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Abstract

A seller is selling an object to an agent who uses two rationales to compare pairs

of outcomes - (allocation probability, transfer) pairs. Each rationale is generated by

quasilinear preference over the outcome space, and hence, can be represented by a val-

uation. However, the agent faces a budget constraint when making decisions using the

first rationale. The agent compares any pair of outcomes using his pair of valuations

in a lexicographic manner: first, he compares using the valuation corresponding to the

first rationale; then, he compares using the valuation corresponding to the second ra-

tionale if and only if the first rationale cannot compare (due to budget constraint). We

show that the optimal mechanism is either a posted price mechanism or a mechanism

involving a pair of posted prices (a menu of three outcomes). In the latter case, the

optimal mechanism involves randomization and pools types in the middle.
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1 Introduction

There is a vast literature in psychology and decision theory that intransitive preferences of

agents can be explained by the fact that they are aggregation of multiple rationales (Tver-

sky, 1969). As an example, consider a firm who is trying to acquire a resource. The firm

(management) has a budget constraint but has access to shareholders or investors who can

provide additional funds if needed - the contracting terms between the firm and the investors

(shareholders) are exogenously given. There are various options (in terms of quantity of the

resource and corresponding prices) in front of the firm. The firm first compares each pair of

options using his own quasilinear preference (valuation) subject to budget constraint. If it

cannot make the comparison due to the budget constraint, then the investors are consulted,

who are not budget constrained. Further, the firm has to respect the quasilinear preference

(valuation) of the investors for such options. For various reasons, the investors may have a

different valuation than the firm - they may care about a different set of attributes of the

resource than the firm. Such restrictions may lead to intransitive preference of the firm.

Notice here that our firm is naive in the sense that it only goes to the investors when it

cannot compare options due to budget constraint 1.

Generally, we are considering an agent whose intransitivity can be explained using two

rationales, which he applies in a lexicographic manner to evaluate any pair of outcomes. In

particular, our agent has two rationales R1 and R2 over the space of outcomes, which are (al-

location probability, transfer) pairs. Each rationale evaluates outcomes using quasilinearity

and can be represented by a valuation, but comparison using R1 must satisfy a budget con-

straint. On the other hand, rationale R2 is unconstrained, and hence, complete. The overall

preference of the agent is derived in a lexicographic manner. For any pair of outcomes, if R1

prefers one to the other then that becomes the preference of the agent. If R1 cannot compare

the two outcomes due to budget constraint, then the preference of R2 becomes the preference

of the agent. Because of the lexicographic nature of decision-making, the preference of the

agent is intransitive (and no utility representation is possible). The type of an agent is the

pair of values: the R1 value and the R2 value (budget is common knowledge).2

How should a seller sell an object to an agent which has such intransitive preferences?

1Later, in Section 4.2, we give more examples of how this simple framework can explain many settings of

interest.
2We give partial results when budget is also private information of the agent.
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In our model, a mechanism elicits values of both the rationales and offers an outcome. In-

centive compatibility requires that truth-telling outcome is preferred to every other outcome

in the range of the mechanism. Our main result shows that the optimal (expected revenue

maximizing) mechanism is one of the two kinds of mechanisms.

• Post-1 mechanism. The first kind of mechanism consists of an optimally chosen

reserve price less than the budget. If the value corresponding to the first rationale

is less than this reserve price, then the object is not given. Else, the object is given

with probability one. We show that such a mechanism is optimal if the budget is high

enough. This is intuitive since with high budget, the first rationale can compare most

of the outcomes and the seller can maximize her revenue by only targeting the first

rationale.

• Post-2 mechanism. The second kind of mechanism consists of two optimally chosen

reserve prices K1 and K2, both greater than the budget and K1 ≤ K2. If value

corresponding to the first rationale is less than K1, then the object is not allocated.

If both the values are greater than K2, then the object is allocated with probability

one. Else, the object is allocated with probability B
K1

at a price equal to B, where

B is the budget. Notice that a post-2 mechanism pools types in the middle, where

the object is allocated with a constant probability strictly less than one at a price

equal to the budget. A sufficient condition on the budget, which ensures that the

optimal mechanism is a post-2 mechanism is that the budget is less than the optimal

(unconstrained) monopoly reserve price for the first rationale. In such a case, the

optimal mechanism necessarily involves randomization. This is unlike the standard

setting, where the optimal mechanism is a deterministic mechanism - a posted-price

mechanism (Mussa and Rosen, 1978; Myerson, 1981; Riley and Zeckhauser, 1983).

Thus, the optimal mechanism is simple since it can be described by a single parameter or a

pair of parameters, and involves a menu of size two or three. The intransitivity complication

of preferences does not complicate the menu of the optimal mechanism. Further, our result

works for a rich class of priors (over values of the two rationales), which allows for correlation.

The inclusion of the new class of mechanisms (using two pairs of posted prices) in the optimal

menu is due to the naiveté of our agent. We stress here that our agent is naive in two ways:

(a) his lexicographic decision-making using two rationales and (b) his ability to only compare

pairs of outcomes. Indeed, our decision maker (buyer) can only make binary choices and we

are silent about how he makes choices from larger sets. Our incentive constraints reflect this

fact and we elaborate on this later.
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It may be tempting to think that the budget constraint along the first rationale is the main

driving force behind the randomized optimal mechanism result. This intuition is incorrect

since in the standard model, with a single agent and public budget constraint, the optimal

mechanism is a posted price mechanism (involving no randomization) - see Laffont and

Robert (1996); Che and Gale (2000). The optimal mechanism in a standard model with

budget constraint involves randomization only if the budget is private (Che and Gale, 2000)

or if the number of agents is more than one and the budget is public (Laffont and Robert,

1996; Pai and Vohra, 2014).

The incentive constraints in our model are quite different from a standard model of mech-

anism design. This is because of the sequential nature of decision-making generating cyclic

preference of the agent. Indeed, since no utility representation is possible, the incentive con-

straints are ordinal in nature. The fact that a post-2 mechanism is incentive compatible is

non-trivial. Compared to a standard multidimensional screening problem, where one runs

into difficulty even in the two-dimensional case (Manelli and Vincent, 2007; Hart and Nisan,

2017), we still have tractability in our model because of the nature of decision-making and

the incentive constraints.

We also consider an extension of our model where the budget information (along with

values on both dimensions) is private. By restricting our attention to a reasonable class of

mechanisms, we derive an optimal mechanism over this class of mechanisms - the projection

of this optimal mechanism on the valuations space for each budget is (i) a post-2 mechanism

if the budget is low and (ii) a post-1 mechanism if the budget is high. This shows some

robustness of our main result.

We do an extensive literature review at the end in Section 6. Here, we point out that our

investigation of such a behavioral agent (buyer) using two rationales in a mechanism design

setting is inspired by a long list of papers which have considered such decision makers in

other specific settings and provided axiomatic foundations for such decision making. Some

examples include Rubinstein (1988) for choosing money lotteries; Tadenuma (2002); Houy

and Tadenuma (2009) for studying problems in welfare economics; Manzini and Mariotti

(2012); Apesteguia and Ballester (2013) for choice correspondences; Barak et al. (2013) in

the context of law (and with references of such decision making in Talmud); Kohli and Jedidi

(2007) in marketing.
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2 The model

A seller is selling a single object to an agent who evaluates the object along two dimensions

lexicographically. The two dimensions are indexed by {1, 2}. The first dimension will be

referred to as dim1 and the second dimension as dim2. In our firm-investors example, dim1

will be for the firm and dim2 will be for the investors. A consumption bundle is a pair (a, t),

where a ∈ [0, 1] is the allocation probability and t ∈ R is the transfer - amount paid by the

agent. The set of all consumption bundles is denoted by Z ≡ [0, 1]×R. The agent evaluates

the outcomes in Z along each dimension using quasilinearity. Hence, the rationale along

each dimension can be represented using a valuation. The valuation for the object along

dimi is vi, where i ∈ {1, 2}. We assume that v1, v2 ∈ V ≡ [0, β] - all our results extend even

if we allow for the fact vi ∈ [0, βi] for each i ∈ {1, 2} and β1 6= β2. The agent has a publicly

observable budget B ∈ R+ for dim1. We assume B ∈ (0, β). Since the budget is publicly

observable, the only private information of the agent is his values along the two dimensions

- we will come to the private budget case in Section 5.

Preference (rationale) along dim1, denoted by �v1 , is the following: ∀ (a, t), (a′, t′) ∈ Z,

[
(a, t) �v1 (a′, t′)

]
⇔

[
av1 − t ≥ a′v1 − t′ and t ≤ B

]
.

Notice that �v1 is incomplete. But whenever dim1 can compare two outcomes, it does so

using quasilinearity.

Preference along dim2, denoted by �v2 , is the following: ∀ (a, t), (a′, t′) ∈ Z,

[
(a, t) �v2 (a′, t′)

]
⇔

[
av2 − t ≥ a′v2 − t′

]
.

Hence, �v2 is complete and quasilinear.

We denote the preference of the agent with type v ≡ (v1, v2) as �v. The preference �v is

a complete binary relation derived from �v1 and �v2 as follows. For every (a, t), (a′, t′) ∈ Z,

[
(a, t) �v (a′, t′)

]
⇔

either
[
(a, t) �v1 (a′, t′)

]
or
[
(a, t) �v1 (a′, t′), (a′, t′) �v1 (a, t), (a, t) �v2 (a′, t′)

]
.

As is expected, �v is intransitive for some v ≡ (v1, v2) - though we show below intransitivity

of the strict part, even the symmetric component need not be transitive.
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Lemma 1 (Intransitive preference) For any type v = (v1, v2) with v1, v2 > 0 and v1 6= v2

there exist three outcomes (a, t), (b, t′), (c, t′′) ∈ Z such that

(a, t) �v (b, t′) �v (c, t′′) �v (a, t),

where �v is the strict part of the relation �v.

The proof of this lemma is given in Supplementary Appendix C.1 at the end. An important

consequence of this lemma is that there is no utility representation of the preference of our

agent.

We assume that joint distribution of v ≡ (v1, v2) over V × V follows a distribution G with

G1 being the marginal for dim1 and G2 being the marginal for dim2. Both G1 and G2 are

assumed be differentiable functions with densities g1 and g2 respectively. Notice that we

allow for values along both the dimensions to be correlated.

2.1 Some illustrations

Before getting into the formal definition of incentive compatibility and mechanisms, we

explain using a simple example that the usual posted price mechanism need not be optimal

any longer. For simplicity, consider a setting where values v ≡ (v1, v2) are distributed in

[0, 1] × [0, 1]. Consider a budget B > 0. Suppose the seller uses a posted price mechanism

with price p > B. We argue that such a posted price mechanism cannot be optimal. To

see this, consider the menu to the agent in a posted price mechanism: {(1, p), (0, 0)}. If the

value of the agent is v ≡ (v1, v2) such that v1 ≤ p he will prefer (0, 0) to (1, p). Also, if

the value of the agent is v ≡ (v1, v2) such that v2 ≤ p and v1 ≥ p, then he will prefer (0, 0)

to (1, p). This is because even though v1 ≥ p, dim1 cannot compare (1, p) and (0, 0) since

p > B. So, the preference of dim2 becomes the preference of the agent. So, the only region

where (1, p) is preferred to (0, 0) is when min(v1, v2) ≥ p. This is shown in the left graph of

Figure 1. 3

Now, consider another mechanism with a menu of three outcomes: {(1, p), (B
p
, B), (0, 0)}.

So, the new menu contains an outcome that involves randomization and a payment of B.

Consider the agent with values v ≡ (v1, v2). Using the same argument as before, we see

that if min(v1, v2) ≥ p, then the agent prefers (1, p) to the other two outcomes in the menu.

3In our firm and investors example, the firm will be able to buy the object at price p > B if and only if

both its and investors’ values are higher than p.
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Figure 1: Non-optimality of posted prices

Similarly, if v1 ≤ p, then the agent prefers (0, 0) to the other two outcomes in the menu.

However, if v1 ≥ p but v2 ≤ p, then v1 − p ≥ B
p

(v1 − p). But p > B implies that the

agent cannot compare (1, p) and (B
p
, B) along dim1. However, since v2 ≤ p, we see that

B
p

(v2 − p) ≥ v2 − p. So, the agent prefers (B
p
, B) to (1, p).4 The agent also prefers (B

p
, B)

to (0, 0) because he can compare these outcomes along dim1, where (B
p
, B) is preferred to

(0, 0). Hence, the agent prefers (B
p
, B) to the other outcomes in the menu. This is shown

the right graph of Figure 1. This graph has an extra positive measure region where revenue

of B can be earned by the seller at every profile. Hence, this mechanism generates strictly

larger revenue than the posted price mechanism. As is apparent, the seller is able to exploit

the lexicographic nature of decision-making of the buyer to extract more revenue than in a

posted price mechanism. Our main result will show that it cannot exploit any more than

this, i.e., such a mechanism will be optimal.

The above discussion shows that a posted price mechanism which posts a price above the

budget cannot be optimal. Our main result will formalize this intuition - for low enough

budgets, we will show that the optimal mechanism will involve randomization but we can

be precise about the nature of the randomization. The optimal mechanism will be a posted

price mechanism for “high enough” budgets. But for budgets below a certain threshold, it

will be a mechanism involving an extra layer of pooling in the middle.

2.2 Layout of the paper

The rest of the paper is structured as follows. In Section 3, we introduce our notion of

incentive compatibility and state our main results. The proofs of our main results are quite

4Again, in our firm and investors example, even though the firm likes (1, p) to (B
p , B), the investors shoot

it down since v2 ≤ p and the firm must respect their preference by preferring (B
p , B) to (1, p).
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long. So, we have put them in Appendix A. We give a brief overview of the proofs in Section

3.4. Section 4 contains some discussions about the model and its motivations. Section 5

contains an extension where budget is also considered private information of the agent. The

proofs of Section 5 is given in Appendix B. Supplementary Appendix C contains some missing

proofs and discussions.

3 The optimal mechanism

3.1 Incentive compatibility

Since the preference of the agent is completely captured by v ≡ (v1, v2), we will refer to

v as the type of the agent - Section 5 discusses the private budget case, where the type

will of the agent will be (v1, v2, B). A (direct) mechanism is a pair of maps: an allocation

rule f : V 2 → [0, 1] and a payment rule p : V 2 → R. For every v ∈ V 2, f(v) denotes the

allocation probability and p(v) denotes the payment of the agent.

The restriction to such direct mechanisms is without loss of generality as a version of

the revelation principle holds in our setting - see Section 4.1. Hence, we can discuss about

incentive compatibility of direct mechanisms.

Definition 1 A mechanism (f, p) is incentive compatible if for all u, v ∈ V 2,

(f(u), p(u)) �u (f(v), p(v)).

Fix a mechanism (f, p) and let the range of the mechanism be

Rf,p := {(a, t) : (f(v), p(v)) = (a, t) for some v ∈ V 2}.

In general, preferences over outcomes in Rf,p may violate transitivity. However, our notion

of incentive compatibility requires that at every type u, the outcome (f(u), p(u)) is preferred

to any other outcome in Rf,p. This implies that the outcome chosen for every type is not

involved in a cycle. This allows us to rule out Dutch book arguments (or money pump) using

our notion of incentive compatibility. We discuss another notion of incentive compatibility

and its relation to our notion later in Section 4.1.

Our notion of incentive compatibility can be broken down into two distinct cases. Fix

u, v ∈ V 2. Then, there are two ways in which bundle (f(u), p(u)) can be (weakly) preferred

over (f(v), p(v)) by an agent of type u.
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1. First, dim1 prefers (f(u), p(u)) over (f(v), p(v)). This is possible if p(u) ≤ B and

u1f(u)− p(u) ≥ u1f(v)− p(v).

2. Second, dim1 cannot compare (f(u), p(u)) and (f(v), p(v)), but dim2 prefers (f(u), p(u))

over (f(v), p(v)). This means u2f(u) − p(u) ≥ u2f(v) − p(v). Further, one of the fol-

lowing conditions must hold.

(a) u1f(u)− p(u) > u1f(v)− p(v) but p(u) > B.

(b) u1f(v)− p(v) > u1f(u)− p(u) but p(v) > B.

(c) u1f(v)− p(v) = u1f(u)− p(u) but min(p(u), p(v)) > B.

Besides, incentive compatibility, we will impose a natural participation constraint. For

this, we will assume that outside option of the agent is the consumption bundle (0, 0), where

he receives nothing and pays nothing.

Definition 2 A mechanism (f, p) is individually rational if for all v ∈ V 2,

(f(v), p(v)) �v (0, 0).

It is useful to note that the above individual rationality condition can be equivalently stated

as follows. A mechanism (f, p) is individually rational if for all v ∈ V 2 (a) when p(v) ≤
B, we have v1f(v) − p(v) ≥ 0 and (b) when p(v) > B, we have v1f(v) − p(v) ≥ 0 and

v2f(v) − p(v) ≥ 0. This leads us to the following characterization of individual rationality.

Such characterizations are well known in standard settings and the result below shows that

it extends to our model too.

Lemma 2 Consider any incentive compatible mechanism (f, p). Then, (f, p) is individually

rational if and only if p(0, 0) ≤ 0.

