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Abstract

We propose a non-parametric Bayesian approach to the estimation of forecast densi-

ties in probabilistic surveys. We use it to study the evolution of the subjective forecast

distribution for the U.S. Survey of Professional Forecasters over the past forty years,

focusing especially on second moments. We show that the variance of aggregate fore-

cast distribution fell substantially from the eighties to the nineties (the “conquest”),

and fell again after the Fed announced its long term inflation goal. We also show

that disagreement (heterogeneity in the mean forecasts) plays a minor role, but that

heterogeneity in uncertainty is very large. The “conquest” amounted to convincing

high-uncertainty forecasters that inflation is under control. We also find that only a

fringe of forecasters place any significant probability of the possibility of a return to

the seventies. The likelihood of deflation in the aftermath of the Great Recession was

significant (almost ten percent for the average forecaster) but declined to one percent

or less for most forecasters thereafter.
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I Introduction

The pioneering work of Manski (2004) made economists appreciate the advantages of prob-

abilistic surveys relative to surveys that simply ask respondents for their point projections.1

First of all, with point forecast we are never sure of what we are getting, since responses

depend on the forecaster’s loss function: they could be reporting the mean, the median, or

some other quantile of their distribution. More importantly, probabilistic surveys provide

a wealth of information that is not included in point projections. As Potter (2016) writes,

“in a world characterized by pervasive uncertainty, density forecasts provide a comprehen-

sive representation of respondents’ views about possible future outcomes for the variables

of interest.” Given the respondents’ density forecasts, the econometrician can compute nu-

merous objects of interest, such as the mean, the median, the variance, the skewness, the

interquantile range, et cetera.

Except that survey respondents do not provide us with density forecasts. For most

surveys concerning continuous variables, they only provide the percent chance that the vari-

able of interest (e.g., inflation over the next year) would fall within different pre-specified

contiguous ranges or bins. That is, the information we have consists in the integral of the

forecast density over these bins, or equivalently, in a few points of the cumulative density

function (CDF). In order to extract most quantities of interest, standard practice consists

in making a parametric assumption concerning the forecast distribution and computing its

parameters by minimizing the distance between the observed CDF points and those implied

by the assumed distribution, following the approach in Engelberg et al. (2009).2 This is

clearly an inference problem – we do not know the parameters of this distribution nor, for

that matter, its parametric form. Yet the literature has so far sidestepped this issue, at least

to our knowledge, and has reported objects of interest as if they were devoid of uncertainty.

We address this problem by proposing a non-parametric approach for the estimation

of the survey respondents’ forecast densities. Specifically, we model these unknown distri-

butions without resorting to strong parametric assumptions via a non-parametric Bayesian

model with Dirichlet process priors. The non-parametric dimension allows for a flexibility

that the conventional approach – which amounts to using a generalized Beta distribution,

1Indeed the most recent surveys, such as the Federal Reserve Bank of New York Survey of Consumer

Expectations, relies heavily on probabilistic questions (see Potter (2016)).
2For very few quantities of interest, such as the median, one can compute non-parametric bounds as in

Engelberg et al. (2009). Such bounds can also be computed for the mean if one is willing to “close” the open

bins.
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again following Engelberg et al. (2009) – does not entirely afford.3 In economics and finance,

the Bayesian non-parametric approach so far has applied to the analysis of treatment effects

(Chib and Hamilton, 2002), autoregressive panel data (Hirano, 2002), job search (Koop,

2003), stochastic production frontiers models (Griffin and Steel, 2004), unemployment dura-

tion (Burda et al., 2015), and models of stochastic volatility in asset returns (Griffin, 2011,

and Jensen and Maheu, 2010) (see Griffin et al., 2011, for a recent survey of Bayesian non-

parametric and semiparametric methods, and their applications in economics). Outside of

economics, these methods are widely used in biostatistics (Mitra and Müller, 2015), machine

learning (Blei et al., 2010, Hannah et al., 2011), and psychology (Griffiths and Tenenbaum,

2006).

We use this approach to to study the evolution of the subjective forecast distribution

for the U.S. Survey of Professional Forecasters over the past forty years, focusing especially

on second moments. We show that the variance of aggregate forecast distribution fell sub-

stantially from the eighties to the nineties (the “conquest”), and fell again after the Fed

announced its long term inflation goal. We also show that

1. The fall in disagreement plays a truly minor role. It is relevant only in the eighties and

even then it is due to one or two outliers.

2. Almost all of the decline in the variance of the aggregate distribution is due to a decline

in average uncertainty. This is a result robust to omitting outliers.

3. The decline in uncertainty is not at all homogeneous across forecasters. In fact, we

show that for about half of the forecasters inflation uncertainty was very low to start

with, even in the eighties. The “conquest of inflation credibility” therefore amounts to

“high-uncertainty” forecasters becoming convinced that inflation was under control.

Next, we study the probability of a return to the inflation levels of the seventies, as

viewed from the perspective of the SPF forecasters. We think this is an interesting question

because it provides indirect evidence on the empirical appeal of recent DSGE models with

regime switching (e.g. Bianchi and Ilut (2015), Bianchi and Melosi (2014); see Sims and Zha

3The generalized Beta adopted by Engelberg et al. (2009) consists in a standard Beta distribution, except

that its domain is not constrained to be between zero and one. This distribution does not accommodate

multi-modality, and forces the researcher to arbitrarily close the open bins. Dominitz and Manski (1997)

use a lognormal distribution.
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(2006) for a VAR version). In these models one of the regime can indeed be characterized

as a “back to the seventies” regime. Do forecasters truly entertain such a possibility?

