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Abstract

This paper aims at designing mechanisms for the regulation of bank risk that are robust

to large misspecifications of the regulators information regarding the bank’s assets. Assuming

that banks can (on average) discern the true level of risk of the other regulated banks, we

construct a robust mechanism that allows the regulator to bound the worst case probability of

bank failure by any arbitrary amount. Importantly, we show that any informationally robust

mechanism that meets the regulators budget constraint must necessarily require banks to issue

subordinated debt to other regulated banks and must guarantee that the probability of joint

failure between at least two of the banks is strictly less than 1. We show that the only way

the regulator can achieve the latter objective is by providing a single bank with an explicit

guarantee against losses in the event that another bank fails and how, when coupled with a

minimum subordinated debt requirement and interest rate ceiling, such a guarantee can ensure

an arbitrarily low probability of bank failure.

1 Introduction

It is well known that there exists a large asymmetry of information between bank regulators and the

banks that they regulate. Moreover, current banking regulation (Basel I-III) relies heavily on both
∗HEC Paris, 78351 Jouy-en-Josas, France. thomas.rivera@hec.edu.
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the accurate risk weighting of broad asset classes (via the standardized approach) and the ability

to check that the banks own internal risk models are consistent (via the internal models approach).

In light of this, it is natural to desire an understanding of how well current mechanisms may fair

when the asymmetry of information between the regulator and the banks becomes large.

Given that it is easy to construct examples where the existing mechanisms of Basel I-III are

not robust to increases in the asymmetry of information (see e.g., Jones (2000)), the literature has

turned to the possibility of using market discipline to help curb the level of bank risk (see Evanoff

and Wall (2000) for a survey of proposals). The idea is that if markets can discern the true risk of

the bank better than the regulator, then by forcing the bank to regularly issue a minimum level of

subordinated debt (i.e. unsecured junior debt), the regulator would be imposing on the bank a cost

that increases with the bank’s risk (probability of default).

The purpose of this paper is to understand, in a general banking model, to what extent market

discipline can help to curb bank risk as regulators become more uninformed about the bank’s port-

folio characteristics. We consider a general model whereby banks, with limited liability, choose

a distribution of returns and financing mix to maximize the value of their equity. The regulator’s

goal is to minimize the cost that the regulation imposes on the bank subject to the constraint that

the bank’s probability of failure does not exceed a certain threshold and that the regulator does not

exceed his budget (in expectation). We model the asymmetry of information between the regulator

and the bank, in the spirit of Carroll (2015), by assuming that while the regulator has some idea of

the distributions of returns that the bank’s assets can generate, they may also generate other distri-

butions unknown to the regulator. In this case, the regulator aims to bound the worst case level of

risk that any incentive compatible mechanism can guarantee no matter the size of the asymmetry of

information between the bank and the regulator. In doing so, we characterize robust mechanisms

that will allow the regulator to achieve his objective without making any informational assumptions

about asset returns.

Our main result is the construction of an informationally robust mechanism that allows the

2



regulator to guarantee an arbitrarily small bound on the level of risk in the banking system. The

key insight developed is that when creditors can (on average) discern the true level of risk of the

bank, then for any budget of the regulator, any informationally robust mechanism that can bound

the worst case level of bank risk and satisfy the regulators budget constraint must satisfy three

conditions: 1.) capital requirements should be uniform across all banks; 2.) the mechanism must

require a minimum amount of subordinated debt to be issued by each regulated bank to some other

regulated bank at an interest rate below a predefined, leverage dependent, interest rate ceiling; 3.)

the regulator must have the ability to provide an explicit guarantee to at least one of the banks

to insure its solvency conditional on its subordinated debtors failure. Once the regulator has the

ability to implement such a mechanism, then by carefully constructing the network of subordinated

debt exposures, we can guarantee an arbitrarily low bound on the level of bank risk. Importantly,

we show that these three conditions are necessary for any informationally robust mechanism to

satisfy incentive compatibility, to meet the regulators budget constraint, and to bound the worst

case level of risk of the bank. Furthermore, we show that in general a minimum subordinated debt

requirement per se will provide banks with incentives to increase the correlation of their portfolio’s

failure with their creditors, which can give them incentives to take more risk than without the

requirement. We then show how our optimal mechanism avoids creating these perverse incentives

through the aforementioned explicit guarantee. Finally, we turn to the case where creditors may

have a bias in determining bank risk1 (i.e. they may consistently underestimate the bank’s true

probability of failure) and provide a bound on the worst case level of bank risk that any mechanism

can guarantee as a function of the magnitude of the biases.

To see why our three conditions are necessary, first note that if the regulator has little infor-

mation regarding the bank’s portfolio characteristics, then any mechanism that is not uniform in

its treatment of capital requirements will require the bank to report its true characteristics (e.g.

distribution of returns) which will determine its capital requirements.2 In order to provide the bank

1Our results hold when there is noise in the creditors evaluation of the bank’s risk, as long as the noise is mean
zero.

2This is due to the revelation principle (Forges (1986) and Myerson (1986)) which states that any indirect mech-
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with the correct incentives to report truthfully the regulator therefore must be able to exploit some

trade off between higher capital requirements and, for example, higher penalties (see e.g., Kupiec

and O’Brian (1995) and Prescott (1997)). While there is hope for separation when the regulator is

confident making certain assumptions about the distribution of returns of the bank given some ob-

servable characteristics of its assets, once the regulator becomes less confident in his information,

capital requirements intuitively must converge to a uniform requirement.3

Once we show that capital requirements must be uniform, the next question we ask is how

well market discipline can perform in curbing the risk of the bank. We show that a minimum

subordinated debt requirement + interest rate ceiling4 can help to the bound level of risk of the

bank, but that in general, the best bound on the bank’s probability of default that such a mechanism

can guarantee is the worst case probability of default of the creditor of subordinated debt to the

bank. To understand why this is the case, we note that even if a creditor can perfectly infer the

banks true level of risk, the interest rate at which the bank lends to the creditor may still fall below

the fair value interest rate on the debt. This is due to the fact that if the creditor has limited liability

(either as a manager or an institution), then the required rate of return depends crucially on the

probability that the bank fails conditional on the creditor surviving. For example, if in any state

of the world where the bank fails the creditor also fails, then the creditor will never internalize the

loss incurred by the failure of the bank to repay its subordinated debt. In this extreme case the

creditors required return on the banks subordinated debt is simply the risk free rate. Hence, even

if markets can perfectly discern the true risk of the bank, this need not translate into direct market

discipline. Finally, we show that, intuitively, this high level of correlation between the failure of

the bank and its creditor can only be sustained when the probability of the bank’s failure is less

than or equal to the probability of the creditor’s failure. To the author’s knowledge, this is the first

anism can be implemented with a direct mechanism whereby agents report their private information to the principal
who then suggests to each agent an action to take.

3It has been well documented how bank’s can exploit this asymmetry of information when capital requirements
are not uniform as illustrated by, among others, Acarya et. al. (2013), Calomiris and Mason (2003), and Yorulmazer
(2013).

4Namely, banks must issue a minimum amount of subordinated debt at a rate below the interest rate ceiling or face
regulatory inspection/nationalization.
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paper to point out this flaw in the use of subordinated debt for regulating risk.

Due to the fact that the price of the bank’s subordinated debt may be influenced by the correla-

tion between the bank’s portfolio and the creditor’s portfolio implies that if the regulator does not

know the characteristics of the bank’s creditors then it will be unable to bound the level of bank

risk. Furthermore, internalizing the subordinated debt minimum + interest rate ceiling mechanism

by forcing banks to issue subordinated debt to other regulated banks can only guarantee that each

bank’s probability of failure falls below the riskiest regulated bank’s probability of failure. What

we show then, is that the regulator can resolve this issue by providing an explicit guarantee to one

of the banks to ensure its solvency conditional on the failure of one of the other banks to which

it is a subordinated creditor. In doing so, the regulator will guarantee that the bank internalizes

the losses on the subordinated debt whenever the borrowing bank fails. Therefore, no matter the

level of correlation between the portfolios of the two banks, the crediting bank will always price

the borrowing bank’s subordinated debt at or above its fair value. In this case, the subordinated

debt minimum + interest rate ceiling will guarantee that the borrowing bank’s level of risk falls

below the level associated with the interest rate ceiling (which can be made arbitrarily small). We

then show that by properly coordinating the exposures of subordinated debt amongst the regulated

banks, the regulator can guarantee an arbitrarily small level of system wide bank risk. The intuition

here is that if we can guarantee that one bank’s risk is arbitrarily small, then we can also guarantee

that the risk of any bank that issues subordinated debt to this bank is also arbitrarily small — in

the worst case the two bank’s failures are perfectly correlated, but this can only be the case when

the borrowing bank’s risk is less than or equal to the lending bank’s risk, which is arbitrarily small.

Hence, by using a single guarantee and properly coordinating the subordinated debt exposures (e.g.

in a cycle) we can guarantee that all banks have an arbitrarily small probability of default.

Finally, we show that while the regulator could always provide the explicit guarantee to any

one of the bank’s non-bank creditors to ensure that the bank’s debt is appropriately priced, in

doing so he may face an unbounded expected cost of the guarantee. In contrast, by appropriately
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designing a leverage specific interest rate ceiling in our robust mechanism, we show the regulator

can arbitrarily bound the expected cost of providing the guarantee to a regulated bank and therefore

meet his budget constraint. Here we highlight a tradeoff that the regulator faces between allowing

banks to take a certain amount of risk (e.g. to provide better credit conditions) and the expected

subsidy the regulator must provide to the banks. Namely, while we can guarantee expected budget

balance (i.e. the banks expected subsidy is equal to zero), this will either require banks to be risk

free (i.e. have zero probability of default), or to finance their assets with 100% capital.

1.1 Related Literature

Our motivation for robust mechanisms begins with the introduction of deposit insurance and sub-

sequent implementation of Basel I and Basel II capital requirements. Many papers since (e.g.,

Koehn and Santomero (1980), Kahane (1977), and Gennotte and Pyle (1991), Blum (1999)) have

shown how inefficiently priced deposit insurance can lead to higher incentives for bank risk tak-

ing and how the introduction of a leverage ratio can potentially exacerbate these incentives. Kim

and Santomero (1988) and Rochet (1992) show that for this reason capital requirements should be

weighted by the risk of the bank’s assets and construct the theoretically optimal risk weights under

differing assumptions. In line with this reasoning, the standardized approach of Basel I-III defines

capital requirements by associating with each asset a risk weight and then determines the banks

capital requirements as a percentage of risk weighted assets. In light of this, Chan et. al. (1992)

show that when depository institutions are perfectly competitive, then an incentive compatible and

risk sensitive deposit insurance pricing scheme may be infeasible. Similarly, Giammarino et. al.

(1993) extend the results of Chan et. al. (1992) to show that in general the regulator can discrimi-

nate among banks on the basis of their level of risk, but that any mechanism that does so will give

banks an incentive to lower their asset quality.5 For a summary on how the current arbitrary risk

5Chan et. al. (1992) assumes, unlike this paper, that the regulator maximizes social welfare and therefore internal-
izes the profits of the bank in his objectives. They further make an assumption that banks can exert effort to lower the
risk of their distribution of returns in a sense modeled by first or second order stochastic dominance.
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weighting of assets is unsatisfactory for the regulation of bank risk see U.S. Shadow Regulatory

Committee (2000).