Proof : Suppose that p(0, 0) ≤ 0. Consider any u = (u1, u2) ∈ V 2 such that p(u) ≤ B, incen-

tive compatibility implies that (f(u), p(u)) �u (f(0, 0), p(0, 0)), which implies (f(u), p(u)) �u1
(f(0, 0), p(0, 0)) since p(u) ≤ B and p(0, 0) ≤ 0 < B. But this implies that u1f(u)− p(u) ≥
u1f(0, 0)−p(0, 0) ≥ 0, where the last inequality follows from the fact that p(0, 0) ≤ 0. Hence,

we have (f(u), p(u)) �u (0, 0).

Similarly, consider any v = (v1, v2) ∈ V 2 such that p(v) > B, incentive compatibility

implies (f(v), p(v)) �v1 (f(0, 0), p(0, 0)) and (f(v), p(v)) �v2 (f(0, 0), p(0, 0)) since p(0, 0) ≤

8



B, p(v) > B. This implies that v1f(v) − p(v) ≥ v1f(0, 0) − p(0, 0) ≥ 0. Similarly, we have

v2f(v)− p(v) ≥ 0. Hence, we have (f(v), p(v)) �v (0, 0).

For the other direction, consider the type (0, 0) ∈ V . Individual rationality implies that

(f(0, 0), p(0, 0)) �(0,0) (0, 0). This implies that −p(0, 0) ≥ 0. �

3.2 New mechanisms

Incentive compatibility has different implications in our model because of the sequential

nature of decision-making. There are some simple mechanisms that are incentive compatible

and resemble similar mechanisms when the agent the agent uses only one rationale.

Definition 3 A mechanism (f, p) is a post-1 mechanism if there exists a K1 ∈ [0, B] such

that

(f(v), p(v)) =

{
(0, 0) if v1 ≤ K1

(1, K1) otherwise.

A post-1 mechanism is a mechanism where the object is allocated by only considering the

value along dim1. So, it can be thought of as a posted price mechanism for dim1. This is

because it posts a price K1 which is less than the budget B, and hence, the agent can make

a decision using his preference along dim1. So, if the value along dim1 is less than K1, then

the object is not allocated. Else, the object is allocated with probability 1. It is easy to see

that such a mechanism is incentive compatible and individually rational.

We now introduce a new class of mechanisms that we call the post-2 mechanisms. Unlike

the post-1 mechanism, the post-2 mechanism considers the values of both the dimensions.

Definition 4 A mechanism (f, p) is a post-2 mechanism if there exists a K1, K2 ∈ [B, β]

with K1 ≤ K2, such that

(f(v), p(v)) =





(0, 0) if v1 ≤ K1

(1, B +K2(1− B
K1

)) if min(v1, v2) > K2

( B
K1
, B) otherwise

The post-2 mechanism has a pair of posted prices. The first posted price K1 is for dim1.

If the value along dim1 is below K1, then the object is not sold. Else, the the object is sold

with probability B
K1

at per unit price of K1, i.e., the total price paid equals K1 times the

probability of winning, which is K1 × B
K1

= B. The remaining probability (1 − B
K1

) is sold
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; B)

v1
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Figure 2: post-2 mechanism

at per unit price K2 if the value along both the dimensions exceed K2. Figure 2 gives a

graphical illustration of a post-2 mechanism. We show below that a post-2 mechanism is

incentive compatible and individually rational.

Proposition 1 Every post-2 mechanism is incentive compatible and individually rational.

Though, we provide a formal proof of this result (and all subsequence omitted proofs) in

the Appendix, we explain how the notion of incentive compatibility and the lexicographic

decision-making make the result possible. There are three outcomes in the “menu” (range) of

a post-2 mechanism. The outcomes (0, 0) and ( B
K1
, B) are outcomes which can be compared

using dim1. On the other hand, outcome (1, B + K2(1 − B
K1

)) has payment more than B.

So, if a type v ≡ (v1, v2) is assigned this outcome, incentive compatibility requires that

(1, B + K2(1 − B
K1

)) is preferred to (0, 0) and ( B
K1
, B) in both dim1 and dim2. It is easy

to verify that this is possible if v1, v2 ≥ K2 and K2 ≥ K1. Similarly, the other incentive

constraints can be shown to hold.

A post-2 mechanism uses the behavioral nature of the agent by posting a pair of prices.

There are other kinds of mechanisms that can be incentive compatible. Our main result

below shows that the optimal mechanism can be either a post-1 or a post-2 mechanism.

10



3.3 Main results

The expected (ex-ante) revenue of a mechanism (f, p) is given by

Rev(f, p) =

∫

V 2

p(v)dG(v)

We say that a mechanism (f, p) is optimal if (a) (f, p) is incentive compatible and indi-

vidually rational, and (b) Rev(f, p) ≥ Rev(f ′, p′) for any other incentive compatible and

individually rational mechanism (f ′, p′).

For the optimality of our mechanisms, we will need a condition on the marginal distri-

bution along dim1. Define the function H1 as follows:

H1(x) = xG1(x) ∀ x ∈ [0, β].

Theorem 1 Suppose H1 is a strictly convex function. Then, either a post-1 or a post-2

mechanism is an optimal mechanism.

Our results are slightly stronger than what Theorem 1 suggests. We prove that among all

mechanisms which has a positive measure of types where the agent pays more than the

budget, a post-2 mechanism is optimal. In the remaining class of mechanisms, a post-1

mechanism is optimal.

We can be more precise about the optimization programs that need to be solved to get

the optimal mechanism in Theorem 1. In particular, we either need to solve a one-variable

or a two-variable optimization program.

Proposition 2 Suppose H1 is strictly convex. Then, the expected revenue from the optimal

mechanism is max(R1, R2), where

R1 = max
K1∈[0,B]

K1(1−G1(K1))

R2 = max
K2∈[B,β],K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.

The maximization expressions for R1 and R2 reflect the expected revenue from a post-1

and post-2 mechanism respectively.

If the budget B is high enough, then the post-1 mechanism becomes optimal - intuitively,

the dim1 rationale makes more decisions and screening along that dimension becomes opti-

mal. It is more interesting to see how much restriction on budget we need to get post-2

mechanism to be optimal. Below, we derive such a sufficient condition on the budget.

11



Define the optimal monopoly reserve price as K̄

K̄ := arg max
r∈[0,β]

r(1−G1(r)).

If H1 is a strictly convex function, K̄ is uniquely defined since x−xG1(x) is a strictly concave

function. The interpretation of K̄ is that if the agent was not budget-constrained along dim1,

then the optimal mechanism would have involved a posted-price of K̄. Our other main result

shows that if the budget constraint is less than K̄, then the optimal mechanism is a post-2

mechanism.

Proposition 3 Suppose H1 is strictly convex and B ≤ K̄. Then, the optimal mechanism

is a post-2 mechanism. In particular, it is a solution to the following program.

max
K2∈[B,β], K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.

Proof : Since H1 is strictly convex, r(1−G1(r)) is strictly increasing for all r ≤ K̄. Using

B ≤ K̄, we get that B(1 − G1(B)) ≥ r(1 − G1(r)) for all r ≤ B. Hence, R1 defined as the

maximum possible revenue in a posted-price mechanism in our problem (Proposition 2) is

R1 = max
K1∈[0,B]

K1(1−G1(K1)) = B(1−G1(B)).

But the post-2 mechanism with K1 = K2 = B generates a revenue of B(1−G1(B)). This

proves the theorem. �

The optimality of post-2 mechanism is possible even for B > K̄. Proposition 3 only

gives a sufficient condition on the budget for optimality of a post-2 mechanism. The exact

optimal mechanism is difficult to describe in general. Section 3.5 works out the exact optimal

mechanism for the uniform distribution prior.

3.4 Sketch of the proofs

We give an overview of the proof of Theorem 1 in this section. Fix a mechanism (f, p), and

define the following partitioning of the type space:

V +(f, p) := {v : p(v) > B}
V −(f, p) = {u : p(u) ≤ B}.

The proof considers two classes of mechanisms, those (f, p) where V +(f, p) has non-zero

Lebesgue measure and those where V +(f, p) has zero Lebesgue measure. Define the following

12



partitioning of the class of mechanisms:

M+ := {(f, p) : V +(f, p) has positive Lebesgue measure}
M− := {(f, p) : V +(f, p) has zero Lebesgue measure}.

The proof of Theorem 1 is completed by proving the following proposition.

Proposition 4 Suppose H1 is strictly convex. Then, the following are true.

1. There exists a post-1 mechanism (f, p) ∈ M− which is incentive compatible and in-

dividually rational such that for every incentive compatible and individually rational

mechanism (f ′, p′) ∈M−, we have

Rev(f, p) ≥ Rev(f ′, p′).

2. There exists a post-2 mechanism (f, p) ∈ M+ which is incentive compatible and in-

dividually rational such that for every incentive compatible and individually rational

mechanism (f ′, p′) ∈M+, we have

Rev(f, p) ≥ Rev(f ′, p′).

The proof of (1) in Proposition 4 uses somewhat familiar ironing arguments. However,

proof of (2) in Proposition 4 is quite different, and requires a lot of work to get to a simpler

class of mechanisms where ironing can be applied. The proof proceeds by deriving some

necessary conditions for incentive compatibility and reducing the space of mechanisms. It

can be broken down into three steps.

1. Step 1. The first step of the proof uses just incentive constraints to show that every

incentive compatible mechanism has a simple form. In particular, there is a cutoff

K ≥ B such that for all types v with min(v1, v2) > K, the outcome of the mechanism

is constant (with payment greater than the budget). This implication comes purely

from the incentive constraints in the mechanism.

2. Step 2. In the next step, we show that the optimal mechanism must belong to a class

of simple mechanisms. In this class of mechanisms, there is a cutoff K (identified in

Step 1), such that the outcome of the mechanism for types v with min(v1, v2) > K is

one constant (where payment is greater than the budget) and for types v with v1 ≥ K

but min(v1, v2) ≤ K, it is another constant (where payment is equal to budget). For

types v with v1 < K, payment is not more than the budget.
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3. Step 3. In this step, we further relax the class of above mechanisms. We show that

it is without loss of generality to consider only those mechanisms where for all types

u, v with u1 = v1 < K, the outcomes at u and v are the same. These steps allow us to

apply standard ironing arguments and get to a post-2 mechanism.

In summary, though the proof does not introduce new tools to deal with multidimensional

mechanism design problems, it illustrates that multidimensional mechanism design problems

may be tractable under certain behavioral assumptions.

3.5 Uniform distribution

In this section, we work out the exact optimal mechanism for the uniform distribution case.

All the proofs of this section are given in Supplementary Appendix C.2.

We assume that β = 1 and G is the uniform distribution over [0, 1] × [0, 1]. Call a

post-2 mechanism defined by posted prices (K∗1 , K
∗
2) optimal post-2 mechanism if it solves

the optimization program in Proposition 2. Our result shows that for uniform distribution

K∗1 = K∗2 .

Lemma 3 Suppose β = 1 and G is the uniform distribution over [0, 1] × [0, 1]. If (K∗1 , K
∗
2)

are values of (K1, K2) in the optimal post-2 mechanism, then K∗1 = K∗2 .

Further, the optimal post-2 mechanism must satisfy:

1. if B ≥ 1
2
(3−

√
5), then K∗1 = K∗2 = B,

2. if B < 1
2
(3−

√
5), then K∗1 = K∗2 = 1

3

(
B + 2−

√
(B2 +B + 1)

)
.

Lemma 3 can be generalized to distributions beyond uniform distributions if enough

assumptions on distributions are put. The details are skipped but available upon request.

Using this lemma, we can provide a complete description of the optimal mechanism for the

uniform distribution case.

Proposition 5 Suppose β = 1 and G is the uniform distribution over [0, 1]× [0, 1]. Then,

the optimal mechanism is the following.

1. If B > 1
2
, then a post-1 mechanism with K1 = 1

2
is optimal.

2. If B ∈ [1
2
(3−
√

5), 1
2
], then a post-1 mechanism with K1 = B is optimal. In this case,

a post-2 mechanism with K1 = K2 = B is also optimal.
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3. If B ∈ (0, 1
2
(3−

√
5)), then a post-2 mechanism with

K1 = K2 =
1

3

(
B + 2−

√
(B2 +B + 1)

)

is optimal.

Notice that as B → 0, the optimal mechanism is a posted price mechanism with price 1
3
. So,

in the limiting case when dim1 has zero budget to make decisions, the optimal mechanism

is not a posted price mechanism with posted price 1
2

- which is the optimal posted price in

the standard model. To see why, consider the limiting case B = 0. Suppose the buyer uses

a posted price mechanism with price p. Who are the types who will accept this price? This

is shown in the left graph in Figure 1. All the types (v1, v2) such that v1 < p will choose

outcome (0, 0). All types (v1, v2) with v1 > p but v2 < p will also choose outcome (0, 0) -

this is because even though dim1 prefers (1, p) over (0, 0), it cannot make a decision because

of budget constraint. Thus, the only types (v1, v2) which will prefer (1, p) to (0, 0) are those

with v1 > p, v2 > p. Hence, the expected revenue from a posted price mechanism is p(1−p)2,

which is maximized at 1
3
. This argument establishes the optimal posted price mechanism.

Proposition 5 shows that it is the optimal mechanism.

Finally, we show that the optimal mechanism revenue increases with B. Let R∗(B) denote

the revenue of the optimal mechanism described in Proposition 5 when the budget is B.

Proposition 6 Suppose β = 1 and G is the uniform distribution over [0, 1]× [0, 1]. Then,

B > B′ implies R∗(B) ≥ R∗(B′).

Figure 3 shows how the revenue increases (strictly) until some value of B is reached and

then stays constant.

4 Discussions

In this section, we discuss some issues related to the revelation principle, our notion of

incentive compatibility, and some motivating examples.

4.1 Notion of incentive compatibility

We show here a version of the revelation principle holds in our setting. To define an arbitrary

mechanism, let M be a message space and µ : M → Z be a mechanism. A strategy of the

agent is a map s : V → M . We say that mechanism µ implements the direct revelation

mechanism (f, p) if there exists a strategy s : V →M such that
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Figure 3: Revenue as a function of budget

• equilibrium. µ(s(v)) �v µ(m) ∀ v ∈ V, ∀ m ∈M.

• outcome. µ(s(v)) = (f(v), p(v)) ∀ v ∈ V.

Suppose µ implements (f, p). Then, fix some v, v′ ∈ V and note that (f(v), p(v)) =

µ(s(v)) �v µ(s(v′)) = (f(v′), p(v′)), which proves incentive compatibility of (f, p). Hence,

the revelation principle holds in this setting. It is well known that with behavioral agents,

the revelation principle may not hold in general (de Clippel, 2014). There are at least two

assumptions in our model which allows the revelation principle to work. The first is the

completeness of our relation �v (even though it may be intransitive). The second, and more

important one, is the notion of incentive compatibility we use. We discuss this issue in detail

next.

The primitives of our model involves how the agent chooses from pairs of outcomes. We

are silent about how an agent chooses from a subset of alternatives. This is consistent with

Tversky (1969) and most of the literature which works on binary choice models (Rubin-

stein, 1988; Tadenuma, 2002; Houy and Tadenuma, 2009). Our incentive constraints are

appropriate for this binary choice model.

In Supplementary Appendix C.3, we consider a model where agents can choose from any

subset of outcomes. We adapt a model of Manzini and Mariotti (2012) to our framework to

consider choice correspondences. We then propose a notion of incentive compatibility which

is appropriate for choice correspondences - we call it choice incentive compatibility. We argue

that both the notions of incentive compatibility are independent. However, there are two
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main reasons why we use our existing notions of incentive compatibility instead of choice-

incentive compatibility. First, to be able to use choice-incentive compatibility, we have to

assume that the agent chooses from subsets of outcomes using some choice procedure. The

current primitives of our model are much simpler - it just makes assumptions on how the

agent chooses between pairs of outcomes. Importantly, our notion of incentive compatibility

allows us tractability using minimal assumptions about deviations from rationality. Second,

if the primitives of the model are choice correspondences, then a revelation principle need not

hold - see de Clippel (2014). This implies that the space of mechanisms are more complex

than the set of direct revelation mechanisms. In summary, it is not clear how an optimal

mechanism will look like if we considered a model assuming certain choice behavior of agents

over subsets of outcomes and choice-incentive compatibility as the notion of our incentive

compatibility. We leave this issue for future research.

4.2 Other motivating examples

In this section, we discuss a couple of more examples that fit our story. In principle, any

model where the agent cannot compare outcomes due to a budget constraint and consults

an outside agent for such comparison can be fit into our model. The examples below make

this point explicit for certain settings.

Consider a setting, where the seller is selling to a“delegate” (a manager in a firm or child in

a family). The delegate is budget constrained. The delegate consults his boss-agent (board

members of the firm or parent in a family) whenever he cannot compare outcomes. Whenever

consulted, the preference of the boss-agent becomes the preference of the delegate.

Our model also fits a stylized setting of an agent with two selves. The agent compares

outcomes using the two selves in a lexicographic manner: the first self (say, an impulsive self)

compares outcomes whenever possible but there is threshold price (budget constraint) beyond

which the comparison is done by the second self (contemplative self) 5. Unlike traditional

economic models of temptation and self-control (Gul and Pesendorfer, 2001; Fudenberg and

Levine, 2006), our agent is naive and does not optimize between his two selves to form his

preference.