Finally, we study the likelihood of deflation, again as viewed from the perspective of the

SPF forecasters.

II Bayesian Inference for Probabilistic Surveys

For each forecaster i = 1, ..., n the available data consists of a vector of probabilities zi =

(zi,1, . . . , zi,J), with zi,j ≥ 0 and
J∑
j=1

zi,j = 1, measuring the predictive likelihood that con-

tinuous variable y (in this application, inflation) falls within the respective bin. The J bins

are mutually exclusive and contiguous, and generally cover the entire real line. We denote

with ȳ1 < . . . < ȳJ the set of bin upper bounds, with ȳJ possibly being ∞. We begin by

modeling a single cross-section of forecasts, and leave the modeling of the panel to future

work. The remainder of the section is structured as follows. The next subsection shows

that the non-parametric model implies that the zi’s distribution is characterized by infinite

mixture representation. Section II.B describes the mixture components, and section II.C

provides a brief intuition for the Gibbs sampler. In the remainder of the paper we will use

the notation x1:k to denote the sequence {x1, .., xk} for a generic variable x.

II.A The Bayesian Non-Parametric Model

We express our uncertainty over the distribution generating the zi’s using a Bayesian non-

parametric model. Specifically, each zi is independently distributed according to

h(z|G) =

∫
h(z|θ)G(dθ) (1)

where h(·|θ) is the kernel density, which depends on the parameter vector θ, and which we

discuss in detail below, and G is a random probability measure over the parameter space

θ. This random probability measure is given by the Dirichlet process (see Ferguson (1973))

DP(ψ,G0) with base measure G0 (that is, E[G(θ)] = G0(θ)) and precision parameter ψ,

which measures the concentration of G around G0.4

4 See Ghosh and Ramamoorthi (2003) for an introduction to Dirichlet process priors and Hjort et al.

(2010) for a review on the state-of-the-art practice of Bayesian non-parametrics. Norets and Pelenis (2014)
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When ψ →∞ we have the same parametric model for each forecaster: zi ∼ h(·|θi) where

the θi’s are drawn independently from G0. Outside of this limiting case, the discreteness

of the Dirichlet process generates a priori dependency among the θi’s via the formation

of “clusters”. In fact, as shown in Escobar and West (1995), the prior distribution of θn

conditional on (θ1, . . . ,θn−1) is given by

θn|θ1, . . . ,θn−1 ∼
ψ

ψ + n− 1
G0(θn) +

1

ψ + n− 1

n−1∑
i=1

δθi(dθ). (2)

With probability
ψ

ψ + n− 1
the new draw θn is generated from G0, but it is otherwise

equal to one of the previous n − 1 draws. In fact, the n forecasters’ distribution can be

characterized using N different “clusters”, where N is a random variable with prior mean

E[N ] ≈ ψlog(
ψ + n

ψ
).

Following Sethuraman (1994) G can be represented as a discrete random measure

G(dθ) =
∞∑
k=1

wkδθk(dθ) (3)

where δθk(·) denotes the unit point mass at θk, with random weights wk generated by the

stick-breaking construction

wk = vk

k−1∏
l=1

(1− vl) (4)

where the so-called “atoms” θk are i.i.d. random variables from the base measure G0 and

where the stick-breaking components vl are i.i.d. random variables from a Beta distribution

Be(1, ψ). In this infinite mixture representation, the clusters are captured by the weights.

Sethuraman (1994)’s constructive representation, in addition to being computationally con-

venient as we will see below, implies that our model has the infinite mixture representation

h(z|G) =
∞∑
k=1

wkh(z|θk) (5)

where the weights wi,k come from the same prior distribution (4) for all forecasters.

study posterior consistency in Bayesian non-parametric inference. Griffin and Steel (2011) and Bassetti et

al. (2014), among others, introduce dependent Dirichlet process priors over time and in the cross-section,

respectively.
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II.B The Mixture Components

We view our data – the reported probabilities associated with each bin, z’s – as noise-ridden

measurements of the forecasters’ predictive distribution (since the mixture components are

defined in the same way for all forecasters we omit the subscript i in this section). That is,

we assume that each forecaster has a true subjective probability distribution for y, whose

cdf is called F (y|ϕ), which is associated with a vector of probabilities over the J bins:

νj(ϕ) = F (yj|ϕ)− F (yj−1|ϕ), j = 1, . . . , J, (6)

where y0 = −∞ and, of course, νj ≥ 0 and
J∑
j=1

νj = 1 since F (·) is a proper probability

distribution. In our application we use a Gaussian cdf, i.e. F (y,ϕ) = Φ(y|µ, σ2), so that

ϕ = (µ, σ2)′.

The reported vector of probabilities z can potentially differ from ν because of “noise”,

which captures approximations, rounding off – for instance, forecasters may report zero when

the underlying probability associated to each bin is small – or to actual mistakes in reporting.

