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1. INTRODUCTION

Following the last financial crisis and the COVID-19 pandemic, sovereign debts across the
euro area have risen to levels unprecedented since the Second World War. In this context,
the sustainability of fiscal positions—especially in the peripheral Member States—has been
called into question. Against this backdrop, numerous academics, policymakers, and ana-
lysts have discussed proposals for issuing common bonds—often referred to as Eurobonds.
The rationale behind such common bonds is most often, and more or less explicitly, a debt ser-
vice relief for peripheral member states (Beetsma and Mavromatis, 2014; Favero and Missale,
2012). An ulterior motive backing common issuances is to ensure financial stability, notably
by addressing the demand of financial institutions for safe assets (Brunnermeier et al., 2017).!
Moreover, if issued on a large scale, a joint debt instrument is advocated as a useful device to
increase bond market liquidity in the euro area (Hellwig and Philippon, 2011).

Surprisingly, the different proposals for common debt issuance seldom come with pricing
attempts.” Arguably, this shortage of quantitative analysis may have contributed to the lack
of support for common bond issuances. This paper offers a way to explore the pricing of joint
sovereign debt instruments.

Guarantees play a significant role in the pricing of joint debt instruments. Our analysis
focuses on two polar cases: (a) the case of several and joint guarantees (SJG) whereby all
countries are jointly liable for each other’s default through the common debt instrument and
(b) the case of several but not joint guarantees (SNJG) whereby each debtor is responsible only
for a percentage contribution to each redemption. In the former case, participating European
countries are responsible not only for their own percentage contribution to the bond, but also
for covering any other state’s unpaid contributions. In the latter case (SNJG bonds), each
participant is liable only for the debt service and principal redemption corresponding to its
share of the bond. In both cases, the joint debt instrument would trade as a single bond; it

could be issued by an independent debt agency, with funds raised, and obligations divided

! Although Eurobonds may constitute a way to guide the euro area towards financial stability, the objectives
of Eurobond proposals do not fully overlap with those of the European Financial Stability Facility’s (EFSF)
and the European Stability Mechanism’s (ESM) programs. Typically, the objective of the ESM is to provide
financial assistance to euro-area countries experiencing, or threatened by, severe financing problems; this would
complement joint issuance in times of financial distress, but goes beyond the preventive intention of a common
euro-area bond.

2The evaluation of price effects remains merely speculative in this literature (Claessens, Mody, and Vallée,
2012, end of Section IV.B).
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between participating issuers in fixed shares. The obligations of each participating country
would depend on the size of the funds obtained (see, e.g., De Grauwe and Moesen, 2009;
European Commission, 2011; Delivorias and Stamegna, 2020).

In the present paper, we propose a multi-country credit-risk model where both standard
and common sovereign bonds—featuring one of the two polar types of guarantees discussed
above—can be priced. The model estimation relies on national bond prices; the sample covers
the period from 2008Q1 to 2021Q2.> The estimation . We focus on the four largest euro-area
economies: Germany, France, Italy, and Spain (making up 75% of the entire euro-area GDP).
Once the model is estimated, we compute counterfactual Eurobond prices over the same
period.

In the model, the probability of default depends on the considered entity’s fiscal space,
which can be a single country or a group of countries. The fiscal space is the distance be-
tween public debt and the so-called fiscal limit; this limit, in turn, represents the maximum
outstanding debt that can credibly be covered by future primary budget surpluses (Bi, 2012;
Bi and Leeper, 2013). The probability of default gets strictly positive only if public debt breaks
the fiscal limit, that is, if the fiscal space is negative. In this framework, a natural way to con-
ceive a SJG bond is to consider that it is issued by an entity for which both underlying debtors’
fiscal revenues and debts are pooled. By contrast, a SNJG bond is equivalent to a combination
of national bonds weighted by their participation share in the debt instrument.

Estimating the model involves the estimation of both the model parameters and the time
series of national fiscal limits. These two tasks are jointly carried out by resorting to an adap-
tation of the so-called “inversion technique” a la Chen and Scott (1993). For a given model
parameterization, formulas for the sovereign bond yield spreads are inverted to get fiscal
limit estimates.* The maximum likelihood function can then be computed, and it is maxi-
mized to yield the estimated model parameterization.
~ 3Some bonds issued by European institutions can be seen as proxies for Eurobonds (see end of Subsec-
tion 6.1, where we compare our model-implied S]JG prices with the latter). However, for the time being, there
are not enough of these bonds to determine constant-maturity interest rates on a sufficiently long sample.

*We posit reduced-form dynamics for national debts and fiscal limits and derive resulting bond pricing.
Our approach shares some similarities with the Black-Scholes-Merton model (Black and Scholes, 1973; Merton,
1974, and its numerous extensions) in that it also features a default threshold. As noted by Dulffie and Singleton
(2003, Subsection 3.2.2), the tractability of the Black-Scholes-Merton model rapidly declines as one allows for
a time-varying default threshold. Although our framework features a time-varying debt threshold, tractabil-

ity is preserved thanks to approximation formulas—presented in Appendix D—that build on the literature on
shadow-rate term-structure models (see, e.g., Krippner, 2015; Wu and Xia, 2016).



Our model features a good fit of the observed term-structure of bond yield spreads across
all countries; this fit is comparable to the one obtained in term-structure studies where de-
fault intensities are purely latent and have no macro-finance interpretation. We also obtain
sizeable estimates of sovereign credit risk premiums, defined as those components of sover-
eign spreads that would not exist if agents were risk-neutral. Moreover, to the best of our
knowledge, this paper is the first to provide time-varying estimates of fiscal limits for differ-
ent euro-area countries.’

Our counterfactual analysis results highlight the importance of guarantees on Eurobond
pricing. By design, yield spreads associated with Eurobonds featuring several but not joint
guarantees (SNJG) are close to the (issuance-weighted) average of country-specific spreads.
By contrast, common bonds with several and joint guarantees (SJG) benefit from fiscal diver-
sification effects resulting in a sizeable credit spread compression: during the height of the
euro-area sovereign debt crisis, the SNJG bond yield spread was three times larger than the
SJG one (5-year maturity). Hence, raising funds through a joint liability debt instrument—the
SJG bond—may substantially reduce aggregate debt service in the presence of heterogenous
fiscal conditions. Interestingly, depending on the parameterization, and for shorter maturi-
ties, the yield spread associated with the SJG bond is, at times, lower than the German bond
one. (The German bonds, called Bunds, are considered the safest bond in the euro area.) Even
when this is not the case, i.e. when SJG yields are higher than those of the bonds issued by
the best-rated countries, one can envision post-issuance redistribution schemes under which
all countries eventually benefit from common issuances. One such scheme is to distribute the
overall gains in such a way as to achieve a reduction in “post-redistribution yields” that is
the same in all countries (w.r.t. the yield on their respective national bonds). For the 10-year
maturity, this reduction would have been about 30 basis points over the estimation sample.

The main concern associated with common debt issuance usually pertains to moral hazard.
Under several and joint guarantees issuance schemes, some countries might be tempted to
issue more debt given that the interest rate on jointly guaranteed debt is less sensitive to an
individual debt increase than non-guaranteed debt. Although our reduced-form modeling
framework does not deal with moral hazard in a structural way, our findings remain valid
~ SPallara and Renne (2020) provide time-varying estimates of fiscal limits for eight economies, but none of

them is in the euro area. Moreover, in Pallara and Renne (2020), each country is considered independently from
the others.
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under the conditions that (i) the amount of debt issued under the SJG scheme is relatively
small or that (ii) some form of ex-post redistribution of the yield gains applies. First, as long
as a sizable share of countries” funding needs are met with the issuance of national bonds,
the overall debt service remains sensitive to countries” indebtedness. Thus, in the absence
of redistribution schemes (case (i)), a necessary condition for market discipline to remain
effective is to limit the issuance of Eurobonds. In our calculation, we typically envision that
jointly issued debt does not exceed 5% of total consolidated GDP. Second, we show that some
ex-post yield gains’ redistribution schemes may dampen moral hazard effects (case (ii)). For
instance, considering the above-mentioned scheme—in which the issuance of SJG bonds ulti-
mately translates into the same yield reduction for all involved countries—the funding costs
of the different countries remain sensitive to the national fiscal conditions, thereby alleviating
concerns of reduced fiscal discipline stemming from the issuance of common bonds. More
precisely, for this scheme, we obtain that the slope of the curve relating post-redistribution
yields to indebtedness is similar to that associated with national bonds (but, for each country,
the former curve is about 30 basis points below the latter, which reflects aggregate gains).
The rest of this paper is organized as follows. Section?2 reviews related literature. The
model is developed in Sections 3 (stylized version) and 4 (full-fledged version). Section 5 de-
scribes the estimation strategy. Section6 discusses the results. Section7 summarizes our
tindings and makes concluding remarks. The appendix gathers technical results; an online

appendix provides additional details, proofs and results.

2. RELATED LITERATURE

This paper contributes to the growing literature on sovereign credit risk and its pricing.
Specifically, this paper is among the first to provide a quantitative assessment of Eurobonds’
pricing. To do so, we develop a novel credit risk model where default intensities explicitly

depend on fiscal variables.

2.1. Eurobonds. Various policy-oriented papers discuss pros and cons of common bond is-
suance in the euro area, and propose different forms of common bonds. Several of these
studies stress that, if issued in large scale, a joint debt instrument could reduce market frag-

mentation and compete, in terms of size and liquidity, with the US bond market (Giovannini,
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2000; Hellwig and Philippon, 2011). De Grauwe and Moesen (2009) and Claessens et al.
(2012) argue that joint debt issuance can reduce borrowing costs for stressed sovereigns, al-
lowing for gains at the aggregate level. Following the Great Financial crisis and the euro-debt
crisis, common debt issuance has been advocated by several policy-oriented studies as a de-
vice to enhance financial stability, notably because such a safe asset could break the “bank-
sovereign doom loop” (European Commission, 2011; Brunnermeier et al., 2017; Delivorias
and Stamegna, 2020). The challenges associated with joint debt issuances include coordina-
tion issues, political hurdle in transferring sovereignty to the EU level, and the removal of
incentives for sound budgetary policies under the current fiscal discipline methods (Issing,
2009; Claessens et al., 2012). According, among others, to Delpla and Von Weizsacker (2010),
Bofinger et al. (2011), and Claessens et al. (2012), common debt issuance calls for enhanced

institutional frameworks and ex-ante surveillance to strengthen fiscal discipline.

In Table 1, we review the features of some prominent proposals for a European joint debt
instrument. Three proposals involve joint guarantees, but with varying proportions: the
“Stability bond” approach no.1 of the European Commission (2011) considers a full replace-
ment of standard national issuances by those of an SJG bond; only short-term debt instru-
ments, amounting to 10% of GDP, would benefit from joint guarantees under the “Eurobills”
scheme proposed by Hellwig and Philippon (2011); under the blue/red scheme of Delpla
and Von Weizsacker (2010), European countries would pool their public debt up to the Maas-
tricht Treaty threshold—60% of GDP—under joint and several liability as senior (“blue”)
debt, while debt above this threshold would be issued as junior (“red”) debt.

Other schemes depart from joint liability and consist of the partial substitution of European
Member States” national issuance with several but not joint guarantees (SNJG) bonds. This
is for instance the case of the “Stabilitity bond” approach no. 3 of the European Commission
(2011).° In this scheme, Member States would retain liability for their respective share of
“Stabilitity bond” issuance—as well as for their national issuances, naturally.” Due to the
several but not joint guarantees, moral hazard would be mitigated. The continued issuance
of national bonds would indeed expose Member States to market judgement.
~ ®Issuance of bonds with several but not joint guarantees can be centralized (e.g., joint debt agency, European
Commission, 2011; Delivorias and Stamegna, 2020) or left decentralized (De Grauwe and Moesen, 2009).