5Imagine a situation where you compare products based on your underlying value but once the price hits

a threshold, you start comparing them by doing some research (say, reading reviews of products etc.), in

which case your comparison may look different.
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Another motivation for our model is that the agent has two modes of payment - a mode

of payment which is budget constrained (say, credit card) and a mode of payment which is

unconstrained (say, direct debit or cheque). Whenever possible our agent makes payments

using credit card. But if some pair of consumption bundles cannot be compared due to credit

constraint on the card, the agent is more careful with the evaluation of these consumption

bundles, resulting in a different value when he makes direct debit or check payments.

5 Private budgets: a partial result

In this section, we consider the scenario when budget is private information. This may be

the case in various examples that we considered - the budget allocated to dim1 may not be

observable if it is just a self control parameter of the agent. In such cases, the type space is

three-dimensional. We only have a partial description of an optimal mechanism in this case.

We will assume that values on both dimensions and the budget lie in [0, β]. Thus, the

type space is W ≡ [0, β]3. We denote a type (v,B) ≡ (v1, v2, B) to mean v1 and v2 are the

values of dim1 and dim2 respectively and B is the budget. For any type (v,B) ∈ W , the

preferences over the outcome space is same as the preferences of the type v ∈ V with budget

B in the public budget case. Since the outcome space is the same, this is well defined as

before. For any type (v,B), we denote the corresponding preference as �(v,B).

The seller has a prior Φ over the type space W . A (direct) mechanism is a pair of maps:

an allocation rule f : W → [0, 1] and a payment rule p : W → R. The incentive compatibility

and individual rationality constraints are as before.

Definition 5 A mechanism (f, p) is incentive compatible if for all (u,B), (v,B′) ∈ W ,

(
f(u,B), p(u,B)

)
�(u,B)

(
f(v,B′), p(v,B′)

)
.

A mechanism (f, p) is individually rational if for all (v,B) ∈ W ,

(
f(v,B), p(v,B)

)
�(v,B)

(
0, 0
)
.

We will only consider the following class of mechanisms in this section for our main result.

Definition 6 A mechanism (f, p) is dim2 non-trivial if there exists some budget B ∈ [0, β]

and V ′ ⊆ [0, β]2 such that V ′ has non-zero Lebesgue measure in [0, β]2 and

p(v,B) > B ∀ v ∈ V ′.
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A dim2 non-trivial mechanism rules out the possibility that at every budget B, the

payment is not more than B at almost every valuation profile (given B). We only consider

optimality in the class of dim2 non-trivial mechanisms. As before, the expected revenue of

a mechanism (f, p) is

Rev(f, p) :=

∫

W

p(v,B)dΦ(v,B).

A dim2 non-trivial mechanism (f, p) is partially optimal if it is incentive compatible

and individually rational and there is no other dim2 non-trivial mechanism (f ′, p′) which is

incentive compatible and individually rational and Rev(f ′, p′) > Rev(f, p).

We now introduce an analogue of the post-2 mechanism in the private budget case.

Definition 7 A mechanism (f, p) is a post∗ mechanism if there exists K ∈ [0, β] such that

(f(v,B), p(v,B)) =





(
1, K

)
if
(

min(v1, v2) > K and B < K
)

or
(
v1 > K and B ≥ K

)

(0, 0) if v1 ≤ K

(B
K
, B) if v1 > K, v2 ≤ K and B < K

A pictorial description of a post∗ mechanism is given in Figure 4. The similarity between

K

K

v1

v2

(0, 0, 0)

�
f(v, B), p(v, B)

�
= (1, K)

B

�
f(v, B), p(v, B)

�
= (0, 0)

�
f(v, B), p(v, B)

�
= ( B

K , B)

K

Figure 4: Illustration of a post∗ mechanism

post-2 and post∗ is deceiving since post-2 is defined for a fixed budget B but post∗ is

defined for all values of budget. As a result, the menu size of post∗ is infinite - a separate

outcome is chosen for every budget in the third case of the definition of post∗ mechanism.
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Notice that choice of K ∈ [0, β] pins down a post∗ mechanism. So, a post∗ mechanism is

defined by a single parameter. On the other hand, a post-2 mechanism requires specification

of two parameters. However, if we fix a post∗ mechanism, defined by choosing K, and

consider a budget B < K, then the projection of this post∗ mechanism at B is a post-2

mechanism with the two parameters of the post-2 mechanism equal to K. Similarly, if we

take B > K, then the projection of a post∗ mechanism at B is a posted price mechanism.

We show below that every post∗ mechanism is incentive compatible and individually

rational.

Proposition 7 Every post∗ mechanism is dim2 non-trivial, incentive compatible, and in-

dividually rational.

The main result of this section establishes the partial optimality of post∗ mechanism.

Theorem 2 A partially optimal mechanism is a post∗ mechanism.

We emphasize here that unlike Theorem 1, Theorem 2 does not require any distributional

assumption. This is a consequence of the ironing required to arrive at the optimal mechanism

in Theorem 1, and the absence of any ironing in the proof of Theorem 2 - see the respective

proofs in Appendix. Intuitively, with private budgets, the set of incentive constraints become

larger and the need for ironing reduces. We should also note here that if the lower support of

budgets is positive (for simplicity, we have assumed it to be zero), Theorem 2 goes through

with some minor changes, but it requires the distribution to satisfy the same condition as in

Theorem 1. This is because, in that case, we need ironing to arrive at an optimal mechanism

(very similar to Theorem 1). We skip these details for the interest of space but it is available

upon request.

The derivation of an optimal mechanism without the dim2 non-triviality assumption for

the private budget case seems difficult - even in the standard model, the private budget case

is significantly complicated (Che and Gale, 2000). In Supplementary Appendix C.4, we state

a sufficient condition on distributions (satisfied if values and budget are independently and

uniformly distributed) that guarantee the optimality of a post∗ mechanism.
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6 Related literature

Our paper is related to a couple of strands of literature in mechanism design. We go over

them in some detail.

Behavioral mechanism design. We discuss some literature in mechanism design which

looks at specific models of behavioral agents and designing optimal contracts for selling to

such agents. A very detailed survey with excellent examples can be found in Koszegi (2014).

Our literature survey is limited in nature as we focus on models which are closer to ours.

A stream of papers investigate the optimal contract for a firm to a consumers in a two-

period model, where the consumer has time inconsistent preferences. These papers differ

in the way it treats inconsistent preferences and non-common priors between firm and con-

sumers.

Eliaz and Spiegler (2006) consider a model where the type of the agent is his “cognitive”

ability. In their model, there are two periods and the agent enjoys a valuation for an action

in each period. In period 2, the agent’s valuation may change to another value. Agents differ

in their subjective assessment of the probability of that transition. So, in their model, the

type is the subjective probability of the agent. They show how the optimal contract treats

sophisticated and naive agents. While this paper allows agents to be time-inconsistent,

in another paper, Eliaz and Spiegler (2008) study a similar model but do not allow time

inconsistency. There, they allow the monopolist to have a separate belief about the change

of state. They characterize the optimal contract and show the implications of non-common

priors on the menu of optimal contract and ex-post efficiency. Grubb (2009) considers a

two period model where a firm is selling a divisible good to consumers. The private type

of the consumer is his demand in period 2. In period 1, the firm offers them a tariff which

is accepted or rejected. If accepted, the consumers buy the quantity in period 2 once they

realize their demand. The key innovation in his paper is again the lack of common prior

between consumers and the firm - in particular, he shows that if the prior of the consumers

is such that it underestimates the variance of the actual prior (for instance, if the consumer

prior has the same mean as the firm, then consumer prior is a mean-preserving spread of the

firm prior), then the optimal tariff of the firm must have three parts (with quantities offered

at zero marginal cost).
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de Clippel (2014) studies complete information implementation with behavioral agents -

his main results extend Maskin’s characterization (Maskin, 1999) to environments with be-

havioral agents. Esteban et al. (2007) consider a model where agents have temptation and

self control preferences as in Gul and Pesendorfer (2001), and characterize the optimal con-

tract - also see related work on self control preferences in DellaVigna and Malmendier (2004).

There are several other papers who consider time inconsistent preferences and analyze the

optimal contracting problem and our paper adds to this literature. Carbajal and Ely (2016)

consider a model of optimal price discrimination when buyers have loss averse preferences

with state dependent reference points. They characterize the optimal contract in their model.

Multidimensional mechanism design. The type space of our agent is two-dimensional.

It is well known that the problem of finding an optimal mechanism for selling multiple goods

(even to a single buyer) is notorious. A long list of papers have shown the difficulties involved

in extending the one-dimensional results in Mussa and Rosen (1978); Myerson (1981); Riley

and Zeckhauser (1983) to multidimensional framework - see Armstrong (2000); Manelli and

Vincent (2007) as examples. Even when the seller has just two objects and there is just one

buyer with additive valuations (i.e., value for both the objects is sum of values of both the ob-

jects), the optimal mechanism is difficult to describe (Manelli and Vincent, 2007; Daskalakis

et al., 2017; Hart and Nisan, 2017). This has inspired researchers to consider approximately

optimal mechanisms (Chawla et al., 2007, 2010; Hart and Nisan, 2017) or additional robust-

ness criteria for design (Carroll, 2017). Compared to these problems, our two-dimensional

mechanism design problem becomes tractable because of the nature of incentive constraints,

which in turn is a consequence of the preference of the agent.

Mechanism design with budget constraints. In our model, dim1 is budget con-

strained. We compare this with the literature in the standard model when there is a single

object and the buyer(s) is budget constrained. The space of mechanisms is restricted to

be such that payment is no more than the budget. This feasibility requirement on the

mechanisms essentially translates to a violation of quasilinearity assumption of the buyer’s

preference for prices above the budget (utility assumed to be −∞) but below the budget the

utility is assumed to be quasilinear. This introduces additional complications for finding the

optimal mechanism. Laffont and Robert (1996) show that an all-pay-auction with a suitable

reserve price is an optimal mechanism for selling an object to multiple buyers who have

publicly known budget constraints. When the budget is private information, the problem

becomes even more complicated - see Che and Gale (2000) for a description of the optimal
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mechanism for the single buyer case and Pai and Vohra (2014) for a description of the op-

timal mechanism for the multiple buyers case. All these mechanisms involve randomization

but the nature of randomization is quite different from ours. This is because the source of

randomization in all these papers is either due to budget being private information (hence,

part of the type, as in Che and Gale (2000); Pai and Vohra (2014)) or because of multiple

agents with budget being common knowledge (as in Laffont and Robert (1996); Pai and

Vohra (2014)). Indeed, with a single agent and public budget, the optimal mechanism in

a standard single object allocation model is a posted price mechanism. This can be con-

trasted with our result where we get randomized optimal mechanism even with one buyer

and budget being common knowledge. This shows that the lexicographic decision making

using two rationales plays an important role in making a post-2 mechanism optimal. Also,

the set of menus in the optimal mechanism in the standard single object auction with budget

constraint may have more than three outcomes. Further, the outcomes in the menu of these

optimal mechanisms are not as simple as our post-2 mechanism. Finally, like us, these

papers assume that budget is exogenously determined by the agent. If the buyer can choose

his budget constraint, then Baisa and Rabinovich (2016) shows that the optimal mechanism

in a multiple buyers setting allocates the object efficiently whenever it is allocated - this is in

contrast to the exogenous budget cases studied in Laffont and Robert (1996); Pai and Vohra

(2014).

Burkett (2016) studies a principal-agent model where the agent is participating in an

auction mechanism with a third-party. To decide on the report in the mechanism, the

principal designs a contract with the agent. His main result shows that a simple budget-

constraint contract is optimal for the principal. Hence, budget constraint comes via an

optimization exercise of the principal in his problem. In contrast, our agent is naive and

does not carry out any such optimization exercise across dimensions. We assume that the

budget is exogenously assigned along dim1. Besides, in Burkett (2016), the third-party

mechanism is given and his result specifies the optimal contract between the principal and

the agent.

23



A Appendix: Omitted Proofs of Section 3

This section contains all omitted proofs of Section 3 - except for proofs of Section 3.5, which

are given in the Supplementary Appendix C.2.

A.1 Proof of Proposition 1

Proof : Consider a post-2 mechanism (f, p) defined by parameters K1 and K2 with B ≤
K1 ≤ K2. Since p(0, 0) = 0, Lemma 2 implies that (f, p) is individually rational if it is

incentive compatible. We show incentive compatibility of (f, p). We will denote by ū → ũ

the incentive constraint associated with type ū when it cannot misreport ũ.

Consider types u, v, s taken from three different regions in Figure 2 with three different

outcomes. In particular, u, v, s satisfy: u1 ≤ K1, min(v1, v2) ≤ K2 but v1 > K1, and

min(s1, s2) > K2. Note that

(f(u), p(u)) = (0, 0), (f(v), p(v)) = (
B

K1

, B), and (f(s), p(s)) = (1, B +K2(1− B

K1

)).

We consider incentive compatibility of each of these types.

1. u → v, u → s. Note that since u1 ≤ K1, we have u1
B
K1
− B ≤ 0. Hence, agent with

type u weakly prefers (0, 0) to ( B
K1
, B). Similarly,

u1 −B −K2

(
1− B

K1

)
≤ K1 −B −K2 +

K2

K1

B

= (K2 −K1)
( B
K1

− 1
)
≤ 0,

where first inequality is due to u1 ≤ K1 and the second is due to K2 ≥ K1 and B ≤ K1.

Hence, u prefers (0, 0) to (f(s), p(s)).

2. v → u, v → s. For v → u, we note that

v1
B

K1

−B ≥ 0

This follows from the fact that v1 > K1. Hence, incentive constraint v → u holds as

p(v) = B.

For v → s, we note that

min(v1, v2)−B −K2

(
1− B

K1

)
≤ min(v1, v2)−B −min(v1, v2)

(
1− B

K1

)

=
B

K1

min(v1, v2)−B.
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If min(v1, v2) = v1, then we see that dim1 prefers (f(v), p(v)) to (f(s), p(s)). Else,

min(v1, v2) = v2. In that case since p(s) > B, even if dim1 type prefers (f(s), p(s)) to

(f(v), p(v)), he cannot compare. But dim2 prefers (f(v), p(v)) to (f(s), p(s)). Hence,

incentive constraint v → s holds.

3. s→ u, s→ v. Note that for x ∈ {s1, s2}, we have

0 ≤ K2

K1

B −B ≤ B

K1

x−B

= x−B − x
(

1− B

K1

)

≤ x−B −K2

(
1− B

K1

)
,

where the inequalities follow from the fact that min(s1, s2) > K2 ≥ K1 ≥ B. This

shows that both the dimensions at s prefer (f(s), p(s)) to (f(v), p(v)) and (f(u), p(u)).

Because p(s) > B, the incentive constraints s→ v and s→ u hold.

�

A.2 Proofs of Theorem 1 and Propositions 2 and 4

In this section, we provide the proof of the main results - Theorem 1 and Propositions 2 and

4. It is clear that Proposition 4 immediately implies Theorem 1. So, we first provide a proof

of Proposition 4, followed by a proof of Proposition 2.

A.2.1 Preliminary Lemmas

We start off by proving a series of necessary conditions for incentive compatibility. The

first lemma is a monotonicity condition of allocation rule: for every incentive compatible

mechanism, type with higher payment implies higher allocation probability. Hence, the

outcomes in the range of an incentive compatible mechanism are ordered in a natural sense.

Lemma 4 For any incentive compatible mechanism (f, p), if p(u) < p(v) for any u, v, then

f(u) < f(v).

Proof : Take any u, v such that p(u) < p(v). Incentive compatibility implies that

(f(v), p(v)) �v (f(u), p(u)).
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If p(v) ≤ B, then we must use the incentive constraints along dim1, which gives us

v1f(v)− p(v) ≥ v1f(u)− p(u) > v1f(u)− p(v),

where the last inequality uses p(v) > p(u). This implies f(u) < f(v). If p(v) > B, then

using the incentive constraint along dim2, we have

v2f(v)− p(v) ≥ v2f(u)− p(u) > v2f(u)− p(v),

where the last inequality uses p(v) > p(u). This implies f(u) < f(v). �

Lemma 5 For any incentive compatible mechanism (f, p), for all u, v

1. if p(u), p(v) ≤ B and u1 > v1, then f(u) ≥ f(v),

2. if p(u), p(v) > B and u2 > v2, then f(u) ≥ f(v).

Proof : Take any u, v. If p(u), p(v) ≤ B, then adding the incentive constraints along dim1

gives us the desired result and if p(u), p(v) > B, then adding the incentive constraints along

dim2 gives us the desired result. �

Lemma 6 For any incentive compatible mechanism (f, p), for all u, v the following holds:

[
p(u) ≤ B < p(v)

]
⇒
[

min(v1, v2) ≥ min(u1, u2)
]
.