We need to respect the constraint that the zj’s still need to sum up to one when modeling

the noise. We therefore use (again) the Dirichlet distribution, which is one of the most used

distributions for compositional data (that is, data in the simplex; see Pawlowsky-Glahn et

al., 2015, for an introduction to compositional data modeling). A drawback of the Dirichlet

distribution is that its pdf is null for z’s that have some elements equal to zero, when in

fact SPF forecasters often assign zero probability to one or more bins.5 Hence we follow

Zadora et al. (2010) and Scealy and Welsh (2011) and use a distribution which allows for

values of the random vector on the boundary of the simplex. Define the sequence of indicator

variables ξj, j = 1, . . . , J with ξj = 0 if and only if zj = 0 and ξj = 1 otherwise. Define

the joint distribution of z = (z1, . . . , zJ) and ξ = (ξ1, . . . , ξJ)′ as a zero-augmented Dirichlet

distributions with probability density function

h(z, ξ|θ) =
J∏
j=1

α(νj(ϕ)|ε)ξj(1− α(νj(ϕ)|ε))1−ξj h̃(z|ν(ϕ), φ, ξ). (7)

where α(·|ε) measures the likelihood that a forecaster will report a zero probability on the

jth bin, and is a function that is close to one when its argument νj(ϕ) is close to zero, and

5 The same issue is present in another widely used model for compositional data that is the logistic

distribution (e.g., see Aitchinson, 1982, 1986). See Pawlowsky-Glahn and Buccianti (2011), chapter 4, for a

discussion on rounded, count and essential zeros in compositional data and on some alternative ways to deal

with zeros.
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h̃(z|ν(ϕ), φ, ξ) is the standard Dirichlet distribution defined on the elements of z that are

non zero:

h̃(z|ν(ϕ), φ̃, ξ) =
Γ
(∑

j∈J̃ φ̃ν̃j(ϕ)
)

∏
j∈J̃ Γ(φ̃ν̃j(ϕ))

∏
j∈J̃

z
φ̃ν̃j(ϕ)−1
j , (8)

where J̃ = {j = 1, . . . , J ; ξj = 0} is the set indexes of the non-zeros elements of z, φ̃ = φκ

is the rescaled precision, with κ =
∑
j∈J̃

νj(ϕ), and ν̃j(ϕ) = νj(ϕ)/κ for j ∈ J̃ are the

renormalized ν’s, which take into account the fact that if a forecaster decides to report zero

probability for one or more bins, she needs to adjust the probabilities associated with the

other bins so that they still sum up to one.6

The probability α(·|ε) of zero-valued observations is modeled as

α(ν|ε) =

∫ ε

0

Be(x|ν, r)dx (11)

where Be(x|m, r) denotes the pdf of a Beta distribution Be(m, r) with mean m and precision

r parameters. The parameter r is fixed at 100, and the prior for ε is such that α(νj(ϕ)|ε) is

close to one for νj(ϕ) less than 1%, very small for any νj(ϕ) larger than 5%, and virtually

zero when νj(ϕ) is larger than 10%.7 Figure ?? in the appendix shows the mean and the

90% coverage intervals of α(·|ε) as a function of ν

The distribution used in the infinite mixture representation (5) is the marginal distribu-

6Note that the conditional Dirichlet satisfies some relevant properties of the unconditional Dirichlet, that

are the elements of z and their marginal conditional means

E(zj |ξ) =
φ̃ν̃j∑

j∈J̃ φ̃ν̃j(ϕ)
=

νj∑
j∈J̃ νj(ϕ)

= ν̃j(ϕ), j ∈ J̃ (9)

sum up to one, and their marginal conditional variances

V(zj |ξ) =
ν̃j(1− ν̃j)

(φ
∑
j∈J̃ νj(ϕ) + 1)

, j ∈ J̃ (10)

go to zero with φ→∞.
7We chose the beta distribution because it is the marginal of a Dirichlet, but we could have chosen any

other distribution satisfying the above requirements. Note that since the ξj are down independently from

one another, in principle all ξj ’s could be equal to one, thereby violating the constraint that the sum of the

zj ’s is one. In practice, since the νj ’s must sum to one, the probability of such an outcome is virtually zero

(that is, some νj is far enough from zero that α(νj |ε) is essentially zero). Our parametrization of the beta

distribution is Be(x|ν, r) =
1

B(νr, (1− ν)r)
xνr−1(1 − x)(1−ν)r−1 with x ∈ (0, 1), m ∈ (0, 1) and precision

r > 0.
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tion of z implied by expression (8):

h(z|θ) =
∑
ξ∈Z

J∏
j=1

α(νj(ϕ)|ε)ξj(1− α(νj(ϕ)|ε))1−ξjh(z|ν(ϕ), φ, ξ) (12)

where Z is the set of all vectors with 0-1 binary entries (Z = {ξ = (ξ1, . . . , ξJ)′ ∈ {0, 1}J}),
and θ′ = (ϕ′, φ, ε). In fact, for computational reasons, we take a data augmentation approach

and write the Gibbs sampler using the joint distribution h(z, ξ|θ). Our infinite mixture model

is then

h(z, ξ|G) =

∫
h(z, ξ|θ)G(dθ) =

∞∑
k=1

wkh(z, ξ|θk). (13)

Finally, we complete the model description by specifying the base measure G0 and the

prior for the hyperparameter ψ. This is given by independent priors for µ, σ2, φ, and ε that

are given by a Gaussian for µ, and gamma distributions for σ2, φ, and ε:

G0(θ) = G0(µ, σ2, φ, ε) = N (m, s2)Ga(aσ, bσ)Ga(aφ, bφ)Ga(aε, bε). (14)

