
Intangibles within Firm Boundaries*

Bruno Merlevede† Angelos Theodorakopoulos‡

January 2023

Abstract

This paper extends a production function estimator to test whether intangible transfers

within firm boundaries lead to overall efficiency gains. Using a panel of European majority

owned parent-affiliate relationships, we present novel evidence that parent firms strongly

benefit from such transfers alongside productivity enhancements for affiliates. In relative

terms, affiliates’ long-run efficiency improvements are twice those of the parent. Such

gains appear to be induced by synergies for the affiliate but not for the parent, supporting

theories on the existence of common ownership. A falsification exercise suggests that only

2/3 of these gains are actually internalised within firm boundaries.
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1 Introduction

Questions revolving around the existence of firm ownership have generated a considerable
amount of research. At one end of the spectrum, the literature suggests that ownership struc-
tures accommodate the efficient transfer of tangibles. At the other end, ownership is seen as
facilitating the efficient transfer of intangibles.

The flow of physical goods within ownership groups is highly concentrated among a small
number of affiliates that are owned by large parent firms, both domestically (Atalay et al. 2014)
and internationally (Ramondo et al. 2016; Blanas and Seric 2018). This suggests that ownership
structures are primarily used to facilitate the efficient transfer of intangibles. As considered
theoretically by Arrow (1975) and Teece (1982), common ownership allows the firm to transfer
intangible inputs across its vertically integrated production units, as the alternative of the market
is most likely a non-viable substitute.

Since the transfer of tangibles can only explain a small fraction of ownership structures in
the economy, the need to examine the existence and prevalence of the alternative explanation,
i.e. the transfer of intangibles, in depth, is primary.1 However, any relevant empirical research
to date only provides suggestive evidence of this possibility.2 Likely, this is due to data re-
strictions which make it difficult to explicitly measure intangibles (Haskel and Westlake 2018).
In most cases, researchers rely on proxies or incomplete measures such as R&D, royalties,
corporate transferees, etc.

To the best of our knowledge, there are no micro-level panel datasets that combine infor-
mation on the full set of intangibles for both the parent and affiliate with standard balance sheet
information. Such a dataset would allow researchers to fully specify the production function of
each parent and affiliate, and hence quantify any transfers of intangibles. A notable exception
is the work of Bilir and Morales (2019). They show, based on a panel of US parents and for-
eign affiliate(s) with information on output, inputs, and R&D investment that expected affiliate
productivity increases with parent innovation.

However, R&D spending only captures a specific subset (i.e. proprietary knowledge) of a
broad range of intangibles that are potentially transferred within ownership structures. These
include but are not limited to: tacit knowledge; know-how; marketing techniques; and manage-
rial/organisational practices.3 In addition, there is a set of domestic ownership structures—usually

1The existence of one explanation does not mutually exclude the other. To become productive, transfers of
tangibles can also be found vis-a-vis to transfers of intangibles, i.e. parental assistance and coordination (Keller
and Yeaple 2013; Blanas and Seric 2018).

2Atalay et al. (2014) document that, despite the lack of shipments of physical goods within multi-plant firms
in the United States, newly vertically integrated affiliates start resembling their parent along the production and
trade activities. Ramondo et al. (2016) confirm this lack of shipments across affiliates of U.S. multinationals.
Arnold and Javorcik (2009) and Guadalupe et al. (2012) find that foreign acquisition of domestic firms leads to
improvements in: sales; productivity; investment; wages; employment; and innovation. For further documentation
on the existence of international technology transfers within the boundaries of the firm see Branstetter et al. (2006);
Keller and Yeaple (2013) and Gumpert (2018).

3On a similar note, Cho (2018) provides evidence on knowledge transfers based on the positive association
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glossed over in the literature—which, according to our data, represent a relatively larger share
of firms which are of smaller size. Nonetheless, these domestically owned firms might not
employ the types of intangibles which are easy to measure in the data. For example, they might
be less intensive in R&D spending (OECD 2017). Therefore, restricting the analysis to some
very special cases of observed intangibles (R&D, patents, etc.), limits our understanding about
the importance of intangibles themselves (Haskel and Westlake 2018). Overall, there is ample
space to validate or provide further empirical support to ownership theories which argue that
firm boundaries exist to facilitate the transfer of intangibles.

This paper takes a step in that direction by identifying transfers of intangibles and demon-
strating how they determine a firm’s productivity evolution. We use a carefully constructed
European panel of majority owned parent-affiliate groups with full balance sheet information
on both sides for the period 2004-2015 and extend a typical production function estimation pro-
cedure. In response to data limitations on intangible inputs, we devise a method to characterise
the full set of intangibles transferred between parent and affiliate firms.

Specifically, in any production function setup, the productivity term captures both disem-
bodied technological change and any potential intangible inputs used in the production of the
final output that are not observed in the data. The former includes innate characteristics of
workers, know-how, etc., while the latter includes management practices, acquired character-
istics of workers, innovation, among others. As such, the leftover output variation after con-
ditioning on tangible inputs of production (observed in the data) is expected to be informative
about the intangible aspects of the firm (unobserved in the data) . With this in mind, we exploit
observed ownership links in the data and extend a standard production function system by in-
troducing the productivity of the ownership-linked firm as a potential determinant of its future
productivity. The modelling approach we follow is, among others, similar to Bilir and Morales
(2019) where firms are affected by their actions or changes in their operating environment. To
the extent that ownership-linked productivity contains meaningful variation on intangibles, this
empirical model is expected to capture potential productivity effects from intangible transfers
between ownership-linked firms.

The following findings emerge. First, we show that the transfer of intangibles within the
boundaries of the firm leads to productivity enhancements of the affiliates. This result comple-
ments and expands upon others in the literature to this effect by considering a broader set of
intangibles. Second, we present a novel finding that the transfer of intangibles from the affiliate
also leads to productivity enhancements of the parent. To the best of our knowledge, this is the
first study to uncover this fact. Importantly, both of these findings advance existing empirical
evidence which supports the importance of intangibles in explaining common ownership. In
terms of the relative importance of these two effects, we find that the affiliate benefits twice as
much as the parent. Nonetheless, productivity effects for the parent are non-trivial. As such,
we argue that these results should be considered in any cost-benefit analysis of policies which

between the transfer of mangers from the parent to the foreign affiliate and the affiliates’ productivity growth.
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target intangible investment.
Exploring possible mechanisms, we find that affiliate firms benefit from complementarities

with their parents’ intangibles, in line with their very nature (Haskel and Westlake 2018). On
the flip side, such synergies are not present for the parent. Instead, our analysis suggests that
parent firms are pure recipients of affiliate-specific intangible technology. This further high-
lights the true motives of firm ownership (Teece 1982; Atalay et al. 2014). Moreover, these
results are supported by cross-country and cross-industry heterogeneity in the data.

As a cross-validation, we rely on a specific type of intangible which is directly observ-
able|patents. While important, patents are only responsible for a small share of the total im-
pact. Lastly, we further validate our results through a falsification exercise whereby we repeat
our estimation on a (a) randomly assigned and (b) closely matched sample of firms with no
ownership links. In the first case results cease to exist. This further confirms that our findings
are specific to ownership-linked firms and do not exhibit spurious effects. In the second case,
we find an effect which amounts to one third of the baseline estimates, representing spillovers
to the local economy (Javorcik 2010). In contrast, two thirds of the baseline effects appear to
be fully internalised within the boundaries of the firm. All results remain robust to a battery of
robustness exercises which address potential concerns with the baseline empirical model and
underlying economic assumptions.

The remainder of this paper is organised as follows. First, Section 2 discusses the construc-
tion and novelty of the dataset used for this analysis. Section 3 explains the empirical model,
whose identification is subsequently discussed in Section 4. Section 5 presents the main results
which stem from the baseline model, discusses mechanisms, and provides cross-validation
exercises related to patents and falsification tests. Next, Section 6 goes through robustness
exercises. Finally, Section 7 concludes.

2 Data

In this section we describe the construction of the available panel dataset that delivers two
building blocks of firm-level information. The first, more standard in the empirical literature,
refers to output and inputs involved in production. The second, less frequently encountered,
provides information about ownership links between firms. Combining these two elements
results in a unique firm-level dataset with information about the tangible parts of production
within firm boundaries.

We construct a panel of firms in 19 EU countries4 for the period 2004-2015. Data come
from the Amadeus database by Bureau van Dijk Electronic Publishing (2018) (BvDEP). BvDEP
regularly updates the information set in Amadeus and releases a monthly version which con-

4Austria (AT); Belgium (BE); Bulgaria (BG); Croatia (HR); Czech Republic (CZ); Estonia (EE); Finland (FI);
France (FR); Germany (DE); Hungary (HU); Italy (IT); Norway (NO); Poland (PL); Portugal (PT); Romania
(RO); Slovakia (SK); Slovenia (SI); Spain (ES); and Sweden (SE).
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tains the latest information on ownership. Firms that exit the market are thus dropped fairly
rapidly. For a complete set of financial and ownership information over time, we use a time
series of (annual) releases to construct a consistent database. In particular, following Merlevede
et al. (2015), we build a dataset with nearly full financial and administrative information, i.e.
balance sheet, profit and loss account activities, location, ownership, entry and exit. Concern-
ing the representativeness of the data, Table C.2 in Appendix C contains the number of firms
and employees covered by the dataset both in levels and as a share of inward Foreign Affiliates
Statistics (FATS) provided by Eurostat for the year 2012 (Eurostat 2018). For both measures,
the dataset covers close to 60% of what is reported in FATS. Merlevede et al. (2015) describe
in detail the construction of the data and coverage across EU countries at length.

Table 1: Summary statistics of baseline database

Affiliate Obs. Mean St.Dev. p25 p50 p75

Output† 71,119 31 211 1.9 6.1 19
Capital† 71,119 7.1 151 .18 1 4.2
Material† 71,119 20 146 .8 3 11
Labour 71,119 111 453 13 36 98
Parent

Output† 54,098 138 1,141 7.7 24 72
Capital† 54,098 24 140 1 3.9 14
Material† 54,098 88 868 3.5 12 40
Labour 54,098 381 2,103 38 103 281
No Affiliates 54,098 1.3 .85 1 1 1

Notes: † Monetary variables in millions of Euro. Unbalanced panel
of 12,665 parent and 17,661 affiliate firms in 22 NACE 2-digit manu-
facturing industries and across 19 EU countries over the period 2004
to 2015. Underline data sourced from Amadeus database by BvDEP.

We focus on the sample of firms with majority ownership links. This includes affiliate firms
where more than 50% of their shares are owned by a domestic or foreign parent firm. Each affil-
iate can have only one majority controlling parent, while parent firms can control multiple affil-
iates. This allows us to focus on the interactions within each ownership group where the parent
has complete control of its boundaries. Of these firms, we keep the active firms in order to
exclude cases which are hard to model empirically since their assets can genuinely go down to
(almost) zero.5 Continuing, we only consider firms that file unconsolidated accounts to control
for double counting in accounts integrating the statements of possible controlled subsidiaries
or branches of the concerned company.6 To address potential concerns about misreporting,
transfer pricing, and tax evasion, we only include firms whose reported NACE 2-digit industry
classification falls within the manufacturing sector. In addition, due to small sample size, we

5We exclude firms that are dissolved, in liquidation, inactive and in bankruptcy.
6Note that this does not control for the case of multi-plant firms since such information is unavailable.
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exclude the following industries: NACE 19 - Manufacture of coke and refined petroleum prod-
ucts; and NACE 21 - Manufacture of rubber and plastic products. To abstain from excluding
other small-sized industries, e.g. NACE 12 - Manufacture of tobacco products and NACE 15 -
Manufacture of leather and related products, we use the more aggregate classification A∗38.7

After completing these steps, we retain firms which report strictly positive sales, tangible
fixed assets, number of employees and material costs. Finally, we remove outliers using the
BACON method proposed by Billor et al. (2000) to ensure that such observations do not drive
overall results.8 Cleaning the data in this way results in an unbalanced panel of 12,665 parent
and 17,661 affiliate firms with 54,098 and 71,119 observations, respectively, across 19 EU
countries for the period 2004-2015.

The information presented in Table 1 constitutes the baseline dataset used to estimate the
empirical model described in section 3. All monetary variables are deflated using the appropri-
ate country-industry output deflator from the EU KLEMS database. (Real) Output (Y ) is sales
deflated with producer price indices. Capital (K) is the reported book value of tangible fixed
assets deflated by the average of the deflators of various industries (Javorcik 2004).9 (Real) Ma-
terial (M) is material inputs deflated by an intermediate input deflator constructed as a weighted
average of output deflators, where country-industry-time specific weights are based on inter-
mediate input uses retrieved from input-output tables. Labour (L) is the number of employees.
Affiliates refers to the number of majority controlled affiliates from each parent. Note that only
20% of observations report multiple affiliates, with a maximum of 22 affiliates.10 Note that so
far the dataset does not include directly observable information on firm level intangibles. This
will be identified with the help of the empirical model described in Section 3 below.

3 Empirical Model

This section describes the empirical model of intangible transfers in majority owned firms,
and their effect on productivity within ownership groups. We extend a typical production func-

7Appendix Table C.1 provides an overview of the NACE Rev.2 2-digit industries and their correspondence
to the intermediate aggregation A∗38 (Eurostat 2020). Also, a direct mapping to the Classification of Products
by Activity (CPA) is available since both classifications are completely aligned down to the class level (Eurostat
2019). For robustness, we provide checks under the alternative classifications and when including the omitted
industries from the sample.

8BACON stands for Block Adaptive Computationally efficient Outlier Nominators. It is a multiple outlier
detection method. The variables considered in the method are log of output, labour, capital, material and material’s
revenue share. We first trim at the industry and then manufacturing level. As in any outlier detection method, the
threshold defining the outlying points is chosen by the researcher, therefore, we will provide robustness checks
over the choice of more lenient thresholds.

9This includes the following NACE Rev.2 2-digit industries: Electrical equipment (27); machinery and equip-
ment n.e.c. (28); motor vehicles, trailers and semi-trailers (29); and other transport equipment (30).

10When considering non-European affiliates, 23% of parent-year observations report multiple affiliates, with
a maximum of 36 affiliates. However, the Amadeus Orbis Europe dataset does not contain the balance sheet
information of non-European affiliates. As such, we solely focus on affiliates located in European countries.
When considering all other sectors in the economy the maximum number of affiliates reaches 197 (with 28% of
parent-year observations reporting more than one affiliate).
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tion setup to capture potential productivity effects from intangible transfers between ownership-
linked firms. In the baseline specification, we focus on the classic case of perfect competition
in output and input markets where both parent and affiliate firms take output and input prices as
given. Robustness Section 6 presents the case of imperfect competition in the output market.

3.1 Definitions and Setup

We observe a panel of ownership groups g = 1, . . . ,G over periods t = 1, . . . ,T .11 In each
ownership group g and period t the set of active firms Fgt are indexed by 0 for the parent firm
that has majority control of its affiliate(s) i= 1, . . . , Ig. Parent firms can be located in country c=

1, . . . ,C and produce in industry j = 1, . . . ,J other than those of their affiliate(s)—see Appendix
Tables C.3 and C.4 for a tabulation of firm-year observations across country-industry pairs for
the parent and affiliate, respectively. Firms are assumed as single-product producers with their
production activity defined by their industry classification.12

In period t, ownership group-g has access to information denoted by Igt . This informa-
tion set includes any type of information available to the management board when making
its periodic decisions and is the union of the information sub-sets available to the parent and
affiliate(s), Igt = Ig0t ∪

(
∪i Igit

)
.13 Overall, without loss of generality, we assume a central-

ized management system where decisions for both the parent and affiliate(s) are made at the
management board level which has access to all available information within the ownership
group.14 At this stage, we impose no restrictions on the interdependence and dynamics of de-
cision making within each ownership group, something that we will revisit when considering
the identification strategy in Section 4.

3.2 Production Technology

For the parent, we consider a gross output production function Yg0t =H(Kg0t ,Lg0t ,Mg0t)eωg0t+εg0t ,
with Hicks-neutral total factor productivity (TFP) ωg0t .15 In logs, the production function takes

11This is a standard short panel framework with fixed T and with the number of ownership groups as the
asymptotic dimension of the data, i.e. G → ∞.

12Note that we do not observe data on multi-product firms and thus need to assume that each firm produces one
unique product. However, in the presence of such data, the empirical model can be directly extended to allow for
the case of multi-product firms in line with the applications of De Loecker (2011); De Loecker et al. (2016) and
Blum et al. (2018).

13Given our focus on majority ownership, the intersection of these sub-sets is expected to be non-empty, i.e.
Ig0t ∩Igit ̸= /0. However, the size of this intersection set directly depends on the degree of autonomy of affiliates.
For example, in cases of full centralisation, the information set of affiliates will be a subset of the parent set,
assuming that all decisions are made at the parent firm.

14The empirical model is consistent with any other alaternative management system. For example, one could al-
low for a more decentralised management style where affiliates can have their own decision-making body (subordi-
nated to the highest decision making) and access to exclusive information. See Sageder and Feldbauer-Durstmüller
(2018) for a literature review on different management control systems in multinational companies.