Proof : Since p(u) ≤ B < p(v), by Lemma 4, f(v) > f(u). We consider the incentive

constraint from v to u first. This gives us

v2f(v)− p(v) ≥ v2f(u)− p(u). (1)

v1f(v)− p(v) > v1f(u)− p(u). (2)

Using f(v) > f(u), and aggregating Inequalities 1 and 2 gives us

min(v1, v2)
(
f(v)− f(u)

)
≥ p(v)− p(u). (3)

Incentive compatibility from u to v implies one of the two conditions to holds:

Case 1. dim1 prefers (f(u), p(u)) to (f(v), p(v)): this gives

u1f(u)− p(u) ≥ u1f(v)− p(v) or p(v)− p(u) ≥ u1(f(v)− f(u)).
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Adding with Inequality 3, we get,

(min(v1, v2)− u1)(f(v)− f(u)) ≥ 0.

Then, f(v) > f(u) implies that min(v1, v2) ≥ u1.

Case 2. dim1 does not prefer (f(u), p(u)) to (f(v), p(v)) but budget has a bite - so, dim2

prefers (f(u), p(u)) to (f(v), p(v)): this gives

u2f(u)− p(u) ≥ u2f(v)− p(v). (4)

Adding Inequalities (4) and (3), we get (min(v1, v2)−u2)(f(v)−f(u)) ≥ 0. Since f(v) > f(u),

we get min(v1, v2) ≥ u2.

Combining both the cases, min(v1, v2) ≥ min(u1, u2). �

Now, fix a mechanism (f, p), and define

V +(f, p) := {v : p(v) > B}
V −(f, p) = {u : p(u) ≤ B}.

Lemma 7 Fix an incentive compatible mechanism (f, p). If V +(f, p) and V −(f, p) are non-

empty, then the following holds:

inf
v∈V +(f,p)

min(v1, v2) = sup
u∈V −(f,p)

min(u1, u2).

Proof : Since V +(f, p) is non-empty and min(v1, v2) ≥ 0, we have that infv∈V +(f,p) min(v1, v2)

is a non-negative real number - we denote it as v. By Lemma 6, supu∈V −(f,p) min(u1, u2) is

also a non-negative real number as it is bounded above - we denote this as v̄.

First, we show that v ≥ v̄. If not, then v < v̄. Then, there is some v such that

v < min(v1, v2) < v̄. By definition of v, there is a v′ such that min(v′1, v
′
2) is arbitrarily

close to v and p(v′) > B. Since min(v′1, v
′
2) < min(v1, v2), Lemma 6 gives us p(v) > B.

Similarly, by definition of v̄, there is a u′ such that min(u′1, u
′
2) is arbitrarily close to v̄ and

p(u′) ≤ B. Since min(u′1, u
′
2) > min(v1, v2), Lemma 6 gives us p(v) ≤ B, giving us the

desired contradiction.

Next, we show that v = v̄. If not, v > v̄. But this is not possible since for any v with

v > min(v1, v2) > v̄, we will have both p(v) ≤ B and p(v) > B, giving us a contradiction. �
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For any mechanism (f, p), we will denote by K(f,p) the following:

K(f,p) := inf
v∈V +(f,p)

min(v1, v2) = sup
u∈V −(f,p)

min(u1, u2). (5)

By Lemma 7, this is well-defined if V +(f, p) and V −(f, p) is non-empty.

Lemma 8 If (f, p) is an incentive compatible and individual rational mechanism, then V −(f, p)

is non-empty.

Proof : Lemma 2 ensures that (0, 0) ∈ V −(f, p) if (f, p) is incentive compatible and indi-

vidually rational. �

Define the following partitioning of the class of mechanisms:

M+ := {(f, p) : V +(f, p) has positive Lebesgue measure}
M− := {(f, p) : V +(f, p) has zero Lebesgue measure}.

We now prove a series of Lemmas for M+ class of mechanisms.

A.2.2 Lemmas for M+

The following lemma shows that K(f,p) is well defined if (f, p) ∈M+.

Lemma 9 Suppose (f, p) is an incentive compatible and individually rational mechanism.

1. If V +(f, p) is non-empty, then K(f,p) defined in Equation (5) exists and satisfies: for

all v ∈ V , [
min(v1, v2) > K(f,p)

]
⇒
[
p(v) > B

]
,

[
min(v1, v2) < K(f,p)

]
⇒
[
p(v) ≤ B

]
.

2. If (f, p) ∈M+, then β > K(f,p) > B.

Proof : The first part follows from Lemma 7, Lemma 8, and the definition of M+.

For the second part, we first argue that K(f,p) ≥ B. Suppose K(f,p) < B. Then, for some

v with K(f,p) < min(v1, v2) ≤ B, we have p(v) > B. But this violates individual rationality.

Now, assume for contradiction K(f,p) = B. In that case, fix some ε ∈ (0, 1) and positive

integer k, and consider the type vk,ε ≡ (B + εk, B + εk). By (1), we know that p(vk,ε) > B.

By individual rationality,

(B + εk)f(vk,ε) ≥ p(vk,ε) > B.
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This gives us f(vk,ε) > B
B+εk

. Since B + ε > B + εk for all k > 1, by (1) of Lemma 5, we

have f(v1,ε) ≥ f(vk,ε) > B
B+εk

. As B
B+εk

can be made arbitrarily close to 1, we conclude that

f(v1,ε) = 1 - notice that v1,ε ≡ (B + ε, B + ε) and the claim holds for all ε ∈ (0, 1). By

Lemma 4, for all ε, ε′ ∈ (0, 1), since f(v1,ε) = f(v1,ε′) = 1, we get that p(v1,ε) = p(v1,ε′).

Denote p(v1,ε) = B + δ, where ε ∈ (0, 1). By definition, δ > 0. Now, individual rationality

requires that for every ε ∈ (0, 1),

(B + ε)f(v1,ε)− p(v1,ε) = (B + ε)− (B + δ) ≥ 0.

But this will mean ε > δ for all ε ∈ (0, 1). Since δ > 0 is fixed, this is a contradiction.

Finally, we know that (f, p) ∈ M+ implies V +(f, p) has positive Lebesgue measure. If

β = K(f,p), then by (1), we know that V +(f, p) has zero Lebesgue measure, which is a

contradiction. �

Next, we show a useful inequality involving K(f,p) for any (f, p) ∈M+.

Lemma 10 Suppose (f, p) is an incentive compatible and individually rational mechanism.

If (f, p) ∈M+, then for all types u ∈ V with B < p(u), we must have

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) ≥ K(f,p)f(u)− p(u).

Proof : First, consider two types v ≡ (K(f,p), 0) and v′ ≡ (K(f,p), K(f,p) − ε), where ε > 0

such that K(f,p) − ε > 0. Notice that min(v1, v2) < K(f,p) and min(v′1, v
′
2) < K(f,p). Hence,

by Lemma 9, p(v) ≤ B and p(v′) ≤ B. As a result incentive constraints v → v′ and v′ → v

imply that

K(f,p)f(v)− p(v) ≥ K(f,p)f(v′)− p(v′)
K(f,p)f(v′)− p(v′) ≥ K(f,p)f(v)− p(v).

This gives us

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) = K(f,p)f(K(f,p), K(f,p) − ε)− p(K(f,p), K(f,p) − ε). (6)

Now, assume for contradiction that for some u with p(u) > B we have

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) < K(f,p)f(u)− p(u).

We can choose an ε > 0 but arbitrarily close to zero such that

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) <
(
K(f,p) − ε

)
f(u)− p(u).

29



Using Equation 6, we get,

K(f,p)f(K(f,p), K(f,p) − ε)− p(K(f,p), K(f,p) − ε) <
(
K(f,p) − ε

)
f(u)− p(u).

But then

(K(f,p) − ε)f(K(f,p), K(f,p) − ε)− p(K(f,p), K(f,p) − ε)
< K(f,p)f(K(f,p), K(f,p) − ε)− p(K(f,p), K(f,p) − ε)
<
(
K(f,p) − ε

)
f(u)− p(u) < K(f,p)f(u)− p(u).

Hence, the incentive constraint (K(f,p), K(f,p) − ε)→ u does not hold - a contradiction. �

Lemma 11 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. Then, for any γ ∈ (K(f,p), β], the following limits exist:

lim
δ→0+

f(K(f,p) + δ, γ) = A(f,p),γ

lim
δ→0+

p(K(f,p) + δ, γ) = P(f,p),γ.

Further, the following equations hold:

K(f,p)A(f,p),γ − P(f,p),γ = K(f,p)f(K(f,p), 0)− p(K(f,p), 0) (7)

γA(f,p),γ − P(f,p),γ = γf(β, γ)− p(β, γ). (8)

Proof : Fix any γ ∈ (K(f,p), β] and any δ > 0 such that K(f,p) + δ ≤ β - by Lemma 9,

such δ > 0 exists. Consider two types v ≡ (K(f,p) + δ, γ) and v′ ≡ (β, γ). By Lemma 9,

p(v), p(v′) > B. The pair of incentive constraints between v and v′ gives us

γf(v)− p(v) ≥ γf(v′)− p(v′)
γf(v′)− p(v′) ≥ γf(v)− p(v).

Combining these and using the definition of v′, we get

γf(v)− p(v) = γf(β, γ)− p(β, γ). (9)

Now, consider v′′ ≡ (K(f,p), 0). By Lemma 9, p(v′′) ≤ B. But p(v) > B implies that

incentive constraint v → v′′ must imply

(K(f,p) + δ)f(v)− p(v) ≥ (K(f,p) + δ)f(v′′)− p(v′′)
≥ K(f,p)f(v)− p(v) + δf(v′′),
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where the second inequality comes from Lemma 10 and the fact that p(v) > B. Using

Equation 9, we replace p(v) in the previous equation to get,

(K(f,p) + δ)f(v) ≥ (K(f,p) + δ)f(v′′)− p(v′′) + γf(v)− γf(β, γ) + p(β, γ)

≥ K(f,p)f(v) + δf(v′′)

Rearranging terms, we get
[
γ −K(f,p)

]
f(v) ≤

[
γf(β, γ)− p(β, γ)

]
−
[
K(f,p)f(v′′)− p(v′′)

]

≤
[
γ −K(f,p)

]
f(v) + δ

[
f(v′′)− f(v)

]

Since v′′ ≡ (K(f,p), 0) is independent of δ and v ≡ (K(f,p) + δ, γ), we get that
[
γ −K(f,p)

]
lim
δ→0+

f(K(f,p) + δ, γ) =
[
γf(β, γ)− p(β, γ)

]
−
[
K(f,p)f(K(f,p), 0)− p(K(f,p), 0)

]
.

This gives us the desired expression for A(f,p),γ. Using Equation 9, we also get the desired

expression for P(f,p),γ.

Then, it is routine to check that Equations (7) and (8) hold. �

Lemma 12 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. For every δ ∈ (0, β −K(f,p)] and γ ∈ (K(f,p), β], the following is true:

1. f(K(f,p) + δ, γ) ≥ A(f,p),γ,

2. p(K(f,p) + δ, γ) ≥ P(f,p),γ.

Proof : Fix any δ ∈ (0, β −K(f,p)] and γ ∈ (K(f,p), β] and let v ≡ (K(f,p) + δ, γ). By Lemma

9, we know that p(v) > B. Then Lemma 10 applies and we must have,

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) ≥ K(f,p)f(v)− p(v).

Equation 7 then directly implies,

K(f,p)A(f,p),γ − P(f,p),γ ≥ K(f,p)f(v)− p(v).

Combining Equations (8) and (9) yields,

γA(f,p),γ − P(f,p),γ = γf(v)− p(v).

Combining the above two expressions gives us

K(f,p)

(
A(f,p),γ − f(v)

)
≥ P(f,p),γ − p(v) = γ

(
A(f,p),γ − f(v)

)
.

Since γ > K(f,p), we get A(f,p),γ ≤ f(v), which further implies P(f,p),γ ≤ p(v). This gives us

the desired results. �

31



Lemma 13 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. For every γ1, γ2 ∈ (K(f,p), β],

A(f,p),γ1 = A(f,p),γ2

P(f,p),γ1 = P(f,p),γ2 .

Proof : Fix any γ1, γ2 ∈ (K(f,p), β]. First, we note that Equation 7 implies

K(f,p)A(f,p),γ1 − P(f,p),γ1 = K(f,p)A(f,p),γ2 − P(f,p),γ2 . (10)

Assume for contradiction that A(f,p),γ1 < A(f,p),γ2 , which implies that P(f,p),γ1 < P(f,p),γ2 .

Then Equation 10 combined with the fact that K(f,p) < γ1 implies

γ1A(f,p),γ1 − P(f,p),γ1 < γ1A(f,p),γ2 − P(f,p),γ2 .

Let ∆ > 0 be defined by the equation

∆ =
[
γ1

(
A(f,p),γ2 − A(f,p),γ1

)]
−
[
P(f,p),γ2 − P(f,p),γ1

]
. (11)

Fix some δ > 0 be such that the following inequality holds

p(K(f,p) + δ, γ2)− P(f,p),γ2 < ∆.

Existence of such a δ is guaranteed by the definition of P(f,p),γ2 . Lemma 12 implies that

0 ≤ γ1

(
f(K(f,p) + δ, γ2)− A(f,p),γ2

)
.

Adding above two inequalities we arrive at

γ1A(f,p),γ2 − P(f,p),γ2 < ∆ + γ1f(K(f,p) + δ, γ2)− p(K(f,p) + δ, γ2).

Substituting ∆ from Equation 11 we get

γ1A(f,p),γ1 − P(f,p),γ1 < γ1f(K(f,p) + δ, γ2)− p(K(f,p) + δ, γ2).

Combining this with Equation 8 we get

γ1f(β, γ1)− p(β, γ1) < γ1f(K(f,p) + δ, γ2)− p(K(f,p) + δ, γ2).

By Lemma 9, we know that p(β, γ1) > B and p(K(f,p) + δ, γ2) > B. Then, the above

inequality implies that the incentive constraint (β, γ1)→ (K(f,p) +δ, γ2) does not hold, which

is a contradiction. �
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In light of Lemma 13, for every incentive compatible and individually rational mechanism

(f, p) in M+ we denote A(f,p),γ and P(f,p),γ defined in the Lemma 11 by A(f,p) and P(f,p), i.e.,

we drop the subscript γ.

A.2.3 A structure lemma for M+ mechanisms

The following lemma identifies an important structure of incentive compatible and individ-

ually rational mechanisms in M+.

Lemma 14 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. Then the following are true.

1. p(u) = P(f,p) and f(u) = A(f,p), for all u with u2 ∈ (K(f,p), β) and u1 > K(f,p).

2. P(f,p) > B.

3. A(f,p) > f(K(f,p), 0) + 1
K(f,p)

[
B − p(K(f,p), 0)

]
.

Proof : Proof of (1). Consider a type (K(f,p) + δ, β) for some δ > 0 but close to zero. By

Lemma 9, we know that p(K(f,p) + δ, β) > B. Now, choose any u with u2 ∈ (K(f,p), β) and

u1 > K(f,p). By Lemma 9, we have p(u) > B. By Lemma 5, we get f(K(f,p) + δ, β) ≥ f(u).

Now, the incentive constraint u→ (K(f,p) + δ, β) implies

u2f(u)− p(u) ≥ u2f(K(f,p) + δ, β)− p(K(f,p) + δ, β)

⇒ p(K(f,p) + δ, β)− p(u) ≥ u2

[
f(K(f,p) + δ, β)− f(u)

]
≥ 0.

Since this holds for all δ > 0 but arbitrarily close to zero,

P(f,p) = lim
δ→0+

p(K(f,p) + δ, β) ≥ p(u).

Now, applying Lemmas 12 and 13, we have

P(f,p) ≤ p(u).

The above two inequalities give us p(u) = P(f,p). Then, using Equations (8) and (9) give

us f(u) = A(f,p).

Proof of (2). By Lemma 9, for all u with u2 ∈ (K(f,p), β) and u1 > K(f,p), we have

p(u) > B. By (1), the result then follows.
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Proof of (3). Assume for contradiction that

A(f,p) ≤ f(K(f,p), 0) +
1

K(f,p)

[
B − p(K(f,p), 0)

]
.

⇔ K(f,p)A(f,p) −B ≤ K(f,p)f(K(f,p), 0)− p(K(f,p), 0).

Using the expression of A(f,p) and P(f,p) in Lemma 11, we get that

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) = K(f,p)A(f,p) − P(f,p).

Substituting this above, we get P(f,p) ≤ B. This contradicts (2) above. �

Lemma 14 shows that how certain regions in the type space look like for any incentive

compatible and individually rational mechanism (f, p). This is shown in Figure 5.

v1

v2

K(f;p)

K(f;p)B

(f(v); p(v) = (A(f;p); P(f;p))

Figure 5: Implication of Lemma 14

Notice that Lemma 14 is silent about the outcome of the mechanism for types v with

v1 > K(f,p) and v2 = β.

A.2.4 Reduction of space of M+ mechanisms: implications of optimality

The next lemma shows that it is without loss of generality to make the outcomes for those

types also (A(f,p), P(f,p)).

Lemma 15 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. Then, there is another incentive compatible and individually rational mechanism

(f ′, p′) such that

(f ′(v), p′(v)) =

{
(A(f,p), P(f,p)) if v1 > K(f,p) and v2 = β

(f(v), p(v)) otherwise.
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and

p′(v) ≥ p(v) for almost all v.