In light of this, the internal ratings based (IRB) approach to capital regulation, largely influ-

enced by Gordy (2003), was introduced in the Basel II accord.6 In this approach, banks use their

own internal risk models to determine a value-at-risk (VAR) statistic — VAR measures the max-

imum potential losses the bank may face over a certain period of time (normally 10-days) with a

certain level of confidence (usually 99%)— which determines the banks capital requirements.

Since the introduction of the IRB approach the literature has provided significant evidence

that IRB capital regulation produces incentives for banks to underreport their true risk. Empirical

studies of the under reporting of bank risks includes Begley et. al. (2017), Behn et. al. (2014),

and Plosser and Santos (2014) among others. Notably, Plosser and Santos (2014) show that risk

estimates produced by different banks for the probability of default of the same syndicated loan

have varied by as much as 100 basis points which can result in a decrease of up to 33% of required

regulatory capital for the loan. Furthermore, Begley et. al. (2017) show that banks consistently

underreport their risk following periods of poor stock returns when raising capital is more costly.

Finally, strategic underreporting of bank risk has been studied theoretically in papers such as Lucas

(2001), Prescott (2004), and Colliard (2017). In particular, Colliard (2017) shows that when the

bank’s internal risk estimates are private information, costly auditing leads to less risk-sensitive

capital requirements in order to counteract the bank’s incentives to underreport their true risk.

Another motivating line of research for robust mechanisms comes from the literature on reg-

ulatory arbitrage through financial innovation. The idea of regulatory capital arbitrage, first in-

troduced by Jones (2000) and documented empirically in Acharya et. al. (2013), highlights how

securitization has produced the ability for banks to restructure their portfolios to lower the burden

of capital regulation while effectively maintaining the same risk characteristics. Namely, Acharya

6Note that the IRB approach is not sound theoretically in the context of informational robustness as Gordy (2003)
shows that the value at risk statistic can be a sufficient measure of capital adequacy assuming normally distributed
returns and necessarily requiring a single systemic macroeconomic risk factor (see Dewatripont, Rochet, and Tirole
(2010) for a discussion).
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et. al. (2013) show how prior to the financial crisis, banks’ would commonly securitize assets

which would then be sold to conduits that finance the purchase of the securitized assets by issuing

asset backed commercial paper (ABCP). This would allow the banks to remove loans off of their

balance sheet, substantially lowering their capital requirements, while retaining the underlying risk

by providing guarantees to the ABCP issued by the conduits.78 The key issue here was the reg-

ulators inability to foresee that the banks were retaining such risk on their balance sheets (i.e. a

misspecification of the risk weights for guarantees on ABCP).

Given the above issues with the current banking regulation, the literature has turned to market

discipline as a potential regulatory tool. The majority of papers that study the use of subordinated

debt for bank regulation aim at empirically testing whether creditors and markets actually provide

discipline to riskier banks through higher primary and secondary market interest rate spreads. For

a summary of the empirical results on the existence of market discipline see Study Group on

Subordinated Notes and Debentures (1999). While the empirical evidence on the existence of

market discipline through subordinated debt interest rates is mixed, we note that, to the author’s

knowledge, the theoretical effect of bank and creditor portfolio correlations on subordinated debt

pricing has not been taken into account in these studies. Therefore, one would expect a downward

bias in the estimated disciplinary effects in both primary and secondary market subordinated debt

yields without controlling for such correlation.

The key proposals for the use of subordinated debt for bank capital regulation are summarized

in Evanoff and Wall (2001a) and The Federal Reserve Board of the U.S. Treasury (2000). Of such

proposals Calomiris (1999) suggests the most similar mechanism to ours. Namely, he proposes a

minimum subordinated debt requirement coupled with an interest rate ceiling as in our paper. The

key insight that we add to this proposal is that we show, theoretically, that while such a mechanism

7In fact, Acharya et. al. (2013) estimate losses on subprime mortgages and their associated collateralized debt
obligations after the housing crash to be between $68 and $204 billion yet only $1.8-5.2 billion of these losses were
borne by outside investors not involved in originating or securitizing the loans.

8Similar types of securitization without risk transfer for the purpose of regulatory arbitrage has further been docu-
mented by Calomiris and Mason (2003) in the case of securitization of credit card receivables, and Yorulmazer (2013)
in the case of credit default swaps. The key issue highlighted in these papers is how financial innovation can lead to
regulatory arbitrage due to the regulators inability to understand or correctly estimate the underlying risk of the banks.
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can help curb bank risk, is not sufficient to limit the bank’s risk by itself. In fact, we show that

such a mechanism per se can lead to an increase in bank risk. This insight highlights the danger of

proposals stating that banks should be allowed to meet their capital requirements with an unlimited

amount of subordinated debt as proposed by U.S. Shadow Regulatory Committee (2000).

Of the few theoretical papers on subordinated debt and bank risk taking incentives, Levonian

(2001) shows, in a theoretical model, that subordinated debt may be inferior to equity when the

regulator has concerns regarding both the probability of bank default and the liability of the deposit

insurance fund. Important in his model is the fact that returns are normally distributed so that an

increase in equity strictly decreases bank risk. This is precisely the departure of the current paper

from the previous literature. If the regulator does not have information regarding the distribution

of returns, which may have fat tails or be discontinuous, then such a statement cannot be made.

Blum (2002) further shows that unless the bank can commit to not increasing risk in the future,

subordinated debt pricing may not lead to a reduction in bank risk. One way around this dynamic

problem, as proposed in Calomiris (1999) is to have banks issue subordinated debt on a regular

basis with overlapping maturities which would limit the scope for banks to increase their risk in

the interim before the next subordinated debt issuance.

Finally, this paper draws a large influence from the current game theoretic motivation for de-

signing mechanisms that are robust to underlying informational assumptions as initiated by the

Wilson (1987) doctrine. Similar theoretical approaches include papers such as Morris and Berge-

mann (2005) who characterize mechanisms robust to the informational assumption that agents have

common prior beliefs, and a series of papers Carroll (2015), Carroll (2016a), and Carroll (2016b).

In fact we take direct influence from Carroll (2015) who looks at procurement problems when the

principal knows only a subset of the agent’s potential actions and characterizes the highest level

of surplus that the principal can achieve under a worst case criteria (with respect to the true set

of the agents actions), and shows that this surplus can be achieved with linear contracts. In our

definition of robustness we assume, in a similar fashion, that the regulator may know some true
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distributions of returns of the bank, but that there may exist other distributions of returns that the

bank’s assets can generate unknown to the regulator. While Carroll (2015) shows how the principal

can guarantee a minimum amount of surplus subject to the known set of agents actions, we show

that the worst case level of risk that the regulator can guarantee will always be independent of the

known set of distributions and how this leads to uniform capital requirements across the regulators

information. Finally, we note that Carroll (2015) was not the first to utilize a worst case objective

in a setting where the principal may misspecify the underlying problem. There is a long line of

literature in macroeconomics, micro founded on the minmax expected utility model of Gilboa and

Schmeidler (1989), on the calibration of dynamic models when the underlying model may be mis-

specified and how to robustly calibrate these models in the presence of such misspecification (see

e.g., Hansen and Sargent (2003)).

2 The Model

To start we consider the case of a single regulator and a single bank. The bank at time t = 0 chooses

a portfolio of assets and issues equity and debt to finance its portfolio. At time t = 1 the assets

generate a return x distributed according to some Borel measurable distribution f ∈ ∆(R). We

assume that the bank is risk neutral (a discussion of risk aversion is provided below), maximizes

the value of its equity, and has limited liability.

The regulator’s objective is minimize the cost of the regulation to the banks (i.e. provide

minimal interference in the banking sector) subject to the probability of default of the bank being

below some threshold. Namely, whenever the bank with a balance sheet of size A chooses a

distribution of returns f , and a level of equity financing K, the probability that the bank fails is

α(f,K) =

∫ −K
−A

f(x)dx

and therefore, the regulator’s would like ensure α(f,K) ≤ α? where α? is a predetermined accept-
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able level of risk.9 Important to note here is that we are implicitly assuming that banks cannot short

sell assets implying that the largest loss of the bank is A. As we will see, the only time that this

assumption will be important is when considering the regulators budget balance constraint (intro-

duced below). We therefore assume the regulators problem is to design a mechanismM to align

the incentives of the bank and the deposit insurance institution in the spirit of the Representation

Hypothesis of Dewatripont and Tirole (1994).

We assume the regulator can identify any composition of assets as lying within a particular

class l = 1, ..., L. Further, for any portfolio of assets in the class l, the regulator can identify a set

of distributions C0
l ⊆ ∆(R) consisting of the possible distributions of returns f that any portfolio

in class l can generate.10 The description of which portfolios fall in which classes can be thought of

as endogenously chosen by the reguater in a broad sense similar to the way portfolios are treated

in the standardized approach of Basel I-III. For example, one asset class could be portfolios of

US treasury bonds with varying maturities while another can be portfolios with a makeup of 50%

residential mortgages, 30% AAA rated corporate bonds, and 20% of a trading book of various

financial instruments. We would like to think of the asset classes as a crude representation of the

limitations of any regulatory policy that maps assets to a particular class and then assigns capital

(and other) requirements based on the asset class.

In order to model the asymmetric information between the regulator and the bank (without

making common prior assumptions) we assume that the regulator knows of potential distributions

of returns, C0
l , of portfolios falling within each class l but that there may be other distributions

of returns that he is unaware of (in the spirit of Carroll (2015)). Denoting by Cl the true set of

distributions of returns generated by portfolios in the class l, this implies that C0
l ⊆ Cl. In order

to proceed, we assume that the regulator takes a worst case, or minmax, approach in designing the

9In general the regulator may set α? > 0, if it believes that banks must be allowed to take some minimal amount
of risk, for example, to ensure the proper function of financial markets.

10The fact that C0
l is not a singleton represents the fact that the regulator cannot perfectly distinguish between the

distribution of returns of assets in a particular class.
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mechanismM to solve the following problem

min
M

c(K,D) + T

Subject to: (1) max
f∈Cl⊃C

0
l

l=1,...,L

α(f,K) ≤ α?