15This implies that technological change increases the productivity of production factors in equal terms. For
a production function framework with multi-dimensional productivity and factor-augmenting technology differ-
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the following form:
yg0t = h(kg0t , lg0t ,mg0t)+ωg0t + εg0t (1)

where yg0t , kg0t and mg0t are log values of deflated (at the country-industry-year level) sales,
tangible fixed assets, and material costs, respectively. lg0t is the log of the total number of
employees of parent 0 in ownership group g (in industry j and country c) at time t. TFP is
unobserved to the econometrician but known to the firm when decisions are made, i.e. ωg0t ∈
Ig0t . Ex-post shocks, i.e. shocks which occur after the period t decisions, are picked up by
εg0t and are not part of the firm’s information set εg0t ̸∈ Ig0t .16

In the same spirit, we consider the production function of the affiliate(s) in logs:

ygit = f (kgit , lgit ,mgit)+ωgit + εgit (2)

where now the affiliate’s joint output of log capital (kgit), labour (lgit) and material (mgit), is
delivered from a production function f j(·). Equations (1) and (2) account for cases where, even
within the same country and industry, affiliates can have different production technologies from
the parent. Analogous to the parent, ωgit ∈ Igit is part of the firm’s period t information set
while εgit ̸∈ Igit is unanticipated. Overall, equations (1) and (2) represent standard production
functions that one could readily identify from the data.

3.3 A Model of Intangible Transfers and Firm Performance

Productivity is empirically well-documented to be highly persistent over time (Syverson
2011). This lends support to standard working assumptions over its law of motion. As such,
we assume that parent and affiliate TFP evolve over time according to the following stochastic
processes:

ωg0t = E[ωg0t |Igt−1]+ξg0t (3)

and
ωgit = E[ωgit |Igt−1]+ξgit (4)

where ξgt’s capture unanticipated exogenous shocks in period t −1 that affect each firm’s TFP
in t, i.e. E[ξgt |Igt−1] = 0. In the seminal work of Olley and Pakes (1996), an ‘exogenous’ first
order Markov process is assumed, i.e. for a generic firm i ωit = E[ωit |ωit−1]+ ξit . However,
exogeneity should be relaxed in order to accommodate the fact that TFP evolves endogenously
in response to the firm’s actions—including importing (Kasahara and Rodrigue 2008); R&D
(Aw et al. 2011; Doraszelski and Jaumandreu 2013); exporting (De Loecker 2013)—as well
as changes in the firm’s operating environment, such as trade liberalisation (De Loecker 2011;
De Loecker et al. 2016).

ences see Doraszelski and Jaumandreu (2018) and Harrigan et al. (2018).
16Alternatively, one can also think of εg0t as a classical measurement error in output. For robustness, we will

also consider cases with measurement error in both output and inputs (Section 6).
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In the context of ownership groups, the set of actions that can influence firm performance
includes not only those from the firm itself but also those from other ownership-linked firms.
More concretely, if transfers of intangibles are present within the boundaries of the firm, then
one would expect the performance of the affiliate to respond to investments in intangibles from
the parent, and vice versa. As such, one should use a controlled Markov process in both (4) and
(3) to explicitly allow for other elements of Igt−1 to affect TFP. Taking this into account, Bilir
and Morales (2019) examine the impact of innovation in multinational firms by considering an
empirical model where the Markov process of affiliate TFP can be shifted by both affiliate and
headquarter R&D, i.e. equation (4) becomes: ωgit =E[ωgit |ωgit−1,R&Dgit−1,R&Dg0t−1]+ξgit .
While R&D spending is an important driver of proprietary knowledge, it represents only one
element of the broad set of intangibles, ranging from R&D and software to design, branding,
organizational capital, and social relations.

In an ideal world, researchers would observe all actions related to intangibles. However,
in the real world this is rather infeasible. If anything, one can limit the analysis to some very
special cases of observed intangibles, e.g. R&D, patents, etc. This brings us back to the inherent
difficulty of measuring and evaluating intangibles (Haskel and Westlake 2018).

Irrespective of how it is estimated, empirical TFP is not identical to disembodied technolog-
ical change, known as the ‘Solow Residual’ (Solow 1957). Indeed, the Solow Residual refers
to everything that the firm observes but cannot quantify with scientific objectivity, e.g. innate
characteristics of workers, know-how, etc. Instead, TFP also includes the impact of factors that
are quantifiable with scientific objectivity from the firm, but not available in the data for the
researcher, e.g. management practices, acquired characteristics of workers, innovation, mail-
ing list of clients etc. Therefore, the remaining output variation after conditioning for observed
tangible inputs—known as a “measure of our ignorance” (Abramovitz 1956)—is expected to
be informative about the unobserved intangible aspects of the firm.

Combining this with the fact that ownership links are observed in the data, we consider
the TFP of the ownership-linked firm as a composite measure of intangible transfers which is
allowed to determine the productivity evolution of the firm, such that:

ωg0t = E[ωg0t |ωg0t−1,ωgit−1]+ξg0t (5)

and
ωgit = E[ωgit |ωgit−1,ωg0t−1]+ξgit (6)

Apart from the variables which can be hypothesized to affect each other intertemporally, this
specification does not require any prior knowledge about the forces influencing them. As such,
estimates of equation (5) and (6) identify the potential presence and importance of intangible
transfers within the boundaries of the firm.17 One can think of random shocks creating persis-

17Note that this model is silent about the underline structure of intangibles, e.g. technological versus non-
technological elements (Hulten 2010; Haskel and Westlake 2018), and any potential differential effects on produc-
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tent intertemporal feedback effects between ownership-linked firms. These shocks summarize
all of the uncertainties related to the implementation and success of various actions.

Overall, this simple and internally consistent extension of a production function specifica-
tion provides a natural and intuitive way of analysing the importance of intangible transfers
within firm boundaries.

4 Identification and Estimation

We now present how the model in Section 3 is brought to the data to capture the effects of
interest. In what follows we describe the identification strategy, underlying assumptions, and
choice of functional forms to estimate the ‘baseline model.’

4.1 Identification Strategy

A well-know challenge when estimating equations (1) and (2) is the endogeneity of inputs,
also known as ‘simultaneity’ or ‘transmission bias.’ Such bias originates from the fact that firms
know their productivity level when they decide which inputs to use (Marschak and Andrews
1944; Griliches and Mairesse 1999).18 To circumvent this bias, we follow the nonparamet-
ric identification strategy developed by Gandhi, Navarro, and Rivers (2020) (herein GNR).
GNR propose a simple estimator for gross output production functions under the commonly
employed model structure in proxy variable methods, i.e. at least one flexible production input.

Identification is established by exploiting information in the first order condition with re-
spect to the flexible input from the firm’s static profit maximisation problem. In addition to
the transmission bias, this flexible estimation approach also controls for the value-added bias
that arises from estimating a value-added rather than a gross output production function.19 In
line with most of the proxy variable methods, the GNR procedure follows two steps and allows
estimation of both the production function and the effects of interest from equations (5) and
(6).

tivity. Therefore, this model can only capture productivity effects from intangibles transferred between ownership-
linked firms and not the productivity effects of intangibles within the same firm, e.g. innovation (Doraszelski and
Jaumandreu 2013). To the extent that certain own-firm intangibles are correlated with tangibles, one should explic-
itly include them in the law of motion to avoid omitted variable bias (De Loecker 2013). For such an application,
see Bilir and Morales (2019). However, intangibles (e.g. software, product recipe, etc.) are more likely to be ‘scal-
able’ (Haskel and Westlake 2018), i.e. used for an unlimited number of times with an infinitesimal cost increase,
and thus not necessarily related to tangible inputs.

18The applied production function estimation literature has primarily employed structural approaches including
both dynamic panel methods (Arellano and Bond 1991; Blundell and Bond 1998, 2000) and proxy variable meth-
ods (Olley and Pakes 1996; Levinsohn and Petrin 2003; Ackerberg et al. 2015). However, proxy variable methods
have dominated in the empirical literature given dynamic panel methods’ weak performance both at a theoretical
and empirical level (Griliches and Mairesse 1999; Ackerberg et al. 2007).

19See Gandhi et al. (2017) for an exposition of the sizeable effects of value-added bias on TFP heterogeneity.
Merlevede and Theodorakopoulos (2018) empirically assess the importance of such a misspecification in the
context of their research application.
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4.2 Timing of Inputs

Timing assumptions about when firms make choices and observe shocks are crucial to cor-
rectly identifying production functions using structural approaches (Ackerberg 2020). On the
one hand, the replacement and installation of new capital is costly and time-consuming. On
the other, rigidities in European labour market institutions often prevent labour adjustments
within the (accounting) year. These factors translate to a one period lag between the choice
of capital and labour and their realisation in the production process (hence in the accounting
data). Therefore, in line with the literature, we assume that capital and labour are predeter-
mined inputs which are chosen one period prior to the TFP realisation. Specifically, ownership
groups (and thus the firms within the group) have information on these inputs and take them
into account in the period’s production process {lg0t ,kg0t , lgit ,kgit} ∈ Igt .

At least one production input must be fully flexible under the model structure of proxy
variable methods. As such, following the literature, we assume that material is the only flexible
input that freely adjusts in each period, {mg0t ,mgit} ̸∈ Igt , and has no dynamic implications,
∂mg0t/∂mg0t−1 = ∂mgit/∂mgit−1 = 0. First, this assumption implies that there is a spot market for
commodities that are up for immediate trade. Second, it implies that firms can freely choose
material inputs and are unaffected by their previous sourcing decisions.20

4.3 Functional Forms

A common practice in the empirical literature is to separately estimate both the production
function and effects of interest for each meaningful granular set of firms, e.g. by pooling all
parent firms at the country-industry level. In practice, however, performing separate estimations
in this context raises two concerns about the identifying variation.

First, the number of firms becomes very small (if not zero) for sufficiently granular sets of
firms when allowing for different production technologies between the parent and affiliate.21

Second, the estimation of equation (5) or (6) identifies the production technologies of the sets
of firms used in the estimation as well as of all other sets of ownership-linked firms.22 This
is important because considering each set of firms separately disregards relevant and sizable

20The input is no longer flexible if the firm is constrained or faces market distortions that affect its input choices.
In this case, one needs to apply an alternative identification strategy, such as dynamic panel methods. Shenoy
(2018) provides an extensive discussion on this topic. However, our sample focuses on larger firms that, if any-
thing, are less constrained by market imperfections relative to smaller-sized firms (Beck et al. 2005). Nonetheless,
we provide robustness over the alternative assumption that material is a non-flexible input, i.e. either predeter-
mined and/or dynamic.

21For example, looking at Appendix Table C.3 We find limited parent-year observations in any manufacturing
industry in Estonia.

22For example, estimation of the production technology of parent firms in the Romanian Manufacture of elec-
trical equipment should also deliver estimates for the production technology of their ownership-linked affiliates in
four industries in Romania. Those industries include: Manufacture of basic metals and fabricated metal products,
except machinery and equipment; Manufacture of electrical equipment; Manufacture of machinery and equipment
n.e.c.; and Other manufacturing, and repair and installation of machinery and equipment.
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identifying variation within the sets of ownership-linked firms that are, in turn, linked to other
sets of firms.23 Both cases above result in sample selection issues as certain groups do not have
a sufficient number of observations to identify the group-specific production function. This
is especially the case for smaller countries. As such, consistent estimation requires not only
sufficient variation within each group of firms but also for all other groups of firms linked with
ownership.

We implement three concrete steps to evade the sample selection issues described above.
First, we pool firms across all manufacturing industries and European countries in the data.
Thus, instead of estimating the model for each set of firms separately, we include all informa-
tion from the baseline sample. Subsequently, we allow the production functions (1) and (2) to
vary across industries j to account for heterogeneity in production technologies. This implies
that firms across all EU countries in the sample share the same production technology within a
given manufacturing industry. This assumption is consistent with increased production integra-
tion in the EU (Nordström and Flam 2018) and allows for sufficient identifying variation within
each industry in the data (see Appendix Table C.3 and C.4).24 Finally, with this data structure
in mind, we use simple parametric functional forms for the baseline model to avoid depleting
the degrees of freedom and impeding the estimation routine. More specifically, for the produc-
tion technologies in (1) and (2) we rely on industry- j specific Cobb-Douglas specifications for
both the parent:

h j
(
kg0t , lg0t ,mg0t ;π

)
= ∑

j

(
πc j +πk jkg0t +πl jlg0t +πm jmg0t

)
⊙d j (7)

and the affiliate:

f j
(
kgit , lgit ,mgit ;α

)
= ∑

j

(
αc j +αk jkgit +αl jlgit +αm jmgit

)
⊙d j (8)

where π and α are vectors with the industry- j specific parameters of the parent’s and affiliate’s
production technology, respectively, d j is a dummy variable equal to one when a firm is in
industry j and zero otherwise, and ⊙ represents the element-wise (Hadamard) product. This
is the simplest and most commonly used specification in the literature, albeit at the expense of
restricting the elasticities of substitution between inputs to unity.25

23Adding to the previous example, this refers to affiliate firms owned by parent firms not in the Romanian
Manufacture of electrical equipment, which actually constitutes the bulk of information for those groups.

24Acknowledging that this approach might mask further heterogeneous effects across countries and/or indus-
tries, we later try to uncover these with additional checks.

25Alternatively, one could allow for more flexible substitution patterns between inputs, i.e. translog functional
form. Such a choice comes with typical trade-offs faced by empirical researchers: increased parameter space and
computationally intensive estimation routines. However, for robustness, we explore this alternative.
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Similarly, we rely on linear specifications for the evolution of productivities26 with:

ωg0t = ρppωg0t−1 +ρpaω̄git−1 + ρ̃ f e +ξg0t (9)

and
ωgit = ρaaωgit−1 +ρapωg0t−1 +ρ f e +ξgit (10)

where ω̄git−1 ≡ ∑
i

ωgit−1/Ig is the mean lagged productivity from all affiliates linked to the par-
ent within each ownership group g.27 ρ f e ≡ ρa

c j + ρa
ct + ρa

jt + ρ p
c j + ρ p

ct + ρ p
jt is a set of ad-

ditive fixed effects, i.e. unobserved terms reflecting shocks/characteristics that vary across the
country-industry (c j), country-year (ct) and industry-year ( jt) of the affiliate (a) and parent (p),
respectively. ρ̃ f e refers to the same set of fixed effects which are now collapsed to the parent-
year dimension, since a parent can have many affiliates.28 These controls account for various
macroeconomic shocks, cyclical variation and structural differences at the country and/or in-
dustry level. At the same time, including these fixed effects at the parent and affiliate level in
each equation controls for business cycle synchronisation and persistent shocks which propa-
gate through the ownership structure and which could falsely appear as productivity effects.

Under these simple formulations, equations (9) and (10) now closely resemble panel Vec-
tor Autoregression (VAR) models (Holtz-Eakin et al. 1988) which capture interdependencies
among two stochastic processes. Note that these specifications are not industry-specific as in
the case of the production functions, but their simplicity allows us to control for additional di-
mensions in the data, i.e. fixed effects, without imposing a computationally intensive estimation
routine. Therefore, the estimated parameters deliver an average effect across all manufacturing
industries.29 In addition, both equations account for a global constant which is not separately
identified and is thus subsumed in the fixed effects.

Combining (1) and (2) with (5) and (6), respectively, along with their parametric functional
forms mentioned above, results in the following estimating baseline equations which constitute
the baseline model:

yg0t = ∑
j

(
πk jkg0t +πl jlg0t +πm jmg0t

)
⊙d j +ρppωg0t−1 +ρpaω̄git−1 + φ̃ f e +ξg0t + εg0t (11)

26Alternatively, a more general functional form can be used by introducing a sieve of relevant controls. This
case should be considered with caution since non-linearities, even in the case where fixed effects enter linearly,
would result in a computationally very intense estimation.

27Recall that the parent can have multiple affiliates, but such cases represent only a small fraction of the baseline
data (see Section 2). However, we provide additional robustness when we instead choose the minimum, maximum
or median value from the multi-affiliates’ productivities.

28For the multi-affiliate parent firms we use the maximum column value when collapsing the affiliate fixed
effects at the parent-year level.

29To unmask potential heterogeneity across industries, we also provide industry-specific estimates.
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and

ygit = ∑
j

(
αk jkgit +αl jlgit +αm jmgit

)
⊙d j +ρaaωgit−1 +ρapωg0t−1 +φ f e +ξgit + εgit (12)

where the industry specific production function constants πc j and αc j cannot be separately
identified from the fixed effects (and the constant in the markov process) and are thus subsumed
in φ̃ f e and φ f e, respectively. Overall, the estimated parameters of interest ρpa and ρap give the
average short-run effect of ownership-linked productivity with its long-run impact emerging
through the persistence parameters ρpp and ρaa, respectively.

4.4 Estimation

Estimation of baseline equations (11) and (12) follows directly from the nonparametric
identification strategy of GNR. Below, we outline the relevant assumptions made and steps
followed, while we refer the interested reader to Appendix A for a detailed overview over the
nonparametric identification of our empirical model.