The hyper-parameter ψ > 0 is driving the prior expected number of components. Large

values of ψ increase the probability of introducing new components in the mixture. We

assume a hierarchical prior and specify a gamma prior distribution for ψ

Ga(aψ, bψ). (15)

We conclude this section by discussing some of the model’s implications. If the forecaster

never reports zero probabilities (that is, conditional on ξj = 0 ∀j), then in expectation zj

coincides with νj: E[zj|θ] = νj(ϕ). Expression (13) then implies that the distribution of each

zj, conditional on ξj = 0 ∀j, will be centered at the infinite mixture of the bin probabilities

νj’s implied by each mixture component F (·|ϕk):

E [zj|G] =
∞∑
k=1

wkνj(ϕk) =
∞∑
k=1

wk(F (yj|ϕk)− F (yj−1|ϕk)). (16)

II.C Posterior inference

Our Gibbs sampler applied to the cross section of (zi, ξi), i = 1, . . . , n uses the convenient

approach proposed by Walker (2007) and Kalli et al. (2011). For each forecaster i, conditional
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on the sequence of weights wk’s (w1:∞) and the sequence of atoms θk’s (θ1:∞), expression

(13) can be written as the marginal distribution of

h(zi, ξi, ui|w1:∞,θ1:∞) =
∞∑
k=1

I(ui < wk)h(zi, ξi|θk) (17)

with respect to ui, where ui is uniformly distributed over the interval [0, 1], and independent

across i, and I(·) is an indicator function. This implies that the conditional distribution of

zi and ξi given ui, the weights and the atoms, is

h(zi, ξi|ui, w1:∞,θ1:∞) =
1

h(ui|w1:∞)

∑
k∈A(ui|w1:∞)

h(zi, ξi|θk), (18)

where the set A(ui|w1:∞) includes all the atoms with a weight wk larger than ui (A(ui|w1:∞) =

{k : ui < wk}), and the marginal h(ui|w1:∞) =
+∞∑
k=1

I(ui < wk) since each h(·|θk) integrates

to one. Unlike expression (13), expression (18) is a finite mixture where each component

has probability
1

h(ui|w1:∞)
, which is straightforward to draw from using standard methods.

Specifically, we will use the auxiliary indicators di’s, which are equal to k if we draw from

the kth mixture component (note that, given ui, the kth component will only be drawn if it

belongs to the set A(ui|w1:∞)). The resulting complete-data likelihood function is

L(z1:n, ξ1:n|u1:n, d1:n, v1:∞,θ1:∞) =
n∏
i=1

I{ui<wdi
}h(zi, ξi|θdi) (19)

with di ∈ {k : ui < wk}, where v1:∞ is the infinite dimensional sequence containing the

stick-breaking components which map into the weights via expression (4). The complete

Gibbs sampler is given in Appendix A.8

II.D Posterior consistency

Let X be the sample space with elements x and Θ the space of the mixing parameter θ

and Υ the space of the hyperparameter υ. Let F(X ) be the space of probability densities

on X , M(Θ) the space of probability measures on the mixing probability space Θ, and G

the mixing distribution on Θ with density g and a prior Π on M(Θ). Denote a prior for υ

8See also Escobar (1994) and Ishwaran and James (2001) for a Gibbs sampler based on the Polya-urn

representation of the Dirichlet process and Ishwaran and Zarepour (2000) for a Gibbs sampler based on

a truncation of the infinite number of mixture components. Finally, Papaspiliopoulos and Roberts (2008)

proposed an exact simulation algorithm based on retrospective sampling.
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by π and the weak support of π by supp(π) with π independent on G. Let K(x; θ, υ) be a

probability kernel on X ×Θ×Υ, then a type II mixture prior (see Wu and Ghosal (2009a))

Π∗ on F(X ) induced by Π, π and K(x; θ, υ) is defined via the map

(υ,G) 7→ fυ,G(x) =

∫
K(x; θ, υ)dG(θ) (20)

In our model the kernel is

K(x; θ, υ) = h(z, ξ|θ) (21)

where θ = (µ, σ2), υ = (ε, φ), x = (z, ξ). The sample space is X = {0, 1}J × ∆J where

∆J denote the J-dimensional simplex. The random mixing distribution Π is given by the

Dirichlet process prior (µ, σ)|G ∼ G where G ∼ DP(ψ,G0) with G0 = N (m, s2)Ga(aσ, bσ).

The hyperprior π is Ga(aε, bε)Ga(aφ, bφ).

Let us denote with KL(f, g) the Kullback-Leibler (KL) divergence between f, g ∈ F(X ),

i.e. KL(f, g) =

∫
f log(f/g). Then, Schwartz theorem states that weak posterior consis-

tency at a ”true density” f0 ∈ F(X ) holds if the prior assigns positive probabilities to the

Kullback-Leibler neighborhoods of f0, where a Kullback-Leibler neighborhood of size η of a

density f0 ∈ F(X ) is defined as Kη(f0) = {f ∈ F(X )|KL(f0, f) < η}. By convention, we

say that the KL property holds at f0 ∈ F(X ) or f0 is in the KL support of Π∗, and write

f0 ∈ KL(Π∗) if Π∗(Kη(f0)) > 0 for every η > 0.