(2) EWC
M [−T] ≤ T̂

(3)M is incentive compatible and feasible

where c(K,D) is the cost of financing for the bank and T any possible transfers from the banks to

the regulator required by the mechanism. The constraint (2) states that the regulator would like to

limit the worst case expected transfer to the bank, EWC
M (−T), by some amount T̂ , equivalent to a

budget balance requirement for the regulator. We use the worst case expected cost due the fact that

the mechanism must allow the bank to choose any distribution of returns and financing decision

and therefore once the regulator largely misspecifies the problem, he will be unable foresee the

optimal decision of the bank given the mechanism (see section 2.1 for our definition of misspeci-

fication). One simple interpretation for this constraint is that the regulator has some expectation of

the worst case cost of ex-post intervention, T̂ , and therefore whenever the expected cost of ex-ante

intervention, EWC
M (−T), is greater than the cost of ex-post intervention, the regulator would rather

let the banks operate under a laissez faire mechanism and intervene ex-post in the case of bank

failure. Finally, the regulator requires that the mechanism M satisfy incentive compatibility —

banks to report truthfully and take the correct actions suggested to them— and feasibility which

requires the mechanism have a feasible solution. Each of these components of the regulators con-

straints will be defined precisely after we define the general class of mechanisms that we study in

Subsection 2.2. Important to note here is the fact that the regulator requires the bank’s level of risk

to fall below the threshold α? as a constraint, rather than the main objective, in order to illustrate

that the regulators incentive is to keep bank risk below a certain threshold and once that threshold

is met, then the regulator would like to minimize the regulatory cost he imposes on the bank.
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The problem for the banks is to maximize expected returns (i.e. the value of equity) by choosing

a portfolio which generates a distribution of returns f in a particular class.11 The bank finances their

assets of size A with equity K and debt debt D := (Dψ)ψ=0,1,...,J of various priority ψ. Namely,

debt will be characterized by its priority ψ = 0, 1, ..., J where ψ = J is the lowest priority debt (i.e.

the lowest priority to be paid back in the event of insolvency) otherwise known as subordinated

debt, ψ = 0 is the highest priority debt which we equate to insured deposits, and 1 is the highest

priority uninsured debt, sometimes referred to as senior debt. For each priority ψ, we denote by

Dψ the dollar value of debt with priority ψ issued by the bank, and by rψ the interest rate paid on

the debt Dψ. Therefore, if the face value of the bank’s assets is A and the return (i.e. gain or loss)

on the assets is x, then the return on one dollar of debt with priority ψ is12


1 + rψ if x+ A ≥

∑
j≤ψDj(1 + rj)

1
Dψ

(x+ A−
∑

j<ψDj(1 + rj)) if
∑

j<ψDj(1 + rj) ≤ x+ A <
∑

j≤ψDj(1 + rj)

0 if x+ A <
∑

j<ψDj(1 + rj)

Then, using this notation we can denote by

K(ψ,K) := K +
∑
j>ψ

Dj −
∑
j≤ψ

Djrj

the maximal loss that the bank can sustain while still being able meet its priority ψ debt obligations.

In what follows, for simplicity we will assume that priority ψ debt contracts are binary and repay

1 + rψ if x ≥ K(ψ,K) and 0 otherwise.13 In this case, whenever the bank makes the investment

11Note that we do not impose a cost on a bank for investing in a particular class, but note that this is without loss as
we can restrict our attention to feasible asset classes for the bank. In this sense, if it would be very costly for a bank
that specializes in residential mortgages to start investing in loans to small to medium sized enterprises (SME’s), then
this will be reflected in the opportunity sets Cl; the cost would be reflected in the set of feasible return distributions in
any asset class that invests heavily in SME’s via lower expected returns.

12We implicitly assume here that no interest is paid if x < −K.
13As we will see the optimal debt contracts in any regulatory mechanism that utilizes market discipline will satisfy

this property.
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decision (f,K), the required rate of return on such a debt contract is given by the equation

(1 + rψ)

∫ +∞

−K(ψ,K)

f(x)dx−
∫ −K(ψ,K)

−A
f(x)dx = 1 + r0

where r0 is the risk free rate. This yields a required return of at least

rψ ≥
r0 + 2

∫ −K(ψ,K)

−A f(x)dx

1−
∫ −K(ψ,K)

−A f(x)dx
. (1)

Furthermore, it may be the case that the bank has access to a limited amount of deposits D0

(which we refer to as priority 0 debt), in which case we add the constraint D0 ≤ D̄0.14 Denoting

by C = ∪Ll=1Cl, the bank’s maximization problem becomes

max
f∈C
K,D

∫ +∞

−K
xf(x)dx− c(K,D)

subject to K +
∑
ψ

Dψ = A

K ≥ 0, Dψ ≥ 0 for all ψ = 0, 1, ..., J, and D0 ≤ D̄

Here limited liability shows up in the conditional expectation as the bank is only concerned with

maximizing expected returns conditional on solvency (i.e. losses less than the value of capital).

2.1 Informationally Robust Mechanisms

Given that the regulator may be misinformed regarding the worst case distribution of returns, he

may be unable to bound the risk taken by the bank using conventional regulatory tools. Namely,

letting M be a general regulatory mechanism, and α? the maximal level of risk the regulator is

willing to allow the bank to take, it may be the case that the worst case level of risk under M,

14Once this is the case we can show that the bank may find it optimal to issue subordinated debt without any
regulatory requirements (as is seen in reality) as it will lower the cost of its more senior debt (which it may issue due
to lack of deposits). We elaborate on this in Section 3.1.
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denoted by αM, is such that αM > α?. The question we will be interested in answering here is,

for a given mechanismM, does there exists a δ ∈ (α?, 1) such that αM ≤ δ, no matter the level of

asymmetry of information between the regulator and the bank (as captured by the sets C0
l and Cl).

To model this asymmetry we will introduce the following definition of misspecification.

Definition : (1) Let K be the amount of equity issued by the bank. The regulator misspecifies the

regulatory problem by ε if

max
l=1,...,L

max
f∈Cl

min
f0∈C0

l

∫ +∞

−A
|f(x)− f0(x)|dq = ε. (2)

While many definitions would suffice for misspecification, our sole intention is to represent the fact

that if Cl = C0
l , then the regulator is perfectly informed, and the level of misspecification ε = 0.

Otherwise, there exists f ∈ Cl such that
∫
|f(x)− f0(x)|dx > 0 for all f0 ∈ C0

l . Therefore, in the

best case, the regulator misspecifes the bank’s returns by minf0
∫
|f(x) − f0(x)|dx > 0 and thus

the worst case level of best case misspecification over any distribution f ∈ Cl in any asset class

l = 1, ..., L is given by (2). We are now ready to introduce our definition of robustness.

Definition : The mechanismM is δ-informationally robust if the worst case level of risk taken

by the bank under the mechanism M is bounded by δ for any level of misspecification of the

regulatory problem: αM ≤ δ for all ε > 0.

Given our definition of robustness, we can now describe the regulators goal as designing a budget

balanced and incentive comaptible α?-informationally robust mechanism.

2.2 General Mechanisms for the Bank Regulation Problem

We will now describe in detail what we refer to as general mechanisms in the bank regulation

problem. The observables over which the mechanism operates are the asset class l, future returns x,

interest rates on debt r := (rψ)ψ=0,..,J , the funding decision of the bank K and D := (Dψ)ψ=0,..,J ,

and the size of the banks balance sheet A. When convenient we will refer to the bank’s observable
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type as (r, l, A). In fact, given that our results will not be specific to the observable class l and the

size of the bank’s balance sheet A, we will simply assume the only relevant observable parameter

is r. We will now define the general class of mechanisms that we will consider throughout.

Definition : (1) A regulatory capital mechanism M = (T,K,D) is a mapping that takes the

bank’s reported distribution of returns f and observable type r and maps it to a system of transfers

and liability requirements:

(f, r) 7→ (T(f, r),K(f), (Dψ(f))ψ=1,...,J)

where

•T(f |r) = (TR(·|f, r, K,D), T (f, r, K,D)) is a system of transfers consisting of TR(·|f, r, K,D) :

R→ R, a function that for any report f and observable type (r, K,D), maps future returns x ∈ R

to transfers TR(x|f, r, K,D) ∈ R from the bank to the regulator and T (f, r, K,D) is an (f, r)

specific transfer independent from returns.

• K(·) : [0, 1] → P([0, A]) is a correspondence that maps reported types to required levels of

capital such that for any report f , the bank is required to finance its assets with some amount of

equity K ∈ K(f) ⊂ [0, A].

• D := (Dψ(·) : [0, 1] → P([0, A]))ψ=0,...,J is tuple of ψ-specific correspondences each which

maps reported types to required levels of debt such that for any report f , the bank is required to

finance its assets such that Dψ ∈ Dψ(f) ⊂ [0, A] for each ψ = 0, ..., J . When this condition is

satisfied we will use the notation that D ∈ D(f).

Finally, we assume that the mechanism may allow for subsidies to creditors, even if they are not

regulated banks. Naturally, in such a case we should require that the mechanism allows the credi-

tor to choose any financing mix, must not discriminated based on the creditors profile (f, r, K,D)

(given that this may not be known to the regulator), and that the regulator can only provide subsi-

dies to the unregulated creditors, not penalties. In this case we impose the following restrictions

on mechanism
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• The mechanism is restricted for unregulated creditors to subsidies only. Therefore the mecha-

nism

(1) is invariant to the profile of the creditor (fC , rC , KC , DC)

(2) sets no capital requirements KC = [0, 1], DC = [0, 1]

(3) cannot penalize the creditor TCR (x|f, r, K,D) ≤ 0 for all x ∈ R and TC(f, r, K,D) ≤ 0.

In our general definition of the regulators available mechanisms we have implicitly assumed a

timing structure. Namely, at time t = 0 bank chooses their distribution of returns f and financing

decision (K,D). Then, at time t = 1
2

the bank makes a report of its distribution of returns f̃ to the

regulator and makes the non-return specific transfer T (f̃, r, K,D). Finally, at time t = 1, returns

x are generated according to the true distribution f and the transfer TR(x|f̃, r, K,D) is made. In

line with our motivation, the expected transfer (to either the regulated bank or its creditor) will be

measured in the worst case

EWC
M (−T) := min

f∈C,r∈[0,1]J+1

K,D

T (f, r, K,D) +

∫ +∞

−A
f(x)TR(x|f, r, K,D)dx

Further note that under this definition, when the regulator regulates multiple banks, the regulators

budget balance constraint simply requires, without loss, that the worst case expected transfer to

any bank or their creditors fall below the threshold T̂ as we have chosen T̂ arbitrarily.

Finally, we will present our definition of a feasible mechanism.

Definition : (1) A regulatory capital mechanismM = (T,K,D) is consistent if for all f ∈ ∆(R)

and r ∈ [0, 1]J+1, there exists K ∈ K(f) and Dψ ∈ Dψ(f) for all ψ = 0, 1, ..., J satisfying

K +
∑
ψ

Dψ = A and D0 ≤ D̄

(2) A mechanismM = (T,K,D) satisfies limited liability if for all f ∈ ∆(R), r ∈ [0, 1]J+1, and
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K ∈ K(f), the transfer scheme satisfies

TR(x|f, r, K,D) ≤ x+K for all x ∈ R

When the mechanismM is consistent and satisfies limited liability then we say that it is feasible.

We note that consistency is necessary for the mechanism to allow for a solution to the banks

constrained optimization problem, and limited liability is required due to limited liability of the

bank; the bank cannot be fined more than the value of its equity plus current returns (positive or

negative). Hence, in what follows we will assume that all mechanisms under consideration are

feasible.