The static profit maximisation problem yields the first order condition with respect to the
flexible input, material, for both the parent and affiliate. Combining these optimality conditions
with the relevant production functions and re-arranging terms delivers the following material
cost share regression equations:

sg0t = ln

(
∑

j
π

′
m j ⊙d j

)
− εg0t (13)

and

sgit = ln

(
∑

j
α

′
m j ⊙d j

)
− εgit (14)

where sg0t and sgit are the log of the nominal share of material costs over sales for the parent
and the affiliate, respectively. The terms π ′

m j ≡ πm jEp and α ′
m j ≡ αm jEa are the industry- j

specific output elasticities of material up to a nuisance constant Ep and Ea, respectively. By the
time firms make their annual decisions, ex-post shocks εg0t and εgit are not in their information
set and therefore Ep = E(eεg0t ) and Ea = E(eεgit ).30 Note that TFP is dropped from both share
equations. This follows the identification insight of GNR where the TFP term which induced
the transmission bias is eliminated from the share equation due to assumed Hicks-neutrality,
i.e. additive.31

30To derive these share equations that treat Ep and Ea as constants when brought to the data, we need to assume
that the ex-post shocks to production are independent of the firm’s information set. See Appendix A for a discus-
sion over of this assumption, possibilities to relax it to mean independence and the importance of accounting for
the term Ep and Ea.

31Also see Doraszelski and Jaumandreu (2013) for an application exploiting the same structural link between
the first order condition of the flexible input and the production function.
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It is important to mention that, for the optimality conditions to hold, an additional restric-
tion must be imposed on the drivers of material usage beyond the implied assumptions from
the timing of flexible inputs discussed in subsection 4.2. This includes the absence of any type
of interdependencies in the sourcing decisions across firms within the same ownership group,
irrespective of the centralisation level of decision-making.32 We relax this assumption in Sec-
tion 6 and employ an alternate estimation strategy to alleviate concerns about its restrictiveness.
On the other hand, such assumptions are irrelevant for capital and labour inputs since the iden-
tification strategy does not need to take a stand on their optimality conditions. Therefore, this
estimation is consistent with any type of model structure describing the determinants of capital
and labour usage.

Under the assumption that ex-post shocks to production are independent of the firm’s in-
formation set, a Non Linear Least Squares (NLLS) estimation of (13) and (14) is applied. For
this simple parametric case we regress the log of material costs share on the log of a full set of
industry-specific dummy variables d j. This step identifies εg0t and εgit—the sample analogue
of Ep and Ea—and a vector of industry- j specific output elasticities of material for both the
parent (πm) and affiliate (αm).33

Up to this stage, the production functions are partly identified with the remaining elements
of the estimating equations expressed as:

Ŷg0t = ∑
j

(
πk jkg0t +πl jlg0t

)
⊙d j +ρppωg0t−1 +ρpaω̄git−1 + φ̃ f e +ξg0t

= ∑
j

(
πk jkg0t +πl jlg0t

)
⊙d j +ρpp

(
Ŷg0t−1 −∑

j

(
πk jkg0t−1 +πl jlg0t−1

)
⊙d j

)

+ρpa

(
Ŷgit−1 −∑

j

(
αk jkgit−1 +αl jlgit−1

)
⊙d j

)
+ φ̃ f e +ξg0t

(15)

and

Ŷgit = ∑
j

(
αk jkgit +αl jlgit

)
⊙d j +ρaaωgit−1 +ρapωg0t−1 +φ f e +ξgit

= ∑
j

(
αk jkgit +αl jlgit

)
⊙d j +ρaa

(
Ŷgit−1 −∑

j

(
αk jkgit−1 +αl jlgit−1

)
⊙d j

)

+ρap

(
Ŷg0t−1 −∑

j

(
πk jkg0t−1 +πl jlg0t−1

)
⊙d j

)
+φ f e +ξgit

(16)

32In principle, the estimation strategy could account for such interdependencies to the extent that they are
intratemporal, do not invalidate the assumption over the flexible nature of material inputs and can be explicitly
modeled in the firms optimality conditions. For a closely related modelling approach where the global sourcing
decisions interact through the firm’s cost function see Antràs et al. (2017).

33Alternatively, at this stage, one can estimate each equation for each industry j separately since all interde-
pendencies through the productivity term are by construction eliminated. Therefore, the share equations are not
bounded by the limitations discussed in subsection 4.3 that would require pooling all available firms in the data.

14



where Ŷg0t ≡ yg0t −∑
j

π̂m jmg0t ⊙d j − ε̂g0t and Ŷgit ≡ ygit −∑
j

α̂m jmgit ⊙d j − ε̂git are the log of

the expected output net of the computed part of production from the first step.
Following dynamic panel and proxy variable methods, the second step exploits the assump-

tion over the law of motion of TFP and proceeds with a standard iterative Generalised Method
of Moments (GMM). We simultaneously estimate the model by stacking equation (15) and (16)
and imposing the cross-equation constraints on the remaining industry-specific parameters of
the production technologies (π̃ ≡ {πk,πl}) and (α̃ ≡ {αk,αl}) that appear through the inter-
dependencies of TFP in the Markov process.34 By distinctly instrumenting each of the stacked
equations, we form a GMM criterion function based on the following moment conditions:

E

[(
Z p

j ωg0t−1(π̃) ω̄git−1(α̃) d̃ f e 0 0 0 0

0 0 0 0 Z a
j ωgit−1(α̃) ωg0t−1(π̃) d f e

)′(
ξg0t

ξgit

)]
= 0

(17)
where Z p

j ≡
(
{kg0 jt},{lg0 jt}

)
and Z a

j ≡
(
{kgi jt},{lgi jt}

)
are the ‘instrument sub-matrices’

with the terms in brackets denoting a full set of industry- j specific variables. The orthogonality
conditions directly depend on the timing assumptions of inputs in subsection 4.2. Predeter-
minedness of current values of capital and labour make them orthogonal to the productivity
innovations and thus help to identify the remaining part of the production technology of the
parent (π̃) and affiliate (α̃). Continuing, to identify the Markov process parameters ρpp,ρpa

and ρaa,ρap, for a guess of π̃ and α̃ , we form ωg0t−1(π̃) and ωgit−1(α̃)
(
hence ω̄git−1(α̃)

)
,

respectively, which are by construction orthogonal to the TFP innovations. Finally, for the
fixed effects φ̃ f e and φ f e defined in subsection 4.3 we use a full set of dummy variables d̃ f e

and d f e, respectively. These are assumed to be exogenous and thus uncorrelated with the unan-
ticipated innovations to productivity. This is an exactly identified model where the number of
instruments is the same as the number of parameters.35

By minimising the squared Euclidean length of the sample analogue of (17), we retrieve
estimates for parameters of the production technology of the parent (π̃) and affiliate (α̃). We
also retrieve estimates for the persistence of firms’ TFP (ρpp and ρaa), the productivity effects
from the linked firms’ TFP (ρpa and ρap) and all of the fixed-effects considered (φ̃ f e and φ f e).
Based on these estimates, we can now compute other relevant variables, e.g. TFP and returns

34The main distinction from a standard production function setup is that each specification from above identifies
not only the own remaining part of the production technology and Markov process, but also the remaining part of
the production technology of ownership-linked firms. For example, equation (15) identifies both the production
technology (π̃) and Markov process (ρpp,ρpa) of parent firms, but also the production technology of affiliates
(α̃). Therefore, we exploit this structure of the model and estimate it jointly in order to improve efficiency.
Alternatively, one can estimate each equation separately with the relevant adjustment to the instrument matrix
such that the remaining parameters of the production technology of ownership-linked firms are identified from
each estimating equation separately.

35The estimation is still consistent when allowing for productivity innovations to be arbitrarily correlated across
firms within the same cluster, e.g. ownership groups, followed by the appropriate correction of standard errors.
However, if serial correlation in the productivity innovations is suspected, depending on the assumptions over the
autocorrelation structure, deeper lags of the instrument matrix can be used to consistently estimate the model.
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to scale (RTS), for both the parent and the affiliate, using equations (11) and (12), respectively.

4.5 Statistical Inference

In order to compute standard errors that ensure estimator precision, we implement a pairs
cluster bootstrap method.36 Taking this approach is important for two reasons. First, the es-
timation described above follows two steps. As such, closed form solutions for the variance-
covariance matrices are not apparent. Second, the potential presence of within-cluster error
correlation could lead to biased standard errors if not taken into account (see Cameron and
Miller 2015).37

We first define clusters C at the ownership group level g, allowing firm-year observations
to be arbitrarily correlated within but independent across clusters.38 Importantly, we form
clusters at level of the ownership group g (and not at the level of the ownership group-year gt)
to ensure that the full time-series of each firm is retained when creating the bootstrap samples
below. We then randomly draw with replacement G times over entire clusters, i.e. blocks of
ownership-linked parent and affiliate firms (not observations), from the original sample and
generate the bth bootstrap sample, where b = 1 . . .B. We repeat this step for B = 100 times. For
each parameter estimate from the original sample θ̂ , θ̂b is the estimate from the bth bootstrap
replication and θ̄ is the mean of all the θ̂bs. As such, the bootstrap standard error is computed
as follows:

se(θ̂) =

(
1

B−1

B

∑
b=1

(θ̂b − θ̄)2

)1/2

(18)

Calculated as such, the computed standard errors can be used for statistical inference similar to
any other asymptotically valid standard errors.

36For bootstrap methods see Efron (1979), Efron (1982), Horowitz (2001) and Davidson and MacKinnon
(2004). For a complete review on cluster-robust inference see Cameron and Miller (2015).

37More precisely, we refer to cross-sectional correlation across firms within the cluster and not to serial corre-
lation. The latter would result in standard endogeneity issues in dynamic panel methods which, depending on the
autocorrelation structure of the error, could be accounted for using deeper lags in the instrument matrix.

38For the baseline sample, 12,665 clusters are formed which drop to 9,405 in the second step of the estimation.
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5 Results

In this section we first present the baseline results which assess the extent to which intan-
gible transfers from ownership-linked firms constitute as potential determinants of the firm’s
TFP evolution. Subsequently, by uncovering heterogeneity in the baseline results, we point to
potential mechanisms in place. Finally, we support the validity of the baseline methodological
approach through: (a) an extension of the baseline model by introducing a specific form of
intangibles reported in the data, i.e. patents; and (b) conducting a falsification exercise.

Table 2: Baseline estimates

Affiliate

(1a) (2a)
Technology Baseline Interaction

ᾱk 0.090∗∗∗ 0.090∗∗∗

(0.007) (0.007)

ᾱl 0.383∗∗∗ 0.383∗∗∗

(0.015) (0.015)

ᾱm 0.421∗∗∗ 0.421∗∗∗

(0.003) (0.003)
Markov
ρaa 0.921∗∗∗ 0.920∗∗∗

(0.003) (0.003)

ρap 0.034∗∗∗ 0.034∗∗∗

(0.003) (0.003)

ρa∗p 0.004∗∗

(0.002)

Obs. 48,572 48,572

Parent

(1b) (2b)
Baseline Interaction

π̄k 0.097∗∗∗ 0.096∗∗∗

(0.008) (0.008)

π̄l 0.366∗∗∗ 0.366∗∗∗

(0.016) (0.016)

π̄m 0.467∗∗∗ 0.467∗∗∗

(0.002) (0.002)

ρpp 0.936∗∗∗ 0.936∗∗∗

(0.004) (0.004)

ρpa 0.013∗∗∗ 0.013∗∗∗

(0.002) (0.002)

ρp∗a -0.003
(0.002)

Obs. 37,524 37,524

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Column (1a) and (1b) report results from the joint es-
timation of equations (16) and (15), respectively (Baseline). Column (2a) and (2b) report results from
an extension of Baseline where ρa∗pωgit−1ωg0t−1 and ρp∗aωg0t−1ω̄git−1 are added in (16) and (15),
respectively (Interaction). All regressions include dummies for country-industry, country-year and
industry-year fixed effects, both at the parent and affiliate level. Standard errors are computed using
a pairs cluster (at the ownership group) bootstrap with 100 replications over the two-step estimation
procedure and reported in parentheses below point estimates. Top panel reports the average of the
industry specific output elasticities of capital, labour and material, respectively (see Appendix Ta-
ble C.7 for industry-specific estimates). ρap and ρpa in column (2a) and (2b), respectively, reports
the unconditional mean elasticity of ownership-linked lagged TFP. Last row reports the observations
used in the second-step of each estimation.

5.1 Baseline

Columns 1a and 1b in Table 2 report estimates of the baseline model (Baseline) for the
affiliate (left panel) and parent (right panel), respectively. The top panel reports the average of
the industry-specific output elasticities of capital, labour, and material, respectively. These are
both economically sensible for both the parent and affiliate, and in line with what is reported in
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the empirical literature.39 These estimates act as a first pass over the reasonable performance
of the baseline model.

The bottom panel reports the estimated parameters of the Markov processes. A positive and
statistically significant estimate for ρap in column (1a) suggests that lagged parent TFP is an
important determinant of affiliate TFP. Qualitatively, results are in line with recent estimates
by Bilir and Morales (2019) who find a statistically significant positive effect of lagged parent
R&D spending on affiliate TFP. Quantitatively, the estimated elasticity here is approximately
three times larger.40 This suggests that lagged parent TFP also accounts for variation in parent
intangibles beyond R&D.

Similarly, a positive and statistically significant estimate of ρpa in column 1b suggests that
lagged affiliate TFP is also an important determinant of parent productivity. This is a novel
finding which points to the presence of feedback effects from intangible transfers between
the parent and affiliate. It adds to existing empirical evidence supporting the importance of
intangibles in explaining common ownership (Atalay et al. 2014; Bilir and Morales 2019).
Moreover, for the special case of R&D investment, Bilir and Morales (2019) do not find such
an effect for US parent firms. This highlights the importance of considering a broader definition
of intangibles.

Results complement the findings of a spatial (regional or international) disconnect between
the costs and gains of policies which stimulate innovation through R&D spending (Bilir and
Morales 2019). However, to the extent that TFP captures all other intangibles, the size of this
disconnect clearly depends on the relative importance of the efficiency gains from intangible
transfers between ownership-linked firms. The estimated short run TFP elasticity of ownership-
linked TFP is approximately three times larger for the affiliate (ρap) than for the parent (ρpa).
Yet, the contribution of ownership-linked TFP to long-run firm performance is also driven
by the persistence of TFP (ρaa,ρpp). Specifically, the long-run ‘absorptive capacity’ of the
affiliate-from-parent TFP is more than double what the parent absorbs from any change in
affiliate TFP (42% and 20%, respectively). On the basis of a one standard deviation increase in
lagged parent TFP, affiliate TFP increases by 0.4% in the short run and 5.2% in the long run on
average. From the parent’s perspective, a one standard deviation increase in lagged (group-g)
average affiliate TFP leads to an average increase in parent TFP of 0.2% in the short run and
3.0% in the long run.41

The long run effects above are computed under the assumption that TFPs are taken as given

39See Appendix Table C.7 for industry-specific estimates and Figures C.1-C.2 for their respective standard
errors.

40We compare with the parent R&D elasticity of 0.0122 in column 2 of Table 6 in Bilir and Morales (2019).
41The affiliate short-run effect is computed using the formula: ρap ∗ sd(ω j0t−1) ∗ 100 and the long-run effect

using:
(

1/(1−ρaa)
)
∗ρap∗sd(ω j0t−1)∗100, where ρap and ρaa are point estimates from the baseline equation (16), and

sd(ω j0t−1) is one within standard deviation of the lagged value of estimated parent TFP. Similarly, the parent short-
run effect is computed based on: ρpa ∗ sd(ω̄ jit−1)∗100 and the long-run effect using:

(
1/(1−ρpp)

)
∗ρpa∗sd(ω̄ jit−1)∗100,

where ρpa and ρpp are point estimates from the baseline equation (15), and sd(ω̄ jit−1) is one within standard
deviation of the lagged value of estimated average (group g) affiliate TFP. The long-run absorptive capacities,
follow from the same formulas when sd(·) = 1.
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Figure 1: Impulse Response Functions - IRF
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Source: Author’s calculations using estimates from baseline model.
Notes: Orthogonalised impulse response functions (vertical axis) over a 100 year horizon (hori-
zontal axis). IRFs are computed using estimates of the parameters and cross-equation error vari-
ance–covariance matrix from baseline equations (16) and (15). The dashed line is the response of
affiliate TFP over time from a one standard deviation structural shock on parent TFP. The solid line
is the response of parent TFP over time from a one standard deviation structural shock on affili-
ate TFP. The variance-covariance matrix is decomposed in a lower triangular matrix with positive
diagonal elements using Cholesky decomposition under the following assumption over the order-
ing of variables: parent TFP; and affiliate TFP. 95% confidence intervals (CI) are computed using
Gaussian approximation based on Monte Carlo simulation with 100 draws.

at each point in time. However, as discussed above, equations (9) and (10) resemble a panel
VAR model with two endogenous variables, i.e. a model which allows for ownership-based
dynamic interdependencies among the productivities of the parent and affiliate which evolve
stochastically. The baseline results highlight that the coefficients on the reduced-form VAR
equations cannot be interpreted causally unless further identifying restrictions are imposed on
the model’s parameters.42 Assuming that the model is stable and thus invertible (Lütkepohl
2005), it can be rewritten as an infinite order vector moving-average representation. This for-
mulation permits the computation of impulse response functions (IRFs). IRFs help analyse the
response of endogenous variables in the VAR model (e.g. affiliate TFP) due to an impulse to
one of the innovations (e.g. parent productivity shock). To guarantee the exogeneity of the
impulse (and thus the causal interpretation) otrhogonalised IRFs are computed following Sims

42However, lagged parent TFP can be said to Granger-cause affiliate TFP and vice versa (Granger 1969, 1980).
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(1980).43

Figure 1 plots the orthogonalised IRFs, which represent the percentage point changes in
affiliate TFP (dotted line) and parent TFP (solid line) over a 100 year time horizon after an
exogenous shock in parent and affiliate TFP, respectively. Intuitively, one can think of such
shocks as: unexpected inventions; degree of applicability; and other uncertainties related to
intangibles. The IRFs suggest a statistically significant positive nonlinear response that peaks
after 20 periods and then slowly dies out, both for the parent and the affiliate. However, the effi-
ciency gains for the affiliate are twice as large as those for the parent (see Appendix Figure C.3
for cumulative IRFs) for the manufacturing sector. As such, accounting for the relative impor-
tance of such dynamic relationships between the parent and affiliate is key to understanding the
distribution of economic activity both across space and time.