We shall notice that in our model the kernel h(z, ξ|θ) = h̃(z|θ, ξ)p(ξ|α(θ)) decomposes

as the product of continuous part h̃(z|θ, ξ) and discrete part p(ξ|α(θ)), where α is the prob-

ability ξj = 1 and 1 − α the complementary probability associated with ξj = 0. From Eq.

11, one can see that the kernel is a rounded kernel with probability mass written as inte-

grals of density functions, that is α(f) =

∫ ε

0

f(x|θ)dx and (1− α(f)) =

∫ 1

ε

f(x|θ)dx, with

f(x|θ) the density of a beta distribution Be(ν(θ), r). Thus, the probability mass writes as

a mapping g(f) = (α, 1− α) from the set F([0, 1]) of densities on [0, 1] to the set F({0, 1})
of probability masses on {0, 1}. The mapping g : F([0, 1]) 7→ F({0, 1}) maintains the KL

neighborhoods of F([0, 1]). In the following lemma, for the shake of simplicity and without

loss of generality we state the result for the univariate case.

Lemma 1. Assume p0 = (α0, 1 − α0) ∈ F({0, 1}) and f0 ∈ F([0, 1]) such that p0 = g(f0).

Let Kη(f0) a KL neighborhood of size η around f0. Then the image g(Kη(f0)) contains values

p ∈ F({0, 1}) in the KL neighborhood Kη(p0) of p0.
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Proof. The proof follows the same lines of the proof of Lemma 1 in Canale and Dunson

(2011). We have

KL(f0, f) =

∫ 1

0

f0(x) log(
f0(x)

f(x)
)dx =

∫ ε

0

f0(x) log(
f0(x)

f(x)
)dx+

∫ 1

ε

f0(x) log(
f0(x)

f(x)
)dx

≥
∫ ε

0

f0(x)dx

(
log(

∫ ε

0

f0(x)dx)− log(

∫ ε

0

f(x)dx)

)
+∫ 1

ε

f0(x)dx

(
log(

∫ 1

ε

f0(x)dx)− log(

∫ 1

ε

f(x)dx)

)
= α0 log(

α0

α
) + (1− α0) log(

1− α0

1− α
)

Thus if f ∈ Kη(f0), η > KL(f0, f) ≥ KL(p0, p) then p ∈ Kη(p0).

Since f is parametrized in θ, the previous lemma allows us to show the weak posterior

consistency looking at the probability assigned to the neighborhoods of f0 by the prior dis-

tributions defined on Θ. Since for in our model the conditions in Theorem 1 and Lemma 3

of Wu and Ghosal (2009b,a) are satisfied then Π∗(Kη(f0)) > 0 .

II.E Prior Specification for the Empirical Application

TBW

III Results

III.A The Conquest of Inflation Credibility in the U.S.

• Figure 1 shows the aggregate subjective distribution of 2-year ahead inflation resulting

from our estimation. Specifically, if Ft,i(y) =
∞∑
k=1

w
(t)
ik F (y|θ(t)

k ) is the estimated un-

derlying subjective distribution for forecaster i (recall that the w
(t)
ik are the weights of

the infinite mixture associated with forecaster i in period t) we show the mean, 68,

and 95 percent posterior coverage intervals (gray line with markers is actual inflation)

associated with

F̄t(y) =
1

n

n∑
i=1

Ft,i(y)
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Figure 1: The Aggregate Subjective Distribution of 2-Year Ahead Inflation

Note: The shaded areas show the 68 and 90 percent posterior coverage intervals.

• Tom Sargent’s famous work on “The Conquest of American Inflation” is about first

moments — the decline over time in both realized inflation and mean inflation ex-

pectations. This paper is about the second moment of the forecast distribution, the

variance, which reflects the forecasters’ belief of the extent to which the central bank

can keep inflation under control.

• The variance of the distribution narrows substantially over time. This narrowing is

what we refer to as the “conquest of inflation credibility” in the U.S. This is evident

in Figure 2 below. Both drop dramatically in the early nineties, and drop again after

the announcement of the Federal Reserve’s long term inflation goal in early 2012. The

rest of the paper documents the drivers of this change in the second moment of the

subjective distribution. We find that

1. The fall in disagreement plays a truly minor role. It is relevant only in the eighties

and even then it is due to one or two outliers.

2. Almost all of the decline in the variance of the aggregate distribution is due to a

decline in average uncertainty. This is a result robust to omitting outliers.

3. The decline in uncertainty is not at all homogeneous across forecasters. In fact,

we show that for about half of the forecasters inflation uncertainty was very low to

start with, even in the eighties. The “conquest of inflation credibility” therefore
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amounts to “high-uncertainty” forecasters becoming convinced that inflation was

under control.

Figure 2: Variance and Interquartile Range of the Aggregate Subjective Distribution of

2-Year Ahead Inflation

Variance IQR

Note: The shaded areas show the 68 and 90 percent posterior coverage intervals.

• Figure 3 uses the law of total variance to decompose the variance of the aggregate

distribution into uncertainty (dashed line – average variance across forecasters) and

disagreement (dotted line – variance of mean forecasts). Disagreement seems to play a

large role in the mid-eighties, and a fairly minor role relative to uncertainty otherwise.

• Figure 4 shows disagreement and uncertainty, together with the measures computed

throwing away just two outliers per cross-section (lines with markers). For disagree-

ment we throw away the forecasters with highest and lowest mean, and for uncertainty

the forecasters with highest and lowest variance (removing the two highest variance

forecasters yields very similar results). Clearly, much of disagreement in the 80s is

spurious, as it it due to just two individuals. The decline in uncertainty is robust.