"The credit quality of a “Stabilitity bond” underpinned by several but not joint guarantees would be close
to the weighted average of the credit qualities of the euro-area Member States.



TABLE 1. Eurobond proposals: main features

Features Joint bond denomination
Stability bonds” Euro-bills’ Blue/Red bonds® ESBies/EJBies’

Approach no. 1 Approach no. 3

SJG Only blue: SJG

e f

Guarantees SIG SNIG (10% of GDP)  (60% of GDP)

Tranching v v v

Pooling? v v v v v

New v v v v

issuance” (partial) (partial) (partial)

Risk of

moral v v v v

hazard

Coordinated

revenue v v

management

Coordinated

debt v v v v

management

Pricing ( /t' 1

attempt partia

in the study and
incomplete)

Notes: This table shows key features of some prominent euro-area joint debt instrument proposals in the litera-
ture. a: European Commission (2011); b: Hellwig and Philippon (2011); c: Delpla and Von Weizsacker (2010); d:
Brunnermeier et al. (2017); e: Joint and several guarantees; f: Several but not joint guarantees; g: with “Pooling”
we mean the pooling or common issuance of sovereign debts (either ex ante or ex post via pooling a portfolio of
sovereign debts); h: with “New Issuance” we mean the issuance of a new debt instrument replacing totally or
partially national bond issuance.

The absence of joint guarantees also underlies Brunnermeier et al. (2017) proposal. Differ-
ently from the “Stability bond” approach no. 3 (European Commission, 2011), their proposal
does not imply any substitution of national issuance. In their scheme, two synthetic tranches
would be created out of a portfolio of (standard) national sovereign bonds, the senior and the
junior tranche being respectively dubbed “European Safe Bonds” (ESBies) and “European ju-
nior bonds” (EJBies). As safe and liquid assets, ESBies would help limit financial institutions’

exposure to sovereign credit risk, and thereby break the sovereign-bank loop. Brunnermeier



8

et al. (2017) simulate the loss given default of ESBies and EJBies under different tranching
scenarios, thereby providing a partial pricing attempt for their instruments.

A few theoretical studies focus on Eurobonds. Tirole (2015) studies the effect of com-
mon bonds’ issuance, focusing on the moral hazard implications. He distinguishes between
two forms of solidarity in a finite-horizon two-country setup: ex-post (spontaneous), e.g.,
bailouts, and ex-ante (contractual), e.g., joint-bond issuance. Given that one country’s default
imposes collateral damage on the other country, Tirole (2015) finds that ex-ante (ex-post) sol-
idarity is optimal when both countries exhibit a similar (different) risk profile. Tsiropoulos
(2019) builds a two-country general-equilibrium model of sovereign default and finds that
welfare consequences of introducing SJG bonds hinge critically on the timing of their intro-
duction. Lastly, Davila and Weymuller (2016) study the optimal design of flexible joint bor-
rowing agreements between a safe and a risky country. Their results point to higher welfare

gains under joint liability schemes.

2.2. Reduced-form approaches and sovereign risk premiums. The present study draws
extensively from the reduced-form approaches for pricing sovereign credit risk. Ang and
Longstaff (2013) consider multi-factor affine models allowing for both systemic and sovereign-
specific credit shocks to price the term structures of US states and Eurozone Member States.
Estimating the default intensities for 26 countries, Longstaff, Pan, Pedersen, and Singleton
(2011) find that the risk premium represents about a third of credit spreads on average. Mon-
fort and Renne (2014) also estimate substantial sovereign risk premiums in euro-area sover-
eign spreads, employing a model allowing for both credit and liquidity effects. These studies
show a close fit of sovereign bond yields and spreads and provide useful estimates of sover-
eign risk premiums. However, they do not explicitly account for the economic forces driving
the movements of the sovereign default probabilities. By contrast, Borgy, Laubach, Méson-
nier, and Renne (2011) and Hordahl and Tristani (2013) propose sovereign credit risk frame-
works where default intensities explicitly depend on fiscal variables, and demonstrate that

the fiscal environment is able to capture part of the fluctuations of sovereign credit spreads.

2.3. Theory of fiscal limits. Our paper relates to the literature studying the concept of fis-
cal limit, namely the maximum outstanding debt that a country could credibly sustain. In

Bi (2012), Leeper (2013), Bi and Leeper (2013), Bi and Traum (2012), Bi and Traum (2014),



9

the concept of fiscal limit corresponds to the net present value of future maximum primary
surpluses.® These maximum surpluses represent those surpluses implicit in the peak of the
Laffer curve (Trabandt and Uhlig, 2011). After having introduced an estimated parametric
reaction function of primary surpluses in a model of debt accumulation, Ghosh et al. (2013)
show that there is a point—akin to the fiscal limit—where the primary balance cannot keep
pace with the rising interest burden as debt increases. Beyond this point, debt dynamics be-
comes explosive and the government becomes unable to fully meet its obligations. Collard,
Habib, and Rochet (2015) also exploit the idea of a maximum primary surplus to derive a
measure of debt limit. Contrary to the previous studies, Collard et al. (2015)’s approach is
not based on the computation of the discounted present value of future maximum primary
surpluses; instead, their notion of maximum sustainable debt derives from the maximum
amount that can be issued on each date (that itself depends on the maximum budget sur-
plus). More recently, Mehrotra and Sergeyev (2020) combine disaster risk and fiscal fatigue.
In their framework, as in Lorenzoni and Werning (2013), debt dynamics are subject to a tip-
ping point situation: in some instances, the public debt can be on an unsustainable path
without immediately triggering default.

In the present paper, we do not make the maximum surplus explicit; we rely instead on a
reduced-form approach and, under the assumption that the default intensity becomes strictly
positive when the effective (observed) debt is higher than the (unobserved) fiscal limit, we

estimate the latter from bond prices.

3. STYLIZED MODEL

As mentioned above, a crucial ingredient of our modelling framework is the relationship
between the fiscal space—the difference between the fiscal limit and debt—and the sover-
eign probability of default. The parametric function we retain to model this relationship is
presented in Subsection 3.1. Before incorporating this ingredient in a standard asset pricing
model (in Section 4), we present a stylized model in Subsection 3.2. In Subsection 3.3, we
elaborate on the pricing of SJG and SNJG common bonds in this simplified framework; and

we discuss resulting asset-pricing mechanisms in Subsection 3.4.

8We refer to Aguiar and Amador (2014) or Yue and Wei (2019) for a general presentation of the theory of
sovereign debt.
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3.1. Sovereign default probability. On each date t, we assume that the default probability
of country j (j = A, B) is given by

1 —exp(—24;;), (1)
where the default intensity A;; is assumed to negatively depend on the fiscal space, defined

as the distance between fiscal limit-to-GDP (¢; ;) and debt-to-GDP (d; ). Specifically:’
Aj,t = maX(O, dj,t — Ej,t)- (2)

The previous formulation implies that the probability of default is strictly positive only if the
fiscal space is negative, i.e. if debt stands above the fiscal limit. Parameter « characterizes the
nature of the fiscal limit: if a is large, the fiscal limit is “strict”, as the probability of default
becomes large as soon as debt breaches the fiscal limit; for lower values of «, the fiscal limit
is “soft”, as negative fiscal spaces then do not necessarily trigger default. In this section, we
consider the case of & = 1, implying a relatively soft concept of fiscal limit: if the fiscal space

is equal to —1% of GDP, the probability of default is of 1%.”

3.2. Assumptions of the stylized model. Investors are risk-neutral and risk-free interest
rates are zero. In this context, the date-t price of a one-period zero-coupon zero-recovery-

rate bond issued by j is simply given by:
Pt(,Jl) = E;exp(—max|[0,dj ;41— {ji11]), 3)

where [E; denotes the expectation conditional on the information available to the investor as

of date t.

%It can be seen that we have Ajy =max(0,A;), with Aj; = a x (dj; — ¢;;). Using the vocabulary introduced
by Black (1995), A;; can be interpreted as a “shadow default intensity.” Alternatively, to have a non-negative
intensity, Aj,t could be modeled as a quadratic function of the fiscal space (see, e.g., Doshi et al., 2013). How-
ever, it is impossible to have a monotonous relationship between the (non-negative) default intensity and the
covariates in a quadratic framework (while such a monotonous relationship is expected to hold in the present
context). Coroneo and Pastorello (2020) also employ the shadow-rate approach to price sovereign bonds issued
by different countries; contrary to the present paper though, sovereign default probabilities (or default inten-
sities) are not explicitly modeled in their yields-only reduced-form framework. Therefore, the framework of
Coroneo and Pastorello (2020) does not allow to recover sovereign probabilities of default, and cannot preclude
negative default probabilities.

1"Low values of a allow for approximate pricing formulas (Appendix D) that are intensively used in our
empirical analysis (Section 4). As shown by Footnote 11, these approximate formulas are not needed in the
context of the stylized model.
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For each country, the fiscal limit-to-GDP (; ;) is constant, fixed at Zj, and the debt-to-GDP

ratios are i.i.d. Gaussian:

5 2 2
dp ¢ dp po- o

In this context, the prices of zero-coupon bonds (see eq.3) admit closed-form solutions
11

deduced from standard results on truncated normal distributions.
3.3. Common bonds. We consider two types of common bonds: the first is backed by sev-
eral and joint (SJG) guarantees, whereby each issuing country guarantees the totality of the
obligations, and the second features several but not joint (SNJG) guarantees, whereby each
issuing country guarantees only its share of the joint instrument.

A natural way to conceive the SJG bond is to consider that it is issued by a synthetic area
where both fiscal revenues and debts are pooled, and to assume that this area also features a
probability of default of the form of (1). Denoting by w the vector of GDP weights, the price
of SJG bond is given by:'?

Pt(jjc) = Erexp(—max[0,w - di1 —w- ), (5)

where w - dyy1 = wadai1 + wpdpiiq and w -l = wAzA,tH + wBZB,tH are, respectively, the
GDP-weighted debt-to-GDP ratio and the GDP-weighted fiscal limit.

Regarding the SNJG bond, the absence of joint guarantee implies that the payoff of this
bond is of the form w - (1 — Dyy1), where Dyy1 = [Da i1, Dpt+1] is the vector of default
indicators—a default indicator being equal to 1 in the case of default, and to 0 otherwise.
In other words, the payoff is equal to 1 if none of the countries default on date t + 1, wy
(respectively wp) if only B (resp. A) defaults on date t 41, and 0 if both countries default.
This implies that the price of a SNJG bond is given by:

SNJG
Pt(,l 1) = WAE{(1 =Dypy1) + wpE (1 =Dpry1) = w - Pry, (6)

HFormally, Pt(’]i) is given by:

@(@)—l—(l—@(@))exp (a(éj—d]-)+“22‘72> {1—c1>(gf(_fdhrw)}/{l—q)(gf;df)}.

12

wissuch that w = [wa,1 —wal, withws = Ya/(Ya + Y), where Y; is country j's GDP.
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with P, = [Pt(/f), Pf/?].