We next explore the process through which the transfer of intangibles via ownership-linked
firms generates efficiency gains. In particular, to provide some guidance over the possible
mechanisms in place, we extend the baseline model to include the interaction term ρa∗pωgit−1 ∗
ωg0t−1 and ρp∗aωg0t−1 ∗ ω̄git−1 in estimating equations (16) and (15), respectively (Interac-
tion).44 A positive and statistically significant interaction term (ρa∗p) in column 2a, supports
the presence of strong complementarities. This finding qualitatively verifies recent estimates
from the literature, where the impact of parent R&D on affiliate TFP is larger for innovative
affiliates relative to non-innovative ones (Bilir and Morales 2019). It also supports the no-
tion that intangibles exert valuable synergies amongst themselves (Haskel and Westlake 2018).
Such synergies induce relationship-specific learning when production requires coordination
with other firms (Kellogg 2011). This includes both knowledge accumulation and personal
interactions between the affiliate and its parent who work together within the boundaries of
the firm. Overall, while affiliates can benefit from performing their own tasks (Arrow 1962;
Stokey 1988; Parente 1994; Jovanovic and Nyarko 1996), our results suggest that they benefit
more through learning when combining tasks performed from the parent. These can include,
among others: organisational restructuring; network sharing; revamping technical and manage-
rial practices; and transferring knowledge.

In column 2b, a negative but statistically insignificant interaction term suggests the absence
of similar learning mechanisms for the parent. This result complements both theories and
empirical findings which suggest that firms expand their boundaries to exploit intangible assets
both at home and abroad (Grubaugh 1987; Markusen 1995). Specifically, it suggests that parent
firms are pure recipients of affiliate-specific intangibles and|importantly|helps understand the
true motives of firm ownership (Teece 1982; Atalay et al. 2014).

43This includes a Cholesky decomposition of the reduced-form variance-covariance matrix assuming the fol-
lowing ordering of the variables: parent TFP first and then affiliate TFP (Sims 1980). Note that results remain
virtually the same when assuming the reverse ordering.

44Equation (17) now also includes ωgit−1 ∗ωg0t−1 and ωg0t−1 ∗ ω̄git−1 as additional instruments identifying the
parameters ρa∗p and ρp∗a, respectively.
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5.2 Heterogeneity

Results for the interaction terms above raise the question as to whether the baseline results
are applicable to all groups of firms. To explore heterogeneity in the baseline results, we test
for differential effects by interacting the ownership-linked productivities with a dummy variable
Dgt−1 that is equal to one when the firm belongs to the group defined at the top of each column
in Table 3 and zero otherwise. Specifically, we extend the baseline model to the following
estimating equations:

ygit = ∑
j

(
αk jkgit +αl jlgit +αm jmgit

)
⊙d j +ρaaωgit−1 +ρapωg0t−1 +φ f e +ξgit + εgit

+ρap∗Dωg0t−1 ∗Dgt−1 +ρDaDgt−1 +φ f e ⊙Dgt−1

(19)

and

yg0t = ∑
j

(
πk jkg0t +πl jlg0t +πm jmg0t

)
⊙d j +ρppωg0t−1 +ρpaω̄git−1 + φ̃ f e +ξg0t + εg0t

+ρpa∗Dω̄git−1 ∗ D̃gt−1 +ρDpD̃gt−1 + φ̃ f e ⊙ D̃gt−1

(20)

where D̃gt−1 takes the maximum value of Dgt−1 across affiliates within each ownership group.
Estimation follows directly from the baseline model, with the instrument matrix in equa-
tion (17) now also including (ωgit−1∗Dgt−1,Dgt−1,φ f e⊙Dgt−1) and (ωg0t−1∗D̃gt−1, D̃gt−1, φ̃ f e⊙
D̃gt−1) that help to identify the parameters (ρap∗D,ρDa,ρpa∗D,ρDa) as well as the relevant fixed
effects.45 Table 3 reports the estimates from the Markov process.46 To ease comparison with
the baseline results, columns 1a and 1b repeat columns 1a and 1b from Table 2.

Multinationals.—Gumpert (2018) uses a theoretical model to show that cross-border com-
munication costs dampen communication between a foreign affiliate and its parent, forcing it to
depend on learning practices.47 To test for this, in columns 2a and 2b we define the dummy vari-
able as equal to one when the ownership link is cross-border and zero otherwise (MNC). Results
show no significant difference between foreign owned and domestically owned firms. Specifi-
cally, the foreign ownership premium in TFP effects from ownership-linked firms—while pos-
itive—are not statistically significant for either the affiliate or the parent.

Western vs. Eastern Europe.—In the European context where economies are fairly inte-

45The identifying assumption is that Dgt−1 is orthogonal to current period productivity innovations.
46Estimates for the production technology parameters provide no additional insights and are thus only reported

in Appendix Figures C.4 and C.5.
47In this model of optimal knowledge the parent avoids such communication costs by assigning more knowledge

to their foreign affiliates. This also helps explain why foreign affiliates have higher wages and sales relative to
domestic ones. We confirm that such differences are prevalent in the data and also exist across other dimensions
of the firm, i.e. labour, capital and materials, when comparing Appendix Tables C.5 and C.6.
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grated and benefit from the single market, boarders and thus communication costs are harder to
distinguish. Therefore, in columns 3a and 3b we define boarders to meaningfully and clearly
capture differences in communication costs. Specifically, the dummy variable takes a unit
value if the parent is in a Western European Country (WEC) and the affiliate in a Central East-
ern European Country (CEEC) and zero otherwise.48 The idea is grounded in the fact that
the process of industrial, economic, social and cultural integration of CEECs with EU is rela-
tively recent. Thus, during the sample period cross-border communication costs for parents in
WEC are larger when affiliates are in CEEC. Defining the dummy variable in this way, we find
a positive and statistically significant interaction effect for the affiliates. This finding further
validates the results from the previous section, which suggest that learning mechanisms are im-
portant for understanding the underlying drivers of baseline results for the affiliate. Intuitively,
high cross-border communication costs cause parent firms to communicate less but assign more
knowledge to their affiliates, which in turn makes the affiliates to master a higher share of the
production process by themselves (Gumpert 2018).

Table 3: Heterogeneity: baseline model with interactions

Affiliate

(1a) (2a) (3a) (4a)
D=1 if in group below, else 0

Markov Baseline MNC CEEC Vertical

ρaa 0.921∗∗∗ 0.922∗∗∗ 0.924∗∗∗ 0.924∗∗∗

(0.003) (0.003) (0.003) (0.003)

ρap 0.034∗∗∗ 0.032∗∗∗ 0.031∗∗∗ 0.033∗∗∗

(0.003) (0.004) (0.004) (0.004)

ρap∗D 0.010 0.027∗∗ -0.003
(0.009) (0.013) (0.007)

Obs. 48,572 48,572 48,572 48,572

Parent

(1b) (2b) (3b) (4b)
D=1 if in group below, else 0

Baseline MNC CEEC Vertical

ρpp 0.936∗∗∗ 0.940∗∗∗ 0.940∗∗∗ 0.938∗∗∗

(0.004) (0.005) (0.004) (0.005)

ρpa 0.013∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.015∗∗∗

(0.002) (0.002) (0.002) (0.002)

ρpa∗D 0.001 -0.006 -0.009∗∗

(0.005) (0.009) (0.004)

Obs. 37,524 37,524 37,524 37,524

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Column (1a) and (1b) report results from the joint estimation of equa-
tions (16) and (15), respectively (Baseline). Columns (2a)-(4a) and (2b)-(4b) report results from an extension of Baseline
where ρap∗DDgt−1ωg0t−1 and ρpa∗DDgt−1ω̄git−1 are added in (16) and (15), respectively. Dgt−1 is a dummy variable with
zeros unless it takes unit values for the group of firms where: country of parent is other than the affiliate’s (MNC); parent
is from Western Europe and affiliate from Central Eastern Europe (CEEC); parent industry is other than the affiliate’s
(Vertical). All regressions include dummies for country-industry, country-year and industry-year fixed effects, both at the
parent and affiliate level. Last 3 columns in both panels also include the Dgt−1 and its interaction with the fixed effects
described above. Standard errors are computed using a pairs cluster (at the ownership group) bootstrap with 100 replica-
tions over the two-step estimation procedure and reported in parentheses below point estimates. The last row reports the
observations used in the second-step of each estimation.

Vertical.—While learning mechanisms appear to be important in explaining the TFP ef-
fects from intangible transfers for the affiliate, this is not the case for the parent. To assess

48WEC cover: Austria; Belgium; Finland; France; Germany; Italy; Norway; Portugal; Spain; and Sweden,
while CEEC cover: Bulgaria; Croatia; Czech Republic; Estonia; Hungary; Poland; Romania; Slovakia; and
Slovenia. This split also follows the level of economic development of these countries (UNCTAD 2019) and is in
line with the different phases of EU enlargement.
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potential mechanisms behind such TFP effects for the parent, we exploit variation in the in-
dustrial activity of the firms given that the technological and non-technological components
of intangibles are not fully compatible across industries. In columns 3a and 3b, the dummy
variable thus takes unit values when both the parent and affiliate are in different industries and
zero otherwise. We find a negative and statistically significant (at 5% level) interaction effect
for the parent. This suggests that it is harder for parent firms to adopt the technological and
non technological components of intangibles from affiliates in different industries. This result
supports the notion that parent firms are pure recipients of affiliate technology, and is in line
with the motives of a parent to control an affiliate in the first place.

5.3 Patents

We next extend the empirical model by introducing a firm-year variable on the number
of granted patent applications. Extending the model in this way supports the validity of the
methodological approach by including a measure of a specific intangible which is directly re-
ported in the Amadeus database by BvDEP. Following Stiebale (2016), we use this information
to construct a patent stock dummy variable (herein PAT) equal to unity if a firm has a positive,
not yet depreciated (at a 15% rate), stock of granted patent applications and zero otherwise.49

Table 4 shows that parent firms are relatively more involved in patenting activity: 25% of par-
ents have at least one granted patent application compared to 7.6% of affiliates.

Table 4: Summary statistics of patent stock dummy (PAT)

Obs. Mean St.Dev. p25 p50 p75

Affiliate 71,119 .076 .26 0 0 0
Parent 54,098 .25 .43 0 0 1

Notes: PAT is a dummy variable with unit values if a firm has
a positive (not yet depreciated) stock of granted patent applica-
tions and zero otherwise. PAT is constructed following Stiebale
(2016) with the underline data sourced from Amadeus database
by BvDEP.

Table 5 reports simple correlations between the observed (in the data) PAT and the unob-
served (but estimated from the baseline specification) TFP for both parent and affiliate firms.
We find a positive association and low strength. This suggests that the TFP measures con-
tain meaningful information for patenting activity that can safely be considered as intangibles.
Moreover, the low strength of the correlation suggests that patents are likely not the most sig-
nificant determinants in the intangible space, and that the TFP measure contains meaningful
information for other intangible inputs. On a more empirical note, this table also hints at the

49For uniformity and to avoid double counting, we focus only on patents reported in European Patent Office
(EPO) and not from other sources, such as: national authorities and WIPO.
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possibility of omitted variable bias even in if one directly observes some intangibles. Specif-
ically, the variables of interest would be biased if the observed intangibles are correlated with
other highly relevant unobserved intangibles. Including the lagged productivity of ownership
linked firms as an additional term in the markov process can partly account for such mispecifi-
cations.

Table 5: Correlation of TFP and Patents

ωgit ωg0t PATgit PATg0t

ωgit 1.000
ωg0t 0.468 1.000
PATgit 0.135 0.081 1.000
PATg0t 0.146 0.148 0.204 1.000

Notes: PAT is a dummy variable taking unit
values if a firm has positive undepreciated stock
of granted patent applications and zero other-
wise. ω is the estimated TFP from the baseline
model.

We now extend the baseline empirical model by allowing the patent activity of both the
firm itself and the ownership-linked firm to be a potential determinant of the firm’s future
productivity. This results in the following estimating equations:

ygit = ∑
j

(
αk jkgit +αl jlgit +αm jmgit

)
⊙d j +ρaaωgit−1 +ρapωg0t−1 +φ f e +ξgit + εgit

+ρPATaaPATgit−1 +ρPATapPATg0t−1

(21)

and

yg0t = ∑
j

(
πk jkg0t +πl jlg0t +πm jmg0t

)
⊙d j +ρppωg0t−1 +ρpaω̄git−1 + φ̃ f e +ξg0t + εg0t

+ρPAT ppPATg0t−1 +ρPAT paP̃AT git−1

(22)

where P̃AT git−1 takes the maximum value of PATgit−1 across affiliates within each ownership
group, i.e. at least one affiliate has a positive patent stock within the group, and zero otherwise.
Estimation follows directly from the baseline model. We adjust the instrument matrix in equa-
tion (17) by including the instruments

(
PATgit−1,PATg0t−1

)
and (PATg0t−1, P̃AT git−1). These

serve to identify the parameters (ρPATaa,ρPATap) and (ρPAT pp,ρPAT pa), respectively.50

Table 6 presents estimates of the markov process parameters both for the affiliate (left panel)
and parent (right panel).51 The table consists of 3 principal columns. As before, columns 1a and
1b report the baseline estimates. The remaining columns present estimates for different model

50The identifying assumption is that last period patent stock is orthogonal to current productivity innovations.
51Estimates of the production technology parameters are virtually the same across columns and for space con-

siderations only report them in Appendix Figures C.6 and C.7.
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specifications when considering the patent application stock variable with or without the lagged
productivity of the ownership-linked firm. Columns 2a and 2b impose the parameter restrictions
ρap = ρpa = 0 in (21) and (22), respectively. Results suggest that, on top of firm level patents
(ρPATaa,ρPAT pp), ownership linked patents (ρPATap,ρPAT pa) are significant determinants of firm
TFP for both the parent and affiliate. This lends support to the baseline results.

Table 6: Patents: baseline model with patent information

Affiliate

(1a) (2a) (3a)
Baseline Patent Dummy

Only &Baseline

ρaa 0.921∗∗∗ 0.928∗∗∗ 0.921∗∗∗

(0.003) (0.003) (0.003)

ρap 0.034∗∗∗ 0.034∗∗∗

(0.003) (0.003)

ρPATaa 0.010∗∗∗ 0.011∗∗∗

(0.004) (0.004)

ρPATap 0.007∗∗ 0.006∗

(0.003) (0.003)

Obs. 48,572 48,572 48,572

Parent

(1b) (2b) (3b)
Baseline Patent Dummy

Only &Baseline

ρpp 0.936∗∗∗ 0.942∗∗∗ 0.937∗∗∗

(0.004) (0.004) (0.004)

ρpa 0.013∗∗∗ 0.013∗∗∗

(0.002) (0.002)

ρPAT pp 0.007∗∗∗ 0.008∗∗∗

(0.003) (0.002)

ρPAT pa 0.008∗∗∗ 0.006∗∗

(0.003) (0.003)

Obs. 37,524 37,524 37,524

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Column (1a) and (1b) report results from the joint
estimation of equations (16) and (15), respectively (Baseline). Column (2a)-(3a) and (2b)-(3b) report
results from the extension of Baseline where ρPATaaPATgit−1 + ρPATapPATg0t−1 and ρPAT ppPATg0t−1 +
ρPAT paPATgit−1 are included as additional terms in equations (16) and (15), respectively. PATgit−1 and
PATg0t−1 are dummy variables that take unit values if the parent and affiliate firm, respectively, has
positive (not yet depreciated) stock of granted patent applications. (2a) and (2b) impose the parameter
restrictions: ρap = ρpa = 0. All regressions include dummies for country-industry, country-year and
industry-year fixed effects, both at the parent and affiliate level. Standard errors are computed using
a pairs cluster (at the ownership group) bootstrap with 100 replications over the two-step estimation
procedure and reported in parentheses below point estimates. Last row reports the observations used in
the second-step of each estimation. Appendix Figures C.6 and C.7 report the industry-specific estimates
of the production technology for each model.

It is important to mention at this stage that this specification is closely related to that of
Bilir and Morales (2019), who use information on R&D spending instead of patents.52 On the
one hand, they find that parent R&D spending is a significant determinant of foreign affiliate
TFP evolution. This is line with results presented in column 2a. However, they find no such
effect for the parent, i.e. affiliate R&D investment leads to productivity improvements for the
parent. This suggests that while affiliate R&D spending might not be a relevant determinant for

52In practice, this is a more flexible approach since it also allows for different production technologies between
the parent and affiliate, controls for fixed effects both at the parent and affiliate level and estimates a gross-output
instead of a value-added production function.
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the parent there are other intangibles—usually unobserved in the data—that are highly relevant
(e.g. patents). In contrast, our baseline model nests approaches where only certain types of
intangibles are observed in the data.53

In columns 3a and 3b, we now also include the ownership-linked TFP as specified in (21)
and (22). Results suggest that while ownership-linked patents still carry weight in explaining
future productivity evolution, there are other relevant forms of ownership linked intangibles
that need to be considered. Discrepancies in point estimates and precision between columns
(2) and (3) touch upon the importance of controlling for ownership-linked TFP in order to ac-
count for possible non-causal correlation between the observed controls and other unobserved
intangibles.