Figure 5 shows the variance of the aggregate distribution after throwing away the two

outliers (highest/lowest mean forecasters): uncertainty is clearly the key driver.

• Figure 6 provides more evidence of the reduction in uncertainty over the sample pe-

riod, especially for “high-uncertainty” forecasters. It shows the predictive distributions
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Figure 3: Variance Decomposed into Uncertainty and Disagreement
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Figure 4: Uncertainty and Disagreement: With and Without Outliers

Disagreement Uncertainty

Note: The shaded areas show the 68 and 90 percent posterior coverage intervals.

across forecasters, ranked by variance, at the beginning (1982) and at the end of our

sample (2017). All subjective distribution of course shift to the left – on average pre-

dictive inflation is lower — but the most striking difference between the two plots is the
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Figure 5: Variance Decomposed into Uncertainty and Disagreement – Without Outliers
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reduction in uncertainty for all forecasters, but especially for high variance forecasters.

Figure 6: Predictive Distributions Across Forecasters: 1982 vs 2017

1982 2017
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III.B Heterogeneity in Uncertainty

• Figure 7 splits for each cross sections the forecasters in two — high and low variance.

The left panel and shows the evolution of average variance for each group. The right

panel shows the evolution of the ratio of the two.

1. Low variance forecasters have pretty low variance throughout the sample. They

were convinced from the beginning that inflation was “under control”. High vari-

ance forecasters were definitely not convinced in the eighties, but their variance

drops in the early nineties. This drop drives the fall in the variance of the aggre-

gate forecast distribution – the “conquest of inflation credibility”.

2. Heterogeneity in the variance is large: At times high variance forecasters’s un-

certainty is almost ten times as large as that of that for low variance forecasters

(right panel)

Figure 7: Heterogeneity in Uncertainty

Average Variance for each group Ratio of average variances

1980 1985 1990 1995 2000 2005 2010 2015 2020
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11

• Figure 8 asks whether high and low variance forecasters also have different mean pro-

jections. Specifically, it shows the mean forecasts, averaged across high (red) and low

(blue) variance forecasters. It makes the point that high and low variance forecasters

do not have different mean projections on average. High variance forecasters tend to
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have slightly higher mean projections, but the difference is generally not large, except

perhaps for the mid-eighties.

Figure 8: Differences in Mean Forecasts: High vs Low Uncertainty Forecasters

• Figure 9 investigates heterogeneity in the mean projections, and shows that it is ar-

guably much less interesting than heterogeneity in uncertainty. Specifically, for each

cross sections we rank forecasters according to their mean inflation forecasts and split

forecasters into two groups — high and low mean. Figure 9 shows the average mean

projections for each group. It shows that by and large the average mean projections

for high (red) and low (blue) mean forecasters move in parallel as they decline over

time. This is another way of making the point that changes in disagreement have not

been a key feature of the evolution of the distribution of subjective forecasts for the

SPF.

• Figure 10 describes the evolution over time in forecasters’ heterogeneity. It shows

the kernel estimates of cross-sectional distribution of variances (left panel) and means

(right panel) from 1982 to 2017.

• The left panel of Figure 10 makes two points. First, throughout the sample there is

always a substantial mass of forecasters with low variance. Second, the main change

over time in the cross sectional distribution concerns the right tail. This is very heavy
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Figure 9: Differences in Mean Forecasts: High vs Low Mean Forecasters

in in the eighties and early nineties, but becomes less and less important over time,

and virtually disappears toward the end of the sample.

• In sum, the cross-sectional distribution of variances changed quite a bit from the be-

ginning to the end of the sample, consistently with what we have shown so far. The

cross-sectional distributions of the means (right panel) by and large is very similar

across the entire sample, however, except of course for the decrease in the mean (and

for some erratic behaviour in the mid-eighties).

III.C Back to the Seventies?

• Next, we study the probability of a return to the inflation levels of the seventies, as

viewed from the perspective of the SPF forecasters. We think this is an interesting

question because it provides indirect evidence on the empirical appeal of recent DSGE

models with regime switching (e.g. Bianchi and Ilut (2015), Bianchi and Melosi (2014);

see Sims and Zha (2006) for a VAR version). In these models one of the regime can

indeed be characterized as a “back to the seventies” regime. Do forecasters truly

entertain such a possibility?
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Figure 10: Evolution Over Time in the Cross-Sectional Distribution of Variances and

Means

Variance Mean

• Figure 11 shows the probability that inflation is at least as high as 6.9% , the average

year-over-year inflation rate in the seventies.

• The first row of the panel shows these probabilities computed using the aggregate

forecast distribution 1−F̄t(y). Not surprisingly, these probabilities were elevated (more

than 50%) in the early eighties, but fell substantially thereafter becoming virtually

negligible (left panel). The right plot zooms on the period since 2000, and shows that

1− F̄t(6.9) is always significantly less than 0.5%.