3.4. Calibration and resulting yields. The different calibrations used in this section are sum-
marized in Table 2. In our baseline case, we set the average fiscal spaces of both countries to
20% (= Z]' — E]' = 100% — 80%), and the two countries are alike in all respects. In particular,
they have the same (GDP) size, i.e. wq = wp = 50%, and the correlation between debts is
set to 50%. In this baseline case, the yields on one-year national bonds are equal to 28 basis
points.13 In this baseline context, where both countries are similar, it also comes that SNJG
bond prices are equal to those of country-specific bonds (see eq. 6, with Pt(f) = Pt(,lf)); the
SNJG bond yield is therefore also equal to 28 basis points. By contrast, the price of the SJG
bond is higher, the SJG bond yield being of 13 basis points. This results from the fact that, for
the synthetic “pooled” area, the probability to have an (average) debt-to-GDP larger than the

(average) fiscal limit is lower than for a single country. Formally:
P(waday +wpdgs > 0) <P(dj; > 0), j=A,B,

which is true as long as the correlation between the two debt-to-GDP ratios is strictly lower
than 1. The fact that the SJG bond yield is lower than national bond yields implies that both

countries would reduce their debt service through the issuance of joint-liability bonds.

TABLE 2. Calibrations of stylized models

Baseline Symmetric case Asymmetric case
(A and B are alike) (B’s fiscal space < A’s fiscal space)
Al A2 A3 B.1 B.2 B.3
o 12.5%
lap 100%
dg  80%  75%—95% 95% 95% 95%
dy 80%  75%—95% 75%—95%
0 50% 0%—100% 0%—100%
wy  50% 0%—100% 0%—100%

Notes: This table summarizes the calibrations used in our stylized model. The first column shows the calibration
of the baseline case (represented by a vertical grey line in the first row of plots of Figure 1). The average fiscal
space of country j corresponds to Zj — H]-, and w4 denotes the relative GDP size of country A (such that wp =
1-w A)-

13Since, in the stylized model described in this section, risk-free yields are taken equal to zero, bond yields
essentially correspond to credit spreads. In addition, since the recovery rate is also zero, yields here coincide
with probabilities of default. These restrictions are relaxed in the extended model (Section 4).
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FIGURE 1. Two-country stylized model mechanisms

A. Yields in the symmetric case (Countries A and B alike, same fiscal space)

A.1 Effect of fiscal space A.2 Effect of debts' co-movement A.3 Effect of relative debt sizes
300 A B Joint and several
¢  Several but not joint 30
250 A 30 1
S>>
200 -
20 1 20
150 -
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0 1 ‘ ‘ ‘ % * 0 1 ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘
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Countries' fiscal space (% of GDP) Debt innovations correlation Country A's relative debt size
B. Yields in the asymmetric case (B's fiscal space = 5% < A's fiscal space)
B.1 Effect of fiscal space B.2 Effect of debts' co-movement B.3 Effect of relative debt sizes
B Joint and several
] &  Several but not joint |
400 T Country A 400 400
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Country A's fiscal space (% of GDP) Debt innovations correlation Country A's relative debt size

Notes: These plots show the yields-to-maturity, expressed in basis points, of different types of one-period bonds;
it also shows how these yields are affected by changes in the calibration of the stylized model (see Table 2 for
details regarding the baseline calibration and the alternative calibrations underlying Panels A.1 to B.3 of this
figure). Three types of bonds are considered: national, or country-specific, bonds issued by countries A and B;
a bond with several and joint guarantees (SJG); and a bond with several but not joint guarantees (SNJG). See
Subsection 3.4 for more details. On each row of plots, the vertical grey line represents the same situation—the
“baseline” case of Table 2.

The baseline situation discussed above is represented by a vertical grey bar in the first row
of plots in Figure 1. These plots further show how the SNJG and SJG yields are affected with
respect to: (Panel A.1) changes in the fiscal spaces of the two countries, (Panel A.2) changes
in the correlation across debts, and (Panel A.3) changes in the relative size of country A (in

terms of GDP).
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Panel A.1 shows that both SJG and SNJG bond yields nonlinearly decrease when fiscal
spaces increase. It also shows that SJG bond yields are consistently lower than those of SNJG
bonds. Panel A.2 illustrates the importance of debt co-movements to account for the yield re-
duction resulting from joint guarantees: while the SNJG bond yield is not affected by changes
in debts’ correlations, the yield of a S]JG bond is reduced by a factor of 8 when the correlation
decreases from 100%—in which case all bonds are equivalent—to 0%. Panel A.3 focuses on
the effect of the two countries’ relative sizes. In the extremes, when the relative size of coun-
try A is either 0 or 1, there is no difference between SJG and SNJG bonds. As in the case of
debt co-movement, and because we consider two equally-risky countries for the time being,
the relative size of country A has no effect on the SNJG yield. But it has on the SJG yield;
the effect is maximum when the two countries are equally large, corresponding to a situation
where diversification effects are maximum.!*

The second row of plots in Figure 1 displays results obtained in an asymmetric situation,
where country B is riskier than country A. We fix the fiscal space of country B to 5%, keeping
A’s one at 20%. National bond yields are now different for the two countries, and we add
them to each plot. Up to very small convexity effects, it can be checked that SNJG yields
are equal to the GDP-weighted averages of the two national bond yields. In particular, in
Panel B.3, where we modify the relative size of country A from 0 to 1, the SNJG bond yield
goes from the (higher) country-B yield to the (lower) country-A yield. Regarding the differ-
ence between SNJG and SN]J yields, an interesting situation is captured by Panel B.1: for low
values of country A’s fiscal space, not only is the SJG bond yield below the SNJG one (i.e. the
average of the two national bond yields), it is also lower than the safer country’s bond yields.
Finally, Panel B.2 shows that when the two countries do not have the same average fiscal
space, a correlation of 1 across debts does not imply that the SJG and the SNJG bonds are
equivalent. In this extreme case, and contrary to the symmetric case, diversification effects
are still at play in the SJG bond pricing: the SJG bond yield is 1.5 times lower than the SNJG

one.

“Formally, this is because the variance of the aggregate debt-to-GDP ratio—that is 02 (w? + (1 — w?) +

2pwa(1 — w4))—admits a minimum for wy = 3.
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4. MODEL

In this section, we enrich the stylized model to make it amenable to the data. We consider
N countries. While the conditional probabilities of default remain as in Subsection 3.1—with
default intensities that depend on fiscal spaces—debt-to-GDP ratios and fiscal limits are now
time-varying; in addition, the state vector is augmented with a stochastic short term interest
rate (Subsection 4.1). The representative investor is now risk averse, her risk preferences
being captured by a reduced-form stochastic discount factor (Subsection 4.2). After having
derived prices of zero-coupon risk-free bonds, we discuss the pricing of zero-coupon bonds
with non-zero recovery rates and bond yield spreads (Subsection 4.3). The ability to swiftly

price risk-free bonds and yield spreads is crucial to estimate the model (Section 5).

4.1. Dynamics of the state vector. Debts and fiscal limits follow autoregressive processes:

U = (L—=p)lj+pelii1+eg (7)
diy = (1—pa)dj+padjs—1+¢€aj (8)

where ¢;,; and ¢/, are correlated across countries. More precisely, each of these innova-

(d) (0)

tions is a linear combinations of i.i.d. standard Gaussian shocks: #,”’ and 7, ’, that are re-

spectively debt and fiscal-limit shocks common to all countries, as well as country-variable-

specific shocks 17](/6:) and 17](/[?. Formally:
d d
eqt = agny” + ’Yd’?,-(,t) ©)
¢ ¢
Erjp = aen + ’YMj(,t)- (10)

Moreover, we introduce a stochastic short-term risk-free interest rate. This variable also fol-

lows an auto-regressive process:
i = (1 — pi)lT-i- piit—l +0ifit,  Mip ™~ lldN(O,l) (11)

Let us denote by d; and ¢; two N-dimensional vectors gathering countries” debt-to-GDP
ratios and fiscal limits, respectively. Under the previous assumptions, it is easily seen that the

state vector X; = [it, i;_1, d;, E;]’ follows a vector autoregressive process of order one. That is:

Xt =pu+dX_1+ X, (12)
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where
d d V4 14 d V4
ne = [Mit 115,2’ . '/771(\],)t' 17{31 . "771(\1,)t' 0, i) ~ N (0, 1), (13)

u, @ and X being expanded in Appendix A.

4.2. Stochastic discount factor and the term structure of risk-free rates. We assume that
arbitrage opportunities do not exist, which ensures the existence of a positive stochastic dis-
count factor (s.d.f.). Following Ang and Piazzesi (2003), we posit a reduced-form exponential

affine s.d.f. between dates t and t + 1:

My = eXP(—it)%, (14)
where ¢; 1 follows:
1
Gr+1 = Grexp <—§1//1P — ¢/ﬂt+1) , (15)

i being a vector of prices of risk.'?

In this context, it is well-known that risk-free bond prices admit closed-form recursive
solutions. Specifically, the date-t price of a risk-free zero-coupon bond of maturity & is given
by (proof in Appendix C):

Bij, = exp(Ay + By X¢), (16)

where, for h > 1:

Ay = Ap_1+Bj,_(n—X¢)+5B),_Z¥'B,_4

(17)
B, = Bi+®'Bj_y,
with A; =0and B; = [-1,0,...]".
Equivalently, the yield of a risk-free zero-coupon bond of maturity / is given by:
. A, B
i, = -5 X (18)

(Note that igl = it.)

4.3. Zero-coupon bonds with non-zero recovery rates and sovereign bond yield spreads.
Consider a zero-coupon bond of maturity & issued by country j. Our recovery payoff as-

sumption is based on the “Recovery of Treasury” (RT) convention of Duffie and Singleton

1>While we could sophisticate the model by considering a time-varying vector of prices or risk (making it
affine in X}, as in Ang and Piazzesi, 2003), we use a constant vector i for the sake of parsimony.
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(1999): on date t 4 k, with 0 < k < h, the payoff of the considered bond is zero, unless the
country defaults on date t 4 k, in which case the bond payoff is assumed to be the fraction RR
(recovery rate) of the price of a risk-free zero-coupon bond of equivalent residual maturity,

i.e. exp[—(h — k)i ' k.n_x|- Hence, the payoffs of this bond are of the form:

RR x exp(—(h — k)iz(f)—l—k,h—k) X (Dj,tJrk — Dj,tJrkfl) if 0<k<h,
1=Djtsk + RR X (Djtyk — Djpk—1) if k=nh.

Denoting by M, ;. the stochastic discount factor between dates t and t + k (i.e., M, =
Mippr X - X Myyg_144k) and after some algebra (Appendix E), the price of this bond is
given by:

PU) = (1—RR) X Ey (Mysiu(1— Djsip)) + RR x By (19)

where B, j,, the price of the risk-free bond (Subsection 4.2), is equal to IE, (M ;. ), and the con-
ditional expectation IE, (M (1 — D]',t+h)) corresponds to the date-t price of a zero-coupon
zero-recovery-rate bond of maturity h providing a payoff of 1 on date t + h if country j has
not defaulted before ¢ + 11, and zero otherwise (see Appendix D for the derivation of eq. 19).

Sovereign bond yields for country j are given by:

- -—— (20)

10, 1)

where i?,h is given by eq. (18).