Overall, this subsection provides supportive evidence that linked firm TFP contains/controls
for variation in intangibles. As such, it is a meaningful composite index for intangibles which
should be considered accordingly.

5.4 Falsification Exercise

This subsection validates the results by performing a set of pseudo-placebo tests. The ra-
tionale behind this exercise is straightforward. If efficiency gains from ownership-linked TFP
(as found in the baseline model) are also present outside firm boundaries, similar effects stem-
ming from non-ownership-linked firms should be present as well. To perform this exercise, we
employ an additional dataset sourced directly from the Amadeus database by BvDEP which
contains information on purely ‘local firms.’ Put succinctly, local firms do not report any type
of ownership link, at any level of control and at any point in time observed in the dataset. We
process the data following the steps described in Section 2 to generate a dataset which contains
balance sheet information for local firms in all countries and industries observed in the baseline
sample.

The falsification exercise has two closely related parts. First, we randomly replace affiliate
or parent firms with local firms and re-estimate the baseline model. Second, we closely match
the affiliate or parent firms with local firms based on observed characteristics and re-estimate
the baseline model. Table 7 presents estimates of the markov process parameters for both
the affiliate (top panel) and parent (bottom panel). The table consists of 7 columns with the
column 1 reporting the baseline estimates. Columns 2 and 5 report estimates of the baseline
model using sub-samples of the baseline sample (randomly assigned and closest match wrt. Y ,
respectively).

In column 3 (for the original set of parent firms) we replace each affiliate by randomly
drawing with replacement from the group of local firms observed in the same country, indus-
try, initial year and number of surviving periods as the affiliate. Subsequently, we re-run the
baseline estimation procedure using the randomly replaced sample and compare estimated out-

53This comes at the expense of being agnostic about the relative importance of each type of intangible.
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comes in column 3 with those in column 2 using the baseline sample but with the same number
of observations. In column 4 we conduct the reverse exercise by randomly replacing each par-
ent with a local firm and keeping the original set of affiliates. In both columns, estimated results
for ownership-linked TPF are statistically and economically insignificant. This validates that
such effects cannot arbitrarily exist in the local economy. Results also exclude potential spuri-
ous estimates from unobserved market conditions and shocks in the group of local firms upon
which we draw with replacement and which are not controlled for in the baseline model.

Table 7: Markov process estimates for falsification excercise

(1) (2) (3) (4) (5) (6) (7)
Baseline Restricted Randomly Assign Restricted Closest Match wrt. Y

Affiliate Sample Affiliate Parent Sample Affiliate Parent

ρaa 0.921∗∗∗ 0.918∗∗∗ 0.873∗∗∗ 0.925∗∗∗ 0.923∗∗∗ 0.896∗∗∗ 0.930∗∗∗

(0.003) (0.004) (0.005) (0.004) (0.004) (0.005) (0.004)

ρap 0.034∗∗∗ 0.040∗∗∗ 0.002 0.002 0.038∗∗∗ 0.011∗∗∗ 0.006
(0.003) (0.004) (0.005) (0.003) (0.004) (0.004) (0.004)

Parent

ρpp 0.936∗∗∗ 0.935∗∗∗ 0.938∗∗∗ 0.878∗∗∗ 0.936∗∗∗ 0.940∗∗∗ 0.913∗∗∗

(0.004) (0.005) (0.005) (0.006) (0.005) (0.004) (0.005)

ρpa 0.013∗∗∗ 0.011∗∗∗ 0.003 -0.003 0.013∗∗∗ 0.005∗∗ 0.004
(0.002) (0.003) (0.002) (0.004) (0.002) (0.002) (0.003)

Obs. 37,524 21,691 21,691 21,691 22,049 22,049 22,049

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Column (1) reports results from the joint estimation
of equations (16) and (15), respectively (Baseline). Column (2) and (5) report estimates from the
baseline model when using sub-samples of the baseline sample that match the number of observations
in the falsification tests in columns (3)-(4) (Randomly Assign) and (6)-(7) (Closest Match wrt. Y ),
respectively. All regressions include dummies for country-industry, country-year and industry-year
fixed effects, both at the parent and affiliate level. Standard errors are computed using a pairs cluster
(at the ownership group) bootstrap with 100 replications over the two-step estimation procedure and
reported in parentheses below point estimates. Last row reports the observations used in the second-step
of each estimation. Appendix Table C.8 reports industry-specific estimates of the production technology
for each model.

Nonetheless, non-random links of parent and affiliate firms with the local economy could
also generate similar network effects, e.g. through domestic buyer-supplier relationships. In
column 6, for the original set of parent firms, we thus replace each affiliate with a local firm
by performing a nearest-neighbor Mahanalobis’ distance matching (with replacement). The
matching is based on the output observed for the group of local firms in the same country,
industry, initial year, and number of surviving periods as the affiliate. Subsequently, we re-run
the baseline estimation procedure using the matched sample and compare estimated outcomes
in column 6 with those in column 5 using the baseline sample but with the same number of
observations. Similarly, in column 7, we conduct the reverse exercise by matching each parent
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with a local firm and keeping the original set of affiliates as is.

Column 6 presents a statistically significant effect from ownership linked TPF both for the
parent and affiliate which amounts to approximately one third of the baseline estimated elas-
ticities in column 5. Although any significant result may seem counter-intuitive at first, it can
be explained by spillovers and/or indirect effects, as well-established in the literature.54 The
absence of significant estimates in column 7 excludes the potential presence of unobserved
persistent factors in the local economy that could be driving the results. This strengthens the
interpretation of earlier findings as spillover effects.55 Specifically, the last two columns sug-
gest that, if anything, affiliates act as intermediaries of spillover effects that flow both back and
forth between the parent and the local firms.

In short, this subsection lends support to the main findings in this paper and suggests that
approximately two thirds of the baseline effects are actually internalised within the boundaries
of the firm. Moreover, these findings open the door to further research on the relative impor-
tance and direction of technology transfers across the boundaries of the firm.

6 Robustness

We conduct a battery of additional checks to test the robustness of the baseline model.
These include: alternative markov process specifications (Table 8 and Figure 2); additional
fixed effects; flexible production technologies; alternative estimators; and cases of imperfect
competition in the output market (Table 9). Finally, we provide additional robustness over the
sensitivity of standard errors and alternative ways of processing the baseline data (Appendix
Table C.11). Results presented in this section refer to estimates of the Markov process param-
eters. For conciseness, Appendix C contains estimates of the respective production technology
parameters and they are referenced where relevant. As above, to facilitate comparison between
the baseline and robustness models, the first column in each table reports the baseline estimates
(Baseline).

Markov Process (Table 8).—Columns 2-4 in Table 8 report estimates from the baseline
model where, instead of the mean (ω̄git−1) in equation (15), we use the minimum, median
and maximum lag affiliate TFP within each ownership group, respectively. While an expected
increase is observed in the estimated coefficient (ρpa) the differences between columns 2, 3,
and 4 are statistically insignificant. Column 5 tests for the potential presence of spillover effects
from other affiliates within the same ownership group. Here, the baseline model is extended
by including ρaa−ω̄gi−t−1 from equation (16), which captures the affiliate TFP effect from the

54See Javorcik (2010) for a literature review on technology/knowledge spillovers to domestic firms from foreign
direct investment, i.e. foreign affiliates of multinational companies. Also, see Merlevede and Theodorakopoulos
(2018) for indirect effects of internationalisation occurring through the domestic supply chain.

55Estimates of the production technology parameters presented in Appendix Table C.8 remain within econom-
ically meaningful bounds and thus bring confidence over the sensible performance of the falsification exercise.
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mean TFP of other affiliates within each group g. A statistically significant and positive effect
is estimated, but with limited economic relevance since its point estimate is approximately
1/23 of ρap and 1/10 of ρpa. Note that Bilir and Morales (2019) do not find such an effect
when considering R&D. This further supports the notion that focusing on a specific type of
intangibles obscures our understanding about their overall importance. Therefore, while novel,
such an effect can only qualify as second order.

Table 8: Robustness to alternative markov processes

(1) (2) (3) (4) (5)
Baseline Multiple affiliates Other

Affiliate Minimum Median Maximum Affiliates

ρaa 0.9209∗∗∗ 0.9209∗∗∗ 0.9209∗∗∗ 0.9208∗∗∗ 0.9208∗∗∗

(0.0028) (0.0028) (0.0028) (0.0028) (0.0028)

ρap 0.0335∗∗∗ 0.0333∗∗∗ 0.0335∗∗∗ 0.0337∗∗∗ 0.0320∗∗∗

(0.0034) (0.0034) (0.0034) (0.0034) (0.0035)

ρaa− 0.0014∗∗∗

(0.0004)
Parent

ρpp 0.9365∗∗∗ 0.9374∗∗∗ 0.9365∗∗∗ 0.9362∗∗∗ 0.9365∗∗∗

(0.0041) (0.0041) (0.0041) (0.0041) (0.0041)

ρpa 0.0130∗∗∗ 0.0108∗∗∗ 0.0128∗∗∗ 0.0133∗∗∗ 0.0131∗∗∗

(0.0019) (0.0018) (0.0019) (0.0018) (0.0019)

Obs. 37,524 37,524 37,524 37,524 37,524

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Column (1) reports results from
the joint estimation of equations (16) and (15), respectively (Baseline). Columns
(2)-(4) report estimates from Baseline when instead of the mean (ω̄git−1) in equa-
tion (15) we use the minimum, median and maximum lagged affiliate TFP within
each g-group, respectively. Column (5) reports estimates from Baseline when
ρaa−ω̄gi−t−1 is added in equation (16) to capture the affiliate TFP effect from the
mean TFP of other affiliates in the group. All regressions include dummies for
country-industry, country-year and industry-year fixed effects, both at the par-
ent and affiliate level. Standard errors are computed using a pairs cluster (at the
ownership group) bootstrap with 100 replications over the two-step estimation
procedure and reported in parentheses below point estimates. Last row reports
the observations used in the second-step of each estimation. Appendix Table C.9
reports industry-specific estimates of the production technology for each model.

Continuing, Figure 2 reports the Markov process estimates when allowing the parameters
to be industry specific both for the parent and affiliate. While all of the effects remain positive
across industries, results for certain industries become statically insignificant. This can be
explained by limited identifying variation (see Appendix Tables C.3 and C.4). Nonetheless,
across all industries, the relative importance of ρap over ρpa remains in line with the Baseline
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model. Overall, results remain robust to the alternative considerations of the Markov process.

Figure 2: Industry specific markov processes
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Source: Author’s estimates from Baseline Model with interaction terms.
Notes: Baseline model with industry specific Markov processes. 95% confidence intervals are
computed using the normal-approximation method after a pairs cluster (at the ownership group)
bootstrap with 100 replications over the two-step estimation procedure. See Appendix Table C.1
for a description of the A∗38 industry code.

Fixed Effects (Table 9).—To exclude the possibility that results are driven by any type
of country-industry specific growth trends, we next augment the baseline model with country-
industry-time (c jt) fixed effects, both at the parent and affiliate level (column 2).56 Intercon-
nections across Europe suggest that responses to business cycle conditions might depend on
complex network structures. For example, industry specific shocks which propagate through
supply chain links could result in non-uniform responses across industries. One might there-
fore be concerned that the baseline results reflect bilateral cyclical variations at the country
and industry level. To control for this, on top of the c jt fixed effects in column 2, we augment
the baseline model with bilateral country-time, industry-time and country-industry fixed effects
both at the parent and affiliate level (column 3).57 In both columns, results remain similar to
column 1 and thus alleviate concerns that aggregate persistent unobserved factors drive results.

Continuing, we augment the production functions (1) and (2) with parent-level (φg0) and
affiliate-level (φgi) fixed effects, respectively (column 4). Adding these fixed effects controls

56This implies that the set of fixed effects defined in equations (9) and (10) becomes ρ f e ≡ ρa
c jt +ρ p

c jt .
57The set of fixed effects defined in equations (9) and (10) now becomes ρ f e ≡ ρa

c jt +ρ p
c jt +ρap

c j +ρap
ct +ρap

jt .
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for potential correlation between the variables of interest and any unobserved time-invariant
characteristics at both the parent and affiliate level. To estimate this model we augment the
extension to account for firm fixed effects proposed by GNR (see Appendix A.3 for a detailed
description of the estimable equations and estimation strategy).58 In column 4, the obtained
point estimates for the variables of interest have larger magnitudes compared to those in column
1, but remain qualitatively similar in terms of their relative importance between the parent and
affiliate.59

Production Technology (Table 9).—We next introduce more general functional forms for
the production technology to allow for flexible substitution patterns between inputs (columns
5 and 6). Column 5 relies on a relatively flexible parametric form, i.e. translog, which is
frequently applied in empirical research.60 On the other hand, in column 6 we rely on the non-
parametric estimation (NP) of the production technologies following the identification strategy
of GNR (see Appendix A). In both cases, estimated results are in line with the baseline es-
timates in column 1. As such, we exclude the possibility that baseline results are driven by
unobserved heterogeneity in production technology.61

Alternative Estimators (Table 9).—Following the applied production function estimation
literature, we check the sensitivity of the baseline results against alternative commonly used
structural approaches. These include proxy variable methods (column 7) (Olley and Pakes
1996; Levinsohn and Petrin 2003; Ackerberg et al. 2015) and dynamic panel methods (col-
umn8) (Arellano and Bond 1991; Blundell and Bond 1998, 2000). Following the identifi-
cation insights of Ackerberg, Caves, and Frazer (2015) (herein ACF), we estimate a version
of the baseline model using a restricted profit value added instead of a gross output pro-
duction function. In this case, the empirical measures of value added are now expressed as:
vag0t ≡ ln(Yg0t −Mg0t) and vagit ≡ ln(Ygit −Mgit) (see Appendix B). Results presented in col-
umn 7 remain in line with those in column 1.62

In column 8, we consider a simple version of dynamic panel methods without firm fixed
effects (see Shenoy (2018) for an extended discussion on these methods in the context of pro-

58For a similar application see Merlevede and Theodorakopoulos (2018).
59The decrease in the point estimates of the persistence parameters is expected, since we now control for the

upward bias originating from the positive correlation between the persistence term and firm fixed effects (Arellano
2003). In addition, in Appendix Table C.10, we retrieve economically sensible estimates for the output elasticities
of inputs and returns to scale. This brings confidence over the reasonable performance of this estimator. However,
additional restrictions over the linearity of the Markov process and the stationarity on the initial conditions process
need to be imposed.

60Equations 7 and 8 are now represented as: h j (kg0t , lg0t ,mg0t ;π) = ∑
j

(
∑

rk+rl+rm≤2
πrk,rl ,rmkrk

g0t l
rl
g0tm

rm
g0t

)
⊙ d j

and f j (kgit , lgit ,mgit ;α) = ∑
j

(
∑

rk+rl+rm≤2
αrk,rl ,rmkrk

git l
rl
gitm

rm
git

)
⊙d j,with rk,rl ,rm ≥ 0.

61However, more flexible functional forms come with typical trade-offs faced by empirical researchers: in-
creased parameter space; insufficient number of observations for certain groups; and computationally intensive
estimation routines. Therefore, we abstain from using any of the two as a baseline.

62This estimation approach comes with the additional assumption of scalar unobservability to invert the proxy
demand function (e.g. Olley and Pakes 1996; Levinsohn and Petrin 2003; Ackerberg et al. 2007, 2015).
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duction functions). Despite additional linearity restrictions imposed on the markov process,
this approach considers the case where material is a non-flexible input, e.g. due to financial
constrains, and thus allows for any possible interdependencies and dynamic elements. In addi-
tion, we account for the presence of classical measurement error in both the output and input
variables (e.g. from misreporting) by using two-period lags as instruments. Results remain
robust against these alternative considerations, with an expected increase in standard errors due
to the deeper lag structure of the instrument matrix (Ackerberg 2020).

Imperfect Competition (Table 9).—Since we observe monetary values deflated at the
country-industry-year level (and not physical output), baseline results should be interpreted
as revenue based (Klette and Griliches 1996). This could induce bias into the estimates to
the extent that output prices also vary within a country-industry-year. While ideally we could
account for such variation by observing physical quantities at the firm-year level, such infor-
mation is not available and rather infeasible to collect in this multi-country context. As such, in
column 9 we follow standard practices in the literature to extend the baseline empirical model
by including further structure and assumptions. This includes an iso-elastic demand system
coupled with monopolistic competition, similar to Klette and Griliches (1996) and De Loecker
(2011), following the methodology proposed by GNR. An exact description of the estimation
procedure can be found in Appendix O5-4 of GNR.63

In a similar context, column 10 proceeds with the idenitfication strategy proposed by Flynn
et al. (2019) (herein FGT). This is intended to solve for the non-identification issue of standard
proxy variable techniques, as shown by GNR, when measuring markups with production data
and one of the input is flexible. By imposing the returns to scale, FGT show that production
functions are identified. However, in both columns 9 and 10 the production function is only
partially identified. While estimators deliver the true production technology parameters (see
Appendix Table C.10) the Markov process parameters only reflect those from a revenue-based
production function. More specifically, estimated productivity ω̃ = k(ω,ξ ) is a function of true
productivity (ω) and demand shocks (ξ ). Therefore, it is not possible to tell whether the larger
ω̃ is because the firm is more productive (ω) or because it can charge a higher price (ξ ). More
detailed data is needed to answer that question, which is not currently available for such an
extensive cross-country dataset.