Proof : By Lemma 14, the only difference between the mechanisms (f ′, p′) and (f, p) is at v

with v1 > K(f,p) and v2 = β with β > K(f,p) (see (2) in Lemma 9). Also, such a modification

changes the outcome at these types to (A(f,p), P(f,p)) which is already in the menu of outcomes

in the original mechanism (f, p). Hence, the only possibility of a manipulation in (f ′, p′) is for

type (v1, β) with v1 > K(f,p) to report another type v′ to get (f(v′), p(v′)) 6= (A(f,p), P(f,p)).

This manipulation is possible if p(v′) ≤ B and

v1f(v′)− p(v′) > v1A(f,p) − P(f,p)

or p(v′) > B and

βf(v′)− p(v′) > βA(f,p) − P(f,p).

Now, consider a type u such that u1 = v1 and u2 = β − ε for small enough ε > 0. Note that

(f(u), p(u)) = (f ′(u), p′(u)) = (A(f,p), P(f,p)) by Lemma 14. Since ε > 0 is small enough, this

implies that one of the above constraints must hold for type u too, which further implies

that type u can manipulate the mechanism (f, p). This is a contradiction.

Since p′(0, 0) = p(0, 0) = 0, individual rationality follows from Lemma 2. Since (f ′, p′) is

a modification of (f, p) at measure zero profiles, p′(v) ≥ p(v) for almost all v. �

Lemma 15 has a straightforward implication - we can assume without loss of generality

that the top (and right) boundary of the upper rectangle in Figure 5 is assigned outcome

(A(f,p), P(f,p)). This simplifies our analysis. Using Lemmas 14 and 15, we assume that every

incentive compatible and individually rational mechanism (f, p) ∈ M+ has the feature that

for all v with min(v1, v2) > K(f,p), we have ((f(v), p(v)) = (A(f,p), K(f,p)).

Next, we will look at a subclass of mechanisms which fixes some other regions of the

type space. Further, we will show that such a restriction is also without loss of generality

for optimal mechanisms. To show this property, we consider an arbitrary incentive compat-

ible and individually rational mechanism (f, p) ∈ M+. We then construct a new incentive

compatible and individually rational mechanism which generates more expected revenue and

has the property we require. The new mechanism, which we denote as (f ′, p′) is defined as

follows.

(f ′(v), p′(v)) =

{
(f(v), p(v)) if v1 < K(f,p) or min(v1, v2) > K(f,p)(
f(K(f,p), 0) + 1

K(f,p)

(
B − p(K(f,p), 0)

)
, B
)

otherwise
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v1

v2

K(f;p)

K(f;p)B

(f(v); p(v)) = (A(f;p); P(f;p))

(
f(K(f;p); 0) +

1
K(f;p)

(
B − p(K(f;p); 0)

)
; B

)

Figure 6: New mechanism

The new mechanism is shown in Figure 6. The rectangle at the top-right corner of the

type space (excluding the lower boundaries) continues to have the outcome (A(f,p), P(f,p)) -

by Lemma 14, this is the same outcome as in the original mechanism (f, p). The outcomes

in the big white rectangle to the left (but excluding the right boundary) is left unchanged.

Note that v1 < K(f,p) implies p′(v) = p(v) ≤ B by Lemma 9 in this region. The outcomes

along the vertical line corresponding to K(f,p) value in dim1 and the outcomes for all types

such that v1 > K(f,p) and v2 ≤ K(f,p) is assigned value

(
f(K(f,p), 0) +

1

K(f,p)

(
B − p(K(f,p), 0)

)
, B
)

We prove the following.

Lemma 16 If (f, p) ∈ M+ is an incentive compatible and individually rational mechanism,

then the mechanism (f ′, p′) is incentive compatible, individually rational, and

p′(v) ≥ p(v) for almost all v.

Proof : As stated earlier, we assume (f, p) ∈M+ is an incentive compatible and individually

rational mechanism such that (f(v), p(v)) = (A(f,p), P(f,p)) for all v with min(v1, v2) > K(f,p).

Since p(0, 0) = p′(0, 0) and (f, p) is individually rational, Lemma 2 implies that (f ′, p′) is also

individually rational if we can show that (f ′, p′) is incentive compatible. First, we establish

that p′(v) ≥ p(v) for almost all v ∈ V . To see this, first observe that p(v) and p′(v) may be

unequal only when v belongs to the following set of types:

Ṽ := {v : v1 ≥ K(f,p) and min(v1, v2) ≤ K(f,p)}.
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Now, consider the set of types V̄ := {v :
(
v1 > K(f,p), v2 ≤ K(f,p)

)
or v1 = K(f,p)}. For each

v ∈ V̄ , we have p′(v) = B and p(v) ≤ B (due to Lemma 9). The set of types Ṽ \ V̄ forms a

set of measure zero. So, for almost all v, we have p′(v) ≥ p(v).

For incentive compatibility, we consider a partition of the type space as follows:

V 1 := {v : min(v1, v2) > K(f,p)}
V 2 := {v : v1 < K(f,p)}
V 3 := (V × V ) \ (V 1 ∪ V 2).

For any v, v′ ∈ V 1 ∪ V 2, we have (f ′(v), p′(v)) = (f(v), p(v)) and (f ′(v′), p′(v′)) =

(f(v′), p(v′)). Since (f, p) is incentive compatible, the incentive constraints v → v′ and

v′ → v hold. For any v, v′ ∈ V 3, we have (f ′(v), p′(v)) = (f ′(v′), p′(v′)). Hence, the incentive

constraints v → v′ and v′ → v hold.

Hence, we pick u ∈ V 1, s ∈ V 2, t ∈ V 3, and verify the incentive constraints

s→ t, t→ s, t→ u, u→ t.

1. s → t. Note that p(K(f,p), 0) ≤ B and since p(s) ≤ B, incentive constraint s →
(K(f,p), 0) in (f, p) implies that

s1f(s)− p(s) ≥ s1f(K(f,p), 0)− p(K(f,p), 0)

≥ s1f(K(f,p), 0)− p(K(f,p), 0)−
[
B − p(K(f,p), 0)

](
1− s1

K(f,p)

)
,

where the inequality follows because p(K(f,p), 0) ≤ B and s1 < K(f,p). Using f(s) =

f ′(s), p(s) = p′(s), and a slight rearrangement of RHS of the above inequality gives us

s1f
′(s)− p′(s) ≥ s1

[
f(K(f,p), 0) +

1

K(f,p)

(
B − p(K(f,p), 0)

)]
−B

= s1f
′(t)− p′(t).

Hence, the incentive constraint s→ t holds for (f ′, p′).

2. t→ s. Since p(s) ≤ B, incentive constraint (K(f,p), 0)→ s in (f, p) implies that

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) ≥ K(f,p)f(s)− p(s)

⇒ K(f,p)

[
f(K(f,p), 0) +

1

K(f,p)

(
B − p(K(f,p), 0)

)]
−B ≥ K(f,p)f(s)− p(s)

⇒ K(f,p)f
′(t)− p′(t) ≥ K(f,p)f

′(s)− p′(s).
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This implies that

K(f,p)

[
f ′(t)− f ′(s)

]
≥ p′(t)− p′(s).

But p′(t) = B ≥ p′(s) = p(s) implies that f ′(t) ≥ f ′(s). Using the fact that t1 ≥ K(f,p),

we get

t1

[
f ′(t)− f ′(s)

]
≥ p′(t)− p′(s),

Since p′(t) = B and p′(s) ≤ B, this is the desired incentive constraint t→ s in (f ′, p′).

3. t→ u, u→ t. By Lemma 11, we know that

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) = K(f,p)A(f,p) − P(f,p)

⇔ K(f,p)

[
f(K(f,p), 0)− 1

K(f,p)

(
B − p(K(f,p), 0)

)]
−B = K(f,p)A(f,p) − P(f,p).

Hence, we get

K(f,p)

[
f ′(u)− f ′(t)

]
= p′(u)− p′(t). (12)

Using Lemma 14, p′(u) = p(u) = P(f,p) > p′(t) = B. Hence, Equation 12 implies that

f ′(u) > f ′(t). Using min(u1, u2) > K(f,p), we get

u1f
′(u)− p′(u) ≥ u1f

′(t)− p′(t)
u2f

′(u)− p′(u) ≥ u2f
′(t)− p′(t).

Hence, the incentive constraint u→ t holds in (f ′, p′).

Similarly, we now use the fact that min(t1, t2) ≤ K(f,p). If min(t1, t2) = t1, then using

Equation 12, we get

t1f
′(t)− p′(t) ≥ t1f

′(u)− p′(u).

Else, min(t1, t2) = t2, in which case again, we get

t2f
′(t)− p′(t) ≥ t2f

′(u)− p′(u).

So, one of the above constraints must hold. Since p′(t) = B and p′(u) > B, this ensures

that the incentive constraint t→ u holds in (f ′, p′).

�
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A.2.5 Ironing Lemmas

The final Lemma before we start ironing, further simplifies the class of mechanisms that we

need to consider for optimal mechanism design.

Lemma 17 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. Then, there exists another mechanism (f̂ , p̂) such that

1. (f̂(v), p̂(v)) = (f(v), p(v)) for all v with v1 ≥ K(f,p),

2. (f̂(v), p̂(v)) = (f̂(u), p̂(u)) for all u, v with u1 = v1 < K(f,p),

3. p̂(u) ≥ p(u) for all u,

4. p̂(0, 0) = p(0, 0),

5. incentive constraints u→ v for every u, v with p̂(u), p̂(v) ≤ B hold in (f̂ , p̂).

Proof : Consider an incentive compatible and individually rational mechanism (f, p), and

let K(f,p) be as defined in Lemma 9. We complete the proof in two steps.

Step 1. In this step, we show some implications of incentive constraints u → v, where

u1, v1 < K(f,p). Consider any (u1, u2), (u1, u
′
2) such that u1 < K(f,p). Then, by Lemma 9, we

have p(u1, u2) ≤ B and p(u1, u
′
2) ≤ B. Hence, the relevant pair of incentive constraints give

us:

u1f(u1, u2)− p(u1, u2) ≥ u1f(u1, u
′
2)− p(u1, u

′
2)

u1f(u1, u
′
2)− p(u1, u

′
2) ≥ u1f(u1, u2)− p(u1, u2).

This gives us

u1f(u1, u2)− p(u1, u2) = u1f(u1, u
′
2)− p(u1, u

′
2). (13)

Also, notice that Equation 13 implies that for all u2 ∈ [0, β],

p(0, u2) = p(0, 0) (14)

Finally, since only dim1 incentive constraints are relevant in this region, revenue equivalence

formula implies that for every u1 < K(f,p) and u2, u
′
2 ∈ [0, β], we have

u1f(u1, u2)− p(u1, u2) =

∫ u1

0

f(x, u2)dx− p(0, u1) =

∫ u1

0

f(x, u2)dx− p(0, 0)
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u1f(u1, u
′
2)− p(u1, u

′
2) =

∫ u1

0

f(x, u′2)dx− p(0, u1) =

∫ u1

0

f(x, u′2)dx− p(0, 0)

Using Equation 13, we get
∫ u1

0

f(x, u2)dx =

∫ u1

0

f(x, u′2)dx.

Hence, we can write for every u1 < K(f,p) and every u2 ∈ [0, β],

u1f(u1, u2)− p(u1, u2) =

∫ u1

0

f(x, 0)dx− p(0, 0). (15)

Notice that the RHS of the above equation is independent of u2. Denoting the RHS of the

above equation as U (f,p)(u1), we see that

u1 sup
u2∈[0,β]

f(u1, u2) = sup
u2∈[0,β]

p(u1, u2) + U (f,p)(u1). (16)

Notice that f and p are bounded from above (p is bounded from above because p(u1, u2) ≤ B

for each u2 ∈ [0, β] due to Lemma 9). As a result, the supremums in the above equation

exist. We denote this supremums as follows:

α(u1) := sup
u2∈[0,β]

f(u1, u2) ∀ u1 < K(f,p) (17)

π(u1) := sup
u2∈[0,β]

p(u1, u2) ∀ u1 < K(f,p). (18)

We use these to define our new mechanism in the next step.

Step 2. Now, we define the following mechanism (f̂ , p̂). For every v with v1 ≥ K(f,p), we

have (f̂(v), p̂(v)) = (f(v), p(v)). For all v with v1 < K(f,p), we define

f̂(v) := α(v1); p̂(v) := π(v1).

By definition of p̂, it is clear that p̂(v) ≥ p(v) for all v. Also, Equation 14 ensures that

p̂(0, 0) = π(0) = p(0, 0). Hence, (1), (2), (3), (4) hold for (f̂ , p̂).

For (5), assume for contradiction that the incentive constraint u → v in (f̂ , p̂) does not

hold for some u, v with p̂(u), p̂(v) ≤ B. So, the violation of incentive constraint must happen

along dim1. Note that by definition of p̂, we must have p(u) ≤ B and p(v) ≤ B. Also,

incentive constraints cannot be violated if u1, v1 ≥ K(f,p) since (f, p) is incentive compatible

and (f̂(u), p̂(u)) = (f(u), p(u)) and (f̂(v), p̂(v)) = (f(v), p(v)). The other possibilities are

analyzed below.
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Case 1. u1, v1 < K(f,p). In that case, we must have

u1α(u1)− π(u1) < u1α(v1)− π(v1) = (u1 − v1)α(v1) + v1α(v1)− π(v1).

Using Equation (16), we get that

Uf (u1) < Uf (v1) + (u1 − v1)α(v1).

By definition, there exists, y ∈ [0, β] such that α(v1) is arbitrarily close to f(v1, y). Using

Equation (15) gives us

u1f(u1, y)− p(u1, y) < v1f(v1, y)− p(v1, y) + (u1 − v1)f(v1, y) = u1f(v1, y)− p(v1, y).

This contradicts incentive compatibility of (f, p).

Case 2. u1 < K(f,p) and v1 ≥ K(f,p). In that case, we must have

u1α(u1)− π(u1) < u1f(v)− p(v).

But using Equations (15) and (16), we see that there is some y such that

u1f(u1, y)− p(u1, y) < u1f(v)− p(v)

which contradicts incentive compatibility of (f, p).

Case 3. u1 ≥ K(f,p) and v1 < K(f,p). In that case, we must have

u1f(u)− p(u) < u1α(v1)− π(v1) = (u1 − v1)α(v1) + Uf (v1).

Now, pick y such that α(v1) is arbitrarily close to f(v1, y). By Equations (15) and (16), we

get

u1f(u)− p(u) < (u1 − v1)f(v1, y) + v1f(v1, y)− p(v1, y) = u1f(v1, y)− p(v1, y).

This contradicts incentive compatibility of (f, p) and completes the proof. �

Definition 8 We call a mechanism (f, p) simple if there exists K,A, Â, P with K ∈ (0, B),

P ∈ (B, β], A, Â ∈ [0, 1], A > Â such that

1. p(0, 0) ≤ 0.
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2. K(A− Â) = P −B with KA− P ≥ 0.

3. (f(v), p(v)) = (A,P ) for all v with min(v1, v2) > K,

4. p(v) ≤ B for all v with v1 < K.

5. (f(v), p(v)) = (Â, B) for all v with min(v1, v2) ≤ K and v1 ≥ K.

6. (f(v), p(v)) = (f(v′), p(v′)) for all v, v′ with v1 = v′1 < K.

7. incentive constraints v → v′ hold for all types with p(v), p(v′) ≤ B.

Based on Lemmas 16 and 17, the following is a simple corollary.

Corollary 1 If (f, p) is an optimal mechanism in M+, then there is a simple mechanism

(f̂ , p̂) such that

Rev(f, p) ≤ Rev(f̂ , p̂).

Proof : Suppose (f, p) is an optimal mechanism in M+, then Lemma 16 says that there is an-

other incentive compatible and individually rational mechanism (f ′, p′) such that Rev(f ′, p′) ≥
Rev(f, p). Using K = K(f,p), Lemma 17 shows that (f ′, p′) satisfies all the properties of a

simple mechanism. �

Because of property (6), for any simple mechanism (f, p), we denote the allocation prob-

ability at any type v with v1 < K as simply αf (v1) and the payment as πp(v1). We also

denote by αf (K) ≡ Â and πp(K) ≡ B, where Â is the parameter specified in the simple

mechanism (f, p).

Lemma 18 Suppose (f, p) is a simple mechanism with parameters (K,A, Â, P ). Then, the

revenue from (f, p) is

Rev(f, p) = G1(K)
[
B −Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx

+B(1−G1(K)) +K(A− αf (K))(1−G1(K)−G2(K) +G(K,K)),

where h(x) = xg1(x) +G1(x) for all x ∈ [0, K].

Proof : Fix a simple mechanism with parameters (K,A, Â, P ). We divide the proof into

two parts, where we compute revenue from two disjoint regions of the type space.
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Region 1. Here, we consider all v such that v1 ≤ K. By properties (4) and (5) of the simple

mechanism, payments in this region of type space is not more than B and by property (7),

all the incentive constraints in this region hold. Using standard Myersonian techniques, it is

easy to see that

αf (v1) ≥ αf (v′1) ∀ v′1 < v1 ≤ K (19)

πp(v1) = πp(0) + v1α
f (v1)−

∫ v1

0

αf (x)dx ∀ v1 ≤ K (20)

Hence, the expected payment from this region is
∫ K

0

πp(v1)g1(v1)dv1 =

∫ K

0

πp(0)g1(v1)dv1 +

∫ K

0

v1α
f (v1)g1(v1)dv1 −

∫ K

0

( ∫ v1

0

αf (x)dx
)
g1(v1)dv1

= G1(K)πp(0) +

∫ K

0

v1α
f (v1)g1(v1)dv1 −

∫ K

0

(
(G1(K)−G1(v1)

)
αf (v1)dv1

= G1(K)
[
πp(0)−

∫ K

0

αf (x)dx
]

+

∫ K

0

h(x)αf (x)dx

= G1(K)
[
πp(K)−Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx

= G1(K)
[
B −Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx,

where the last but one equality follows from Equation 20 at v1 = K and the last equality

follows from the fact πp(K) = B.