5. ESTIMATION

5.1. Data. We consider four European countries: Germany, France, Italy, and Spain. These
countries’ GDPs make up three-quarters of the entire Euro-area’s GDP. The data are quarterly
and span the period from 2008Q1 to 2021Q2. Sovereign yields and the 3-month Overnight
Indexed Swap (OIS) interest rate—our short-term risk-free rate—are extracted from Thomson
Reuters Datastream. Following Monfort and Renne (2014), risk-free yields of maturities of 2,

3,5, and 10 years are proxied for by the difference between German bond yields and German
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CDSs of matching maturities. Observations of sovereign spreads (sgjg’s in eq. 21) are com-
puted as the difference between national bond yields and these risk-free yields. We consider
three maturities of bond yield spreads: 3, 5, and 10 years. Time series of gross government

debts and GDPs are collected from the Eurostat ESA2010 database.

5.2. Estimation approach. The model can be cast into a state-space form, with (i) transition
equations describing the dynamics of the state variables (this is eq. 12) and (ii) measurement
equations describing the relationships between observed financial market data—prices and
yield spreads—and the state vector. Let us denote by © the set of model parameters,16 the

state-space model is of the form:

(i) Xt = F(Xi-1,m50), (reformulation of eq. 12)

(i) Yy = G(X50) -+,

where X; = [it,i;-1,d}, ¢;]" is the state vector, Y; denotes the vector of financial market data
(gathering risk-free yields and sovereign spreads), and ¢; is a vector of i.i.d. Gaussian mea-
surement errors. Function G stands for pricing formulas, associating the state X; to risk-free
yields and sovereign spreads. While the risk-free rates are affine in X; (see eq. 18), this is not
the case for sovereign spreads because of the nonlinearity of the default intensity (resulting
from the “max” operator in eq. 2).

The vector of state variables X; is only partially observed by the econometrician since the N
national fiscal limits (¢;) are latent. We therefore face two types of unknowns: the model pa-
rameters and the fiscal limits. We address this problem by employing “inversion techniques”.
These techniques, originally introduced by Chen and Scott (1993) in the term structure litera-
ture, consist in estimating the latent pricing factors by inverting a non-singular system relat-
ing prices to latent factors. This system results from the assumption that some of the observed
prices are modeled without errors. In the present case, we assume that, for each country, the
averages of the three sovereign spreads (with maturities 3, 5, and 10 years) are perfectly
priced. Under this assumption, we can recover the fiscal limits and, simultaneously, compute
the likelihood function associated with the considered model parametrization.!” This opens
 1°We have © = {7, 01,07, d, 04, %, 01, &4, Ya, %0, Yo, -

7The likelihood then involves an adjustment term corresponding to the determinant of the Jacobian matrix
associated with the non-singular system; this adjustment results from the transformation of the observables to
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the door to maximum-likelihood estimation. Online Appendix III details the computation of
the log-likelihood.

In order to discipline the estimation, we adopt a parsimonious specification for the prices
of risk (¥ in eq. 15) by assuming that ¢ = [¢;, vw', —vw’, v, —v]’, where ¢; therefore is the
price of (risk-free) interest-rate risk, and where v is a parameter that completely specifies the
prices of risk associated with those shocks that affect debts and fiscal limits—the # shocks

).18

appearing in egs. (9) and (10 Given the specification of the shock vector #; (eq. 13), this

]'(,EZ)/ U](,i)/j =1,...,N, U,g(d) and m((g) are priced.

structure implies that the shocks 7

Moreover, in the spirit of Cochrane and Saa-Requejo (2000), we impose an upper bound
for the maximum Sharpe ratio (see Appendix F for the computation of the maximum Sharpe
ratio). Following Cochrane and Saa-Requejo (2000), this bound is set to 1.

To facilitate the estimation and ensure plausible fiscal limit estimates, some parameters are
calibrated or restricted to lay in pre-specified intervals. For all countries, we set the stationary
debt-to-GDP (d) to 90%, which is the observed sample average (across time and countries).
The unconditional mean of fiscal limit (¢) is set to 150%.'!° The mean of the risk-free short-
term rate (i) is taken equal to 44 basis points, that is the 3-month OIS sample average. The
autoregressive parameter for d; ; is restricted to be between 0.9 and 0.99, this range reflecting
the observed dispersion of country-specific OLS estimates of autoregressive parameters. To
favor numerical stability, we impose upper bounds, of 0.99, to the autoregressive parameters
of ¢;; and i;. The unconditional standard deviation for d; ; is set to the observed cross-country
average of debt-to-GDP standard deviations, that is 11.6%.? The correlation across debt
innovations is taken equal to 50%, which is the cross-country average of sample correlations
between changes in debt-to-GDP ratios; the correlation across fiscal limit innovations is set to

the same value.?! We use a minimal value of 0.1 for a, the elasticity of the default probability

the latent components (see e.g. Ang and Piazzesi, 2003, Appendix B; Liu, Longstaff, and Mandell, 2006, eq. 19).
Computational details are given in the Online Appendix III.

18Vector w has not to be estimated, it is the vector of relative GDP weights.

“This unconditional mean of fiscal limits is based on the average of estimates obtained by Ghosh et al. (2013)
and Collard et al. (2015). These (static) estimates are reported in Table 5 in Appendix G.

20From eq. (9), note that the 1-step ahead conditional standard deviation for d;; is equal to  / zx% + ')/ﬁ and the

unconditional standard deviation is equal to \/ (a3 4+3)/(1—p3).
I The former correlation is a3/ (a3 4 73); the latter is a2 / (a2 + 7).
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).?> The standard deviations of the measurement errors associated

to the fiscal space (see eq. 2
with yields and sovereign spreads are respectively set to 10 basis points and to 10% of the
country-wise sample standard errors of sovereign spreads.

The resulting model parametrization is given in Table 3. Several of the restrictions de-

scribed above turn out to be binding, which we indicate by “t” in the table.

TABLE 3. Model parametrization

Param. Value Param. Value Param. Value
i 0.27* d 0.90* 0 1.50*
0i 0.99% 04 0.90% ¢ 0.98
;i 0.21 N4 3.58" ay 1.45
Yd 3.58" Yo 1.45
ot 0.13" 05 0.02" 05 rr 0.04"
o 0.12" Vs s 0.13"
v 0.51 o, 0.18 « 0.10*

Notes: Parameters ; and v determine the vector of prices of risk ¢ (see eq.15); specifically, ¥ =
[¢;, v, —vw', v, —v])’, where w is the observed vector of GDP weights. The standard deviation of the inno-

vation of the short-term risk rate (¢;), is expressed in percentage points, as well as the standard deviations of

the measurement errors ((Tf: for risk-free yields, and oS . for sovereign bond yield s reads). The subscript t
i y YS,j g y P p

indicates calibrated parameters, or parameters for which the restrictions described in 5.2 turn out to be binding.
Parameters a4, ay, v4 and 7y, (that specify the variances/covariances of debts and fiscal limits, see egs. 9 and 10)
are multiplied by 100.

5.3. Sovereign spreads fit and credit risk premiums. Figure2 shows the fit of sovereign
spreads. The fit is comparable to the one obtained in term-structure studies where default
intensities are purely latent and have no macro-finance interpretation. Figure 2 also displays
credit risk premiums, that are by-products of our estimation approach. Risk premiums are
defined as those components of returns that would not exist if investors were not risk averse.

On Figure 2, model-implied spreads (dotted black lines) result from eq. (21), which involves
formulas using the stochastic discount factor M, ;; that itself depends on prices of risk ¥

(eq. 15). The black solid lines represent the (model-implied) spreads that would be observed

22When d it > {4, the larger a, the higher the default probability. In other words, for a given level of default
probability, the larger «, the higher the fiscal limit estimate. Values of « lower than 0.1 would imply too “soft” a
concept of fiscal limit, which would be difficult to interpret and would not be in line with standard concepts of
the fiscal limit defined in previous literature. Values of a« above or equal to 0.1 offer a good compromise between
data fitting performances and interpretability of the fiscal limit.
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if agents were not risk averse; these spreads are obtained by implementing the formulas im-
plicit in eq. (21) after having set the prices of risk to zero. The differences between the two
types of model-implied spreads correspond to credit-risk premiums. Our results indicate
that these risk premiums are sizeable. The ratio between the two types of spreads, which
reflects the importance of risk premiumes, is broadly comparable to the ones found in sover-
eign credit-risk studies based on reduced-form intensity approaches (e.g. Pan and Singleton,
2008; Longstaff et al., 2011; Monfort and Renne, 2014; Monfort et al., 2020). Lastly, Figure 3
shows that the model captures a substantial share of the fluctuations of risk-free rates across

all maturities.

5.4. Fiscal limit estimates. To the best of our knowledge, the present paper is among the
first studies to propose time-varying estimates of fiscal limits.”> These estimates, expressed
in percent of GDP, are displayed in Figure4. On a given quarter, if debt-to-GDP (d; ;, black
solid line) is higher than the fiscal limit (¢;;, grey solid line), then, the probability of default is
strictly positive (see eq. 1). Everything else equal, if debt-to-GDP stays above the black dotted
line (respectively in the grey-shaded area) for four quarters in a row, then the annual default
probability of the considered country would be larger than 10% (respectively in |0%, 10%]).
For what follows, and unless differently specified, our numbers refer to the threshold fiscal
limit estimates, namely the grey solid lines in Figure 4. According to our estimates, the global
tinancial crisis of 2008 translated into a decrease of the fiscal limits. On average, fiscal lim-
its decreased by 10 percent of GDP from 2008Q2 to 2010Q1.%* From early 2010 to mid-2012,
amid the European sovereign debt crisis, fiscal limits recorded an average decrease close to
20 percent of GDP.>> Notably, the “whatever it takes” statement by Draghi (2012, July) and the
European Central Bank (ECB) announcement of the Outright Monetary Transactions (OMT)

23See Footnote 5.

4This may be seen as a consequence of transfers from private to public debts through explicit channels (bank
bailouts) or implicit ones (debt and deposit guarantees), along the logic of the so-called sovereign-bank nexus
(see e.g. Acharya, Drechsler, and Schnabl, 2014; Jorda, Schularick, and Taylor, 2016).

ZIn Spain, the fiscal limit dropped below the debt-to-GDP ratio only by the end of 2011, before rising again
with the inception of the ESM programme for the banking sector recapitalisation in 2012; fiscal space—the
difference between fiscal limit and debt—for Spain returned positive only in 2014. The French and German
fiscal limits were at their minima in the midst of the euro-area debt crisis, in late 2011, respectively amounting
to 106% and 91% of GDP. An exhaustion of the Italian fiscal space is notable during the Great Financial crisis.
The fiscal constraint for Italy tightens even more at the fall of Silvio Berlusconi’s government in autumn 2011,
reaching a minimal value of 73% of GDP at the end of 2011. The Italian fiscal space remains negative until the
end of the estimation sample. The government election of a populist political alliance, in mid-2018, caused a
drop of 5% in the fiscal limit for Italy.
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were followed by a 10 p.p.jump in the average fiscal limit (from 2012Q21 to 2012Q4).?° From
2014 until the onset of the COVID-19 pandemic, fiscal limits across countries show an increas-
ing trend, translating into widening fiscal spaces in Europe. Fiscal limits decrease by 10 p.p.

on average across countries during the 2020 due to the pandemic.