Additional Robustness.—To further support the validity of the baseline results we proceed
with a battery of additional robustness checks presented in Appendix Table C.11. In columns 2
and 3 we use the BACON procedure and relax the threshold for dropping outliers from the 30th

to the 20th and 10th percentile of the distribution of nominated outliers, respectively. Column 4
repeats the baseline estimation procedure when treating the production error terms as classical

63On top of the estimated effects of interest, we are also able to identify aggregate time-varying markups (see
Appendix Figure C.9). This is expected to be insightful to the extent to which, on average, firms adjust their
markups over time. Therefore, effects presented in column 6 remain similar to the baseline in column 2 with an
expected increase in magnitudes of the estimated production technology parameters.
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measurement error in output and not as ex-post shocks to production. This implies that there is
no need for the E correction, i.e. Ea = Ep = 1. In column 5, we repeat the baseline estimation
but include the industries dropped from the baseline sample.64 Columns 6 and 7 estimate
the baseline model considering the more detailed industry ( j) classifications CPA and NACE,
respectively (see Appendix Table C.1). In column 8 we bootstrap the baseline specification
for 1000 replications, while in columns 9 and 10 we pairs bootstrap the standard errors at the
country-industry (c j) and country (c) cluster, respectively.

Results are robust in all of the above cases. Finally, unimodality in the distribution of
bootstrapped values (see Appendix Figure C.8) suggests that standard errors are robust to the
presence of potential outlier clusters. This is especially true for cases where the cluster size is
small (Cameron and Miller 2015).

7 Conclusion

A large literature has tried to understand the role of firm boundaries. Suggestive empirical
evidence points to the theoretically based argument that firm boundaries exist to facilitate the
transfer of intangible inputs. In this paper we identify and quantify transfers of intangibles, and
how they determine the productivity evolution of the firm.

We use a carefully constructed European panel of majority owned parent-affiliate groups
with full balance sheet information on both sides for the period 2004-2015 and extend a typical
production function estimation procedure. Due to a well-known lack of data on intangible
inputs, we devise an empirical method that allows us to characterise the full set of intangibles
transferred between parent and affiliate firms.

We identify, at the firm level, the importance of intangible transfers between ownership-
linked firms. While affiliates benefit from their parents’ intangibles, these benefits also run the
other way around. This finding is new to the literature, lending validation to theories which
explain the motives of firm ownership.

The results presented in this paper are particularly poignant due to inherent difficulties in
measuring intangible assets and their relative impact across space and time. Therefore, they
are of high relevance to policymakers and institutions in their efforts to quantify the costs and
benefits of policies related to intangible investment.

64These include sectors NACE 19 - Manufacture of coke and refined petroleum products and NACE 21 - Man-
ufacture of rubber and plastic products.
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Online Appendix

A GNR Two-step Estimation Procedure

This section serves as an overview of the basic steps and assumptions of the GNR non-
parametric estimation procedure applied to the empirical model in Section 3. For a detailed
and complete description refer to GNR. For notation simplicity and without loss of generality,
we disregard the country c and industry j dimensions. The estimation is directly extended by
allowing the functional forms of the production technology h(·) and f (·) to vary by industry j.

To recap the main assumptions, this case considers the classic environment of perfect com-
petition in both input and output markets. Capital and labour are predetermined inputs and
therefore chosen one year prior to the realisation of productivity, i.e. at (t −1). The only flex-
ible input is material, assumed to freely adjust in each period (variable) and have no dynamic
implications (static).

Conditional on the state variables and other firm characteristics, the static profit maximisa-
tion problem yields the first order condition with respect to the flexible input for the parent:

PM
t = Pt

∂
∂Mt

H(Kg0t ,Lg0t ,Mg0t)eωg0t Ep (A.1)

and the affiliate:
PM

t = Pt
∂

∂Mt
F(Kgit ,Lgit ,Mgit)eωgit Ea (A.2)

where PM
t and Pt are the price of material and output, respectively. Under perfect competition

in input and output markets, they are constant across parent and affiliates within the same
country and industry, but can vary over time. By the time firms make their annual decisions,
ex-post shocks εg0t and εgit are not in their information set and therefore Ep = E(eεg0t ) and
Ea = E(eεgit ).1 To derive (A.1) and (A.2) one needs to assume that the distributions of the
ex-post shocks are independent of the within period variation in the firm’s information set, i.e.
Pε
(
εg0t |Igt

)
= Pε

(
εg0t
)

and Pε
(
εgit |Igt

)
= Pε

(
εgit
)
. Alternatively, as commonly used in the

proxy variable setup, mean independence
(
E[εg0t |Igt ] = E[εgit |Igt ] = 0

)
would not suffice to

treat E ’s as constants since from the firm’s problem they will now become some function of
the information set, i.e. Ea

(
Igt
)

and Ep
(
Igt
)
. See GNR for a detailed discussion on this topic

and alternative ways to relax this assumption to mean independence.2

We retrieve a material costs share equation for the parent by combining (A.1) with (1) and
re-arranging terms:

sg0t = ln
(

h̃(kg0t , lg0t ,mg0t)
)
+ lnEp − εg0t (A.3)

1It is important to account and correct for this nuisance term since ignoring it, i.e. Ep = Ea = 1, inherently
implies that we move from the mean to the median central tendency of eεgit (see Goldberger 1968).

2Note that if εs are treated as classical measurement error then one can use the weaker assumption of mean
independence and skip the correction described above.
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Similarly, we retrieve a material costs share equation for the affiliate by combining (A.2) with
(2):

sgit = ln
(

f̃ (kgit , lgit ,mgit)
)
+ lnEa − εgit (A.4)

In the above, sg0t and sgit are the log of the nominal share of material costs for the parent
and the affiliate, respectively. h̃(kg0t , lg0t ,mg0t) =

∂
∂mg0t

h(kg0t , lg0t ,mg0t) and f̃ (kgit , lgit ,mgit) =

∂
∂mgit

f (kgit , lgit ,mgit) are the output elasticities of the flexible input. Notice that in both share
equations, TFP is not present anymore. This follows the identification insight of GNR where
the TFP term inducing the transmission bias is eliminated from the share equation due to the
assumed Hicks-neutrality, i.e. additive. The idea here is that the share equation helps to recover
the output elasticity of the flexible input and in turn allows for the nonparametric identification
of the rest of the production function and Markov process. GNR propose a simple nonpara-
metric estimator using sieve estimators and, in line with proxy variable methods, follows two
steps.

A.1 Step One

In the first step, a Non Linear Least Squares (NLLS) estimation for each of the share equa-
tions (A.3) and (A.4) is applied, with:

h̃(kg0t , lg0t ,mg0t)Ep = ∑
rk+rl+rm≤r

γ
′
rk,rl ,rm

krk
g0t l

rl
g0tm

rm
g0t , with rk,rl,rm ≥ 0 (A.5)

and
f̃ (kgit , lgit ,mgit)Ea = ∑

rk+rl+rm≤r
δ

′
rk,rl ,rm

krk
git l

rl
gitm

rm
git , with rk,rl,rm ≥ 0 (A.6)

approximated by a polynomial series estimator of order r. The independence assumption
of the ex post shocks to production imply the conditional moments E[εg0t |kg0t , lg0t ,mg0t ] =

E[εgit |kgit , lgit ,mgit ] = 0 allowing to form the unconditional moments E
[

εg0t(∂ h̃(kg0t ,lg0t ,mg0t)/∂γ)
]
=

E
[

εgit(∂ f̃ (kgit ,lgit ,mgit)/∂δ)
]
= 0. This step exactly identifies εg0t and εgit

(
hence Êp = 1

GT ∑
g,t

eε̂g0t

and Êa =
1

IT ∑
gi,t

eε̂git ), γ ≡ γ ′/Ep, δ ≡ δ ′
/Ea

)
and thus the output elasticities of the flexible input,

i.e. material, for both the parent
(
h̃(·)
)

and affiliate
(

f̃ (·)
)
.

A.2 Step Two

By integrating up the output elasticity of the flexible input for the parent:
∫

h̃(kg0t , lg0t ,mg0t)dmg0t = h(kg0t , lg0t ,mg0t)+H (kg0t , lg0t) (A.7)
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and the affiliate:
∫

f̃ (kgit , lgit ,mgit)dmgit = f (kgit , lgit ,mgit)+F (kgit , lgit) (A.8)

We identify the production function of the parent and affiliate up to an unknown constant of
integration H (kg0t , lg0t) and F (kgit , lgit), respectively. By subtracting the production functions
(1) and (2) from equations (A.7) and (A.8), respectively, we retrieve the following expressions
for parent TFP:

ωg0t = Ŷg0t +H (kg0t , lg0t) (A.9)

and affiliate TFP:
ωgit = Ŷgit +F (kgit , lgit) (A.10)

where Ŷg0t and Ŷgit are the log of the expected output net of the computed integral of the output
elasticity of materials for the parent (A.7) and affiliate (A.8), respectively, as estimated from the
first step. H (kg0t , lg0t) and F (kgit , lgit) represent the remaining part of the production function
to be identified for the parent and affiliate, respectively, and approximated by a polynomial of
degree r both for the parent:

H (kg0t , lg0t) = ∑
0<rk+rl≤ν

πrk,rl k
rk
g0t l

rl
g0t , with rk,rl ≥ 0 (A.11)

and the affiliate:
F (kgit , lgit) = ∑

0<rk+rl≤ν
αrk,rl k

rk
git l

rl
git , with rk,rl ≥ 0 (A.12)

Note that both parent and affiliate TFP are now expressed as functions of variables observed in
the data (l and k), variables generated (Ŷ ), and parameters to be estimated πν =(π1,0,π0,1, . . . ,πrk,rl)

and αν = (α1,0,α0,1, . . . ,αrk,rl).
Following the dynamic panel literature, the second step exploits the assumption over the law

of motion of TFP. Without loss of generality, we combine (A.9) and (A.10) with the conditional
linear first-order Markov processes from the baseline model in (9) and (10),3 resulting in the
estimating equations:

Ŷg0t =−H (kg0t , lg0t)+ρppωg0t−1 +ρpaω̄git−1 + φ̃ f e +ξg0t

=−H (kg0t , lg0t)+ρpp

(
Ŷg0t−1 +H (kg0t−1, lg0t−1)

)

+ρpa

(
Ŷgit−1 +F (kg0t−1, lg0t−1)

)
+ φ̃ f e +ξg0t

(A.13)

3Alternatively, with the data constraints and parameter space in mind, a more flexible functional form can be
considered where: ωg0t = g

(
ωg0t−1,ωgit−1

)
+ φ̃ f e +ξit and ωgit = d

(
ωgit−1,ωg0t−1

)
+φ f e +ξit .
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and

Ŷgit =−F (kgit , lgit)+ρaaωgit−1 +ρapωg0t−1 +φ f e +ξgit

=−F (kg0t , lg0t)+ρaa

(
Ŷgit−1 +F (kgit−1, lgit−1)

)

+ρap

(
Ŷg0t−1 +H (kg0t−1, lg0t−1)

)
+φ f e +ξgit

(A.14)

The main difference from a standard production function is that each specification identifies not
only the own production technology and Markov process, but also the production technology
of the ownership-linked firms. For example, equation (A.13) identifies not only the production
technology

(
H (·)

)
and Markov process (ρpp,ρpa) of parent firms, but also the production

technology of affiliates F (·).
The step proceeds with a standard iterative Generalised Method of Moments (GMM). We

simultaneously estimate the model by stacking equation (A.13) and (A.14) and imposing the
cross-equation constraints on the parameters of the production technologies that appear through
the interdependencies of TFP in the Markov process. By distinctly instrumenting each of the
stacked equations, we form a GMM criterion function based on the following moment condi-
tions:

E

[(
Z p

r ωg0t−1(πr) ω̄git−1(αr) d̃ f e 0 0 0 0
0 0 0 0 Z a

r ωgit−1(αr) ωg0t−1(πr) d f e

)′(
ξg0t

ξgit

)]
= 0

(A.15)
where Z p

r =
(
kg0t , lg0t , . . . ,k

rk
g0t l

rl
g0t

)
and Z a

r =
(
kgit , lgit , . . . ,k

rk
git l

rl
git
)

are the ‘instrument sub-
matrices’ with their column space dimensions depending on the degree r of the polynomials
used to approximate the constants of integration in (A.11) and (A.12). The orthogonality con-
ditions directly depend on the timing assumptions of inputs. Capital and labour, both for the
parent and affiliate, are predetermined and thus orthogonal to the productivity innovations.4

These instruments are typical in the literature and help to identify the π’s and α’s for capital
and labour. Continuing, to identify the Markov process parameters ρpp,ρpa and ρaa,ρap, for a
guess of πr and αr, we form ωg0t−1(πr) and ωgit−1(αr)

(
hence ω̄git−1(αr)

)
based on (A.9) and

(A.10), respectively, which are by construction orthogonal to the TFP innovations.5 Finally,
for the fixed effects φ̃ f e and φ f e we use a full set of dummy variables d̃ f e and d f e, respectively,
as defined in Section 4.3 which are assumed to be exogenous and thus uncorrelated with the
unanticipated innovations to productivity. This is an exactly identified model where the number
of instruments is the same as the number of parameters.6

By minimising the squared Euclidean length of the sample analogue of (A.15), we retrieve

4However, if labour is assumed to be a dynamic input then current labour and productivity are correlated and
thus thus instrument with lagged values of labour instead.

5Alternatively, one can use values of Ŷg0t and Ŷgit generated from the first step.
6Estimating each equation separately requires additional instruments to identify the production technology

of ownership-linked firms. For example, for (A.13) E
[
(Z p

r ,ωg0t−1(πr),ωgit−1(αr), d̃ f e,Z
a

r )
′ξg0t

]
= 0 and for

(A.14) E
[
(Z a

r ,ωgit−1(αr),ωg0t−1(ρr),d f e,Z
p

r )
′ξgit

]
= 0.
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estimates for parameters of the production technology of the parent (πr) and affiliate (αr). We
also retrieve estimates for the persistence of firms’ TFP (ρpp and ρaa), the productivity effects
from the linked firms’ TFP (ρpa and ρap) and all of the fixed-effects considered (φ̃ f e and φ f e).

As discussed in subsection 4.3, for the baseline model we apply industry-specific Cobb-
Douglass specifications for H(·) and F(·) in (1) and (2), respectively, to control for growth
differentials across industries. This is equivalent to a polynomial of degree zero for the elastic-
ities of material, r = 0, i.e. industry dummies in the share equation regression, and a first order
polynomial for the constants of integration, r = 1.

Based on estimates of the production function coefficients, we can now compute other
relevant variables, i.e. TFP, output elasticities of inputs and returns to scale (RTS), for both the
parent and the affiliate, using equations (1) and (2), respectively

A.3 Step Two with Firm Fixed Effects

In line with dynamic panel methods, GNR provide an extension of their estimation strat-
egy that can easily account for firm fixed effects, something not possible in proxy variable
methods.7 Here we provide an augmented version of their extension applied to our empirical
model. For the case of parent-level (φg0) and affiliate-level (φgi) fixed effects, the production
functions (1) and (2) are now written as:

yg0t = h(kg0t , lg0t ,mg0t)+ ω̃g0t + εg0t (A.16)

and
ygit = f (kgit , lgit ,mgit)+ ω̃git + εgit (A.17)

where ω̃g0t ≡ ωg0t +φg0 and ω̃git ≡ ωgit +φgi. Since fixed effects enter log-additively, the first
order conditions of the firm in (A.1) and (A.2), and the share equations in (A.3) and (A.4)
remain the same, with ω̃g0t and ω̃git replacing ωg0t and ωgit , respectively. Therefore, the first
step described in Appendix A.1 is exactly the same.

