈ (u2n,u2n+1),

Suppose also that, for all m= 1, . . . ,2N,

θ H−θ L ≤max
{

F−1(um+1)−F−1(um) , G−1(um+1)−G−1(um)
}
.
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Then there exist 0= K1 ≤ ·· · ≤ K2N+1 = ∞ such that, for all n= 1, . . .N,

G is preferred to F if
1− p

p

R−θ L

θ H−R
∈
(
K2n−1,K2n

)
,

F is preferred to G if
1− p

p

R−θ L

θ H−R
∈
(
K2n,K2n+1

)
.

Proof. It suffices to show that there exist 0 = α2N+1 ≤ ·· · ≤ α1 = 1 such that, for all n =

1, . . . ,N, we have β G(α) ≤ β F(α) for all α ∈ (α2n,α2n−1) and β G(α) ≥ β F(α) for all α ∈

(α2n+1,α2n).

Define, for every v ∈ (0,1),

u(v) =max
{

β F(1− v) , β G(1− v)
}
.

The bound on the difference θ H − θ L implies that there exist 0 = v1 ≤ ·· · ≤ v2N+1 = 1 such

that, for all n= 1, . . . ,N,

G−1(v)−F−1(v)≤ G−1(u(v))−F−1(u(v)) for all v ∈ (v2n−1,v2n),

G−1(v)−F−1(v)≥ G−1(u(v))−F−1(u(v)) for all v ∈ (v2n,v2n+1).

But for each α ∈ (0,1) we have

G−1(1−α)−F−1(1−α) = G−1(β G(α))−F−1(β F(α))

and hence the inequality β G(α)≤ β F(α) is equivalent to both of the following:

G−1(1−α)−F−1(1−α)≤ G−1(β F(α))−F−1(β F(α)),

G−1(1−α)−F−1(1−α)≤ G−1(β G(α))−F−1(β G(α)).

We conclude that, for all n= 1, . . . ,N,

β G(α)≤ β F(α) for all α ∈ (1− v2n,1− v2n−1) =: (α2n,α2n−1),

β G(α)≥ β F(α) for all α ∈ (1− v2n+1,1− v2n) =: (α2n+1,α2n).

35



References

Akerlof, George (1976), “The Economics of Caste and of the Rat Race and Other Woeful

Tales,” Quarterly Journal of Economics, 90(4), 599–617.

Allcott, Hunt (2015), “Site Selection Bias in Program Evaluation,” Quarterly Journal of Eco-

nomics, 130(3), 1117–1165.

Berger, Vance W. (2005), Selection Bias and Covariate Imbalances in Randomized Clinical

Trials, Wiley.

Bickel, Peter J. and Erich L. Lehmann (1979), “Descriptive Statistics for Nonparametric Mod-

els. IV,” in: Contributions to Statistics, Jaroslav Hájek Memorial Volume (J. Jurečková,
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