3 Main Results

In this section we will start by stating our main result, necessary conditions for a mechanism to

be α?-informationally robust. In what follows, we suppose that the bank issues subordinated debt

in over the counter markets, thereby bargaining with its creditor over the interest rate on the loan,

and that the creditor may have limited liability either as an institution or a manager (see Section

4 for the complete model of subordinated debt issuance). Thus, the level of creditor’s risk is just

the probability of the creditor’s limited liability being invoked and therefore them not internalizing

losses past that threshold. In the case of the creditor being another bank, the creditor’s risk is

simply the probability of failure (i.e. losses exceeding the value of equity), while in the case of

the creditor being a fund, an example of the creditor’s risk could be the probability of the funds

closure or failure to meet margin payments on borrowed assets due to substantial losses.

Before stating our main results, we will first introduce a particular class of internal subordi-

nated debt mechanisms.

Definition : A conditional failure (CF) guarantee g(S + η) is an explicit guarantee from the

regulator to the bank’s creditor to reimburse any time t = 1 losses x < 0 of the creditor, ex-
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cluding losses incurred from the failure of repayment of the bank’s subordinated debt, up to

max{S + η − (K + x), 0}, conditional on the bank’s failure. Namely, the regulator sets the

subsidy TCR (·) as15

TCR (x) =

 η + S − (K + x) if x ≤ −K + η + S

0 otherwise.

If the CF guarantee is made to Bank i in the event of the failure of Bank j, then we refer to it as a

Bank j conditional failure guarantee to Bank i.

Theorem 1 If the mechanismM = (T,K,D) is α?-informationally robust, then

(1)M must guarantee that the joint probability of failure of at least one bank and its creditor is

strictly less than one.

(2) If the regulator has no information regarding the bank’s creditor’s portfolio, then he must

provide the banks creditor with a CF guarantee in order to ensure (1).

(3)M must set uniform capital and debt requirements: for any two distributions f and f̃ , K(f) =

K(f̃) = [0, 1] and D(f) = D(f̃) = [0, 1].

(4) The worst case expected cost of the CF guarantee is unbounded whenever the creditor is not a

regulated bank.

Theorem 1 states that a necessary condition for budget balance and α?-robustness is that the

mechanism requires banks to issue subordinated debt to other regulated banks, that it ensures the

probability joint failure of at least two of the banks is strictly less than 1, and that when the latter

condition cannot be satisfied, then no α?-informationally robust mechanism exists. Important to

note here is that α?-robustness can be achieve without requiring all banks to necessarily issue sub-

ordinated debt to each other, but that any mechanism that achieves this will violate the regulators

budget balance constraint. In what follows we will sketch the proof of Theorem 1 and then con-

15We have left out the profile (f, r,K,D) as the subsidy from the regulator to the bank’s creditor is invariant to the
creditors profile as assumed in section 2.1
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struct a mechanism that is α?-informationally robust and budget balanced for any arbitrary bound

T̂ .

Sketch of proof of Theorem 1. We start by showing that any α?-informationally robust mechanism

must set the capital and debt constraints equally for any two profiles (f, r, K,D) and (f̃, r̃, K̃, D̃)

of the bank that are indistinguishable through the interest rates r and r̃. Namely, two banks are

distinguishable whenever a bank with probability of default α(f,K) issues debt at rate r, then it

may be the case that a bank with probability of default α(f̃, K̃) would be unable to issue debt at the

same rate r. For example, if α(f̃, K̃) > α(f,K) and the bank’s creditor’s returns are independent

from the bank’s returns, then the creditor will require a rate of return of at least rS ≥ 2α(f,K)
1−α(f,K)

on the subordinated debt of the α(f,K) bank while it would require instead r̃S ≥ 2α(f̃,K̃)

1−α(f̃,K̃)
> rS

for the α(f̃, K̃) type. Denoting by I(f,K,D) the set of interest rates compatible with the profile

(f,K,D) so that rS ∈ I(f,K,D) implies rS ≥ 2α(f,K)
1−α(f,K)

, then we say two profiles (f, r, K,D)

and (f̃, r̃, K̃, D̃) are indistinguishable if r̃ ∈ I(f,K,D) and r ∈ I(f̃, K̃, D̃).

We first show that for any two indistinguishable profiles (f, r, K,D) and (f̃, r̃, K̃, D̃), any α?-

informationally robust mechanism that is incentive compatible treats both profiles identically so

that K(f) = K(f̃), D(f) = D(f̃), TR(·|f, r, K,D) = TR(·|f̃, r̃, K̃, D̃), and T (f, r, K,D) =

T (f̃, r̃, K̃, D̃). The intuition is that if the regulator has very poor information regarding the dis-

tribution of returns of the bank then whenever the return specific transfers TR(·|f, r, K,D) 6=

TR(·|f̃, r̃, K̃, D̃) are not equal, then there always exists a distribution of returns of the bank f ′ that

either will find it optimal to report that he is type f and finance according to (K,D) at rates r or to

report that he is type f̃ and finance according to (K̃, D̃) at rates r̃ whenever (f ′, r, K,D) is indistin-

guishable from (f, r, K,D) and (f ′, r̃, K̃, D̃) is indistinguishable from (f̃, r̃, K̃, D̃). Hence, return

specific transfers must be equal across all indistinguishable profiles. Then, we show that when

return specific transfers are equal across indistinguishable profiles, then whenever T (f, r, K,D) >

T (f̃, r̃, K̃, D̃), it must be the case that the cost of financing with (r̃, K̃, D̃) is strictly less than the

cost of financing with (r, K,D). But, in this case, the type f bank will always optimally report
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that he is the f̃ type and the fact that (f, r, K,D) and (f̃, r̃, K̃, D̃) are indistinguishable guarantees

that the f type can finance is assets with (K̃, D̃) at a rate r̃. Hence, incentive compatibility requires

T (f, r, K,D) = T (f̃, r̃, K̃, D̃) and therefore K(f) = K(f̃) and D(f) = K(f̃) as now there is no

cost for a bank of type f to report he is of type f̃ and vice-versa.

To prove (1) we show that unless the regulator can guarantee that the joint probability of failure

between the bank and its creditor is strictly less than 1, then all profiles of the bank (f, r, K,D)

and (f̃, r̃, K̃, D̃) are indistinguishable. This comes from the fact that if the probability of failure of

the bank and the creditor is equal to 1, then 0 ∈ I(f,K,D) and 0 ∈ I(f̃, K̃, D̃) for all (f,K,D)

and (f̃, K̃, D̃). In Section 4 we develop this idea and show that denoting by ρF the probability of

the creditor’s failure conditional on the bank’s failure, then in general the creditor’s required rate

of return on the bank’s debt, as a function of ρF is given by

α(f,K)(1− ρF )

1− αC − α(f,K)(1− ρF )

Hence, if ρF = 1 then the bank can potentially issue its subordinated debt at the risk free rate. Then,

given that in order for ρF to be equal to 1, it must be the case that α(f,K) ≤ αC , the probability

of the creditor’s failure. Hence, any mechanism that cannot guarantee that the joint probability of

failure between the bank and its creditor is strictly less than 1, cannot bound the level of risk of the

bank as in general αC can be unbounded. Given this, we note that the only way for the regulator

to bound the level of risk for the bank is to either bound the level of risk of its creditor (which in

general he cannot do) or to bound the probability of failure of the creditor conditional on the bank’s

failure. Hence, given that the regulator cannot control the level of correlation between the bank

and its creditor, the only way to guarantee the creditor survives when the bank fails is by issuing a

CF guarantee to the creditor, thus proving (2).

Next, to prove (3), we show that in addition to uniform capital requirements for indistinguish-

able bank profiles, even if the regulator can distinguish between two profiles through the aforemen-

tioned guarantee, the CF guarantee plus interest rate ceiling mechanism is necessary and sufficient
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to limit the bank’s risk below any threshold. Therefore, imposing non-uniform capital require-

ments for banks whose creditors have a guarantee will impose unnecessary costs on the bank, in

which case the regulator can be made strictly better off setting capital requirements across all bank

profiles uniformly and unconstrained: K(f) = [0, 1] and D(f) = [0, 1] for all f .

Finally, to prove (4) we note that if the creditor is not a regulated bank, then the worst case

expected cost of the CF guarantee to the creditor is given by the creditor’s worst case expected

losses conditional on the bank’s failure. Given that the regulator cannot regulate the creditors

portfolio (most importantly it’s leverage), we show that is easy for the creditor to arbitrage the

guarantee leading to an unbounded expected cost.

Now we will proceed to construct a mechanism that is α?-informationally robust and satisfies

the banks budget constraint.

Definition : An internal subordinated debt mechanism (N , S, r̄) consists of a directed network

of exposures N := (I, E(I)) with vertices I and edge set E(I) ⊂ I × I , a minimum amount of

subordinated debt S, and a maximal interest rate r̄ such that:

(1) If ij ∈ E(I), then Bank i must issue at least S dollars of subordinated debt to bank j at a rate

r ≤ r̄.

(2) If the Bank i cannot issue S to Bank j at a rate r ≤ r̄, then Bank i is nationalized by the

regulator effectively setting T (f, r̄,K,D) = Efi(x|x ≥ −Ki) whenever rij > r̄, where fi is the

true distribution of returns of Bank i and Ki its chosen level of equity.

We will also assume that the interest rate ceiling can depend on the observable characteristics

of the bank. Most importantly, it will depend on the leverage of the bank A − K for which we

introduce the following definition.

Definition : A leverage based interest ceiling r̄ : R+ → [0, 1] is a function that maps the leverage

of the bank A−K to a require rate of interest r̄(A−K).
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Theorem 2 For any i, j ∈ I , if the regulator makes a CF guarantee to Bank i conditional on the

failure of Bank j, then there exists a network of exposuresN and a leverage based interest ceiling r̄

such that for any S > 0, the internal subordinated debt mechanism (N , r̄, S) is α?-informationally

robust and satisfies the regulators budget constraint for any T̂ ≥ 0.

Proof. We will now construct a mechanism for the proof of Theorem 2 that utilizes only a single

CF guarantee.

Without loss suppose that N = (I, E(I)) is a cycle such that (i + 1)i ∈ E(I) (mod n) for

1

2

3

4

n

α2 ≤ α? + (1− α?)α1

α3 ≤ α? + (1− α?)α2

α4 ≤ α? + (1− α?)α3

αn ≤ α? + (1− α?)αn−1

α1 ≤ α?

Figure 1: Cyclic Network of Exposures

all i = 1, ..., n as illustrated in Figure 1. Further, without loss, suppose that the regulator makes

a single CF guarantee to Bank n, conditional on Bank 1’s failure. Now, fix ᾱ and denote by

bn := T̂
An−Kn and define the interest ceiling for any Bank i ∈ I as

r̄ = min{ 2ᾱ

1− ᾱ
,

2bn
1− bn

}

What we claim is that the internal subordinated debt mechanism (N , r̄, S) is α?-informationally

robust and satisfies the budget constraint of the regulator when ᾱ = 1− (1−min{bn, α?})
1
n .

In order to do so, we first note that given that Bank 1 must issue Smin to Bank n, the bank with

the explicit guarantee, at a rate r ≤ r̄1(A1−K1) ≤ 2ᾱ
1−ᾱ , implies that α1 ≤ ᾱ. Next, given that Bank
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2 must issue subordinated debt to Bank 1, we claim that it must be the case that α2 ≤ ᾱ+(1−ᾱ)α1.