In the second step, the estimating equations (A.13) and (A.14) are now augmented to:

Ŷg0t =−H (kg0t , lg0t)+ρppωg0t−1 +ρpaω̄git−1 + φ̃ f e +(1−ρpp)φg0 −ρpaφgi +ξg0t

=−H (kg0t , lg0t)+ρpp

(
Ŷg0t−1 +H (kg0t−1, lg0t−1)

)

+ρpa

(
Ŷgit−1 +F (kg0t−1, lg0t−1)

)
+ φ̃ f e +(1−ρpp)φg0 −ρpaφgi +ξg0t

(A.18)

7For a detailed description see Appendix O5-1 in GNR.
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and

Ŷgit =−F (kgit , lgit)+ρaaωgit−1 +ρapωg0t−1 +φ f e +(1−ρaa)φgi −ρapφg0 +ξgit

=−F (kg0t , lg0t)+ρaa

(
Ŷgit−1 +F (kgit−1, lgit−1)

)

+ρap

(
Ŷg0t−1 +H (kg0t−1, lg0t−1)

)
+φ f e +(1−ρaa)φgi −ρapφg0 +ξgit

(A.19)

A.3.1 First Difference GMM (DIF)

Following the dynamic panel literature, GNR eliminate the fixed effects by first-differencing
the above equations:

∆Ŷg0t =−∆H (kg0t , lg0t)+ρpp∆ωg0t−1 +ρpa∆ω̄git−1 +∆φ̃ f e +∆ξg0t (A.20)

and
∆Ŷgit =−∆F (kgit , lgit)+ρaa∆ωgit−1 +ρap∆ωg0t−1 +∆φ f e +∆ξgit (A.21)

where ∆ is the first difference operator. Note that as in dynamic panel methods, linearity of
the Markov processes is necessary, since otherwise the fixed effects would enter nonlinearly
in (A.18) and (A.19) and thus cannot difference them out. By construction, the above equation
suffers from endogeneity induced by the correlation between first-differenced lagged produc-
tivities and ∆ξ . To solve for this, one can instrument with deeper lags in levels à la Arellano and
Bond (1991). However, as shown by Blundell and Bond (1998), first differencing in a dynamic
panel setup performs poorly when TFP is close to a random walk because of weak instruments
causing large finite sample bias. In a production function context, this results in empirical
estimates of output elasticities and returns to scale which are imprecise and possess large stan-
dard errors (Griliches and Mairesse 1999; Blundell and Bond 2000). Therefore, to reduce such
biases, we further augment the GNR estimation procedure with firm fixed effects borrowing
from the “System GMM” estimator developed by Blundell and Bond (1998) and outlined by
Arellano and Bover (1995).8 For a similar application, see Merlevede and Theodorakopoulos
(2018).

A.3.2 System GMM (SYS)

Following Blundell and Bond (1998), the SYS GMM approach augments the DIF GMM
from the previous section by estimating simultaneously the equation in differences and levels

8This approach does not come for free since we need to introduce stationarity restrictions on the initial condi-
tions process (Arellano and Bover 1995).
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in a single equation for the parent:

(
∆Ŷg0t

Ŷg0t

)
=−

(
∆H (kg0t , lg0t)

H (kg0t , lg0t)

)
+ρpp

(
∆ωg0t−1

ωg0t−1

)
+ρpa

(
∆ω̄git−1

ω̄git−1

)
+

(
∆φ̃ f e

φ̃ f e

)
+

(
∆ξg0t

ξg0t

)

(A.22)
and the affiliate:
(

∆Ŷgit

Ŷgit

)
=−

(
∆F (kgit , lgit)

F (kgit , lgit)

)
+ρpp

(
∆ωgit−1

ωgit−1

)
+ρpa

(
∆ωg0t−1

ωg0t−1

)
+

(
∆φ f e

φ f e

)
+

(
∆ξgit

ξgit

)

(A.23)
where the same linear relationship with the same coefficients applies, resulting in a stacked
dataset with two times the amount of data and the same set of parameters used in levels for
the parent and affiliate, respectively. The remaining part of the procedure is the same as in
Appendix A.2 with the only difference being in the instrument matrix used to form the moment
conditions By distinctly instrumenting each of the stacked equations, we form the following
moment conditions:

E







Z
DIFp

r 0 0 0

0 Z
LEVp

r 0 0
0 0 Z DIFa

r 0
0 0 0 Z LEVa

r




′


∆ξg0t

ξg0t

∆ξgit

ξgit






= 0 (A.24)

where for the equation in first-differences we use deeper lags of values in levels:

Z
DIFp

r =
(
kg0t−1, lg0t−1, . . . ,k

rk
g0t−1lrl

g0t−1,ωg0t−2(πr), ω̄git−2(αr),∆d̃ f e
)

and
Z DIFa

r =
(
kgit−1, lgit−1, . . . ,k

rk
git−1lrl

git−1,ωgit−2(αr),ωg0t−2(πr),∆d f e
)

For the equation in levels we exploit (deeper lags of) first-differenced values:9

Z
LEVp

r =
(
∆kg0t ,∆lg0t , . . . ,∆krk

g0t∆lrl
g0t ,∆ωg0t−1(πr),∆ω̄git−1(αr), d̃ f e

)

and
Z LEVa

r =
(
∆kgit ,∆lgit , . . . ,∆krk

git∆lrl
git ,∆ωgit−1(αr),∆ωg0t−1(πr),d f e

)

9For the variables of interest, i.e. ownership-linked productivities, we use all possible lags as instruments in
order to maintain maximal identifying variation, while for the rest of the variables we limit the instruments to
include only the first lag. We abstain from using additional deeper lags for all variables in order to avoid potential
biases generated by instrument proliferation (Roodman 2009). In the same spirit, we further limit the instrument
count by using a collapsed version of the instrument matrix, as suggested by Roodman (2009) among others.
Kiviet et al. (2017) demonstrate how the combination of these two instrument reduction methods can improve
estimation precision.
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As a choice of a weighting matrix to yield a consistent estimator, we follow, among others,
Windmeijer (2000) by choosing the block diagonal matrix:

W = N




ZSY S
r

′




HDIFp Dp 0 0
D

′
p IT−2 0 0

0 0 HDIFa Dp

0 0 D
′
p IT−2




ZSY S
r




−1

(A.25)

where ZSY S
r is the instrument matrix described in (A.24). HDIFp ≡ DpDp

′
and HDIFa ≡ DaDa

′

are T − 2 square matrices that have 2’s on the main diagonal, -1s on the first subdiagonals,
and zeros elsewhere. Dp and Da are matrices with -1s in the diagonal, 1s in the first upper
sub-diagonal, and zeros elsewhere. Finally, N contains the number of parent and affiliate firms,
respectively.
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B ACF Two-step Estimation Procedure

This section provides an overview of the basic steps and assumptions in the ACF estimation
procedure applied to the the baseline model under a value-added production function. For a de-
tailed and complete description of the estimatio approach refer to ACF. This procedure controls
for collinearity problems encountered in Levinsohn and Petrin (2003). Assumptions imposed
about competition and timing of firms’ decisions are as in the previous section. Similarly,
for notation simplicity and without loss of generality, we disregard the country c and industry j

dimensions. The estimation is directly extended by allowing the functional forms of the produc-
tion technologies determined below to vary by industry j. The main difference with the baseline
model is that we now use a restricted profit value-added production function both for the par-
ent VAg0t =Yg0t −Mg0t = H(Kg0t ,Lg0t)eωg0t and affiliate VAgit =Ygit −Mgit = F(Kgit ,Lgit)eωgit ,
which in logs is expressed as:

vag0t = h(kg0t , lg0t)+ωg0t + εg0t (B.1)

and
vagit = f (kgit , lgit)+ωgit + εgit (B.2)

where vag0t and vagit is the log of double deflated value-added the parent and affiliate, respec-
tively.

Conditional on the state variables and other firm characteristics, firm’s static profit maximi-
sation yields material input demands mg0t = mp(kg0t , lg0t ,mg0t) and mgit = ma(kgit , lgit ,mgit).
To control for the unobserved productivity of the parent and affiliate, we use the inverted inter-
mediate input demand ωg0t = m−1

p (kg0t , lg0t ,mg0t) and ωg0t = m−1
a (kgit , lgit ,mgit), respectively,

under the assumption of monotonocity of m in ω .10 Alternatively, we can rewrite (B.1) and
(B.2) as:

vag0t = u(kg0t , lg0t ,mg0t)+ εg0t (B.3)

and
vagit = v(kgit , lgit ,mgit)+ εgit (B.4)

B.1 Step One

For a polynomial approximation of order κ for both u(·) and v(·), an Ordinary Least Squares
(OLS) regression on (B.3) and (B.4) delivers a measure of value-added purged from measure-

10To exclude the possibility of other unobservable factors that would violate the scalar unobservability assump-
tion, one should use as many relevant observable variables as possible (with the parameter space restriction in
mind) In addition, here we assume that there are no interdependencies in the decision making of material inputs.
However, if this is not the case, at the minimum, ownership-linked material inputs should also be included in the
control function.
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ment error in output for the parent (V̂g0t) and affiliate (V̂git), respectively.11

B.2 Step Two

Productivities can now be re-written as: ωg0t = ûg0t −h(kg0t , lg0t) and ωgit = v̂git − f (kgit , lgit).
For production functions approximated with a polynomial of order ν < κ the second step fol-
lows exactly the same estimation procedure as in Appendix A.2, but with (Ŷg0t) and (Ŷgit)

replaced by (V̂g0t) and (V̂git), respectively.12

11For our estimates, both u(·) and v(·) are approximated with a third order polynomial (κ = 3). Also note
that ε , as typically treated in the literature, reflects only classical measurement error and not ex-post shocks to
production. As such, the identifying assumption in this stage can be relaxed to mean independence instead of full
independence needed in the baseline model.

12Recall that the baseline model assumes Cobb-Douglas production functions.
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C Additional Figures and Tables

Table C.1: List of A∗38, CPA and NACE 2-digit (Rev.2) industries for the manufacturing sector

A∗38 CPA NACE Description

CA 5 10 Manufacture of food products
CA 5 11 Manufacture of beverages
CA 5 12 Manufacture of tobacco products
CB 6 13 Manufacture of textiles
CB 6 14 Manufacture of wearing apparel
CB 6 15 Manufacture of leather and related products
CC 7 16 Manufacture of wood and of products of wood and cork, except

furniture; manufacture of articles of straw and plaiting materials
CC 8 17 Manufacture of paper and paper products
CC 9 18 Printing and reproduction of recorded media
CD 10 19 Manufacture of coke and refined petroleum products
CE 11 20 Manufacture of chemicals and chemical products
CF 12 21 Manufacture of basic pharmaceutical products and preparations
CG 13 22 Manufacture of rubber and plastic products
CG 14 23 Manufacture of other non-metallic mineral products
CH 15 24 Manufacture of basic metals
CH 16 25 Manufacture of fabricated metal products, excl. machinery &

equip.
CI 17 26 Manufacture of computer, electronic and optical products
CJ 18 27 Manufacture of electrical equipment
CK 19 28 Manufacture of machinery and equipment n.e.c.
CL 20 29 Manufacture of motor vehicles, trailers and semi-trailers
CL 21 30 Manufacture of other transport equipment
CM 22 31 Manufacture of furniture
CM 22 32 Other manufacturing
CM 23 33 Repair and installation of machinery and equipment

Note: A∗38 represents intermediate aggregation of the NACE Rev.2 2-digit classification (NACE) (Eu-
rostat 2020). CPA represents the Classification of Products by Activity and is directly mapped to NACE
since both classifications are completely aligned down to the class level (Eurostat 2019).
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Table C.2: Data Representativeness

Foreign affiliates in country Country’s affiliates abroad

No affiliates Employment No affiliates Employment

n share n share n share n share

AT 367 0.88 37,996 0.63 819 0.63 120,519 0.59
BE 344 1.13 55,566 0.72 652 0.58 48,866 0.54
BG 93 0.24 42,089 0.65 6 0.08 167 0.00
CZ 1,142 0.49 258,709 0.90 77 1.08 4,039 0.33
DE 1,184 0.53 152,578 0.29 2,589 0.38 422,789 0.39
EE 267 0.93 18,974 0.62 29 0.53 1,992 0.51
ES 742 0.46 121,756 0.45 577 0.64 66,609 1.10
FI 214 0.85 31,361 0.96 371 0.52 38,912 0.39
FR 771 0.41 49,492 0.21 1,181 0.51 227,717 0.42
HR 128 0.41 14,904 0.58 13 - 377 -
HU 263 0.21 81,542 0.57 33 0.33 4,927 0.62
IT 904 0.81 144,301 0.98 1,119 0.54 105,083 0.39
NO 160 0.44 12,187 0.39 208 0.45 22,748 0.43
PL 1,637 0.98 143,913 0.53 57 0.55 9,781 0.44
PT 292 0.46 39,533 0.48 72 0.49 7,617 0.56
RO 912 0.39 179,599 0.65 5 0.16 47 0.04
SE 239 0.36 37,774 0.44 770 0.66 78,734 0.48
SI 109 0.44 15,862 0.51 46 0.89 5,388 0.76
SK 303 0.45 77,714 0.59 56 0.36 5,033 0.32

Total 10,904 0.57 1,578,614 0.55 10,904 0.57 1,578,614 0.55

Notes: Number of firms and employees covered by our dataset both in levels (n) and as
a share (share) of inward Foreign Affiliates Statistics (FATS) provided by Eurostat for the
year 2012 (affiliates in manufacturing and parents in all industries - FATS does not provide
parent industry).

C-12



Table C.3: Parent-year Observations by Country and Industry

A∗38 Industry Classification

Country CA CB CC CE CG CH CI CJ CK CL CM Total

AT 72 58 100 57 179 177 37 81 104 37 21 923
BE 304 137 205 177 361 340 56 80 166 55 76 1,957
BG 131 75 51 24 54 119 4 16 56 0 56 586
CZ 165 49 85 49 222 193 62 37 247 95 97 1,301
DE 313 197 222 245 734 854 336 452 932 307 194 4,786
EE 9 4 38 1 8 16 0 3 0 11 16 106
ES 1,838 466 962 602 1,433 1,516 152 288 584 667 557 9,065
FI 194 82 447 25 220 483 63 72 299 103 183 2,171
FR 1,185 401 851 417 1,065 1,378 276 373 701 419 551 7,617
HR 129 41 98 16 98 42 1 30 30 19 47 551
HU 12 3 11 10 46 14 0 1 1 13 8 119
IT 1,349 1,784 1,045 853 2,469 3,586 589 1,099 3,221 677 1,140 17,812
NO 255 73 156 29 180 216 43 34 146 96 155 1,383
PL 79 13 57 54 105 37 6 18 53 31 38 491
PT 344 236 161 82 333 316 1 49 120 76 73 1,791
RO 224 190 143 38 194 226 30 48 65 75 101 1,334
SE 120 34 319 22 152 305 43 18 200 84 118 1,415
SI 68 36 55 15 91 85 24 51 29 33 16 503
SK 23 0 31 7 30 40 0 27 12 1 16 187
Total 6,814 3,879 5,037 2,723 7,974 9,943 1,723 2,777 6,966 2,799 3,463 54,098

Notes: Using baseline sample discussed in Section 2. Underline data sourced from Amadeus database by BvDEP.

Table C.4: Affiliate-year Observations by Country and Industry

A∗38 Industry Classification

Country CA CB CC CE CG CH CI CJ CK CL CM Total

AT 44 26 64 18 80 113 38 27 68 25 25 528
BE 332 89 194 150 403 518 61 50 120 77 77 2,071
BG 180 104 63 31 119 193 10 40 73 24 45 882
CZ 233 112 155 142 602 584 74 203 380 249 214 2,948
DE 358 128 236 284 639 976 322 262 859 312 239 4,615
EE 45 45 119 7 60 163 29 25 33 32 68 626
ES 2,686 513 1,183 860 1,952 2,066 218 363 882 965 722 12,410
FI 191 50 461 27 272 470 53 86 276 100 190 2,176
FR 1,644 488 1,241 501 1,610 1,985 368 326 717 499 804 10,183
HR 201 78 134 48 206 152 5 95 70 42 65 1,096
HU 37 20 24 55 80 100 38 33 30 40 17 474
IT 1,680 1,657 1,042 855 2,866 4,528 774 1,168 3,399 812 1,436 20,217
NO 350 57 268 53 213 279 45 48 224 99 170 1,806
PL 149 43 141 110 366 251 43 108 160 182 132 1,685
PT 497 342 250 211 444 421 14 104 169 208 122 2,782
RO 325 661 344 102 464 753 92 125 263 268 208 3,605
SE 144 21 374 31 136 358 36 44 197 99 126 1,566
SI 70 32 87 34 115 100 14 29 62 34 47 624
SK 61 51 37 14 124 201 9 47 122 91 68 825
Total 9,227 4,517 6,417 3,533 10,751 14,211 2,243 3,183 8,104 4,158 4,775 71,119

Notes: Using baseline sample discussed in Section 2. Underline data sourced from Amadeus database by BvDEP.
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Table C.5: Summary Statistics with Domestic Ownership

Affiliates’ . . . Obs. Mean St.Dev. p25 p50 p75

Output† 56,363 25 172 1.7 5.2 16
Capital† 56,363 5.3 36 .15 .83 3.5
Material† 56,363 15 116 .67 2.5 8.7
Labour 56,363 88 407 11 29 78
Wage 56,258 41,771 45,478 27,592 37,465 47,614
Parents’ . . .

Output† 44,395 130 1,202 6.5 20 63
Capital† 44,395 23 146 .89 3.5 12
Material† 44,395 84 912 2.9 10 35
Labour 44,395 357 2,192 34 88 246
Wage 44,350 46,537 573,890 30,643 41,106 51,799
No Affiliates 44,395 1.3 .77 1 1 1

Notes: † Monetary variables in millions of Euro. Unbalanced panel of 10,575
parent and 14,246 affiliate firms in 22 NACE 2-digit manufacturing industries and
across 19 EU countries over the period 2004 to 2015. Underline data sourced from
Amadeus database by BvDEP.

Table C.6: Summary Statistics with Foreign Ownership

Affiliates’ . . . Obs. Mean St.Dev. p25 p50 p75

Output† 14,756 54 318 3.7 11 32
Capital† 14,756 14 324 .44 2.1 7.1
Material† 14,756 36 225 1.9 6.4 19
Labour 14,756 198 591 28 75 180
Wage 14,742 33,877 65,968 11,828 25,948 47,503
Parents’ . . .