Region 2. Finally, we consider all v such that v1 > K. By definition, the expected revenue

from this region is

B(1−G1(K)) + (P −B)(1−G1(K)−G2(K) +G(K,K)) =

B(1−G1(K)) +K(A− αf (K))(1−G1(K)−G2(K) +G(K,K)),

where the equality follows from property (2) of simple mechanism.

Putting together the revenues from both the regions, we get the desired expression of the

expected revenue from the simple mechanism. �

We now prove that for every simple mechanism, there is a post-2 mechanism that

generates as much expected revenue.

Lemma 19 For every simple mechanism (f, p), there is a post-2 mechanism (f̄ , p̄) such

that

Rev(f̄ , p̄) ≥ Rev(f, p).
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Proof : Suppose (f, p) is a simple mechanism with parameters (K,A, Â, P ). Now, by prop-

erty (5) of the simple mechanism, Equation 20 along with property (1) imply that

πf (K) = B ≤ Kαf (K)−
∫ K

0

αf (x)dx. (21)

Now, define a post-2 mechanism by parameters:

K1 :=
B

Â
=

B

αf (K)
, K2 := K.

By property (1) of simple mechanism, we get that K1 = B
αf (K)

≤ K2 = K. Also, K1 > B.

This means that the new mechanism is a well-defined post-2 mechanism. Denote this

mechanism as (f ′, p′).

It is also easily verified that it is a simple mechanism: the parameters are

K ′ := K2 = K;A′ = 1; Â′ := Â = αf (K);P ′ := B +K2(1− B

K1

) = B +K(1− αf (K)),

and also note that every post-2 mechanism is incentive compatible (Proposition 1). Note

here that αf
′
(K) = αf (K). Also, αf

′
(x) = 0 for all x ≤ K1 and αf

′
(x) = B

K1
= αf (K) for
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all x ∈ (K1, K]. Using these observations and Lemma 18,

Rev(f ′, p′)−Rev(f, p)

=

(
G1(K)

[
B −Kαf (K)

]
+

∫ K

0

h(x)αf
′
(x)dx+B(1−G1(K))+

K(1− αf (K))(1−G1(K)−G2(K) +G(K,K))

)

−
(
G1(K)

[
B −Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx+B(1−G1(K))+

K(A− αf (K))(1−G1(K)−G2(K) +G(K,K))

)

≥
∫ K

0

h(x)αf
′
(x)dx−

∫ K

0

h(x)αf (x)dx

≥
∫ K

K1

h(x)
(
αf (K)− αf (x)

)
dx−

∫ K1

0

h(x)αf (x)dx.

≥ (K −K1)h(K1)αf (K)− h(K1)

∫ K

K1

αf (x)dx− h(K1)

∫ K1

0

αf (x)dx

(using h and α to be increasing functions)

= (K −K1)h(K1)αf (K)− h(K1)

∫ K

0

αf (x)dx

≥ h(K1)(K −K1)αf (K)− h(K1)(K −K1)αf (K)

(using Equation (21) and definition of K1)

= 0.

�

A.2.6 Proof of Proposition 4

The proof of (2) in Proposition 4 now follows from Corollary 1 and Lemma 19. Proof of (1)

in Proposition 4 is given below.

This requires to show that the optimal mechanism in M− is a post-1 mechanism. Every

mechanism (f, p) ∈ M− satisfies the property that types satisfying p(v) > B have zero

measure. We first argue that it is without loss of generality to assume that p(v) ≤ B for all v.

To see this, note that by (1) in Lemma 9 and the fact that V +(f, p) has zero measure, it must

be thatK(f,p) = β. Let πp(β) := supv2<β p(β, v2) and αf (β) := supv2<β f(β, v2). Observe that
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αp(β) ≤ B. Hence, we consider the following mechanism (f ′, p′): (f ′(v), p′(v)) = (f(v), p(v))

if v /∈ V +(f, p) and (f ′(v), p′(v)) = (αf (β), πp(β)) otherwise. By construction, the expected

revenue of (f ′, p′) is the same as (f, p) and p′(v) ≤ B for all v. Further, (f ′, p′) is incentive

compatible (we only need to worry about incentive constraints of types v ∈ V +(f, p), and

they hold because for all v, p′(v) ≤ B implies we only need to check incentive constraints

along dim1, which holds due to an argument similar to that in Lemma 17(5)). Individual

rationality of (f ′, p′) follows from Lemma 2.

Now, we state an analogue of Lemma 17 for M− class of mechanisms - the proof of this

lemma is identical to that of Lemma 17, and is skipped.

Lemma 20 Suppose (f, p) ∈M− is an incentive compatible and individually rational mech-

anism. Then, there exists another mechanism (f̂ , p̂) such that

1. (f̂(v), p̂(v)) = (f̂(u), p̂(u)) for all u, v with u1 = v1,

2. p̂(u) ≥ p(u) for all u,

3. p̂(0, 0) = p(0, 0),

4. (f̂ , p̂) is incentive compatible and individually rational.

Using Lemma 20, we only focus on mechanisms satisfying the properties stated in Lemma

20. Let (f, p) be such a mechanism and define αf and πp as before, i.e., αf (v1) = f(v1, v2)

and πp(v1) = p(v1, v2) for all v with v1 < β.

Hence, the expected revenue from a mechanism (f, p) given in Lemma 20 is given by

Rev(f, p) = p(0, 0) +

∫ β

0

u1α
f (u1)g1(u1)du1 −

∫ β

0

(∫ u1

0

αf (x)dx
)
g1(u1)du1

= p(0, 0) +

∫ β

0

xαf (x)g1(x)dx−
∫ β

0

(1−G1(x))αf (x)dx

= p(0, 0) +

∫ β

0

[
h(x)− 1

]
αf (x)dx.

We now construct another posted-price mechanism (f ′, p′) that generates no less revenue

than (f, p). The posted-price mechanism (f ′, p′) is defined as follows. Let K1 := πf (β)
αf (β)

. For

all v with v1 ≤ K1, we set

f ′(v) = 0, p′(v) = 0

and for all v with v1 > K1, we set

f ′(v) = αf (β), p′(v) = K1α
f (β) = πp(β).

46



It is not difficult to see that (f ′, p′) is individually rational and incentive compatible. The

expected revenue from (f ′, p′) is given by

Rev(f ′, p′) = K1α
f (β)(1−G1(K1))

Now, note that

αf (β)

∫ β

K1

[
h(x)− 1

]
dx = αf (β)

(
K1 −K1G1(K1)

)
= Rev(f ′, p′).

So, we get

Rev(f ′, p′)−Rev(f, p) =

(
αf (β)

∫ β

K1

[
h(x)− 1

]
dx

)
−
(
p(0, 0) +

∫ β

0

[
h(x)− 1

]
αf (x)dx

)

= αf (β)

∫ β

K1

h(x)dx−
∫ β

0

h(x)αf (x)dx+

∫ β

0

αf (x)dx− (β −K1)αf (β)− p(0, 0)

= αf (β)

∫ β

K1

h(x)dx−
∫ β

0

h(x)αf (x)dx+

∫ β

0

αf (x)dx− βαf (β)− πp(β)− p(0, 0)

(Using definition of K1)

= αf (β)

∫ β

K1

h(x)dx−
∫ β

0

h(x)αf (x)dx

(Using revenue equivalence formula (Equation 20) at β)

=

∫ β

K1

[
αf (β)− αf (x)

]
h(x)dx−

∫ K1

0

αf (x)h(x)dx

≥ h(K1)

∫ β

K1

[
αf (β)− αf (x)

]
dx− h(K1)

∫ K1

0

αf (x)dx

(since h is increasing and α is non-decreasing)

= h(K1)(β −K1)αf (β)− h(K1)

∫ β

0

αf (x)dx

≥ h(K1)(β −K1)αf (β)− h(K1)(β −K1)αf (β)

(Using revenue equivalence formula (Equation 20) at β and p(0, 0) ≤ 0)

= 0.

Hence, every optimal mechanism in M− is a posted-price mechanism described in (f ′, p′).

It is characterized by a posted-price K1 and an allocation probability α if the value along

47



dim1 is above the posted price. The optimization program can be written as follows.

max
K1,α

K1α(1−G1(K1))

subject to

K1α ≤ B

α ∈ [0, 1].

We argue that the optimal solution to this program must have α = 1. To see this, let K∗

be the unique solution to the following optimization

max
K1∈[0,B]

K1(1−G1(K1)).

The fact that this optimization program has a unique solution follows from the fact that

x−xG1(x) is strictly concave (since xG1(x) is strictly convex). Hence, the revenue from the

solution when α = 1 is K∗(1 − G1(K∗)). Now, suppose the optimal solution has K̂ and α̂.

Note that the K̂α̂ ≤ B. So, define K̃ = K̂α̂ ≤ B. By definition,

K∗(1−G1(K∗)) ≥ K̃(1−G1(K̃))

= K̂α̂(1−G1(K̂α̂))

≥ K̂α̂(1−G1(K̂)),

where the final inequality used the fact that G1(K̂α̂) ≤ G1(K̂). This implies that the

optimal solution must have α = 1 and K1 must be the unique solution to K1(1 − G1(K1))

with the constraint K1 ∈ [0, B]. Hence, the optimal solution in M− must be a posted price

mechanism, where the posted price is a unique solution to

max
K1∈[0,B]

K1(1−G1(K1)).

A.2.7 Proof of Proposition 2

We now combine the optimal solutions in M+ and M− as follows. The optimal in M− is a

solution to

max
K1∈[0,B]

K1(1−G1(K1)).

The optimal in M+ is a solution to

max
K2∈(B,β),K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.
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Notice that the optimization for M+ does not admit K2 = B. But if K2 = B and

K1 ∈ [B,K], we must have K1 = B and then the objective function value reduces to

B(1 − G1(B)). This is the same objective function value of the program for M− when

K1 = B. Similarly, if K2 = β is allowed in the optimization for M+, we see that the

objective function is maximized at K1 = B giving a value of B(1−G1(B)) to the objective

function. Again, this is the same objective function value of the program for M− when

K1 = B.

Summarizing these findings, we get that the expected revenue from the optimal mecha-

nism is max(R1, R2), where

R1 = max
K1∈[0,B]

K1(1−G1(K1))

R2 = max
K2∈[B,β],K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.

This proves Proposition 2.
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B Appendix: Proofs of Section 5

This appendix contains all omitted proofs of Section 5.

B.1 Proof of Proposition 7

We establish a stronger result. We show that a larger class mechanisms, which includes the

post∗ mechanism, is incentive compatible.

Definition 9 A mechanism (f, p) is a generalized post∗ (g-post∗) mechanism if there

exists K,P ∈ (0, β] and A ∈ [0, 1] such that

0 ≤ A− P

K
≤ 1− B

K

and for all (v,B) ∈ W

(f(v,B), p(v,B)) =





(A− P
K
, 0) if v1 ≤ K(

A,P
)

if {min(v1, v2) > K and B < P}
or {v1 > K and B ≥ P}

(A− P−B
K
, B) if v1 > K, v2 ≤ K and B < P

Note that if we put A = 1, P = K, we get a post∗ mechanism. We prove the following

proposition, which implies Proposition 7.

Proposition 8 Every g-post∗ mechanism is dim2 non-trivial, incentive compatible, and

individually rational.

Proof : It is clear that a g-post∗ mechanism is dim2 non-trivial. Individual rationality

will follow from Lemma 2 once we show incentive compatibility. So, we show incentive

compatibility below.

Fix a g-post∗ mechanism (f, p) defined by parameters K,P,A. Partition the type space

W into three regions:

W 1 := {(u,B) : u1 ≤ K},
W 2 := {(u,B) : min(u1, u2) > K,B < P} ∪ {(u,B) : u1 > K,B ≥ P},
W 3 := {(u,B) : u1 > K, u2 ≤ K,B < P}.

By definition, we have (f(u,B), p(u,B)) = (f(u′, B′), p(u′, B′)) if (u,B), (u′, B′) ∈ W 1 or

(u,B), (u′, B′) ∈ W 2. Now, pick (u,B), (u′, B′) ∈ W 3 with B < B′. Notice that

K
[
f(u,B)− f(u′, B′)

]
= p(u,B)− p(u′, B′) = B −B′ < 0.
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This gives us f(u,B) < f(u′, B′). Since, u′1 > K, we get

u′1

[
f(u,B)− f(u′, B′)

]
< p(u,B)− p(u′, B′),

which implies that incentive constraint (u′, B′) → (u,B) holds for (f, p). Similarly, using

u2 ≤ K, we notice that

u2

[
f(u,B)− f(u′, B′)

]
≥ p(u,B)− p(u′, B′).

Using p(u′, B′) = B′ > B, the above inequality implies that incentive constraint (u,B) →
(u′, B′) also holds for (f, p).

We now show incentive constraints hold across each pair of types in W 1,W 2,W 3. For

this, pick (u,B) ∈ W 1, (u′, B′) ∈ W 2, (u′′, B′′) ∈ W 3. By definition, we have

Kf(u,B)− p(u,B) = Kf(u′, B′)− p(u′, B′) = Kf(u′′, B′′)− p(u′′, B′′) = KA− P. (22)

Now, we consider three cases.

Case 1. (u,B)→ (u′, B′) and (u′, B′)→ (u,B). Using Equation (22), we get

K
[
f(u,B)− f(u′, B′)

]
= p(u,B)− p(u′, B′) = −P < 0.

Using u1 < K, we get

u1f(u,B)− p(u,B) ≥ u1f(u′, B′)− p(u′, B′).

This is enough for incentive constraint (u,B)→ (u′, B′) since p(u,B) = 0.

Similarly, using u′1 > K implies

u′1f(u′, B′)− p(u′, B′) ≥ u′1f(u,B)− p(u,B). (23)

This is enough for incentive constraint (u′, B′) → (u,B) if p(u′, B′) = P ≤ B′. Else,

p(u′, B′) = P > B′, which also means min(u′1, u
′
2) > K. But this means, we also have

u′2f(u′, B′)− p(u′, B′) ≥ u′2f(u,B)− p(u,B). (24)

Inequalities (23) and (24) ensure that incentive constraint (u′, B′)→ (u,B) holds.

Case 2. (u′, B′)→ (u′′, B′′) and (u′′, B′′)→ (u′, B′). Using Equation (22) and B′′ < P , we

get

K
[
f(u′, B′)− f(u′′, B′′)

]
= p(u′, B′)− p(u′′, B′′) = P −B′′ > 0.
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Since u′′2 ≤ K, we get

u′′2f(u′′, B′′)− p(u′′, B′′) ≥ u′′2f(u′, B′)− p(u′, B′).

This is enough for incentive constraint (u′′, B′′)→ (u′, B′) to hold since p′(u′, B′) = P > B′′.

Similarly, using u′1 > K implies

u′1f(u′, B′)− p(u′, B′) > u′1f(u′′, B′′)− p(u′′, B′′). (25)

This is enough for incentive constraint (u′, B′) → (u′′, B′′) if p(u′, B′) = P ≤ B′. Else,

p(u′, B′) = K > B′, which also means min(u′1, u
′
2) > K. But this means, we also have

u′2f(u′, B′)− p(u′, B′) > u′2f(u′′, B′′)− p(u′′, B′′). (26)

Inequalities (25) and (26) ensure that incentive constraint (u′, B′)→ (u′′, B′′) holds.

Case 3. (u,B)→ (u′′, B′′) and (u′′, B′′)→ (u,B). Using Equation (22), we get

K
[
f(u,B)− f(u′′, B′′)

]
= p(u,B)− p(u′′, B′′) = 0−B′′ ≤ 0.

Using u1 ≤ K, we get

u1f(u,B)− p(u,B) ≥ u1f(u′′, B′′)− p(u′′, B′′).

This is enough for incentive constraint (u,B) → (u′′, B′′) since p(u,B) = 0. Also, since

u′′1 > K, we get

u′′1f(u′′, B′′)− p(u′′, B′′) ≥ u′′1f(u,B)− p(u,B).

This is enough for incentive constraint (u′′, B′′)→ (u,B) since p(u′′, B′′) = B′′. �

B.2 Proof of Theorem 2

We give the proof of Theorem 2. We start by giving some preparatory lemmas.

B.2.1 Preparatory Lemmas

Fix a dim2 non-trivial mechanism (f, p). Let

B+
(f,p) := {B : {v ∈ V : p(v,B) > B} has non-zero measure}.