• In the other rows we rank 1 − Fi,t(6.9) and show the values for the top 25th, 10th,

and 5th quintile of the cross-sectional distribution. These probabilities are all above

1 − F̄t(6.9) in the eighties, indicating that a substantial fraction of forecasters were

convinced inflation was going to return to high levels. Interestingly, this is not the

case in the recent period. For instance, 1 − Ftop 25,t(6.9) < 1 − F̄t(6.9) for t ≥ 2000,

suggesting that at least 75% of forcasters believe that a return to the seventies is

highly unlikely. One has to get to the 10th quantile of the cross-sectional distribution

of 1 − Fi,t(6.9) to see probabilities around 1%, and to the 5th quantile (basically, the

second highest forecaster, given the size of the cross-section) to find any substantial
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probability.

• In sum, we find that only a fringe of forecasters place any significant probability of the

possibility of a return to the seventies.

III.D Deflation Fear

• The Great Recession and its aftermath, with very large output gaps and conventional

monetary policy constrained by the zero lower bound, rose the specter of deflation,

which the U.S. economy experienced in the 1930s following the Great Depression.

Again, we investigate the likelihood of deflation from the perspective of the professional

forecasters.

• The first row of the panel in Figure 12 shows the probability of deflation (that is,

P{y ≤ 0}) computed using the aggregate forecast distribution F̄t(y). Interestingly,

this probability was non negligible in the mid-eighties, which is further evidence of the

high uncertainty during this period. In the recent period the likelihood of deflation

rises to almost ten percent in the aftermath of the Great Recession but falls thereafter

to about 1 percent.

• In the other rows we rank Fi,t(0) and show the values for the top 25th, 10th, and

5th quintile of the cross-sectional distribution. The likelihood of deflation for the 25th

quartile of the cross sectional distribution is not very different from that of the average

distribution, indicating that the distribution of Fi,t(0) is quite right-tailed.

• For forecasters in the 5th and 10th quantile the likelihood of deflation becomes large

in 2009—almost 50%—but decreases rapidly thereafter. Currently this probability is

larger than that associated with a return to the seventies, which is easily explained by

the fact that inflation is currently much closer to zero than to 6 percent, but is not

particularly large.
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Figure 11: Evolution Over Time of High Inflation Probabilities
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Figure 12: Evolution Over Time of Deflation Probabilities

Average CDF

Top 25%

Top 10%

Top 5%

IV Conlusions

TBW
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A The Gibbs Sampler

Let Dk = {i : di = k} denote the set of indexes of the observations allocated to the k-th

component of the mixture. Let D = {k : Dk 6= ∅} denote the set of indexes of the non-

empty mixture components (in the sense that at least one i is using the kth component) and

d̄ = maxD the overall number of stick-breaking components used. The Gibbs sampler works

as follows:

1. v1:∞, u1:n|d1:n,θ1:∞, ψ, z1:n, ξ1:n

Call v1:d̄ the stick-breaking elements associated with the mixture components that are

being used (conditional on d1:n). Following Kalli et al. (2011), drawing from the joint

posterior of v1:d̄, vd̄+1:∞, and u1:n, conditional on all other parameters, is accomplished

by drawing sequentially from: (a) the marginal distribution of v1:d̄, (b) the conditional

distribution of u1:n given v1:d̄, and (c) from the conditional distribution of vd̄+1:∞ given

u1:n and v1:d̄.

(a) v1:d̄|d1:n,θ1:∞, ψ, z1:n, ξ1:n.

After integrating out the ui’s, the posterior of v1:∞ is proportional to

p(v1:∞|d1:n,θ1:∞, ψ, z1:n, ξ1:n) ∝

(
n∏
i=1

wdih(zi, ξi|θdi)

)(
∞∏
l=1

(1− vl)ψ−1

)

∝

(
n∏
i=1

(
vdi

di−1∏
l=1

(1− vl)

)
h(zi, ξi|θdi)

)(
∞∏
l=1

(1− vl)ψ−1

)
.

Now note that since vd̄+1:∞ do not enter the likelihood (19) – that is, the term

within the first parenthesis – they can be easily integrated out resulting in

p(v1:d̄|d1:n,θ1:∞, ψ, z1:n, ξ1:n) ∝

(
n∏
i=1

(
vdi

di−1∏
l=1

(1− vl)

)
h(zi, ξi|θdi)

)(
d̄∏
l=1

(1− vl)ψ−1

)
.

Therefore samples for v1:d̄ are obtained by drawing each vk independently from

π(vk|u1:n, d1:n, . . . ) ∝ (1− vk)ψ+bk−1vakk (A-1)

where ak =
n∑
i=1

I(di = k) and bk =
n∑
i=1

I(di > k), that is, vk is drawn from a

Beta(ak + 1, bk + ψ).
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(b) u1:n|v1:d̄, d1:n,θ1:∞, ψ, z1:n, ξ1:n.

The likelihood (19), seen as a function of each ui, i = 1, . . . , n, is simply a uniform

distribution over [0, wdi ]. Hence

π(ui| . . . ) ∝
1

wdi
I(ui < wdi). (A-2)

(c) vd̄+1:∞|u1:n, v1:d̄, d1:n,θ1:∞, ψ, z1:n, ξ1:n.

Again, vd̄+1:∞ do not enter the likelihood (19), so samples from those vk with

k > d̄ are simply obtained by drawing from the prior Beta(1, ψ):

π(vk|u1:n, d1:n, . . . ) ∝ (1− vk)ψ−1. (A-3)

Of course, even if it is straightforward to execute, we do not want to generate an

infinite number of draws. Fortunately we do not need to, as explained in Walker

(2007). Inspection of (19) reveals that those mixtures for which wk < ui will never

be used, at least given the the draw for ui. Let n̄i the smallest integer such that
n̄i∑
k=1

wk > 1−ui. Since by construction
∞∑
k=1

wk = 1, it must be that
∞∑
n̄i+1

wk < ui and

therefore, a fortiori, wk < ui for k > n̄i. Now define n̄ = max{n̄i, i = 1, . . . , n}.
Conditional on u1:n, at most we will use n̄ mixture components in the estimation.