To see why this is the case, we note that if Bank 2 has a probability of default α2, the the only way

to issue subordinated debt to Bank 1 at a rate less than or equal to r̄ is if

2α2(1− ρF12)

1− α1 − α2(1− ρF12)
≤ 2ᾱ

1− ᾱ

where ρF12 is the conditional probability of Banks 1’s failure given Bank 2’s failure. Then rearrang-

ing, we see that this implies

ρF12 ≥ 1− ᾱ

α2

(1− α1)

Therefore, given that ρF12 ≤ min{α1

α2
, 1} implies that either α2 ≤ α1 or

α1

α2

≥ ρF12 ≥ 1− ᾱ

α2

(1− α1)

and rearranging we obtain that this implies α2 ≤ ᾱ + (1 − ᾱ)α1. Therefore, continuing in this

fashion we see that our mechanism guarantees for any ᾱ and bank k ∈ I , that αk ≤ ᾱ+(1−ᾱ)αk−1

(mod n) as illustrated in Figure 1. Hence, given that the right hand side of this inequality is an

increasing sequence we can see that whenever αn ≤ min{α?, bn}, then αk ≤ min{α?, bn} for all

k = 1, 2, ..., n− 1. Now, solving αn ≤ ᾱ + (1− ᾱ)αn−1 recursively, we obtain

αn ≤ ᾱ + (1− ᾱ)ᾱ
n−2∑
j=0

(1− ᾱ)j = 1− (1− ᾱ)n

and therefore, whenever ᾱ ≤ 1 − (1 − min{α?, bn})
1
n , then αn ≤ 1 − (1 − ᾱ)n ≤ min{α?, bn}

and therefore the mechanism guarantees αk ≤ α? for all k = 1, 2, ..., n.

To see that the mechanism guarantees budget balance, we simply note that the worst case cost

of the guarantee to Bank n is An−Kn and therefore the worst case expected cost of the guarantee

is αn(An − Kn), but the mechanism guarantees that αn ≤ min{α?, bn} which implies that the

worst case expected cost αn(An −Kn) ≤ bn(An −Kn) = T̂ , by construction.
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4 Subordinated Debt Pricing

In this section we will discuss the implication of adding a subordinated debt minimum to the

mechanismM when creditors are perfectly informed regarding the bank’s risk. We assume that

the bank issues subordinated debt in an over the counter fashion by soliciting potential creditors

and bargaining over the interest rate. In what follows we will consider the general case whereby

the bank’s creditor may have limited liability. For simplicity we will assume this other creditor to

be a bank, but stress that this need not be the case. For example, some non-bank institutions such as

insurance funds and corporations would have limited liability due to their financing structure (i.e.

the amount of outstanding private debt and public bonds) but this does not preclude managers of

100% equity financed institutions from having limited liability. For example, while hedge/mutual

funds are 100% equity financed, they are prone to failure (just like banks) in the face of large losses.

Of course the mechanism for the failure of a fund is not the failure to repay debts, but rather the

inability to retain equity as investors withdraw their funds given losses, creating a liquidity shock

and subsequent fire sale of the funds assets. Equivalently, even though hedge funds are equity

financed they are generally highly leveraged through borrowing of assets via short sales. In this

case, a hedge fund can collapse when facing losses by failing to make margin payments on its

borrowed assets (e.g. the failure of Long Term Capital Management). In this sense we could

take the capital of a hedge fund to be a certain threshold such that whenever losses exceed this

threshold then it is almost certain that the fund’s investors would demand their money back and

force an untimely liquidation of the portfolio. Finally, compounding this idea of limited liability via

the financing structure of the creditor, limited liability naturally shows up in the incentive contracts

of fund managers who in general are not forced to bear large losses on the portfolios in which they

manage (see e.g. Rajan and Srivastava (2000)). As we will see, such incentives will lead managers

naturally to double down on risky investments if they can be relatively sure that such investments

go sour only in states of the world where the fund would fail anyway.

In light of this, we will now show that when creditors have limited liability, the resulting inter-
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est rate after the bargaining process is in general a function of the correlation between the bank’s

failure and its creditor’s failure. After we introduce some notation we will explain how this cor-

relation between failures can also be interpreted as an implicit guarantee to the creditor (e.g. a

bailout to the creditor in the face of the bank’s failure). Let us first note that the distribution of

returns of the bank, f , and the returns of its creditor’s portfolio, denoted by fC , in general follow a

joint distribution h such that ∫ +∞

−∞
h(x, xC)dx = fC(xC)

and ∫ +∞

−∞
h(x, xC)dxC = f(x)

Now, given this notation, we can revisit the required rate of return on the bank’s subordinated

debt. Namely the creditor is indifferent between lending S dollars of subordinated debt to the bank

and investing S dollars in the risk free asset whenever

P (x ≥ −K|xC ≥ −KC)(1 + r)− P (x ≤ −K|xC ≥ −KC) = 1 + r0 (3)

where KC is either the equity capital of the creditor if it is a debt financed institution, or the

above mentioned threshold if it is another institution.16 We will proceed to analyze the correlation

of “failure" of the bank and its creditor by assuming, without loss, that for any level of risk α,

it has the structure induced by h represented in Table 1 where “Failure B (C)" and “Success B

(C)" represent the event that the bank (creditor) fails or succeeds respectively. Here ρF ∈ [0, 1]

and ρS ∈ [0, 1] (the true domains are subsets of [0, 1] as will be formulated below) represent

respectively the correlation of failure and success of the bank and its creditor. In this case, if

ρF = 1, then the probability that the creditor fails conditional on the bank failing is equal to 1.

One explanation for this could be a scenario where the set of states of the world where the bank

fails is a subset of the set of the states of the world where the creditor fails. On the other hand,
16Naturally, we can also interpret KC as a combination of the two situations where a creditor is both debt financed

and faces a run on its equity.
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Failure C Survival C

Failure B

Survival B

αρF α(1− ρF )

(1− α)(1− ρS) (1− α)ρS

Table 1: Joint probability P (E ∩ EC) of event E ∈ {Failure B, Survival B} and
event EC ∈ {Failure C, Survival C}.

if ρF = 0, then the probability that the creditor fails, conditional on the bank failing is equal to

0; the set of states in which the bank fails is disjoint from the set of states where the creditor

fails. Similarly ρS = 1 represents perfectly correlated conditional success and ρS = 0 implies

perfectly diversified conditional success. Lastly, if ρF = αC and ρS = 1 − αC , then we are in the

case of independent success/failure of the creditor conditional on the success/failure of the bank:

P (Failure C | Failure B) = P (Failure C | Success B) = αC which is equivalent to the case

where creditors have limited liability.

Now, we can continue our analysis in this light. To start, using the parameterization of Table 1,

the required rate of return given by equation (3) can now be formulated as

(1− α)ρS

α(1− ρF ) + (1− α)ρS
(1 + r)− α(1− ρF )

α(1− ρF ) + (1− α)ρS
= 1

or equivalently

r =
2α

1− α
1− ρF

ρS

therefore whenever 1− ρF < ρS the required rate of return on the bank’s subordinated debt is less

when the creditor has limited liability. What this condition states is that the more correlated are the

success and failure of the banks portfolio with its creditors portfolio, the lower the required rate

of return is on the banks subordinated debt. Furthermore, the more correlated are the assets of the

bank and its creditor, the less the probability of default of the bank, α, affects the required rate of

return.
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In order to model the over the counter (OTC) process by which subordinated debt (and other

debt) is issued we borrow from Afonso and Lagos (2015) who model interbank OTC lending as a

Nash bargaining problem. Namely, we assume the bank solicits creditors with which it bargains

over the interest rate on the subordinated debt issuance with dollar value S := D(J). We assume

that debt contracts only pay principal plus interest at maturity and therefore coupon payments are

zero. If the creditor (C) is perfectly informed and fully liable, then their surplus from the bargaining

is

VC := r − 2α(K)

1− α(K)

where r is the rate at which it lends to the bank. Namely, given that the subordinated bond pays

(1 + r)S in the even of solvency and 0 (hence a payoff of −S given that the creditor loses his

principal) the break even condition for a risk neutral creditor is

(1− α(K))(1 + r)− α(K) ≥ (1 + r0)

and therefore the creditors surplus is the rate they receive minus the required rate of return 2α(K)
1−α(K)

.

Similarly, the surplus for the bank from lending at a rate r, is

V := r̄ − r

where r̄ is the bank’s outside option. Given that this is difficult to quantify in a setting where

there are no centralized markets for subordinated bank debt, we will introduce a parameter here

∆(S,K, f) ≥ 0 which represents the risk/liquidity premium that the bank faces when forced to

issue subordinated debt in a short period of time (e.g. to meet the minimum requirement). In this

case, given that ∆(S,K, f) is an arbitrary cost, dependent on the amount of debt S to be issued,

the level of risk (deduced from f and K), and potentially the asset class Cl 3 f , then we will write

r̄ :=
2α(K)

1− α(K)
+ ∆(S,K, f)
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namely, the bank expects to pay at least the fair value rate 2α(f,K)
1−α(f,K)

plus some risk/liquidity pre-

mium.

Now that we have defined the surplus from trade, we assume that the bank bargains with some

creditor with the solution being the Nash bargaining solution (see Rubinstein and Wolinsky (1985)

and Duffie et. al (2007) for a justification of this solution) whereby the interest rate maximizes the

joint surplus

V θ
C · V 1−θ = (r − 2α(K)

1− α(K)
)θ(

2α(K)

1− α(K)
+ ∆(S,K, f)− r)1−θ

where θ is the bargaining power of the creditor (Rubinstein and Wolinsky (1985) explicitly calcu-

late θ as a result of the timing and conditions of the bargaining game). Which leads to a solution

of

rS :=
2α(K)

1− α(K)
+ θ ·∆(S,K, f)

Now, under our OTC bargaining assumptions we now arrive to a rate of interest

rS :=
2α

1− α
1− ρF

ρS
+ θ ·∆(S,K, f)

Therefore, if the bank has some expectation of the correlation between its return and it’s creditors

portfolio returns, i.e. ρF and ρS , then it expects to pay rS . Furthermore, given that rS is decreasing

in both ρF and ρS , the bank, prior to bargaining over the terms of the loan with its creditor will

have an incentive to adjust its portfolio provided that it is not too costly to do so. [Namely, we will

now show that if the cost for the bank to adjust its portfolio to increase ρF and ρS is small, then not

only would the bank prefer to do so, but it would subsequently prefer to increase its default risk α

as well.]

First, we note that for a fixed α and αC , we can pin down ρS as a function of ρF . Namely, due
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to the fact that P (Fi|Sj) + P (Si|Sj) = 1, then we obtain

α

1− αC
(1− ρF ) +

1− α
1− αC

ρS = 1

and therefore

ρS =
1− αC
1− α

− α

1− α
(1− ρF )

Finally, if we pin down ρS , then using the fact that ρS ∈ [0, 1] we obtain that

max{α + αC − 1

α
, 0} ≤ ρF ≤ min{αC

α
, 1} =: ρ̄F

Therefore, for any fixed α, αC , and ρF in the above range,

rS(α;αC , ρ
F ) =

2α(1− ρF )

1− αC − α(1− ρF )
+ θ ·∆(S,K, f) (4)

Furthermore, utilizing the same technique we can express the interest rate on priority ψ debt as

rψ(f ;αC , ρ
F
ψ ) =

2(1− ρFψ )
∫ −K(ψ,K)

−∞ f(x)dx

1− αC − (1− ρFψ )
∫ −K(ψ,K)

−∞ f(x)dx
+ θ ·∆ψ(S,K, f).