By dim2 non-triviality B+
(f,p) is non-empty. This means for any B ∈ B+

(f,p), we observe that

V +(f, p) defined in the public budget case has non-zero measure and hence (f, p) restricted

to B belongs to M+. We can then directly state equivalent of lemmas from the public budget

case for any B ∈ B+
(f,p).
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Lemma 21 Suppose (f, p) is an incentive compatible and individually rational mechanism

satisfying dim2 non-triviality. Then, for any B ∈ B+
(f,p), there exists P(f,p),B, A(f,p),B and

K(f,p),B such that the following are true.

1. p(u,B) = P(f,p),B and f(u,B) = A(f,p),B, for all u with u2 ∈ (K(f,p),B, β) and u1 >

K(f,p),B.

2. A(f,p),B > f(K(f,p),B, 0, B) + 1
K(f,p),B

[
B − p(K(f,p),B, 0, B)

]
.

3. βA(f,p),B − P(f,p),B = βf(u,B)− p(u,B) for all u with u2 = β and u1 > K(f,p),B.

4. K(f,p),BA(f,p),B − P(f,p),B = K(f,p),Bf(K(f,p),B, 0, B)− p(K(f,p),B, 0, B).

Proof : Fix any B ∈ B+
(f,p). Define K(f,p),B as in Lemma 7 and P(f,p),B, A(f,p),B as in Lemma

11. Then it is easy to see that the first two statements are direct equivalent statements

from Lemma 14. (3) follows by combining Lemma 13 with Equations 8 and 9. Combining

Equation 7 with Lemma 13 we get (4). �

Lemma 22 Suppose (f, p) is an incentive compatible and individually rational mechanism

satisfying dim2 non-triviality. Then, there exists P(f,p), A(f,p) and K(f,p) such that the fol-

lowing hold.

1. p(u,B) = P(f,p), f(u,B) = A(f,p) for all (u,B) ∈ W with

u1 > K(f,p), u2 ∈ (K(f,p), β) and B < P(f,p).

2. If B < P(f,p), then B ∈ B+
(f,p).

3. p(u,B) ≤ B for all (u,B) ∈ W with (u1, u2) 6= (β, β) and B ≥ P(f,p).

4. p(u,B) = P(f,p) and f(u,B) = A(f,p) for all (u,B) ∈ W with B ≥ P(f,p), u1 ∈
(K(f,p), β), and u2 < β

5. K(f,p)A(f,p) − P(f,p) = K(f,p)f(K(f,p), 0, B)− p(K(f,p), 0, B) for all B < P(f,p).

6. p(u,B) ≤ p(K(f,p), 0, B
′) for all (u,B) ∈ W with u1 < K(f,p) and for all B′ < P(f,p).

7. p(u,B) ≤ 0 for all (u,B) ∈ W with u1 < K(f,p).
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Proof : Proofs of (1) and (2). Fix an incentive compatible and individually rational

mechanism (f, p) and pick any B́ ∈ B+
(f,p). From Lemma 21, we know that there exist

K(f,p),B́, P(f,p),B́, and A(f,p),B́ such that p(u, B́) = P(f,p),B́ > B́ and f(u, B́) = A(f,p),B́, for all

u ∈ V with u2 ∈ (K(f,p),B́, β) and u1 > K(f,p),B́. We do the proof in two steps.

Step 1. Consider an outcome (a, t) in the range of the mechanism. First, consider the case

when t < P(f,p). Analogous to Lemma 4, it can be shown that incentive compatibility of (f, p)

implies that a < A(f,p),B́. Now, consider any type of the form (v, B́) where v1 = v2 = x ∈
(K(f,p),B́, β). Such a v exists since K(f,p),B́ < β. Lemma 21 implies that (f(v, B́)), p(v, B́)) =

(A(f,p),B́, P(f,p),B́). Incentive compatibility from (v, B́) to any type with the outcome (a, t)

gives us:

xA(f,p),B́ − P(f,p),B́ ≥ xa− t.

Since this is true for all x ∈ (K(f,p),B́, β) and noting that t < P(f,p),B́ and a < A(f,p),B́ we

conclude that

xA(f,p),B́ − P(f,p),B́ > xa− t for all x ∈ (K(f,p),B́, β). (27)

If t > P(f,p), a similar reasoning establishes that Inequality (27) continues to hold (the

only adjustment we need to do is that a will be strictly greater than A(f,p)).

Step 2. Pick any budget B′ with B′ 6= B́ but B′ < P(f,p),B́. Further, pick any type

(u,B′) with u1 > K(f,p),B́ and u2 ∈ (K(f,p),B́, β). We will argue that (f(u,B′), p(u,B′)) =

(A(f,p),B́, P(f,p),B́). Assume for contradiction, (f(u,B′), p(u,B′)) = (a, t) for some (a, t) 6=
(A(f,p),B́, P(f,p),B́). Since Inequality (27) holds for x = u2, incentive compatibility implies

that t ≤ B′ and

u1a− t ≥ u1A(f,p),B́ − P(f,p),B́.

But B′ < P(f,p),B́ implies that t < P(f,p),B́, and hence, a < A(f,p),B́. So, for any x ∈
(K(f,p),B́, β) with x < u1, we must have

xa− t > xA(f,p),B́ − P(f,p),B́,

which is a contradiction to Inequality (27).

So, we conclude that for all u1 > K(f,p),B́ and u2 ∈ (K(f,p),B́, β), we have (f(u,B′), p(u,B′)) =

(A(f,p),B́, P(f,p),B́). Further, this ensures that B′ ∈ B+
(f,p). Hence, we have shown that for any
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B́ ∈ B+
(f,p) and any B′ < P(f,p),B́, we have

B′ ∈ B+
(f,p). (28)

Now, Lemma 21 implies that for every (u,B′) with u1 > K(f,p),B′ and u2 ∈ (K(f,p),B′ , β),

we have p(u,B′) = P(f,p),B′ , we get that P(f,p),B′ = P(f,p),B́. Consequently, A(f,p),B′ = A(f,p),B́.

Clearly, K(f,p),B′ ≤ K(f,p),B́. But since P(f,p),B′ = P(f,p),B́ and the choice of B′, B́ is arbitrary,

we could swap their positions to conclude K(f,p),B́ = K(f,p),B′ .

We can now define P(f,p) := P(f,p),B́, A(f,p) := A(f,p),B́, and K(f,p) := K(f,p),B́. This

concludes proof of (1).

For (2), by dim2 non-triviality, B+
(f,p) is non-empty, and using the conclusion in (1) along

with the set inclusion in (28), we get that for all B < P(f,p), we have B ∈ B+
(f,p).

From this step, using Inequality (27), we can write that for all outcomes (a, t) 6= (A(f,p), P(f,p))

in the mechanism, we must have

xA(f,p) − P(f,p) > xa− t ∀ x ∈ (K(f,p), β). (29)

This obviously implies that if a > A(f,p), then

xA(f,p) − P(f,p) > xa− t ∀ x < β. (30)

Proof of (3) and (4). Fix any type (u,B) such that B > P(f,p), and (u1, u2) 6= (β, β).

Assume for contradiction that p(u,B) > B - this implies that f(u,B) > A(f,p). Since

p(u,B) > B > P(f,p) and f(u,B) > A(f,p), the following inequalities must hold for incentive

compatibility

u1f(u,B)− p(u,B) ≥ u1A(f,p) − P(f,p)

u2f(u,B)− p(u,B) ≥ u2A(f,p) − P(f,p)

This contradicts Inequality (30) for x = u1 or x = u2 (note that f(u,B) > A(f,p)). This

proves (2).

Fix any (u,B) such that B ≥ P(f,p), u1 ∈ (K(f,p), β), and u2 < β. From (2) above, we

have p(u,B) ≤ B. Substituting x = u1 in Inequality (29), we notice that for every other

outcome (a, t) in the range of the mechanism, we have

u1A(f,p) − P(f,p) > u1a− t.
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Hence, the agent prefers (A(f,p), P(f,p)) to any other outcome (a, t) in the range of the mecha-

nism along dim1. By incentive compatibility (f(u,B), p(u,B)) = (A(f,p), P(f,p)). This proves

(3).

Proof of (5). By (1), we know that every B < P(f,p) belongs to B+
(f,p). Then, (4) in

Lemma 21 gives the result.

Proof of (6). Fix any (u,B) ∈ W such that u1 < K(f,p). Since u1 < K(f,p), Lemma 9

implies that p(u,B) ≤ B.

Substituting x = K(f,p) and (a, t) =
(
f(u,B), p(u,B)

)
, Inequality (29) implies

K(f,p)A(f,p) − P(f,p) ≥ K(f,p)f(u,B)− p(u,B)

Now pick B′ < P(f,p) and use (4) above to get

K(f,p)f(K(f,p), 0, B
′)− p(K(f,p), 0, B

′) ≥ K(f,p)f(u,B)− p(u,B). (31)

Now, assume for contradiction that p(u,B) > p(K(f,p), 0, B
′). Since, p(u,B) ≤ B we have

p(K(f,p), 0, B
′) < B. Then incentive constraint (u,B)→ (K(f,p), 0, B

′) implies that

u1f(u,B)− p(u,B) ≥ u1f(K(f,p), 0, B
′)− p(K(f,p), 0, B

′). (32)

Adding Inequalities (31) and (32), and using u1 < K(f,p), we get f(u,B) ≤ f(K(f,p), 0, B
′).

But this implies that p(u,B) ≤ p(K(f,p), 0, B
′), which is contradiction.

Proof of (7). This is a corollary to (5) above. Set B′ = 0 and the result follows since

p(K(f,p), 0, 0) ≤ 0 from Lemma 9. �

Figure 7 gives a pictorial description of an incentive compatible and individually rational

mechanism as implied by Lemma 22.

B.2.2 Optimality of post∗

We now complete the proof of Theorem 2 by using the preparatory lemmas. For every

incentive compatible, individually rational, and dim2 non-trivial mechanism (f, p), we first

construct a new g-post∗ mechanism (f ′, p′) in the following way.
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K(f,p)

K(f,p)
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Figure 7: Structure of incentive compatible and individually rational mechanism

(f ′(v,B), p′(v,B)) =





(A(f,p), P(f,p)) if
(

min(v1, v2) > K(f,p) and B < P(f,p)

)

or
(
v1 > K(f,p) and B ≥ P(f,p)

)

(
A(f,p) − 1

K(f,p)
P(f,p), 0

)
if v1 ≤ K(f,p)(

A(f,p) − 1
K(f,p)

(P(f,p) −B), B
)

if v1 > K(f,p), v2 ≤ K(f,p) and B < P(f,p)

The new mechanism (f ′, p′) is shown in Figure 8. It is easy to verify that f ′(v,B) ∈ [0, 1]

for all (v,B) ∈ W . To see this, assume for contradiction that A(f,p) − 1
K(f,p)

(P(f,p) − B) > 1

when B < P(f,p). Then, we get K(f,p)A(f,p) − P(f,p) > K(f,p) − B, which is a contradiction

since A(f,p) ∈ [0, 1] and B < P(f,p). This shows that A(f,p) − 1
K(f,p)

(P(f,p) − B) ≤ 1, which

also implies that A(f,p) − 1
K(f,p)

P(f,p) ≤ 1. Finally, A(f,p) − 1
K(f,p)

P(f,p) ≥ 0 follows from (5) in

Lemma 22 and individual rationality of (f, p).

Lemma 23 If (f, p) is an incentive compatible, individually rational, dim2 non-trivial mech-

anism, then the g-post∗ mechanism (f ′, p′) is a dim2 non-trivial, incentive compatible,

individually rational, and

p′(v,B) ≥ p(v,B) for almost all (v,B) ∈ W.

Proof : Since (f ′, p′) is a g-post∗ mechanism, Proposition 8 implies that (f ′, p′) is a dim2

non-trivial, incentive compatible, individually rational. We establish that p′(v,B) ≥ p(v,B)

for almost all (v,B) ∈ W . To see this, consider the following three cases.
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Figure 8: Mechanism (f ′, p′)

• Case 1. Consider (v,B) ∈ W such that {min(v1, v2) > K(f,p) and B < P(f,p), v2 6= β}
or {v1 ∈ (K(f,p), β) and B ≥ P(f,p), v2 6= β}. By (1) and (4) in Lemma 22,

p′(v) = P(f,p) = p(v).

• Case 2. Consider (v,B) ∈ W such that v1 < K(f,p). By (7) in Lemma 22, we have

p′(v,B) = 0 ≥ p(v,B).

• Case 3. Finally, consider (v,B) ∈ W such that v2 < K(f,p), v1 > K(f,p) and B < P(f,p).

By (2) in Lemma 22, we get that B ∈ B+
(f,p). Then, since min(v1, v2) < K(f,p), by the

definition of K(f,p), we get p(v,B) ≤ B = p′(v,B), which concludes this case.

Denote by W ′ the set of type profiles covered in the above three cases. It is easy to see

(for instance, refer to Figure 8) that W \W ′ has zero Lebesgue measure. So, for almost all

(v,B), we have p′(v,B) ≥ p(v,B). �

The proof of Theorem 2 is completed by the following lemma.

Lemma 24 For every g-post∗ mechanism (f, p), there is a post∗ mechanism (f ′, p′) such

that

p′(v,B) ≥ p(v,B) ∀ (v,B) ∈ W.

Proof : Take any g-post∗ mechanism (f, p) defined by parameters A,P,K. Consider the

post∗ mechanism (f ′, p′) defined by parameter K. By definition of g-post∗ mechanism

(f, p), we know that K ≥ P . Now, consider the following cases:
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• p′(v,B) = p(v,B) = 0 for all (v,B) if v1 ≤ K.

• p′(v,B) = p(v,B) = B for all (v,B) if v1 > K, v2 ≤ K and B < P .

• p′(v,B) = K ≥ P = p(v,B) for all (v,B) if {min(v1, v2) > K andB < K} or {v1 > K and B ≥ K}

• p′(v,B) = K ≥ P = p(v,B) for all (v,B) if v1 > K, v2 ≤ K and P ≤ B < K.

This concludes the proof. �

Lemma 24 thus establishes that a post∗ mechanism is a partially optimal mechanism,

which concludes the proof of Theorem 2.
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C Supplementary Appendix

C.1 Proof of Lemma 1

Proof : We consider two cases where v1 < v2 and then v1 > v2. The proof is by construction

of three outcomes as stated above.

Case 1. Fix any v = (v1, v2) such that 0 < v1 < v2. Consider three outcomes

(a, t) := (
1

2
, B), (b, t′) := (1, B +

3v1

8
+
v2

8
), and (c, t′′) = (

3

4
− v1

8v2

, B +
v1

8
).

First,

v1a− t =
1

2
v1 −B = v1 −B −

v1

2
> v1 −B −

(3v1

8
+
v2

8

)
= v1b− t′,

where the inequality is true because v1 < v2. Combining this with t ≤ B gives us

(a, t) �v (b, t′).

Second,

v2b− t′ = v2 −B −
(3v1

8
+
v2

8

)
= v2 −B −

(v1

4
+
v1 + v2

8

)

> v2 −B −
(v1

4
+
v2

4

)
= v2

(3

4
− v1

8v2

)
−B − v1

8

= v2c− t′′.

where the inequality is true because v1 < v2. Combining this with the fact that t′, t′′ > B,

we have

(b, t′) �v (c, t′′).

Third,

v1c− t′′ = v1

(3

4
− v1

8v2

)
−B − v1

8
>

3

4
v1 −B −

v1

4
=

1

2
v1 −B = v1a− t,

where the inequality is true because v1 < v2. Hence, (a, t) �v1 (c, t′′).

But since t′′ > B, we need to compare the outcomes with respect to v2. For that, notice

v2c− t′′ = v2

(3

4
− v1

8v2

)
−B − v1

8
= v2

(3

4
− v1

4v2

)
−B >

1

2
v2 −B,

where the inequality is due to v1 < v2. This implies that (c, t′′) �v (a, t).
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Case 2. Fix any v = (v1, v2) such that v1 > v2. Set K = max(2,

⌈
v2
B

⌉
), where we use the

notation that dxe denotes the smallest integer greater than or equal to x. Consider three

outcomes

(a, t) := (1− 2

K
,B − v2

K
), (b, t′) := (1, B +

v2(3− v2
v1

)

2K
), and (c, t′′) := (1−

7− 3(v2
v1

)

4K
,B).

The value of K set above ensures that all the consumption bundles are feasible.

First,

(v1b− t′)− (v1a− t) =
1

K
(2v1 − v2)− 1

2K

v2

v1

(3v1 − v2) ≥ 1

K
(2v1 − v2)− 1

2K
(3v1 − v2) > 0,

where the inequalities are true because v1 > v2. Since t′ > B we have (b, t′) �v1 (a, t). We

need to check the outcomes with respect to the agent’s type, that is v2. For that, notice

(v2a− t)− (v2b− t′) =
v2

v1

(3v1 − v2

2K

)
− v2

K
> 0.

The inequality is true because v1 > v2. From above discussions, we have

(a, t) �v (b, t′).

Second,

(v2b− t′)− (v2c− t′′) =
1

4K

((
7− 3

v2

v1

)
−
(
6− 2

v2

v1

))
=

1

4K
(1− v2

v1

) > 0,

where the inequality is due to v1 > v2. Also, notice that from above we derive t′ − t′′ <

v2(b− c) < v1(b− c) which implies v1b− t′ > v1c− t′′. Combining the above two results with

the fact that t′ > B, we conclude that

(b, t′) �v (c, t′′).