6. RESULTS

6.1. Pricing Eurobonds. In Figure5, we compare counterfactual yield spreads associated
with common bonds benefitting from several and joint guarantees (SJG) and bonds with
several but not joint guarantees (SNJG). By design, the latter is close to the debt-weighted
average of country-specific observed sovereign spreads. The difference between SNJG and
SJG is positive and sizeable across the estimation sample. This result suggests that raising
funds through a joint liability debt instrument—the SJG bond—may substantially reduce
debt service in the presence of heterogenous fiscal conditions. This is due to the associated
diversification of fiscal risks across countries: as long as the fiscal positions across countries
are not perfectly correlated, one can expect gains from common bond issuance in the pres-
ence of joint and several guarantees (SJG) w.r.t. several but not joint guarantees (SNJG). The
maximum gains, in terms of debt service relief associated with the SJG bond, are obtained
during the euro-debt crisis. Notably, in this case, the ratio of SNJG bond yield spread on the
SJG one is approximately equal to 10, 3.5 and 1.5 for the 3-, 5- and 10-year maturities, respec-
tively. Over the estimation sample, the distance between SJG and SNJG bond yields is equal,
on average, to 55, 45 and 30 basis points for the same three respective maturities. The grey
shaded-area shows the range of SJG spreads obtained when varying the correlation across
debt and fiscal limit innovations (respectively the ¢;;'s of eq. 9 and the ¢y ; ;s of eq. 10) from
30% to 99%, the baseline case (in black) corresponding to a 50% correlation.

For the sake of comparison, we add the German bond yield spreads in Figure5 (black
circles). Interestingly, during the great financial crisis, the baseline SJG spread lays below
the German yield spread for the 3-year maturity. Hence, diversification effects underyling
the SJG bond pricing might, at times, prove beneficial also for fiscally virtuous countries in

the euro area—and not only for the peripheral Member States. Notwithstanding, even in the

26The OMT represents a mechanism aimed to “safeguard an appropriate monetary policy transmission and
the singleness of the monetary policy” (2012, August).
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scenarios under which SJG bond yields are higher than Bunds” ones, one can design post-
issuance redistribution schemes translating into gains to all countries. This is discussed in
the next two subsections (6.2 and 6.3).

The magnitudes of our model-implied SJG and SNJG bond spreads are broadly in line with
those pertaining to observed proxies of (SJG) Eurobonds. We consider as Eurobond proxies
those bonds issued by the following European institutions: the European Investment Bank
(EIB), the European Financial Stability Facility (EFSF), the European Stability Mechanism
(ESM), and the European Commission itself, which, against the backdrop of the COVID-19
crisis, has initiated large-scale issuance programs.”” These bonds benefit from various types
of guarantees, which makes them close to SJG bonds.?® Figure 6 shows the spreads between
such 10-year bonds and the German benchmark bond (the Bund). It also displays, in grey,
proxies of SNJG spreads, computed as GDP-weighted averages of national spreads versus
the Bund. It appears that the prices of the different SJG Eurobond proxies are close to each
other. The red dots indicate the model-implied SJG and SNJG bond spreads (versus Ger-
many). The plot shows that the model captures a substantial amount of the fluctuations of

observed spreads.

6.2. Aggregate gains and redistribution. In Subsection 6.1, we have seen that the price of
a common debt instrument might be lower than the German one (equivalently, Eurobond
yields are higher than Bund ones). However SJG bond prices are higher than SNJG ones.
Since the latter correspond to a weighted average of national bond prices, replacing national
bonds with SJG bonds results in aggregate gains. These gains could be redistributed ex-
post—i.e. after issuance—across all countries. In that case, and considering only strictly pos-

itive redistribution weights, the issuance of SJG bonds would eventually result in a reduction

?’These programs notably include the SURE program (for “Support to mitigate Unemployment Risks in an
Emergency”) and the Next-Generation-EU program. See, e.g., the investor presentation of the European Com-
mission (12 March 2021), available at https://ec.europa.eu/info/sites/default/files/about_
the_european_commission/eu_budget/ip_07.2021.pdf. The EU already had issued some bonds be-
fore 2020, in particular in the context of the Euratom loans.

2To justify Moody’s top rating (Aaa) for the EU’s bond programs, the rating agency points out, for
example, that “the multiple layers of debt service protection, including explicit recourse to extraordi-
nary support [...] creates the equivalent of a joint and several undertaking and obligation on the part
of EU member states to provide financial support to the EU” (https://www.moodys.com/research/
Moodys—affirms—-the—-European—-Unions—Aaa-rating-outlook-stable——PR_430731).


https://ec.europa.eu/info/sites/default/files/about_the_european_commission/eu_budget/ip_07.2021.pdf
https://ec.europa.eu/info/sites/default/files/about_the_european_commission/eu_budget/ip_07.2021.pdf
https://www.moodys.com/research/Moodys-affirms-the-European-Unions-Aaa-rating-outlook-stable--PR_430731
https://www.moodys.com/research/Moodys-affirms-the-European-Unions-Aaa-rating-outlook-stable--PR_430731
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in funding costs for all countries (w.r.t. the issuance of national bonds).?” Naturally, the num-
ber of redistribution schemes is infinite. In this subsection, we focus on three situations. In
the first one (Scheme A), countries pay the same yield (i.e., there is no redistribution); in the
second one (Scheme B), gains are distributed in proportion to GDP; in the third one (Scheme
C), gains are distributed in such a way that the interest rate reduction—relative to the re-
spective national bond rates—is the same for all countries. Formulas used to perform these
exercises are detailed in Online Appendix IV.*

Table 4 shows the results of these counterfactual exercises. We focus on 5-year bonds (5
years roughly being to the average issuance maturity in the euro area), and three periods:
beginning of the estimation sample (2008Q1), midst of the euro debt crisis (2011Q3), and end
of the estimation sample (2021Q2). The three upper panels (A, B and C) of Table 4 correspond
to the three SJG-based schemes described above. For the sake of comparison, the lower panel
(Panel D) shows results for the SNJG case, for which there are no aggregated gains. For this
latter case (Scheme D), we consider only the situation in which all countries pay the same
interest rate (i.e. the SNJG issuance yield). Table4 also reports post-redistribution yields,
which are the differences between national bond yields and reductions in the funding costs
(or “yield gains”) resulting from the considered schemes. In addition, we show redistribution
weights; these weights indicate how aggregate gains are shared across countries.

Let us stress that the reported reduction in the funding cost (or yield gain) pertains to one
given bond, and not to the whole debt outstanding. To be sure: a yield gain of 100 basis
points (say) would effectively translate into a reduction of yearly aggregate funding costs of
€1bn if an outstanding amount of €100bn of SJG bonds was issued. This being said, to give
an idea of the amounts potentially involved, the top part of Table 4 indicates the aggregate
gains that would have resulted from the issuance of the equivalent of 5% of the euro-area
GDP (€522bn) during the three considered quarters. For instance, for the same face value
(€522bn), issuing SJB bonds instead of SNJG bonds in 2008Q1 would have increased the
issuance proceeds by €2.92bn. For 2011Q3 and 2021Q2, the gains would have been €8.68bn
and €6.21bn, respectively. Not surprisingly, the highest aggregate gains are obtained during
the euro debt crisis.
~ 2In some sense, any scheme involving strictly positive weights can be seen as Pareto-improving.

3UThis online appendix also reports results of schemes where the funding costs of Germany and France are
left unchanged (see Online Appendix IV.5).
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Panel A of Table 4 characterizes the scheme where there is no redistribution of the aggre-
gated gains (Scheme A). As illustrated by our results, this scheme can result in negative
“gains” for some countries: German funding cost gets higher for the three considered pe-
riods, same goes for France in 2011Q3. Italy and Spain are the countries that benefit the
most out of the SJG issuance scheme in 2011Q3: the spread between post-redistribution and
national yields is equal to 300 basis points for Italy and 257 basis points for Spain.

By contrast, Schemes B and C are such that all countries mechanically benefit from the
issuance of SJG bonds. These two schemes deliver similar results (see Panels B and C of
Table 4). While yield reductions are modest in the pre-sovereign debt crisis period (14 basis
points in 2008Q1), they become sizeable during the euro-debt crisis (about 40 basis points in
2011Q3), and remain substantial at the end of the estimation sample (about 25 basis points in
2021Q2).

Figure 7 displays the time series of yield gains associated with Scheme C. We consider three
maturities: 3,5 and 10 years. For the three maturities, yield gains peak towards the end of the
euro-debt crisis, in 201202, reaching approximately 120 basis points for the 3-year maturity.
For the 10-year maturity, post-redistribution yield gains revolve around 25 basis points over

the estimation sample, reaching a maximum of about 40 basis points in 2013Q1.

6.3. Moral hazard and redistribution schemes. Usual concerns associated with common
debt issuance pertains to moral hazard (see, e.g., Issing, 2009; Claessens et al., 2012; Favero
and Missale, 2012; Tirole, 2015; Davila and Weymuller, 2016): knowing that part of their debt
is guaranteed by other countries, some countries may be tempted to increase their spending—
and start issuing more debt—since the interest rate on jointly guaranteed debt is less sensitive
to an individual debt increase than non-guaranteed debt.

Although our reduced-form modeling framework does not allow to explore such mecha-
nisms in a structural way, it can illustrate how market discipline would be impaired by mas-
sive issuance of SJG bonds. Specifically, we perform counterfactual exercises in which Italy
and Spain decide to deviate from their current debt level, all else being equal. We then ob-
serve the changes in spreads induced by these modifications. We consider two dates: 2011Q4
(euro-area debt crisis) and 2021Q2 (end of the estimation sample). Figure 8 shows the results.
For each date and each country, large increases in the debt-to-GDP ratio result in modest in-

creases in SJG and SNJG Eurobond spreads (see, respectively, the grey and black solid lines).
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TABLE 4. Effect of redistribution schemes on funding costs

2008-06-30 2011-12-31 2021-06-30
SJIG

Aggr. €292bn €8.68 bn €6.21 bn
gains
Panel A: SJG, Same funding costs (i.e. no ex-post redistribution)

redist. postredist.  yield redist.  postredist. yield redist. postredist. yield

weigth? yieldb gain®  weigth yield gain  weigth yield gain

DE -11% 409 -4 -111% 282 -106 -3% -3 -2
FR 26% 409 13 -24% 282 -33 18% -3 16
IT 62% 409 41 153% 282 300 60% -3 68
ES 22% 409 24 82% 282 257 25% -3 47
Panel B: SJG, Redistribution based on GDP weights

redist. ~ postredist. yield redist.  postredist. yield redist.  postredist. yield

weigth yield gain  weigth yield gain  weigth yield gain
DE 39% 392 14 39% 140 36 39% -29 24
FR 27% 409 14 27% 211 37 27% -11 24
IT 21% 436 14 21% 538 44 21% 40 24
ES 13% 419 14 13% 495 43 13% 19 24
Panel C: SJG, Same yield gains across countries

redist. ~ postredist. yield redist.  postredist. yield redist.  postredist. yield

weigth yield gain  weigth yield gain  weigth yield gain
DE 39% 392 14 42% 137 39 40% -29 24
FR 27% 409 14 28% 210 39 27% -11 24
IT 21% 436 14 18% 544 39 21% 41 24
ES 13% 419 14 12% 500 39 13% 19 24

SNJG
Aggr.
> €0 bn €0 bn €0 bn

gains
Panel D: SNJG, Same funding costs

redist. postredist.  yield redist.  postredist. yield redist. postredist. yield

weigth yield gain  weigth yield gain  weigth yield gain
DE — 423 -18 - 320 -145 - 20 -26
FR - 423 0 - 320 -72 — 20 -8
IT — 423 27 - 320 262 - 20 45
ES — 423 10 - 320 218 - 20 23

Notes: This table compares post-redistribution funding costs across countries under the two issuance schemes
(SJG and SNJG) and under different redistribution schemes described in Subsection 6.2. We focus on the 5-
year maturity and on three periods: beginning of the estimation sample (2008(Q1), midst of the euro debt crisis
(2011Q3) and end of the estimation sample (2021Q2). Yields are expressed in basis points. Aggregate gains
(reported at the top of the table) are computed under the assumption that total issuance is equal to 5% of aggre-
gate GDP. In each panel, for all countries and dates, we show the redistribution weights, the post-redistribution
yields, and the spread between national yields and the post-redistribution yields (that are the yield gains). Un-
der SNJG (Panel D), redistribution weights are unnecessary since there are no aggregated gains. See Online

Appendix IV for computational details.
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These increases are far lower than those of national bond yields (grey dashed line). This illus-
trates the moral hazard issue: under the issuance of common bonds, and if the each country
pays the issuance SJG/SN]JG yield (i.e., under Schemes A or D), then the ability of financial
markets to restore fiscal discipline via rising interest rates is hampered. Let us stress that the
strength of this hampering effect depends on the extent to which national issuances would be
replaced with eurobonds: as long as a sizable share of countries’ funding needs are met with
the issuance of national bonds, the overall debt service remains sensitive to countries” indebt-
edness. In other words, under Schemes A or D, a necessary condition for market discipline to
remain effective is to limit the issuance of eurobonds (as suggested by Delpla and Weizsacker,
2010; Hellwig and Philippon, 2011). The simulation results suggest that moral hazard effects
are dampened under Schemes B and C (see black dashed lines in Figure 8); these schemes in-
deed imply that post-redistribution funding costs, although lower than national bond yields

(grey dashed line), remain sensitive to countries” indebtedness.