There are two important distinctions to be made here. First, while in general priority ψ debt

depends on the distribution of returns f , subordinated debt only depends on the probability of

default α(f,K).17 Second, ρFψ ≥ ρF for all ψ = 0, 1, ..., J − 1. To see why this second point

is true, note that ρF is defined as the probability of failure of the creditor (losses greater than

equity), conditional on the bank’s failure. In contrast, ρFψ is the probability of failure of the creditor

conditional on the bank’s losses greater than K(ψ,K) ≥ K. Therefore, the event “losses greater

than K(ψ,K)" is a subset of the event “losses greater than K."

17Namely, you can have two distribution of returns with the same probability of failure that command different
interest rates on priority ψ debt while the only difference in the interest rates on subordinated debt would be due to the
differences in the risk/liquidity premium.

30



4.1 Robust Bounds When Banks Have Biased Risk Estimates

Now that we have constructed an α?-informationally robust mechanism, a natural question to ask

is how this mechanism is affected if the bank’s do not perfectly evaluate each others risks. First,

we note that the above mechanism remains robust to imperfect risk evaluation as long as each bank

believes that its crediting bank will be able to correctly evaluate its risk on average. What this

means is that there is noise in Bank i’s evaluation of the risk of Bank j so that whenever Bank j’s

true risk is αj , then Bank i believes its risk to be αj + βij where βij is some random error, then if

E(βij) = 0, our mechanism is still robust, no matter the variance of βij . Still, it may be the case

that Bank j receives some signal regarding its true level of risk and therefore knows that Bank i’s

estimate of its risk will biased. In this case, E(βj) = −εi and Bank j believes that Bank i will

under estimate the true risk of Bank j which will lead to a violation of our α? bound. Our next

result shows that for any number of guarantees g the regulator is willing to make and any number

e of subordinated debt exposures the regulator is willing to impose on each bank, we can construct

the optimal worst case level of risk δ(g, e) for any vector of under evaluation biases (−ε1, ...,−εn),

and the network of exposures that reaches that bound.

In what follows, it will be useful to use the notation ε1, ..., εn, where εk is the kth largest bias.

Given that the regulator is unaware of which Bank i has the kth largest bias (i.e. εi = εk) we will

frame our results in terms of εk instead of εi.

Theorem 3 Suppose the regulator is willing to provide g failure guarantees and require each bank

to issue a minimum level of subordinated debt to at most e other banks. Then the optimal bound

δ(g, e) satisfies

δ(
n(n− 1)

2
, n− 1) = ε2 ≤ δ(g, e) ≤ εn + εn−1 = δ(1, 1)
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5 Incentives for Banks to Increase Failure Correlation

In this section, we will examine the tradeoff between robustness and the incentives for banks to

increase the correlation of failure between their portfolio’s and those of their perspective subordi-

nated debt creditors created by robust mechanisms.

In order to proceed, we will first translate the bank’s maximization problem to a version that

will be easier to work with. Namely, we have shown above that δ-robust mechanisms do not

require return specific transfers and can rely solely on capital and subordinated debt requirements

(as opposed to other higher priority debt requirements). Therefore, in what follows, the only

relevant statistic of the bank’s distribution of returns f that matter to the regulator when utilizing

a δ-robust mechanism is the probability of default α(f,K). Therefore, if the bank optimally has a

probability of default of α̂ resulting from the chosen distribution of returns f and capital level K

(i.e. α(f,K) = α̂) then for all f ′ with α(f ′, K) = α̂, optimality requires that the expected returns

conditional on solvency of f must be weakly greater than the expected conditional returns of f ′:

Ef [x|x ≥ −K] ≥ Ef ′ [x|x ≥ −K]. Hence, if we denote by

fα̂[K] := argmax
f∈C

α(f,K):=α̂

Ef [x|x ≥ −K]

the distribution that maximizes expected conditional returns with probability of default exactly

equal to α̂ and equity capital K, we can simply assume that ceteris paribus a bank with probability

of default α̂ has a distribution of returns fα̂[K]. Therefore, denoting by α(K) := α(K, fα(K)[K])

and letting R(α(K)) denote the maximal conditional returns for any level of risk α(K) such that

R(α(K)) := Efα(K)[K][x|x ≥ −K]

we can rewrite the bank’s optimization problem in terms of maximizing the level of risk α(K) (as
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opposed to the distribution of returns) in the form of 18

max
α(K)
K,D

R(α(K)− c(K))−
∑
ψ

rψDψ

subject to K +
∑
ψ

Dψ = A

Finally, before proceeding we will make one necessary technical assumption regarding R(α(K)).

Assumption 1 For allK ≥ 0,R(α(K)) is piecewise continuous and concave increasing in α(K).

Namely, Assumption 1 states that for a given level of equity, higher levels of risk lead to weakly

higher returns and that this relationship between risk and return is concave. Now, if there is no cost

for the bank to adjust its portfolio and therefore ρF , the bank would optimally set ρF = ρ̄F (or as

close as possible). More realistically, there is a cost to the bank associated with adjusting ρF as in

general bank’s specialize over time in investing in a particular industry. Therefore, we introduce a

cost γ(ρ′; ρ) to the bank for altering its portfolio’s failure correlation with a specific creditor from

ρ to ρ′ and assume it satisfies the following natural assumptions:

Assumption 2 γ(ρ′|ρ) is concave decreasing on the interval [
¯
ρF , ρ), convex increasing on the

interval [ρ, ρ̄F ], and γ(ρ|ρ) = 0.

max
α(K),ρ

K,S,D1,D0

R(α(K))− c(K)− rS(α(K), ρF )S −
J−1∑
ψ=0

rψ ·Dψ − γ(ρ|ρ0)

subject to K +
J−1∑
ψ=0

Dψ + S = 1

K ≥ 0, S ≥ 0, D1 ≥ 0

0 ≤ D0 ≤ D̄

18c(K,D) or (1− α(K))c(K,D)?
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The following proposition states how adding a subordinated debt requirement S̄ to the bank’s

optimization problem will affect its incentives for risk taking and correlation.

Proposition 1. Let (α0(K0), ρ0, S0, K0, D0
1, D

0
0) be the solution to Bank i’s investment problem

without a mandatory subordinated debt requirement. If the requirement
¯
S is binding (S0 <

¯
S) and

the correlation between the bank’s and creditor’s failure is not perfect (ρ0 < ρ̄F ), then

(1) The bank optimally increases its correlation of failure with its creditor, ρF , after the mandatory

subordinated debt requirement is implemented.

(2) If the change in ρF in response to the mandatory subordinated debt requirement is large, or

the difference between S∗ and
¯
S is small, then Bank i optimally increases its probability of failure

α(K).

6 Conclusion

In this paper we have studied the use of informationally robust mechanisms for the use of banking

regulation. We have shown that when the regulator can rely on market discipline, then there exists

an informationally robust mechanism that can limit the probability of default the bank by any

arbitrary amount. Our key insight is that market discipline may not be effective in limiting the

risk taking of the banks and crucially depends on the correlation of the portfolio’s of the bank

and its creditor. We show how this issue can be overcome with a guarantee made to the bank’s

creditor to ensure that they internalize the loss on the bank’s subordinated debt (in the event of

the bank’s failure). When providing such a guarantee, the regulator can ensure that the creditor

appropriately prices the bank’s subordinated debt, in which case, a minimum subordinated debt

requirement + leverage specific interest rate ceiling can guarantee the bank’s risk falls below any

arbitrarily chosen threshold. Finally we show that when the regulator internalizes the subordinated

debt minimum by requiring banks to issue subordinated debt to other regulated banks, then he can

arbitrarily bound the level of risk in the banking system while satisfying his budget constraint.
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7 Appendix

7.1 Proof of Theorem 1

In what follows, it will be very important for us to know what the possible reports of the bank can

be given its true type. As we will see, the observable r will play a role in this. In what follows, we

will denote by I(f,K,D) the set of interest rates compatible with (f,K,D). Namely,

I(f,K,D) := {(r ∈ [0, 1]J+1 | rψ ≤
2
∫ −K(ψ,K)

∞ f(x)dx

1−
∫ −K(ψ,K)

∞ f(x)dx
for all ψ = 0, 1, ..., J}

is the set of interest rates r such that each rψ is less than or equal to the fair value of the bank’s

priority ψ debt given its report f and capital K. The question then, is to understand to what extent

the regulator can use this information whenever it is unaware of αC and ρ. Namely, for large

misspecification ε, the regulators only observable information about the true distribution of the

banks returns, f , given a report f̃ is that f ∈ {f ′ : r ∈ I(f ′, K)}. This leads us to the following

definition.

Definition : We say (f, r, K,D) and (f̃, r̃, K̃, D̃) are indistinguishable underM = (T,K,D) if

the following two conditions are satisfied:

(1) K ∈ K(f), D ∈ D(f), K̃ ∈ K(f̃), and D̃ ∈ D(f̃).

(2) r̃ ∈ I(f, K̃, D̃) and r ∈ I(f̃, K,D).

Proof. As a first step we will prove the following claim:

Claim 1 If the mechanism M = (T,K,D) is δ-informationally robust and optimal, then it

must be the case that K(f) = K(f̃), Dψ(f) = Dψ(f̃) for all ψ = 0, ..., J , TR(·|f, r, K,D) =

TR(·|f̃, r̃, K̃, D̃), and T (f, r, K,D) = T (f̃, r̃, K̃, D̃) whenever (f, r, K,D) and (f̃, r̃, K̃, D̃) are

indistinguishable underM.
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Proof. Let us suppose thatM is δ-robust for some δ. In order to prove Claim 1, we need to first

describe the bank’s optimization problem underM.