Third,

(v1c− t′′)− (v1a− t) =
1

K
(2v1 − v2)− 1

4K

(
7v1 − 3v2) =

1

4K
(v1 − v2) > 0.

The inequality is because v1 > v2. Noticing that t′′ ≤ B, we have (c, t′′) �v (a, t). �

C.2 Proofs for the uniform distribution case

In this section, we give the proofs of Lemma 3 and Proposition 5.
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C.2.1 Proof of Lemma 3

Proof : Suppose (K∗1 , K
∗
2) are values of (K1, K2) in the optimal post-2 mechanism. By

definition K∗1 ≤ K∗2 . Using the uniform distribution of G, we see that (K∗1 , K
∗
2) are optimal

solutions to the following optimization problem:

max
K2∈[B,1], K1∈[B,K2]

B
[
1−K1

]
+
(
1− B

K1

)
K2(1−K2)2. (33)

We consider the following optimization problem, where we fix the value of K∗1 and maximize

over all K2:

max
K2∈[0,1]

B
[
1−K∗1

]
+
(
1− B

K∗1

)
K2(1−K2)2.

Notice that the objective function is strictly concave in K2, and the unique maximum occurs

when K2 = 1
3
.

Now, assume for contradiction K∗1 < K∗2 . We consider two cases and reach a contradic-

tion in both the cases.

Case 1. Suppose K∗1 ≥ 1
3
. Then, K∗2 >

1
3
. But K2 = K∗1 and K∗1 defines a feasible post-2

mechanism, and generates more revenue. This is a contradiction.

Case 2. Suppose K∗1 <
1
3
. Since K∗2 ≥ K∗1 , we see that K2 = 1

3
and K∗1 defines a feasible

post-2 mechanism and generates more revenue. Hence, K∗2 must be equal to 1
3
. Now, fixing

the value of K2 at 1
3
, we optimize the Expression (33) with relaxed constraints on K1:

max
K1∈[0,1]

B
[
1−K1

]
+
(
1− B

K1

) 4

27
.

This objective function is strictly concave with a unique maxima at K1 = 2
3
√

3
> 1

3
. Hence,

the objective function of the Expression in (33) is higher at K1 = 1
3

= K∗2 than at (K∗1 , K
∗
2)

with K∗1 <
1
3
. Further, K1 = K2 = 1

3
is a post-2 mechanism since (K∗1 , K

∗
2) with K∗2 = 1

3
is

a post-2 mechanism. This is a contradiction.

Using this, we can conclude that the optimal post-2 mechanism is a solution to the

following single-variable constrained optimization problem.

max
K∈[B,1]

B
(
1−K

)
+
(
K −B

)
(1−K)2. (34)
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We denote J(K) := B
(
1−K

)
+
(
K −B

)
(1−K)2 for all K. Notice that

J ′(K) = 3K2 −K(2B + 4) + (B + 1)

J ′′(K) = 6K − (2B + 4).

Note that

J ′(B) = B2 − 3B + 1 =
(
B − 3−

√
5

2

)(
B − 3 +

√
5

2

)
.

Hence, J ′(B) ≤ 0 if and only if B ≥ 1
2

(
3−
√

5
)
.

Notice that J ′′(K) = 0 for K = 1
3
(B + 2). Hence, J ′(K) is decreasing in [B, 1

3
(B + 2)]

and increasing in [1
3
(B + 2), 1]. Also, J ′(1) = −B < 0. Hence, if J ′(B) ≤ 0, we must have

J ′(K) < 0 for all K ∈ (B, 1].

Proof of (1). This implies that for B ≥ 1
2

(
3−
√

5
)
, we have J ′(K) < 0 for all K ∈ (B, 1].

This implies that J is decreasing in [B, 1], and hence, the optimal solution of Optimization

(34) must have K = B. Then, the first part implies that the optimal post-2 mechanism

must have K∗1 = K∗2 = B.

Proof of (2). If B < 1
2

(
3−
√

5
)
, then J ′(B) > 0 and J ′(K) = 0 at a unique point

K =
1

3

(
B + 2−

√
(B2 +B + 1)

)
.

Denote this point of inflection as K̃. Notice that J ′(K) < 0 for all K > K̃, and, hence, J

is decreasing after K̃. Further, K̃ < 1
3
(B + 2) and J ′′(K) < 0 for all K < K̃. This means

J is strictly concave from B to 1
3
(B + 2). Combining these observations, we conclude that

K = K̃ solves the Optimization in (34). The first part implies that the optimal post-2

mechanism must have

K∗1 = K∗2 =
1

3

(
B + 2−

√
(B2 +B + 1)

)
,

if B < 1
2

(
3−
√

5
)
. �

C.2.2 Proof of Proposition 5

Proof : To do the proof, we first compute the optimal post-1 mechanism, which is the

solution to the following optimization program:

max
K1∈[0,B]

K1(1−K1). (35)
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It is clear the optimal post-1 mechanism is K1 = 1
2

if B > 1
2

and K1 = B if B ≤ 1
2
. Now,

we consider the three cases separately.

Case 1 - B > 1
2
. Optimal post-1 mechanism generates a revenue of 1

4
. By Lemma 3,

optimal post-2 mechanism generates a revenue of B(1 − B), which is less than 1
4
. Hence,

the optimal mechanism is a post-1 mechanism with K1 = 1
2
.

Case 2 - B ∈ [1
2
(3 −

√
5), 1

2
]. In this case, both the optimal post-1 mechanism and the

optimal post-2 mechanism (due to Lemma 3) generates a revenue of B(1−B). Hence, the

optimal post-1 mechanism with K1 = B is optimal.

Case 3 - B ∈ (0, 1
2
(3−
√

5)). In this case, the optimal post-1 mechanism generates a revenue

of B(1−B), which is also the revenue generates by a post-2 mechanism with K1 = K2 = B.

But the optimal post-2 is unique and has K1 = K2 = 1
3

(
B + 2 −

√
(B2 +B + 1)

)
due to

Lemma 3. Hence, the result follows. �

C.2.3 Proof of Proposition 6

Proof : By Proposition 5, the revenue clearly increases with budget in the region B ≥
1
2

(
3 −
√

5
)

since the mechanism is a post-1 mechanism. We show that R∗(B) > R∗(B′) if
1
2

(
3−
√

5
)
> B > B′. This will conclude the proof since

lim
B→ 1

2

(
3−
√

5
)R∗(B) = R∗(

1

2

(
3−
√

5
)
).

To show this, we use Proposition 5 to note that if 1
2

(
3−
√

5
)
> B > B′, then the optimal

mechanism at B and B′ are post-2 mechanisms. Hence, we just show the monotonicity of

revenue of an optimal post-2 mechanism as a function of budget when B ∈ (0, 1
2
(3−

√
5)).

Denote the optimal value of K1 and K2 (both are equal by Proposition 5) in the optimal

post-2 mechanism as:

K(B) :=
1

3

(
B + 2−

√
(B2 +B + 1)

)
=

1

3

(
B + 2− q(B)

)
,

where q(B) :=
√

(B2 +B + 1). Notice that

K(B)− 1

2
=

1

3

((
B +

1

2

)
−
√
B2 +B + 1

)
< 0.

Hence, K(B) < 1
2
.
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Further, notice that

K ′(B) =
1

3

(
1− (B +

1

2
)

1

q(B)

)
=

1

3

(
1−

√
(B2 +B + 1

4
)

(B2 +B + 1)

)
> 0.

Our first claim is that K ′(B) < K(B). To see this,

3
[
K(B)−K ′(B)

]
= B + 1 + (B +

1

2
)

1

q(B)
− q(B)

= (B + 1) +
1

q(B)

[
B +

1

2
−B2 −B − 1

]

= (B + 1)− 1

q(B)

(
B2 +

1

2

)

=
1

q(B)

(
(B + 1)

√
B2 +B + 1− (B2 +

1

2
)
)

≥ 1

q(B)

(√
(B2 + 1)

√
(B2 + 1)− (B2 +

1

2
)
)

=
1

2

> 0.

Now, revenue in the optimal post-2 mechanism for these values of B is given by

R(B) := B
(
1−K(B)

)
+
(
K(B)−B

)(
1−K(B)

)2
.

Now, we differentiate R(B) with respect to B and observe:

R′(B) =
(
1−K(B)

)
−BK ′(B) +

(
K ′(B)− 1

)(
1−K(B)

)2 − 2
(
1−K(B)

)
K ′(B)

(
K(B)−B

)

= K(B)
(
1−K(B)

)
+K ′(B)

[
−B +

(
1−K(B)

)2 − 2
(
1−K(B)

)(
K(B)−B

)]

> K ′(B)
[
1−K(B)−B +

(
1−K(B)

)2 − 2
(
1−K(B)

)(
K(B)−B

)]

(using K ′(B) > 0 and K ′(B) < K(B))

= K ′(B)
[(

1−K(B)
)(

2− 3K(B)
)

+B
(
1− 2K(B)

)]

> 0

(using K(B) <
1

2
and K ′(B) > 0).

This concludes the proof. �
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C.3 An alternate notion of incentive compatibility

In this section, we adapt the choice correspondence procedure defined in Manzini and Mari-

otti (2012) to propose an extension of our binary choice model. We then propose an appro-

priate notion of incentive compatibility for this model and show its relation to our notion of

incentive compatibility.

Consider an agent of type v ≡ (v1, v2). For any subset of outcomes S ⊆ Z, define

M1(S; v1) := {(a, t) ∈ S : av1 − t ≥ a′v1 − t′ ∀ (a′, t′) ∈ S and t ≤ B}

and define

M2(S; v2) := {(a, t) ∈ S : av2 − t ≥ a′v2 − t′ ∀ (a′, t′) ∈ S}.

Using M1(S; v1) and M2(S; v2), we can now define a choice correspondence Cv : 2Z → 2Z

with ∅ 6= Cv(S) ⊆ S for each S ⊆ Z as follows:

Cv(S) =

{
M1(S; v1) if M1(S; v1) 6= ∅
M2(S; v2) otherwise

Intuitively, the agent tries to choose from S using v1 first, i.e., if the maximal elements

according to dim1 satisfy budget constraint, then they are chosen. Otherwise, the maximal

elements according to dim2 are chosen. This is a plausible extension of our binary choice

model to accommodate choice from arbitrary subsets.

If we assume that our agent makes choices using such choice correspondences (or some

other choice correspondence “consistent” with type v), then a familiar notion of incentive

compatibility for choice correspondences can be applied. In particular, we say that (f, p) is

choice-incentive compatible if for every v,

(f(v), p(v)) ∈ Cv(Rf,p),

where Rf,p is the range of the mechanism (f, p). This definition can be extended to arbitrary

mechanisms µ : M → Z defined on message space M . Notice that our definition requires

that

(f(v), p(v)) �v (a, t) ∀ (a, t) ∈ Rf,p.

If the agent makes choices using Cv for each type v, we show that choice-incentive compati-

bility and incentive compatibility are independent conditions. We give two examples below

to illustrate this.
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Example 1

To see this, consider a type space with three types V := {v, v′, v′′}, where

v = (1, 1.2), v′ = (0, 0), v′′ = (1, 1).

Assume B = 0.5 and consider the following mechanism (f, p) defined on this type space.

(f(v), p(v)) := (1, 0.6), (f(v′), p(v′)) := (0.81, 0.4), (f(v′′), p(v′′)) = (0.924, 0.51).

We can check that

M1(Rf,p; v1) = ∅,M1(Rf,p; v′1) = {(f(v′), p(v′))},M1(Rf,p; v′′1) = ∅
M2(Rf,p; v2) = {(f(v), p(v))},M2(Rf,p; v′2) = {(f(v′), p(v′))},M2(Rf,p; v′′2) = {(f(v′′), p(v′′))}.

Hence, we get

Cv(Rf,p) = {(f(v), p(v))}, Cv′(Rf,p) = {(f(v′), p(v′))}, Cv′′(Rf,p) = {(f(v′′), p(v′′))}.

Hence, (f, p) is choice-incentive compatible. But it can also be checked that

(f(v), p(v)) = (1, 0.6) �v (0.81, 0.4).

Hence, (f, p) is not incentive compatible.

Example 2

Now, consider another type space V ′ = {u, u′, u′′}, where

u = (3, 2), u′ = (0, 0), and u′′ = (2.5, 2.5).

As before, assume B = 0.5. Now, consider the following mechanism (f ′, p′) defined on the

type space V ′.

(f ′(u), p′(u)) := (0.99, 0.49), (f ′(u′), p′(u′)) := (0.989, 0.487), (f ′(u′′), p′(u′′)) = (1, 0.51).

Now, the following binary relations can be verified.

(0.99, 0.49) �u (0.989, 0.487), (0.99, 0.49) �u (1, 0.51).

(0.989, 0.487) �u′ (0.99, 0.49), (0.989, 0.487) �u′ (1, 0.51).

(1, 0.51) �u′′ (0.99, 0.49), (1, 0.51) �u′′ (0.989, 0.487).

This shows that (f ′, p′) is incentive compatible. But notice that

M1(Rf ′,p′ ;u1) = ∅,M2(Rf ′,p′ ;u2) = {(0.989, 0.487)}.

Hence, (f ′(u), p′(u)) = (0.99, 0.49) /∈ Cu(Rf ′,p′). This shows that (f ′, p′) is not choice-

incentive compatible.
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C.4 A sufficient condition for optimality of post∗

In this section, we will identify some restrictions on the distribution that ensures that post∗

is an optimal mechanism for the private budgets case. We summarize our assumptions below.

Definition 10 We say distribution Φ satisfies Assumption A if

• Values and budget are distributed independently, i.e., there exists a prior G over V ≡
[0, β]× [0, β] and a prior Π over [0, β] such that Φ(v,B) = G(v)Π(B) for all (v,B).

• Marginal G1 satisfies the property that H1(x) := xG1(x) ∀ x is strictly convex.

• Finally, define K̄ as before: K̄ := arg maxr∈[0,β] r(1 − G1(r)) - this is well defined

because H1 is strictly convex. Then, the following must hold:

[1−G(K̄, β)−G(β, K̄)+G(K̄, K̄)]

∫ K̄

0

(K̄−B)dΠ(B) ≥
∫ K̄

0

B[G1(K̄)−G1(B)]dΠ(B)

If G is the uniform distribution over [0, 1] × [0, 1] and Π is uniform over [0, 1], then the

resulting distribution satisfies Assumption A.

Proposition 9 If Φ satisfies Assumption A, then a post∗ mechanism is optimal.

Proof : Fix any B in (0, β) and consider the optimal post-1 mechanism in M− derived in

Proposition 4. We use this mechanism for each B (using the expression in Proposition 2)

to define a new mechanism (f ′, v′) for the private budget case - for B ∈ {0, β}, we use the

limiting mechanisms of the post-1 mechanism suggested in Proposition 2.

(f ′(v), p′(v)) =





(1, B) if v1 > B and B < K̄

(1, K̄) if v1 > K̄ and B ≥ K̄

(0, 0) otherwise.

Of course, this mechanism is not incentive compatible in the private budget case - when

v1 > B > 0, the agent has an incentive to report a budget equal to zero get the outcome

(1, 0). But notice that the expected revenue of the optimal mechanism in the class of incentive

compatible and individually rational mechanisms that are not dim2 non-trivial cannot exceed

the expected revenue of (f ′, p′).

Now, consider the post∗ mechanism by setting K = K̄:

(f ∗(v), p∗(v)) =





(1, K̄) if {v1 > K̄ and B ≥ K̄} or {v1, v2 > K̄ and B < K̄}
(B
K̄
, B) if v1 > K̄, v2 ≤ K̄, and B < K̄

(0, 0) otherwise
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K̄
v1

v2

(0, 0, 0)

p′(v,B) = K̄

B

p′(v,B) = 0

K̄

p′(v,B) = B

Figure 9: Upper bound

K̄

K̄

v1

v2

(0, 0, 0)

p∗(v,B) = K̄

B

p∗(v,B) = 0

p∗(v,B) = B

K̄

Figure 10: Lower bound

The two mechanisms are shown in Figures 9 and 10 below.

We argue that post∗ generates weakly greater expected revenue that (f ′, p′) under As-

sumption A. Hence, the optimal mechanism must be a post∗ mechanism by Theorem 2.
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Note that (f ′, p′) and (f ∗, p∗) yield the same revenue for the following types:

(v,B) such that B ≥ K̄

(v,B) such that v1 > K̄, v2 ≤ K̄, and B < K̄

(v,B) such that v1 ≤ B, and B < K̄

So, we ignore these types and focus on rest of the types.

• for any type (v,B) such that v1, v2 > K̄ and B < K̄, revenue from (f ∗, p∗) is K̄ whereas

revenue from (f ′, p′) is B; so the difference in revenue is K̄ −B.

• for any type (v,B) such that v1 ∈ (B, K̄] and B < K̄, revenue from (f ∗, p∗) is 0 whereas

revenue from (f ′, p′) is B; so the difference in revenue is B.

Then the condition for revenue from (f ∗, p∗) to be more than that of (f ′, p′) is:

[1−G(K̄, β)−G(β, K̄) +G(K̄, K̄)]

∫ K̄

0

(K̄ −B)dΠ(B) ≥
∫ K̄

0

B[G1(K̄)−G1(B)]dΠ(B)

This holds because of Assumption A. �
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