7. CONCLUDING REMARKS

This paper aims at pricing bonds jointly issued by a group of countries. Our focus is on
Eurobonds, which are debt instruments jointly issued by euro-area countries. We consider
two types of common bonds: the first features joint and several guarantees (SJG bond); the
second is characterized by several but not joint guarantees (SNJG bond). To price these two
types of common bonds, we develop a novel multi-country sovereign credit risk framework.
Our model captures the joint dynamics of national bond prices, sovereign debt, and the fiscal
limit—the level of debt beyond which the risk of default is no longer zero.

Estimating the model involves both determining the model parameterization and coun-
tries” fiscal limits. Thanks to the tractability of our asset-pricing framework, these two tasks
are operated jointly. Our estimation sample comprises data associated with the four largest
euro-area economies (Germany, France, Italy, and Spain) and covers the period from 2008Q1
to 2021Q2. The estimated model fits observed sovereign spreads across maturities and coun-
tries. To the best of our knowledge, this paper is the first to provide time-varying estimates
of fiscal limits for the euro area.

The estimated model is exploited to examine the pricing of (counterfactual) SJG and SNJG

bonds. Yields associated with SNJG bonds are always higher than those associated with their
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SJG equivalents. Notably, during the euro-debt crisis, the 5-year SNJG bond yield spread,
w.r.t. a risk-free rate, is three times larger than the SJG one. Therefore, in the presence of
heterogenous fiscal conditions, raising funds through SJG bonds may lower aggregate debt
service (w.r.t. situations where only national bonds and/or SNJG bonds are issued). We
discuss potential ex-post redistributions of such aggregate gains, and we show that some of
these redistribution schemes may alleviate the reduction in market discipline resulting from

joint bond issuances.
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Notes: Model-implied sovereign spreads result from eq.(21). Dashed lines represent the (model-implied)
spreads that would be observed if agents were not risk averse (obtained also by eq. 21, but after having set the
prices of risk, that are the components of ¢, to zero). The differences between the two types of model-implied
spreads (dotted and solid lines) correspond to credit-risk premiums.
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RF yield, 2 years

FIGURE 3. Model fit of risk-free yields
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Notes: The model implied risk-free yields (grey solid line) result from eq. (18). Interest rates are annualized, and
expressed in percentage points.
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FIGURE 4. Estimated fiscal limits
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Notes: These plots display estimated fiscal limits (¢;;) and observed public debts (d;;), both expressed in % of
GDP. On a given quarter, if debt-to-GDP is higher than the fiscal limit (grey solid line), then the probability
of default is strictly positive (see eq.1). Everything else equal, if debt-to-GDP (black solid line) stayed above
the black dotted line (respectively in the grey-shaded area) for four quarters in a row, then the annual default
probability of the considered country is larger than 10% (respectively in |0%, 10%]). On each plot, the vertical
bars indicate important dates (monetary-policy decisions and/or noteworthy pivotal economic events): All
countries—10/05/2010: Announcement of Securities Market Program (SMP); 02/08/2012: ECB announces it
may undertake outright transactions in sovereign bond markets (OMT); 22/01/2015: ECB announces expanded
asset purchase programme to include bonds issued by euro area central governments, agencies and European
institutions (combined monthly asset purchases to amount to €60bn); 04/03/2015: Announcement of the Public
Sector Purchase Programme (PSPP); 12/09/2019: Announcement that net purchases will be restarted under the
Governing Council’s asset purchase programme (APP) at a monthly pace of €20bn as from 1 November 2019.
Italy—12/11/2011: Berlusconi resigns from office (BTP/Bund spread is over 550 bps); 04/03/2018: Populist
parties (M5S and Lega) win the majority of votes in Italian government elections. Spain—11/12/2012: ESM
(European Stability Mechanism) disburses €39.5bn for recapitalisation of banking sector; 05/03/2013: ESM
disburses €1.9bn.
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FIGURE 5. Counterfactual bond yield spreads
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Notes: This figure compares counterfactual yield spreads (versus risk-free interest rates) associated with com-
mon bonds benefitting from several and joint guarantees (SJG) and bonds with several but not joint guarantees
(SNJG). For the sake of comparison, we also add German bond yield spreads (circles). The grey shaded-area
shows the range of SJG spreads obtained when varying the correlation across debt and fiscal limit innovations
(respectively the ¢, ;s of eq. 9 and the ¢4 ;s of eq. 10) from 30% to 99%; the baseline case (in black) is for a 50%
correlation.
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FIGURE 6. Observed proxies of common bond spreads versus 10-year German benchmark

120 4—— EIB 09/29
- - - EFSF12/29
oooooo ESM 03/29

100 4—— EU 1029

- - - NEXT GEN EU 04/31
GDP-weighted spread (4 countries)
. Model-implied SNJG spread (10-yrs)
80 1 @  Model-implied SJG spread (10-yrs)

basis points

-20 —

11-15 05-16 11-16 05-17 11-17 05-18 11-18 05-19 11-19 05-20 11-20 05-21

Notes: This figure shows bond yield spreads w.r.t. the German 10-year benchmark bond. Black and blue (re-
spectively grey) lines correspond to proxies for SJG bonds (resp. SNJG bonds). We consider bonds issued by
the European Investment Bank (EIB), the European Financial Stability Facility (EFSF), the European Stability
Mechanism (ESM), the European Union (EU, NEXT GEN EU). The SNJG proxy (grey lines) is computed as a
GDP-weighted average of national-bond spreads (versus Germany). The data are at the daily frequency; they
span the period from February, 26 20219 to June 17, 2021. The dates reported in the legend of the figure corre-
spond to maturity dates (2029 or 2031) of the specific bonds. The spreads are computed as the differences in asset
swap spreads w.r.t. to the Bund; (see Online Appendix V for more details). As of November 2021, the credit
ratings of the considered European institutions were as follows (Moody’s/S&P /Fitch): EIB (Aaa/AAA/AAA),
EFSF (Aal/AA/AA+), ESM (Aal, AAA/AAA), and EU (Aaa/AA/AAA).
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FIGURE 7. Yield gains associated with redistribution scheme with same yield
gains across countries
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Notes: This figure shows yield gains associated with redistribution Scheme C (same yield gains across countries)
throughout the whole estimation sample and for different maturities. See Subsection 6.2 for details regarding
this redistribution scheme. Yield gains are expressed in basis points.



FIGURE 8. Moral hazard risk and redistribution: counterfactual exercise
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Notes: This figure shows the increase in different bond spreads (w.r.t. to risk-free rates) resulting from counter-
factual increases in Italian indebtedness (left column of plots) or Spanish indebtedness (right column of plots),
all else being equal. The two rows correspond to different periods, namely 201104 (euro-area sovereign debt
crisis) and 2021Q2 (end of the estimation sample). The different schemes (A to D) are described in Subsec-
tion 6.2.
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APPENDIX A. X;'S DYNAMICS

The state vector X; follows the vector autoregressive process of order one given in eq. (12), with:

(1—pi)i
0
(1= pa)dy 0i 0 0 0
= P o= 1 0 0 0 ’
(1—pa)dn 0 paldnxn 0
(1—pg)€1 0 0 0 PEIdNXN
i (1—pe)ln i
and
Oi
0

Onx1 Yaldyxn  Onxn agdnxt Onxa
Onx1 Onxn  yeldnxn  Onxi ardnx:

APPENDIX B. IP TO Q DYNAMICS

Let us introduce the risk-neutral measure, defined with respect to the physical measure through the
following Radon-Nikodym derivative:

Qp My <_1 b >
dP t,t+1_IEt(Mt,t+1) exp 211[“10 YN |-

Under the physical measure, the conditional Laplace transform of X; is given by
1
E;(exp(u'Xi41)) = exp (u/y +u'®X; + 2u’2’2u> : (a.1)

Let us now compute the conditional Laplace transform of X; under the risk-neutral measure:
1
ER(exp(/Xisn)) = B (e (=50~ ¥ ) expluXin))
1
— IEt<exp (—le/zp +u'y+u'dX; + (Z'u — ¢)/;7t+1> )

= exp (u’(y —ZP) +u'OX; + éu/2’2u> :
By analogy with (a.1), it comes that the risk-neutral dynamics of X; reads:
X = pQ 40X, 1+ 342, R ~iid N(0,1), (a.2)

where Q@ = y — Xy, and ®Q = .



40
APPENDIX C. PRICING OF RISK-FREE BONDS
By definition of the state vector X; = [it, i;_1,ds, {4], eq. (18) is satisfied for h = 1, with:
A1 =0, and B; = -[1,0,...].

Let us assume that eq. (18) holds for a maturity & — 1, with & > 1. Then, the price of a risk-free
zero-coupon bond of maturity i — 1 is given by

P = exp(Ap_1 + B, 1 Xt). (a.3)
Let us then express the price of a risk-free zero-coupon bond of maturity h:

Py = Eif(Mpp1Pipq) = exp(—it)]E?(exp(Ah_l + Bj,_1X;+1)) using (a.3)
= exp(Bi X)) EP(exp(Ay_1 + Bj,_1[u? + ®°X; + Zne11])))

1
= exp (Ahl + Biz—lyQ + EB;l_lz‘Z,Bh,l + [Bl + @Q’Bhl]’Xt) ,

which leads to eq. (17), using the definitions of #? and ®? given in (a.2).

APPENDIX D. PRICING OF ZERO-COUPON ZERO-RECOVERY RISKY BONDS

Denote Pt(’];‘l) the date-t price of a zero-coupon bond providing a payoff of 1 on date t +  if country j
has not defaulted before t + 1, and zero otherwise (see Appendix I). Thus, we have:

Pt(,]h) = E2(Apn(l— Djtn)) = Eg {exp(—is — - —ipip-1)(1 = Djpqn) }
= IE? {]E? {exp(—it — =) (1 - Dj,t+h)|Xt+h/Xt+h71, . }}
= IE%2 {exp(—it — e = Ay — e Aj,t+h)} ) (a.4)

where the last equality is obtained under the assumption that D; does not cause X; in the Granger’s
or Sims’ sense (Monfort and Renne, 2013, Proposition 3).