The bank’s optimization problem underM

max
f,f̃
K,D

(1−α(f,K))

∫ +∞

−K
f(x)(x−TR(x|f̃, r, K,D))dx− c(K)−

∑
ψ

Dψrψ−T (f̃, r, K,D) (5)

subject to K ∈ K(f̃), D ∈ D(f̃)

K +
∑
ψ

Dψ = A, and D0 ≤ D̄

Further, ifM is δ robust, then it must satisfy the following incentive compatibility constraint

(1−α(f,K))

∫ +∞

−K
f(x)(x−TR(x|f, r, K,D))dx−c(K)−

∑
ψ

Dψrψ−T (f, r, K,D) ≥

(1−α(f,K))

∫ +∞

−K
f(x)(x−TR(x|f̃, r̃, K̃, D̃))dx−c(K̃)−

∑
ψ

D̃ψr̃ψ−T (f̃, r̃, K̃, D̃)

(6)

for all f̃ ∈ ∆(R), K̃ ∈ K(f̃), D̃ ∈ D(f̃), r ∈ I(f,K,D) and r̃ ∈ I(f, K̃, D̃). Important to note

here is that we restrict r̃ ∈ I(f, K̃, D̃) instead of I(f̃, K̃, D̃) because the bank’s true distribution

of returns is f . Then, rearranging Inequality 6 we obtain

(1−α(f,K))(

∫ +∞

−K
f(x)(TR(x|f̃, r̃, K̃, D̃)−TR(x|f, r, K,D))dx+

∫ −K̃
−K

f(x)TR(x|f̃, r̃, K̃, D̃)dx) ≥

c(K)− c(K̃) +
∑
ψ

(Dψrψ − D̃ψr̃ψ) + T (f, r, K,D)− T (f̃, r̃, K̃, D̃) (7)

As a first step to showing that these incentive constraints cannot be satisfied for all ε > 0

unless the mechanism satisfies the conditions of our claim, we will introduce the notation that for
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any (f̃, r̃, K̃, D̃) we denote by X(f̃, r̃, K̃, D̃) ⊆ R the set of returns such that TR(x|f, r, K,D) ≥

TR(x|f̃, r̃, K̃, D̃) and Y (f̃, r̃, K̃, D̃) ⊆ R such that TR(x|f, r, K,D) < TR(x|f̃, r̃, K̃, D̃). Now,

let f0 ∈ C0
l be the distribution of returns in the class l (assumed to be the same class as f ) that

minimizes the LHS of (7).

Now, assume for the moment that f0(Y (f̃, r̃, K̃, D̃)) > 0 and let us introduce the following

function f ′ ∈ ∆(R) such that

f ′(x) =

 f0(x)(1 + ε
f0(Y (f̃,r̃,K̃,D̃))

) if x ∈ X(f̃, r̃, K̃, D̃)

f0(x)(1− ε
f0(Y (f̃,r̃,K̃,D̃))

) if x ∈ Y (f̃, r̃, K̃, D̃)

It is easy to check that f ′ is a well defined pdf for small ε, that
∫
x
|f ′(x) − f 0(x)|dq = ε, and that

the LHS of (7) evaluated at f ′ is

(1−α(f0, K))(

∫ +∞

−K
f0(x)(TR(x|f̃, r̃, K̃, D̃)−TR(x|f, r, K,D))dx+

∫ −K̃
−K

f0(x)TR(x|f̃, r̃, K̃, D̃)dx)

−εf
∫ +∞

−K
f0(x)|TR(x|f̃, r̃, K̃, D̃)− TR(x|f, r, K,D)|dx

which shows that as −εf increases, an upper bound for the LHS of (7) is

(1− α(f0, K))

∫ −K̃
−K

f0(x)TR(x|f̃, r̃, K̃, D̃)dx. (8)

Technically all we need to show is that once εf = Y (f̃, r̃, K̃, D̃), then

(1− α(f0, K))

∫ +∞

−K
f0(x)(TR(x|f̃, r̃, K̃, D̃)− TR(x|f, r, K,D))dx < 0

but f ′ may not be properly defined for large εf . Whenever this is the case, it implies that when

shifting the mass f0 puts on Y (f̃, r̃, K̃, D̃) to X(f̃, r̃, K̃, D̃) in the fashion defined above, there

is some subset B ⊂ X(f̃, r̃, K̃, D̃) such that f ′(B) > 1. In order to resolve this we note that
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we can always shift the mass away from x while keeping it in the range X(f̃, r̃, K̃, D̃) to pro-

duce a well defined pdf f ′ that puts zero mass on Y (f̃, r̃, K̃, D̃). This is due to the fact that

f0(X(f̃, r̃, K̃, D̃)) = 1 − f0(Y (f̃, r̃, K̃, D̃)). Therefore, in what follows, we will assume without

loss that f ′ is constructed in a well defined way for all 0 < ε ≤ f0(Y (f̃, r̃, K̃, D̃)).

What we would like to show is that there exists ε̂ such that for all ε ≥ ε̂ the quantity given by

(8) is less than or equal to zero. To do so, we first assume that K > K̃ as otherwise our claim is

satisfied for all ε. Next, consider f ′′ ∈ ∆(R) constructed from f0 as

f ′′(x) =


f0(x)(1 + ε

f0(Y (f̃,r̃,K̃,D̃)\[−K,−K̃])
+ f0([−K,−K̃])

f0(Y (f̃,r̃,K̃,D̃)\[−K,−K̃])
) if x ∈ X(f̃, r̃, K̃, D̃)\[−K,−K̃]

f0(x)(1− ε
f0(Y (f̃,r̃,K̃,D̃)\[−K,−K̃])

) if x ∈ Y (f̃, r̃, K̃, D̃)\[−K,−K̃]

0 if x ∈ [−K,−K̃]

Hence, f ′′(x) mimics what f ′(x) does by starting with f0 and shifting mass from Y (f̃, r̃, K̃, D̃) to

X(f̃, r̃, K̃, D̃) but then also shifts all mass from the region [−K,−K̃] to the regionX(f̃, r̃, K̃, D̃)\[−K,−K̃].19

Therefore, under f ′′(x) there exists ε̂ such that for all ε > ε̂, the LHS of (7) is bounded above by 0.

What this implies is that in order for (7) to be satisfied, it must be the case that

c(K)− c(K̃) +
∑
ψ

(Dψrψ − D̃ψr̃ψ) + T (f, r, K,D)− T (f̃, r̃, K̃, D̃) ≤ 0 (9)

for all f̃ ∈ ∆(R), K̃ ∈ K(f̃), D̃ ∈ D(f̃), r̃ ∈ I(f, K̃, D̃), and r ∈ I(f,K,D). Otherwise, there

exists an ε and a PDF f ∈ Cl such that
∫
x
|f ′(x) − f 0(x)|dq = ε and the incentive compatibility

constraint for f is not satisfied.

Now, we note that if (9) holds for all f̃ ∈ ∆(R), K̃ ∈ K(f̃), D̃ ∈ D(f̃), and r̃ ∈ I(f, K̃, D̃)

19Again we can guarantee the existence of f ′′ that is well defined and puts zero mass on Y (f̃, r̃, K̃, D̃) ∪ [−K, K̃]
by properly shifting all of the mass from Y (f̃, r̃, K̃, D̃)∪ [−K, K̃] to X(f̃, r̃, K̃, D̃)\[−K, K̃] and then appropriately
shifting mass within X(f̃, r̃, K̃, D̃)\[−K, K̃].
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then looking at the incentive compatibility constraint of a bank with type (f̃, r̃, K̃, D̃) we obtain

(1−α(f̃, K̃))

∫ +∞

−K̃
f̃(x)(TR(x|f, r, K,D)−TR(x|f̃, r̃, K̃, D̃))dx+

∫ K̃

−K̃
f̃(x)TR(x|f, r, K,D) ≥

c(K̃)− c(K) +
∑
ψ

(D̃ψr̃ψ −Dψrψ) + T (f̃, r̃, K̃, D̃)− T (f, r, K,D) (10)

for all f ∈ ∆(R), K ∈ K(f), D ∈ D(f), r ∈ I(f̃, K,D) and r̃ ∈ I(f̃, K̃, D̃).

Now, note that using the same method in the construction of f ′ and f ′′ (only exchanging the

sets X(f̃, r̃, K̃, D̃) and Y (f̃, r̃, K̃, D̃)), there exists f̃ such that the LHS of (10) is bounded above

by zero. Finally, if (f, r, K,D) and (f̃, r̃, K̃, D̃) are indistinguishable, then this implies that a type

f bank can finance its assets with K̃ and D̃ at a rate r̃ ∈ I(f̃, K̃, D̃) ∩ I(f, K̃, D̃) and a type f̃

bank can finance its assets with K and D at a rate r ∈ I(f,K,D) ∩ I(f̃, K,D). Therefore, a

necessary condition for both incentive constraints (7) and (10) to be satisfied when (f, r, K,D)

and (f̃, r̃, K̃, D̃) are indistinguishable is if TR(·|f, r, K,D) = TR(·|f̃, r̃, K̃, D̃). Further, whenever

this is the case, then it must be that

∫ K̃

−K̃
f̃(x)TR(x|f, r, K,D) =

∫ −K̃
−K

f(x)TR(x|f̃, r̃, K̃, D̃)dx) = 0

and therefore, incentive compatibility requires

c(K)− c(K̃) +
∑
ψ

(Dψrψ − D̃ψr̃ψ) + T (f, r, K,D)− T (f̃, r̃, K̃, D̃) = 0 (11)

Now, we claim that if the regulator sets T (f, r, K,D) = T (f̃, r̃, K̃, D̃), and capital require-

ments K′ and D′ such that K′(f) = K′(f̃) = K(f)∪K(f̃), and D′ψ(f) = D′ψ(f̃) = D(f)∪D(f̃),

then whether the bank is of type f or f̃ , it optimally chooses K = K̃ and D = D̃ so that (11)

is guaranteed to hold. To see why this is true, we simply note that when T (·|f, r, K,D) =

T (·|f̃, r̃, K̃, D̃) and T (f, r, K,D) = T (f̃, r̃, K̃, D̃), then if the type f bank prefers (r̃, K̃, D̃) fi-

nancing then it will always report f̃ to obtain the opportunity to finance its assets with (r̃, K̃, D̃)
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instead of f given that there is no longer any cost to reporting f̃ . Similarly, the f̃ type will always

prefer reporting f if it prefers to finance its assets with (r, K,D). Therefore, the only way to in-

centivize the bank to report truthfully is if (K,D) is available to the f̃ type and (K̃, D̃) is available

to the f type: Equation (11) guarantees that the cost of an f type, reporting f̃ and financing with

K̃,D̃ is the same as the cost of an f̃ type reporting f and financing with K, D.

Finally, we note that any mechanism that does not set K(f) = K(f̃) and D(f) = D(f̃)

must set either T (f, r, K,D) > 0 or T (f̃, r̃, K̃, D̃) > 0 in order to retain incentive compatibility.

Further, given that (11) holds implies that types (f, r, K,D) and type (f̃, r̃, K̃, D̃) face the same

financing costs and the same non-return specific penalties regardless of their report, hence setting

T (f, r, K,D) > 0 or T (f̃, r̃, K̃, D̃) > 0 is purely wasteful due to the fact that it does not change

the f nor f̃ type bank’s incentive to take risk.

The next step in the proof of Theorem 1 is to prove the following claim:

Claim 2 For any mechanism M and any f, f̃ ∈ ∆(R), K ∈ K(f), K̃ ∈ K(f̃), D ∈ D(f),

and D ∈ D(f̃) such that α(f, K̃) ≤ αmaxC and α(f̃, K) ≤ αmaxC , there exists r and r̃ such that

(f, r, K,D) and (f̃, r̃, K̃, D̃) are indistinguishable.

Hence, once we prove Claim 2, we have proven that any δ-robust mechanism must be invariant to

all types (f, r, K,D) and (f̃, r̃, K̃, D̃) with α(f̃, K) ≤ αmaxC and α(f̃, K) ≤ αmaxC and therefore,

in the worst case, allows a bank to take risk up to αmax
C .