Hence we only need to draw vd̄+1:n̄.

2. θ1:∞|v1:∞, u1:n, d1:n, ψ, z1:n, ξ1:n

For the same argument given above, we actually do not have to draw an infinite number

of atoms, but only as many as they may possibly be used (at least given the current

draw of u1:n) – that is, at most n̄. Note also that given the way the ui’s are drawn

(from a uniform distribution over [0, wdi ]), if k ∈ D then k ≤ n̄.

(a) For k ∈ D draws of θk are obtained from

π(θk| . . . ) ∝

(∏
i∈Dk

h(zi, ξi|θk)

)
G0(θk) (A-4)

Since the joint distribution is not tractable, samples have been generated by

Adaptive Metropolis Hastings (AMH) proposed in Andrieu and Thoms (2008).

More specifically, at the j-th iteration of the AMH for a parameter θ of dimension

p the proposal distribution is

θ∗ ∼ N (θ(j−1),Υ(j)) (A-5)
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with covariance matrix Υ(j) = exp{ξ(j)}Ip where ξ(j) is adapted over the iterations

as follows

ξ(j) = ξ(j−1) + γ(j)(α̂(j−1) − ᾱ) (A-6)

where ᾱ = 0.3 represents the desired level of acceptance probability, and α̂(j−1) is

the previous iteration estimate of the acceptance probability (i.e. the acceptance

rate). The diminishing adaptation condition is satisfied by choosing γ(j) = j(−a).

In the application we set a = 0.7.

(b) For k /∈ D, k ≤ n̄ draws of θk are obtained via independent draws from the base

measure (14).

We therefore obtained a sequence of draws θ1:n̄, which we will use in the next Gibbs

sampler step.

3. d1:n|v1:∞, u1:n,θ1:∞, ψ, z1:n, ξ1:n

Draws for each di, i = 1, . . . , n, are obtained by drawing from a multinomial with

weights proportional to

π(di| . . . ) ∝ I(ui < wdi)h(zi, ξi|θdi) (A-7)

with di ∈ {1, . . . , n̄i}. Note that in this draw we consider all possible mixture compo-

nents from 1 to n̄i, not only those used so far (that is, those in D). They will be drawn

proportionally to their ability to fit of the data, as measured by h(zi, ξi|θk).

4. ψ|v1:∞, u1:n, d1:n,θ1:∞, z1:n, ξ1:n ???

B Data description

We focus on the Survey of Professional Forecasters, managed since 1990 by the Federal

Reserve Bank of Philadelphia, and previously by the American Statistical Association and

the National Bureau of Economic Research. The panel of forecasters, who include univer-

sity professors and private-sector macroeconomic researchers, are asked to predict American

GDP, inflation, unemployment, interest rates, and other macroeconomic variables. The sur-

vey, which is performed quarterly, is mailed to panel members the day after the government

release of quarterly data on the national income and product accounts. The composition

of the panel changes gradually over time, with individual members providing forecasts for
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about six years on average. The lowest number of respondents across vintages was 14 and

the highest was 48.

We restrict our attention to the variable year-over-year GDP deflator inflation (PRPGDP)

over the following year for the sample 1982Q1-2015Q1. Our sample choice is explained by

the following reasons. The survey began asking forecasters for their annual (rather than

quarterly) predictions in the third quarter of 1981. Probabilistic forecasts are only for an-

nual changes. Moreover, the horizon varies across quarters. Indeed, the survey asks inflation

growth for the current and next year, implying the longest horizon is eight quarters (two-

years) ahead in the first quarter; seven quarters ahead in the second quarter; six quarters

ahead in the third quarter; five quarters ahead in the fourth quarters. We restrict our study

to the 2-years ahead horizons and collect predictions in the first quarter of each year for a

total of 34 predictions.

The intervals in which respondents place probabilities have changed over the years. From

the third quarter of 1981 through the end of 1991, there were 6 intervals, and after 1991,

there were 10 intervals, see Table A-1.

Figure ?? show the density forecast over time of the aggregate survey taking an average

across individual probabilistic predictions.

Table A-1: Probability Ranges

Ranges (Year-over-Year Percent Changes, Percentage Points)

Bins 1981:Q3 to 1985:Q1 1985:Q2 to 1991:Q4 1992:Q1 to 2013:Q4 2014:Q1 to Present

1 > 12 > 10 > 8 > 4

2 10 to 11.9 8 to 9.9 7 to 7.9 3.5 to 3.9

3 8 to 9.9 6 to 7.9 6 to 6.9 3 to 3.4

4 6 to 7.9 4 to 5.9 5 to 5.9 2.5 to 2.9

5 4 to 5.9 2 to 3.9 4 to 4.9 2 to 2.4

6 < 4 < 2 3 to 3.9 1.5 to 1.9

7 2 to 3.9 1 to 1.4

8 1 to 1.9 0.5 to 0.9

9 0 to 0.9 0 to 0.4

10 < 0 < 0

Note:
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