Because the default intensities Ais involve a max operator (see eq. 2), eq. (a.4) does not admit closed-
form solutions. We follow Wu and Xia (2016) and look for an approximation for the following “for-
ward” rate:

pin-in = —log(P}) +log(PY) ) (a.5)
(7)

Then, we get an approximation to P} by taking the exponential of the cumulated forward rates.
The approximation is essentially based on log E[exp(Z)] ~ E(Z) 4+ 3V(Z), which is exact when Z is
Gaussian, but not if it is truncated Gaussian, as is the case here.

As detailed in the Online Appendix I, we get:
Q

Hitk V tk 1
pj,kfl,k =~ (3/‘14‘3{ + b OJ_T ]tk + 4) _U]-T (7—]%{ — E <CIj,t,k(5 + 6])/r%0 ((S + ﬂ]) + (1 — qj,t,k)fs/r]?()é)
jik jik

Z<q]tk (5+5)FQ(5+5)+( — qjtk— )5Fk15> (a.6)
i=1
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where §; = [0,0, ae}, —ae]’ (¢; denoting the j™ column vector of the N x N identity matrix), q;.x =
P (y?k/a]%), and

-1 k k
:u?k = ]E?(Xt+k) = (Id—®Q) (Id — o) + X,
F%O = VR(Xew) = Q+<I>Q1"}<Q7LOQDQ,, with 1"%0 -0
— _1/
— 042009 ...+ Q0
ng‘ = Cov (X Xepki) = CIDQZF,;Q#,O if k—i>0,

where 42 and ® are given in Appendix B.

APPENDIX E. PRICING ZERO-COUPON BONDS WITH NON-ZERO RECOVERY RATES

Consider a zero-coupon bond of maturity / issued by country j. Assume the recovery rate is RR.
On date t + k, with 0 < k < h, the payoff of this bond is zero, unless the country defaults on date
t + k, in which case the bond payoff is assumed to be the fraction RR of the price of a risk-free zero-
coupon bond of equivalent residual maturity, i.e. exp[—(h — k)i;x x| (this is the Recovery of Treasury
convention—RT—of Duffie and Singleton, 1999). Hence, the payoffs of this bond are of the form:

{ RR x exp(—(h — k)it+k,h—k) X (D]',t-i-k — Dj,t-l—k—l) if 0<k<h,

1=Djtik+ RR X (Djt1k — Djpik-1) it k=h.
As aresult, denoting by A, ;. the (non stochastic) discount factor exp(—i; — - - - — iy x_1), the price of
this bond is given by:

. h
Pt(,]h) - E? (At,t+h(1 —Djpyn) + RR Y Apspwexp(—(h —k)ipiin) (Djsik — Dj,t—i—k—l))

k=1
I
= ]E?(At,t+h(1 - Dj,t+h)) + RR Z ]E? [At,t+k1E?+k {exp(—ipk — -+ —idpn1)} (Dj,t+k - Dj,t+k—1)]
k=1
h
= E?(At,ﬂrh(l —Djn)) +RR Y ]E‘tQ [Atiin(Djiik — Djsik—1)]  (by the law of iterated expectations)
k=1

h
= E2(Apsin(1 = Djsin)) + RREZ(Ags 1) kz EP [(Djsk — Djpsk—1)]

=1
where the conditional expectation IE‘}2 (Atp4n(1 = Djsyp,)) represents the date-t price of a zero-coupon
zero-recovery risky bond of maturity / providing a payoff of 1 on date t + h if country j has not
defaulted before t + &, and zero otherwise (see AppendicesD for an approximation of this price).
Moreover, IE?(At,t+hDj,t+k) = ER(Ap ) E2 (D; t41,) results from the fact that, under our assumptions
regarding the s.d.f., D; and i; are independent under the risk-neutral measure Q (as they are under IP).

Therefore:
PU = E2(Ayn(l— Dypsn) + RREQ(A ;14D 1n)
= EP2(Ayien(1 = Djern)) — RREZ(Agsn(1—Djpip)) + RREZ (A1)
= (1- RR)PJ) + RRexp(—hil),),
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where approximation formulas for Pt(]é) are given in Appendix D.

APPENDIX F. MAXIMUM SHARPE RATIO

Hansen and Jagannathan (1991) show that the maximum Sharpe ratio for a one-period investment

is given by:

maxSR; =

Var (Mi 1)

Ei(Miii1)

In the present context, the exponential affine form of our s.d.f. (14) implies that:

V' Variexp(—¢'er11)
maxSR; = = 4/ex ) —1,
’ Ey exp(—(er ) Vexp(¥'y)
which does not depend on time. Since ¥ = [¢;, vw', —vw', v, —v]' (Where w is the vector of GDP

weights), we obtain:

maxSR = \/exp(glJf~ +2v2w'w +1?) — 1.

APPENDIX G. ALTERNATIVE (STATIC) FISCAL LIMIT ESTIMATES

TABLE 5. Fiscal limit estimates comparison

Ctry

DE
FR
IT
ES

Ghosh et al. (2013)

Collard et al. (2015)

Hist. Proj. 5% MPS MRR TVR CATA 4%MPS h. MPS
154.1 175.8 130.1 1323  114.6 85.5 104.1 112.9
170.9 176.1 146.6 148.6  119.8 97.8 117.2 40

— — 113.2 1156  106.8 74.2 90.6 147.5
218.3 153.9 144.2 146.2  119.3 95.8 115.3 115.6

Note: All estimates are reported in percent of GDP. This paper — FL: Sample mean of the fiscal limit estimates.

SD(FL): Standard deviation of the fiscal limit estimates. min(FL): absolute minimum for fiscal limit estimates.

max(FL): absolute maximum for fiscal limit estimates. Estimates of Ghosh et al. (2013) — Debt limits (fiscal lim-

its in our terminology) are statically estimated through the interest payment schedule for the period 1985-2007.

Hist.: Estimates are based on the average interest rate / growth differential of 1998-2007, using the implied

interest rate on public debt; Proj.: The interest rate / growth differential is based on the long term government
bond yield (average for 2010-2014, IMF projections as of 2010). Estimates of Collard et al. (2015) — The compu-
tation of maximum sustainable debts (fiscal limits in our terminology) exploits the idea of a maximum primary

surplus (MPS). In the model, there is a maximum amount that can be issued on each date (that itself depends on

the MPS). 5% MPS: Case where the MPS is set to to 5%; MRR: The computation involves a maximum recovery

rate; TVR: The model features a time-varying interest rate; CATA: The model features catastrophes; 4% MPS:
The MPS is set to 5%; h. MPS: The MPS is set to the historical peak of primary surplus-to-GDP.
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Fiscal Limits and the Pricing of Eurobonds
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APPENDIX I. APPROXIMATE FORMULA FOR ZERO-COUPON RISKY BOND

This appendix details the approximation to the price Pt%) (this price being defined though eq. a.4);
the resulting formula is given in Appendix D.
Since Xt - [itl it—l/ dl,tl T /difl,t/ gl,t/ T /gn,t}ll we haVe

iy 1=10X;, (L1)
where § = [0,1,0,...,0]. Moreover, we also introduce the following notation:
)\j/t == (S;Xt,
where 6; = [0,0, IXE}, —IXE}]/, ej denoting the j" column vector of the N x N identity matrix. With these
notations, eq. (2) rewrites:
Aj,t = max(0, /\j,t)/
that is, A;; can be seen as a “shadow intensity”. With these notations, we can rewrite eq. (a.4) as:
Pt(’]h) = ER[exp(—6'X; 11 — max(0, Ajpg1) — - — 0" Xy — max(0, Ajeqp))]- (1.2)
Let us recall the notation introduced in Appendix D:
Pin-ih = — log(Pt(,]h)) + log(Pt(,Jh)fl). (L3)
In the spirit of Wu and Xia (2016), we determine approximations to p; 1, that we further use to get
approximations to Pt(,]h) , using:
P = explpjor+pinat s (L4)
The approximation to p; ;1 is essentially based on log E[exp(Z)] =~ E(Z) + 3V(Z), which is exact

when Z is Gaussian, but not if it is truncated Gaussian, as is the case here. This gives:

1
Pik—te = EL(0'Xipe+ Ajpk) — EV?@/XHk +Ajik) —

k-1
—COU? (5/Xt+k + A]‘,H*k’ E (5/Xt+i + )\j,tﬂ*i)) (15)
i=1
Following Wu and Xia (2016), considering that A;; is a persistent process and introducing the follow-
ing notation:
itk = Ip?(dj,wk > Lipik),
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we have, fork > 0and 0 <i < k:

Cov P (ir-14ks Aj ki) & jk—iCOVR (116 Aj ki) (1.6)
—— ——
0" Xk ' Xk

Cov2(Aj s Ajpari) A Qjp—iCOVR (A ik Ajprki) 1.7)

Using the last two equations, we can rewrite eq. (1.5) as follows:

Pik-1k = ER (8 X1k +Ajk) —

1
—5 <qj,t,kW?(5/Xt+k +Aj k) (1= qj,t,k)W?(‘S/Xt+k)> -

k—1
-y (qj,t,icov? <5'Xt+k + Ak 8 Xipyi + /\j,t+i> +
i=1
+(1- qj,t,i)COU? (5/Xt+k, 5/Xt+z') ) . (1.8)
Posing
ke = ER(Xew), ]’l;%,k = E2(Aj),
‘T](?k - W?(A]?Hk)' rl?i = COU?(XHI« Xivk—i),s

and using A;; = (5]’.Xt, we finally obtain

Pik—1k R 5/743( + ‘I’(P‘%k/aﬁ)ﬂg,k + 4’(—#%,#‘/}%)“]% -

1
—> <Clj,t,k(5 +6,) T (0 +a) +(1- q]',t,k)fs/rgo‘S) -

k-1
- Z; <Clj,t,ki(5 + (5]')’F‘Bl-(5 +6j) + (1 - Clj,t,ki)yrgi5>/ (1.9)
i=

with
djek = P (P‘?M‘ﬁ) :

The next appendix details a fast (coding-oriented) approach to compute the y?ks and F%js.

APPENDIX IT. COMPUTATION OF p, AND I,

Recall X;’s law of motion (eq. 12):
X = pQ+ @R + 26D, ey ~iid N(0,Id).

Using the notation Q) = XX/, we have:

-1 k k
:u?k = ]E?(Xt-i-k) = (Id—®Q) (Id — o)l + 02X,
1ﬂlgo = V2(Xi) = QO+ CIDQF&LO@Q/, with 1"‘80 Yo

= Q+d°0PY 4+ ...+ q;@k_lgchk_l/,
1S = Covo?(Xip Xipei) = ®UTL,, if k—i>0.
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The estimation involves a large number of computations of the F%j’s. In order to speed up the
computation, one can employ the following approach.

Consider a vector B of dimension #n,, that is the dimension of X;, and let us denote by ij the vec-
tor defined by @‘f = (@91)’[3 (B will typically be J;, or (6; + J)). Because we have 1”% = o200+
q)?iHQCI); 4o D1OPE 1 it comes that:

BTiB = &' + Cﬁllﬂéf ot C,’f_llﬂéf_l_i. (I1.10)
Let us consider a maximal value for k, say H, and let us denote by Z4 the n, x (H + 1) matrix whose
w'" column is ‘:5;71' It can then be seen that the (i, k) entry of Yh = Eﬁ’QEﬁ — which is a matrix of
dimension (H + 1) x (H + 1) —is equal to 51571/065_1- The sum of the entries (i +1,1), (i +2,2),...,
(i + k, k) of YP therefore is

!/ / /
gragf+el, 04+l 0,

which is equal to p’ ng,iﬁ according to (I1.10). Equivalently, f’ Flg B is the sum of the entries (i +1,1),
(i+22),..., (kk—i) of ¥F.