Proof. In order to prove Claim 2, we will show that for any f, f̃ ∈ ∆(R), K ∈ K(f), K̃ ∈ K(f̃),

D ∈ D(f), and D ∈ D(f̃) such that α(f, K̃) ≤ αmaxC and α(f̃, K) ≤ αmaxC , then 0 ∈ I(f, K̃, D̃)

and 0 ∈ I(f̃, K,D). To show this we simply note that whenever α(f̃, K) ≤ αmaxC and α(f, K̃) ≤

αmaxC , then both types can find a creditor with ρF = 1. Namely, in order for the banks to finance at

a rate 0 it must be the case that

2(
∫ −K(ψ,K̃)

∞ f(x)dx)(1− ρF )

1− αC − (
∫ −K(ψ,K̃)

∞ f(x)dx)(1− ρF )
= 0 and

2(
∫ −K(ψ,K)

∞ f̃(x)dx)(1− ρF )

1− αC − (
∫ −K(ψ,K)

∞ f̃(x)dx)(1− ρF )
= 0
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therefore whenever ρF = 1 this is satisfied. To see that this condition cannot be satisfied whenever

α(f̃, K) > αmaxC we simply note that under our parameterization we have

ρF ≤ min{αC
α
, 1}

therefore whenever α(f̃, K) > αmaxC the bank cannot guarantee ρF = 1.

Now, what we have proven in Claim 2 is that whenever α(f̃, K) ≤ αmax
C and α(f̃, K) ≤ αmax

C

then a robust mechanism does not differentiate between a (f, 0, K,D) and (f̃, 0, K̃, D̃) type (while

satisfying incentive compatibility). Now, while there may be other types that the mechanism does

not differentiate between, we have shown that when the mechanism does not differentiate between

(f, 0, K,D) and (f̃, 0, K̃, D̃), then δ ≥ αmax
C . Now, given that external creditors are not regulated,

there is no way to bound the level of risk αmax
C . Therefore, the only way to guarantee any level

of robustness is for the regulator to be able to guarantee ρF < 1. Hence, if the mechanism is

α?-robust then it must guarantee the joint probability of failure between the bank and its creditor

is strictly less than 1. What we will now show is that if the creditor is not another regulated bank,

then any α?-informationally robust mechanism has an unbounded worst case expected cost thereby

proving that any budget balanced, α?-informationally robust mechanism must require banks to

issue subordinated debt to other banks, in which case the above result implies that the regulator

must guarantee the probability of failure between two banks is strictly less than 1.

Now, noting that ρF = P (FC |FB) where FB is the event where the bank fails and FC is the

event where the creditor fails, given that the regulator cannot control the returns of the portfolio’s

of both the bank and the creditor, then the only way to guarantee ρF < 1 is to guarantee that the

creditor does not fail whenever the bank fails. The only way to guarantee this, without being able

to control the bank’s and creditor’s distribution of returns, is to provide an explicit guarantee to

the creditor that the regulator will reimburse the creditor’s losses to ensure the value of equity of

the creditor is strictly positive. Furthermore, if the guarantee ensures the creditor the value of its

equity the is strictly larger than the amount of subordinated debt issued S whenever the bank fails,
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then the regulator can guarantee that the creditor correctly prices the bank’s subordinated debt, as

if their portfolio returns were independent.

We can now formally state our above claim that such a guarantee will force the creditor to price

the bank’s debt as if their portfolio returns were independent.

Claim 3 If the regulator offers a g(S + η) CF guarantee to the bank’s creditor, for any η > 0, the

creditor will optimally require a rate of return rS on the bank’s debt issue of value S equal to the

fair value of the banks debt:

rS =
2α(f,K)

1− α(f,K)

Proof. To prove this claim, we simply note that the guarantee g(S+ η) ensures that conditional on

the bank failing, the creditor succeeds; P (SC |FB) = 1, and thereforeP (FB, SC) = P (FB). Thus,

denoting by π(E, r) the payoff of the bank’s subordinated debt with interest rate r to the creditor

in the event E ∈ {(FB, FC), (SB, FC), (FB, SC), (SB, SC)}, we note that

π(E, r) =


−S if E = (FB, SC)

(1 + r) if E = (SB, SC)

0 if E ∈ {(FB, FC), (SB, FC)}

Further, given that we have normalized r0 = 0, given that the bank’s payoff of holding the risk free

asset is 1 in state E ∈ {(FB, SC), (FB, SC)} and 0 in state E ∈ {(FB, FC), (SB, FC) we see that

the required rate of return on the banks subordinated debt rS must satisfy

P (SB, SC)(1 + rS)− P (FB, SC) = P (SB, SC) + P (FB, SC)

Finally, using the fact that P (FB, SC) = P (FB) and therefore P (SB, SC) = 1 − P (FB) and

plugging into the above equation we obtain

(1− P (FB)(1 + rS)− P (FB) = 1
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Hence, noting that P (FB) = α(f,K) and rearranging the expression we obtain our result.

The key point to make here is that the proof of Claim 3 relies on the fact that regardless of the

correlation between the bank and its creditor’s portfolio, the CF guarantee by the regulator can set

the joint probability of failure of the two banks to 0.

What we will now show is that while a CF guarantee can allow the regulator to construct a

mechanism that is α?-informationally robust, the worst case expected cost of any such mechanism

will be unbounded. To see why this is the case, we note that the expected cost of the CF guarantee

to a creditor with capital KC and returns fC is

∫ −KC
−∞

TCR (x)f(xC |FB)dx = (η + S −KC)ρF −
∫ −K
−∞

xCfC(xC |FB)dx

where fC(·|FB) is the distribution of the creditor’s returns conditional on the bank’s failure. To see

that this expression may be unbounded, we note that if the regulator cannot control the size of the

creditor’s balance sheet, then

−
∫ −K
−∞

xCfC(xC |FB)dx

will be unbounded. For example, suppose that the creditor invests X dollars in an asset that pays

X(1 + r) in the even of the bank’s success, and pays 0 otherwise.20 In this case, the expected

increase in the cost of the CF guarantee after the creditor makes this investment would be α(f,K) ·

X whenever X ≥ K − η − S is large. More importantly, whenever X ≥ K − η − S, the benefit

to the creditor would be X(1 + r) so that whenever r > 0, the creditor will want to choose X as

high as possible. Given that the regulator cannot regulate the size of creditor’s balance sheet, this

implies that the worst case expected cost of the CF guarantee to unregulated creditors is unbounded

and we have proven Theorem 1.

20For example, if the creditor were an insurance company, then the creditor could achieve this return by selling
under priced insurance against the bank’s failure.

43



7.2 Proof of Theorem 3

Proof. Throughout, we assume the regulator sets ᾱ = 0. Then, in the case where (g, e) = (1, 1)

we note that the best the regulator can do is to make any single guarantee gij and then have j

issue its subordinated debt to i, and all remaining banks (including i) issue to j. This results in the

following network where the bold edge represents the guarantee gij .

ji

Figure 2: Network of Exposures

Now, when the exposures satisfy the network structure of Figure 2, we know from the guarantee

gij that αj ≤ εi. Therefore, the risk of any bank l that issues to bank j must satisfy αi ≤ ε1 + ε2.

Finally, given that the regulator does not know which banks are more biased than the others, he

might as well randomly assign banks to the nodes in the network of Figure 2, in which case the

worst case level of risk is

max
i,j,k∈I
i 6=j

{εi + εj} = εn + εn−1

To show that the regulator can do no better when (g, e) = (1, 1), we first note that if some bank

is not required to issue their debt to Bank j or some other Bank k that issues to Bank j, then their

level of risk is potentially unbounded as the guarantee gij is the only thing that bounds the level of

risk in this network. Next, we note that if the regulator had any Bank l issue their subordinated debt

to Bank k (who issues to Bank j) instead of Bank j, then the level of risk will satisfy αl ≤ εk + εj

in which case we still achieve our bound. Finally, if Bank l issues to Bank k who issues to Bank

k′ but not j, and Bank k′ issues to Bank j, then the risk of Bank l would satisfy αl ≤ εk + εk′ + εj
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which is strictly worse than our bound.

Now, to obtain the best case bound of mini∈I εi we will use the complete directed graph

N ? = (I, A?(I)) with A?(I) := {ij : i ∈ I, j ∈ I, i 6= j} which has each bank issue to the

remaining n − 1 banks. Further, the regulator will provide a guarantee gij for each i, j ∈ I such

that i 6= j. This amounts to n(n−1)
2

guarantees. Now in this case, given that Bank i issues to each

Bank j and there is a guarantee gji for each j 6= i, then it must be the case that αi ≤ minj 6=i εj .

Finally, aggregating among all banks, it must be the case that the worst case level if risk is the

second lowest bias ε2. Finally, to prove that this is the best bound the regulator can achieve we

simply note that any additional subordinated debt issues or guarantees would be redundant given

that we already have every bank issue subordinated debt to every other bank, and each bank is

guaranteed.

7.3 Proof of Proposition 1

Proof. (1) Suppose that the mandatory subordinated debt requirement is binding so that the bank

optimally chooses S0 <
¯
S prior to the subordinated debt issuance. Then, the FOC for ρF of the

optimization problem without the minimum subordinated debt requirement is

2α0(K)(1− αC)

(1− αC − α0(K)(1− ρ0))2
S0 = γ′(ρ0|ρ) (12)

and given that the LHS of (12) is strictly greater than zero implies that if γ is concave decreasing

on [
¯
ρF , ρ), then the RHS is negative in that interval. Thus, in order to satisfy the FOC, the solution

ρ0 must be in the interval (ρ, ρ̄F ]. Now, if the subordinated debt requirement is binding, it implies

that S0 <
¯
S and therefore at the unconstrained solution

2α0(K)(1− αC)

(1− αC − α0(K)(1− ρ0))2 ¯
S > γ′(ρ0|ρ)
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and given that ρF ∈ (ρ, ρ̄F ] implies that the firm optimally increases ρ as the LHS is decreasing in

ρ and the RHS increasing.

(2) Now, given that the bank optimally increases ρ once the minimum is imposed, we need to

check the first order conditions for α(K) as they are a function of ρ. Namely the FOC for α(K) in

the unconstrained problem is

Rα(α0(K))− [rSα(α0(K), ρ0) + ∆(f,K, l)]S0 = 0 (13)

therefore, given that rSα(α, ρ) is decreasing in ρ, and the solution to ρ̂ to the FOC satisfying

− 2α0(K)(1− αC)

(1− αC − α0(K)(1− ρ̂))2 ¯
S = γ′(ρ̂|ρ)

is strictly greater than ρ0, then

Rα(α0(K))− [rSα(α0(K), ρ̂) + ∆(S,K, f)]S0 > 0.

Finally, if

Rα(α0(K))− [rSα(α0(K), ρ̂) + ∆(S,K, f)]
¯
S > 0 (14)

then the bank optimally increases α(K). Specifically, subtracting (13) from (14), we see that this

is the case whenever

[rSα(α0(K), ρ0) + ∆(S,K, f)]S0 > [rSα(α0(K), ρ̂) + ∆(S,K, f)]
¯
S
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Both Hett and Schmidt (2016) and Acarya, Anginer, Warburton (2016) show empirical evi-

dence towards lower market discipline for larger and more systemic banks. Hett and Schmidt

(2016) look at bailout expectations as an explanation (both do?).
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