In particular, the entry (1,1) of ¥# is equal to /T 9B, the sum of the entries (1,1) and (2,2) is equal
to QB + /&, OP. B = B'T20p, and, more generally, the sum of the entries (1,1),...,(n —1,n—1) of

Y# is equal to B'T ;8.

APPENDIX III. INVERSION TECHNIQUE

This appendix describes the computation of the likelihood function (see Subsection 5.2 for a general
description of our estimation approach).
We consider the following decomposition of the state vector X; = [it, i;—1,d}, (}]":

Xi
~—~—
X; (m—N)x1
7
~—~ gt
mx1 N~
Nx1

where X; are the observable components of X;.
The state vector follows a vector autoregressive process of order one (eq. 12).
The vector of observed financial data is organized as follows:

yfy) 7
N~~~
nyx1
y(¥S)

Yt - \.1_'t__/ ’
nq X 1

where Yt(y ) is a vector of risk-free yields (of maturities 2, 3, 5 and 10 years), Ygs) is a vector of

imperfectly-fitted bond yield spreads (e.g. maturities 2 and 10 yrs) and Ygs) is a N x 1 vector of
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perfectly-fitted bond yield spreads (in our case, the average of bond yield spreads of maturities 2, 5
and 10 years). These yields and spreads are given by:
YW = A +BX +&Y
Y = Fi(Xe, &) + s (IIL.11)
YZ(}[S) = fo(Xs, l¢) (these spreads are perfectly fitted).

We assume that the components of gt(y) and C;YS) are ii.d. normally—distributed measurement errors.

The variance of each component of ¢ t( is (T The variance of the i component of ¢ t(YS) is 02 ..

System (III.11) can be rewritten:

{ Yt(y) — Ay‘f’B;s{t‘f’ng)
Ys S S (YS Ys
Yl(,t )= fl(Xtrfz(Xtryz(,t )))‘i‘ét( ),

where function f; represents the inversion of the pricing of Yz(fs), ie.
Yz(fs) =f (f(t,&) Slb=f ()N(t/ 2 ))-

Let us use the following notations:

(II.12)

()
Yty Yt(y) v )
y(YS) YY) t
W= | U and Z;=| U = | y¥®
X; X; 1Xf
Y)Y ‘ f

Under the assumption that YZ(}[S) is perfectly fitted by the model, the information contained in Z; is the
same as that contained in W;. But the p.d.f. of Z;, conditional on W;_; (or, equivalently, conditional on
Z; 1), is easier tom derive than that of W;.

Indeed, we have:

10gfzt|zt,l<zt) =

my ) <) (YW %
—=Llog(27) = mylogoy — 5 (Y = A, = B,X:) (v — 4, - BXi)

1
2ay2

1 _
——log (27) ZlogUYSZ -5 (Yg” - fl(Xt,&)> diag(1/0%) ( fl(Xt,Et))

m 1 1
) log(27r) — 5 log(|Zx/]) — 5 (Xi—p— X, 1) () H(X —p— DX ), (I11.13)

where diag(l / 012/5) is a diagonal matrix whose ith diagonal entry is 1/ (T%,S,Z-.

Remark that this does not provide us with the likelihood associated with observed data since ¢; is
not directly observed.

We have:

Wt - g(Zt)/



with
Yt(y ) Y(t(:s) ) Yt(y )
Ys YS
Xt Xt Xt
2 Yir® F (X )
In general, we have:
ag (W, _
Fuafwio (We) = ‘gaw(,t) friz (8 (Wh), (IIL.14)
and, therefore:
0g~ (W, B
1og fw,w, , (Wi) = log %vf,,t) +  logfzz (g 1<Wt)), , (I11.15)

| ——

Iculated usi .(IIL.13
calculated using eq. (I11.16) calculated using eq. ( )

where, using the inverse function theorem and the fact that ‘ w is diagonal:
03 LW | _ gm0 26X t)

In practice, in (II.13) and (II1.16), we replace ¢; by f5 (}?t, Yz(}tfs)> —that is the fiscal limit recovered by
the inversion technique.

The vector of observed variables can be extended to include D;. Using the notation W} = [W], D}/’
and exploiting the fact that D; does not Granger-cause W;, we have:

log fwyiw; (Wi, Dy) = log fw,jw,_, (We) + log fp, w, (Dt)- (II1.17)
~—_—
calculated using eq. (II1.15)  calculated using eq. (I11.18)

In particular, if all the components of D; are zero (absence of default), we have:

N
long,*IW?,l (Wt, Dt = 0) = logfwt|wf_1(Wt) + 2 log [1 — .F(d]',t — Ej,t)} . (HI.18)
j=1

APPENDIX IV. REDISTRIBUTION SCHEMES: FORMULAS AND ADDITIONAL SCHEMES

This appendix details the formulas underlying Section 6.2 of the paper.

IV.1. General formulas. Assume that, on date t, a European debt agency issues common bonds with
maturity h and face value F (it repays F at date t + h). The proceeds of the issuance are P}, F, with
e € {S]G,SNJG}, depending on the type of common bond that is issued. The proceeds are allocated
across countries proportionally to GDPs. Recalling that GDP weights are denoted by wj, country j
receives w;jP;, F. If country j had issued national bonds with the same face value (w;F), it would have

)

obtained Pt(él w;F on date t. Therefore, at the euro-area level, the gains are:

GiuF = PLLF — (W'PyF), (IV.19)
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where P, ;, represent the N-dimensional vector of national prices and w stands for the N-dimensional
vector of GDP weights. (It can be seen from the previous formula that the aggregate gains are null
whene = SNJG.)
Now, denote by wg the redistribution weights of the gains (with } ;wg; = 1). The after-gain-
redistribution proceeds are:
w'P;yF + Gy pwiF,

which is of the form w'P,; ; (w¢)F, with
w
Poin(we) =P+ G ?G, (IV.20)

where, by abuse of notation, “¢ denotes the vector whose jth entry is wg;/wj. P,u(ws) can be
interpreted as the pseudo issuance N-dimensional vector of prices after redistribution. The post-
redistribution yields faced by the different countries are given by the following N-dimensional vector:

. 1
iein(we) = — 7 10g Pesn(we), (IV.21)

where, by abuse of notation, the log operator is applied element-wise.

Below, we describe the different after-gain redistribution schemes that we propose. Given that
aggregate gains for the SNJG bond issuance scheme are nil, for the latter, we only focus on the scheme
in which all countries face the same funding costs.

IV.2. Scheme where countries face the same funding costs. In this scheme, the after-redistribution
issuance price faced by all countries is the eurobond price. That is:

Pe,t,h(wG) = ch'
Using G, = Pf), — w'P; j, together with (IV.20) then gives:
wg=w® 713;}’1 — P
TR, — WPy

where © is the element-wise product. Note that the sign of each country’s redistribution weight wg;
()
t

depends on Pf;, — P,}’. Therefore, this scheme implies negative “gains” for those countries j whose

national bond prices are higher than that of the considered eurobond.

IV.3. Scheme with GDP weights. In this case, the redistribution weights (w¢) are equal to the GDP
weights (w). Using G, = P, — w'Pyy, (ie., Eq. (IV.19)), Eq. (IV.20) gives:

Poin(we) =Py + (P, — w'Pyy)1.

IV.4. Scheme with the same yield gains across countries. Under this scheme, all countries benefit
from the same yield gain, denoted by Ai;. Denote by i,; the N-dimensional vector of national bond
yields. We want to have P, ; ,(w¢) = exp(—h(it, — Aiz)). Using (IV.20), we get:

we . .
Pt,h + Gt'hz = eXp(—h(lt’h — Alt)),
where, by abuse of notation, ¢ denotes the vector whose i entry is wg,j/wj. This gives:

1 . .
wg = —=—w O [exp(—h(iy, — Aiy)) — Py,
Gty



where © is the element-wise product. Since the components of w¢ have to sum to one, we have:

1 .
1=1 <Gw © [exp(—h(isn — Air)) — Pt,h]) :
b

or, using that exp(—hi; ;) = Py

Gip = (exp(hAir) — 1)1 (w © Pyy).

This further gives:
G

1 N
+ llw ® Pi’,h

= exp(hAi;),

and, finally:

. 1 Gty
Aig=log (14—t ).
" Og< +1’(w®Pt,h)>

IV.5. Scheme with no change in funding costs for Germany and France. Table 6 complements the
analysis developed in Subsection 6.2 with two additional schemes. In the first scheme (respectively
second scheme), Germany (resp. both Germany and France) faces the same funding costs it would
have faced under national issuance. Moreover, the aggregate gains are shared among the other coun-

tries on the base of their relative GDP size.

TABLE 6. Effect of redistribution schemes on funding costs (additional schemes)

2008-06-30 2011-12-31 2021-06-30
SJG

Panel A: No change in German funding cost

redist. ~ postredist. yield redist.  postredist. yield redist.  postredist. yield

weigth yield gain  weigth yield gain  weigth yield gain
DE 0% 405 0 0% 175 0 0% -6 0
FR 44% 400 23 44% 188 61 44% -26 39
IT 34% 427 23 34% 511 72 34% 25 40
ES 21% 410 23 21% 468 70 21% 4 39
Panel B: No change in German and French funding cost

redist.  postredist. yield redist.  postredist. yield  redist.  postredist. yield

weigth yield gain  weigth yield gain  weigth yield gain
DE 0% 405 0 0% 175 0 0% -6 0
FR 0% 423 0 0% 248 0 0% 13 0
IT 62% 409 41 62% 456 127 62% -6 71
ES 38% 392 40 38% 415 124 38% -27 70

Notes: This table compares post-redistribution funding costs across countries under the two issuance schemes
(SJG and SNJG) and under the redistribution schemes described in IV.5. We focus on the 5-year maturity and on
three periods: beginning of the estimation sample (2008Q1), midst of the euro debt crisis (2011Q3) and end of
the estimation sample (2021Q2). Yields are expressed in basis points. Aggregate gains are computed under the
assumption that total issuance is equal to 5% of aggregate GDP. In each panel, for all countries and dates, we
show the redistribution weights wg j, the post-redistribution yields and the yield gains, that are the differences

between national bond yields and post-redistribution yields.



APPENDIX V. BONDS USED IN FIGURE 6

TABLE 7. Bonds used in Figure 6

Issuer Eikon ticker Coupon (in percent) Maturity date
France FRGV 2.50 25-May-2030
Belgium BEGV 0.55 04-Mar-2029
Portugal PTGV 3.875 15-Feb-2030
ESM ESM 0.50 05-Mar-2029
Spain ESGV 1.95 30-Jul-2030
Netherlands NLGV 0.25 15-Jul-2029
Germany DEGV IO Str 0 04-Jul-2030
NEXTGENEU EUUNI 0 04-Jul-2031
EFSF EFSFC 2.75 03-Dec-2029
EU EUUNI 1.375 04-Oct-2029
Italy ITGV 3.50 01-Mar-2030
EIB EIB 0.25 14-Sep-2029

Notes: This table lists the bonds used in Figure 6.

Asset swap spreads (ASW) are computed by Refinitiv Eikon.
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