Output† 12,382 288 2,028 21 54 140
Capital† 12,382 40 216 2.2 7.9 23
Material† 12,382 193 1,531 10 28 78
Labour 12,382 704 3,719 89 220 535
Wage 12,363 51,339 40,974 38,248 47,786 59,085
No Affiliates 12,382 1.2 .56 1 1 1

Notes: † Monetary variables in millions of Euro. Unbalanced panel of 2,591
parent and 3,459 affiliate firms in 22 NACE 2-digit manufacturing industries and
across 19 EU countries over the period 2004 to 2015. Underline data sourced from
Amadeus database by BvDEP.
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Figure C.1: Affiliate industry specific output elasticities of inputs and RTS
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Source: Author’s estimates from Baseline and Interaction model.
Notes: Baseline refers to the joint estimation of equations (16) and (15). Interaction refers to an
extension of Baseline where ρa∗pωgit−1ωg0t−1 and ρp∗aωg0t−1ω̄git−1 are added in equations (16)
and (15), respectively. All regressions include dummies for country-industry, country-year and
industry-year fixed effects, both at the parent and affiliate level. 95% confidence intervals are
computed using the normal-approximation method after a pairs cluster (at the ownership group)
bootstrap with 100 replications over the two-step estimation procedure. αk j, αl j, αm j are affiliate
industry-A∗38 specific point estimates of the output elasticities of capital, labour and material,
respectively. RT Sa j ≡ αk j +αl j +αm j represent the returns to scale of production for the affiliate.
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Figure C.2: Parent industry specific output elasticities of inputs and RTS
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Source: Author’s estimates from Baseline and Interaction model.
Notes: Baseline refers to the joint estimation of equations (16) and (15). Interaction refers to an
extension of Baseline where ρa∗pωgit−1ωg0t−1 and ρp∗aωg0t−1ω̄git−1 are added in equations (16)
and (15), respectively. All regressions include dummies for country-industry, country-year and
industry-year fixed effects, both at the parent and affiliate level. 95% confidence intervals are
computed using the normal-approximation method after a pairs cluster (at the ownership group)
bootstrap with 100 replications over the two-step estimation procedure. πk j, πl j, πm j are parent
industry-A∗38 specific point estimates of the output elasticities of capital, labour and material,
respectively. RT Sp j ≡ πk j +πl j +πm j represent the returns to scale of production for the parent.
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Figure C.3: Cumulative Impulse Response Functions - CIRF
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Source: Author’s calculations using estimates from baseline model.
Notes: Orthogonalised cumulative impulse response functions (vertical axis) over a 100 year hori-
zon (horizontal axis). CIRFs are computed using estimates of the parameters and cross-equation
error variance–covariance matrix from equations (16) and (15). The dashed line is the cumulative
response of affiliate TFP over time from a one standard deviation structural shock on parent TFP.
The solid line is the cumulative response of parent TFP over time from a one standard deviation
structural shock on affiliate TFP. The variance-covariance matrix is decomposed in a lower trian-
gular matrix with positive diagonal elements using Choleski decomposition under the following
assumption over the ordering of variables: parent TFP; and affiliate TFP. 95% confidence intervals
(CI) are computed using Gaussian approximation based on Monte Carlo simulation with 100 draws.
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Figure C.4: Affiliate industry specific output elasticities of inputs and RTS
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Source: Author’s estimates from Baseline Model with interaction terms.
Notes: Each marker reports results from an extension of baseline model where ρap∗DDgt−1ωg0t−1
and ρpa∗DDgt−1ω̄git−1 are added in equations (16) and (15), respectively. Dgt−1 is a dummy vari-
able with zeros unless it takes unit values for the group of firms where: country of parent is other
than that of the affiliate’s (MNC); parent is from Western Europe and affiliate from Central East-
ern Europe (CEEC); parent industry is other than the affiliate’s (Vertical). All regressions include:
dummies for country-industry, country-year and industry-year fixed effects, both at the parent and
affiliate level; the dummy variable Dgt−1; and its interaction with the fixed effects. 95% confidence
intervals are computed using the normal-approximation method after a pairs cluster (at the owner-
ship group) bootstrap with 100 replications over the two-step estimation procedure. αk j, αl j, αm j
are affiliate industry-A∗38 specific point estimates of the output elasticities of capital, labour and
material, respectively. RT Sa j ≡ αk j +αl j +αm j represent the returns to scale of production for the
affiliate.
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Figure C.5: Parent industry specific output elasticities of inputs and RTS
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Source: Author’s estimates from Baseline and Interaction model.
Notes: Each marker reports results from an extension of baseline model where ρap∗DDgt−1ωg0t−1
and ρpa∗DDgt−1ω̄git−1 are added in equations (16) and (15), respectively. Dgt−1 is a dummy vari-
able with zeros unless it takes unit values for the group of firms where: country of parent is other
than that of the affiliate’s (MNC); parent is from Western Europe and affiliate from Central East-
ern Europe (CEEC); parent industry other than the affiliate’s (Vertical). All regressions include:
dummies for country-industry, country-year and industry-year fixed effects, both at the parent and
affiliate level; the dummy variable Dgt−1; and its interaction with the fixed effects. 95% confidence
intervals are computed using the normal-approximation method after a pairs cluster (at the owner-
ship group) bootstrap with 100 replications over the two-step estimation procedure. πk j, πl j, πm j
are parent industry-A∗38 specific point estimates of the output elasticities of capital, labour and
material, respectively. RT Sp j ≡ πk j +πl j +πm j represent the returns to scale of production for the
parent.
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Figure C.6: Affiliate industry specific output elasticities of inputs and RTS

−0.05

0.00

0.05

0.10

0.15

0.20

CA CB CC CE CG CH CI CJ CK CL CM

αkj

0.20

0.40

0.60

0.80

CA CB CC CE CG CH CI CJ CK CL CM

αlj

0.30

0.35

0.40

0.45

0.50

0.55

CA CB CC CE CG CH CI CJ CK CL CM

αmj

0.60

0.80

1.00

1.20

CA CB CC CE CG CH CI CJ CK CL CM

RTSaj

95% CI Patents Patents & Baseline

Source: Author’s estimates from variants of the Baseline Model with information on patents.
Notes: Each model reports results from an extension of the baseline model where ρPATaaPATgit−1 +
ρPATapPATg0t−1 and ρPAT ppPATg0t−1+ρPAT paPATgit−1 are added in equations (16) and (15), respec-
tively. PATgit−1 and PATg0t−1 are dummy variables that take unit values if the parent and affiliate
firm, respectively, has positive (not yet depreciated) stock of granted patent applications. Patent
model imposes the parameter restriction: ρap = ρpa = 0. All regressions include: dummies for
country-industry, country-year and industry-year fixed effects, both at the parent and affiliate level;
the dummy variable Dgt−1; and its interaction with the fixed effects. 95% confidence intervals are
computed using the normal-approximation method after a pairs cluster (at the ownership group)
bootstrap with 100 replications over the two-step estimation procedure. αk j, αl j, αm j are affiliate
industry-A∗38 specific point estimates of the output elasticities of capital, labour and material, re-
spectively. RT Sa j ≡ αk j +αl j +αm j represent the returns to scale of production for affiliate.
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Figure C.7: Parent industry specific output elasticities of inputs and RTS
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Source: Author’s estimates from variants of the Baseline Model with information on patents.
Notes: Each model reports results from an extension of the baseline model where ρPATaaPATgit−1 +
ρPATapPATg0t−1 and ρPAT ppPATg0t−1+ρPAT paPATgit−1 are added in equations (16) and (15), respec-
tively. PATgit−1 and PATg0t−1 are dummy variables that take unit values if the parent and affiliate
firm, respectively, has positive (not yet depreciated) stock of granted patent applications. Patent
model imposes the parameter restriction: ρap = ρpa = 0. All regressions include: dummies for
country-industry, country-year and industry-year fixed effects, both at the parent and affiliate level;
the dummy variable Dgt−1; and its interaction with the fixed effects. 95% confidence intervals are
computed using the normal-approximation method after a pairs cluster (at the ownership group)
bootstrap with 100 replications over the two-step estimation procedure. πk j, πl j, πm j are parent
industry-A∗38 specific point estimates of the output elasticities of capital, labour and material, re-
spectively. RT Sp j ≡ πk j +πl j +πm j represent the returns to scale of production for the parent.
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Table C.8: Output eslasticities of inputs for falsification excercise

(1) (2) (3) (4) (5) (6) (7)
Baseline Restricted Randomly Assign Restricted Closest Match wrt. Y

Affiliate Sample Affiliate Parent Sample Affiliate Parent

ᾱk 0.090∗∗∗ 0.097∗∗∗ 0.117∗∗∗ 0.104∗∗∗ 0.087∗∗∗ 0.121∗∗∗ 0.093∗∗∗

(0.007) (0.010) (0.008) (0.010) (0.010) (0.008) (0.011)

ᾱl 0.383∗∗∗ 0.381∗∗∗ 0.484∗∗∗ 0.399∗∗∗ 0.383∗∗∗ 0.392∗∗∗ 0.401∗∗∗

(0.015) (0.018) (0.020) (0.018) (0.022) (0.017) (0.022)

ᾱm 0.421∗∗∗ 0.419∗∗∗ 0.333∗∗∗ 0.419∗∗∗ 0.419∗∗∗ 0.429∗∗∗ 0.419∗∗∗

(0.003) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003)

Parent

π̄k 0.097∗∗∗ 0.109∗∗∗ 0.114∗∗∗ 0.115∗∗∗ 0.106∗∗∗ 0.112∗∗∗ 0.129∗∗∗

(0.008) (0.012) (0.012) (0.009) (0.012) (0.012) (0.009)

π̄l 0.366∗∗∗ 0.372∗∗∗ 0.380∗∗∗ 0.492∗∗∗ 0.354∗∗∗ 0.361∗∗∗ 0.341∗∗∗

(0.016) (0.023) (0.023) (0.021) (0.024) (0.024) (0.019)

π̄m 0.467∗∗∗ 0.468∗∗∗ 0.468∗∗∗ 0.337∗∗∗ 0.469∗∗∗ 0.469∗∗∗ 0.464∗∗∗

(0.002) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003)

Obs. 37,524 21,691 21,691 21,691 22,049 22,049 22,049

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Column (1) reports results from the joint estimation of
equations (16) and (15), respectively (Baseline). Column (2) and (5) report estimates from the baseline
model when using sub-samples of the baseline sample (used in column (1)) that match the number of
observations used when conducting the falsification tests in columns (3)-(4) (Randomly Assign) and
(6)-(7) (Closest Match wrt. Y ), respectively. All regressions include dummies for country-industry,
country-year and industry-year fixed effects, both at the parent and affiliate level. Standard errors are
computed using a pairs cluster (at the ownership group) bootstrap with 100 replications over the two-
step estimation procedure and reported in parentheses below point estimates. This table reports the
average of the industry specific output elasticities of capital, labour and material, respectively, both
for the affiliate (top panel) and parent (bottom panel). Last row reports the observations used in the
second-step of each estimation.
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Table C.9: Output eslasticities of inputs for robustness to alternative
markov processes

(1) (2) (3) (4) (5)
Baseline Multiple affiliates Other

Affiliate Min Median Max Affiliates

ᾱk 0.0900∗∗∗ 0.0902∗∗∗ 0.0900∗∗∗ 0.0899∗∗∗ 0.0890∗∗∗

(0.0067) (0.0067) (0.0067) (0.0067) (0.0067)

ᾱl 0.3827∗∗∗ 0.3833∗∗∗ 0.3828∗∗∗ 0.3824∗∗∗ 0.3775∗∗∗

(0.0151) (0.0151) (0.0151) (0.0151) (0.0152)

ᾱm 0.4210∗∗∗ 0.4210∗∗∗ 0.4210∗∗∗ 0.4210∗∗∗ 0.4210∗∗∗

(0.0030) (0.0030) (0.0030) (0.0030) (0.0030)

Parent

π̄k 0.0969∗∗∗ 0.0980∗∗∗ 0.0970∗∗∗ 0.0963∗∗∗ 0.0967∗∗∗

(0.0082) (0.0083) (0.0082) (0.0081) (0.0082)

π̄l 0.3658∗∗∗ 0.3681∗∗∗ 0.3659∗∗∗ 0.3645∗∗∗ 0.3654∗∗∗

(0.0160) (0.0160) (0.0160) (0.0160) (0.0159)

π̄m 0.4665∗∗∗ 0.4665∗∗∗ 0.4665∗∗∗ 0.4665∗∗∗ 0.4665∗∗∗

(0.0022) (0.0022) (0.0022) (0.0022) (0.0022)

Obs. 37,524 37,524 37,524 37,524 37,524

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Column (1) reports results
from the joint estimation of equations (16) and (15), respectively (Baseline).
Columns (2)-(4) report estimates from Baseline when instead of the mean
(ω̄git−1) in equation (15) we use the minimum, median and maximum lagged
TFP from all affiliates linked to the parent within the same ownership group,
respectively. Column (5) reports estimates from an extension of Baseline when
ρaa−ω̄gi−t−1 is added in equation (16) to capture the affiliate TFP effect from the
mean TFP of other affiliates in within the group. All regressions include dum-
mies for country-industry, country-year and industry-year fixed effects, both at
the parent and affiliate level. Standard errors are computed using a pairs cluster
(at the ownership group) bootstrap with 100 replications over the two-step esti-
mation procedure and reported in parentheses below point estimates. This table
reports the average of the industry specific output elasticities of capital, labour
and material, respectively, both for the affiliate (top panel) and parent (bottom
panel). Last row reports the observations used in the second-step of each esti-
mation.
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ᾱ m
0.

42
1∗

∗∗
0.

34
0∗

∗∗
0.

19
6∗

∗∗
0.

47
8∗

∗∗
0.

42
0∗

∗∗
0.

42
6∗

∗∗
0.

42
7∗

∗∗
0.

42
1∗

∗∗
0.

42
1∗

∗∗
0.

42
1∗

∗∗

(0
.0

03
)

(0
.0

03
)

(0
.0

05
)

(0
.0

03
)

(0
.0

03
)

(0
.0

03
)

(0
.0

03
)

(0
.0

03
)

(0
.0

09
)

(0
.0

11
)

Pa
re

nt

π̄ k
0.

09
7∗

∗∗
0.

10
8∗

∗∗
0.

11
3∗

∗∗
0.

09
1∗

∗∗
0.

09
5∗

∗∗
0.

09
4∗

∗∗
0.

09
5

0.
09

7∗
∗∗

0.
09

7∗
∗∗

0.
09

7∗
∗∗

(0
.0

08
)

(0
.0

10
)

(0
.0

11
)

(0
.0

08
)

(0
.0

10
)

(0
.0

08
)

(3
13

.1
10

)
(0

.0
09

)
(0

.0
11

)
(0

.0
12

)

π̄ l
0.

36
6∗

∗∗
0.

39
4∗

∗∗
0.

43
6∗

∗∗
0.

34
2∗

∗∗
0.

36
9∗

∗∗
0.

36
1∗

∗∗
0.

36
1

0.
36

6∗
∗∗

0.
36

6∗
∗∗

0.
36

6∗
∗∗

(0
.0

16
)

(0
.0

16
)

(0
.0

19
)

(0
.0

15
)

(0
.0

16
)

(0
.0

16
)

(1
03

1.
94

8)
(0

.0
15

)
(0

.0
16

)
(0

.0
16

)

π̄ m
0.

46
7∗

∗∗
0.

44
0∗

∗∗
0.

40
5∗

∗∗
0.

50
1∗

∗∗
0.

46
5∗

∗∗
0.

47
1∗

∗∗
0.

47
2∗

∗∗
0.

46
7∗

∗∗
0.

46
7∗

∗∗
0.

46
7∗

∗∗

(0
.0

02
)

(0
.0

03
)

(0
.0

03
)

(0
.0

02
)

(0
.0

02
)

(0
.0

02
)

(0
.0

02
)

(0
.0

02
)

(0
.0

07
)

(0
.0

13
)

O
bs

.
37

,5
24

40
,2

07
42

,1
71

37
,5

24
38

,2
52

37
,5

24
37

,5
24

37
,5

24
37

,5
24

37
,5

24

N
ot

es
:∗

p
<

0.
05

,∗
∗

p
<

0.
01

,∗
∗∗

p
<

0.
00

1.
C

ol
um

n
(1

)r
ep

or
ts

re
su

lts
fr

om
th

e
jo

in
te

st
im

at
io

n
of

eq
ua

tio
ns

(1
6)

an
d

(1
5)

,r
es

pe
ct

iv
el

y
(B

as
el

in
e)

.C
ol

um
ns

(2
)-

(7
)r

ep
or

te
st

im
at

es
fr

om
B

as
el

in
e

fo
rd

iff
er

en
tt

re
at

m
en

to
ft

he
da

ta
.C

ol
um

ns
(8

)a
nd

(1
0)

re
po

rt
es

tim
at

es
fr

om
B

as
el

in
e

fo
r

di
ff

er
en

tt
re

at
m

en
to

f
bo

ot
st

ra
pp

ed
st

an
da

rd
er

ro
rs

.
A

ll
re

gr
es

si
on

s
in

cl
ud

e
du

m
m

ie
s

fo
r

co
un

tr
y-

in
du

st
ry

,c
ou

nt
ry

-y
ea

r
an

d
in

du
st

ry
-y

ea
rfi

xe
d

ef
fe

ct
s,

bo
th

at
th

e
pa

re
nt

an
d

af
fil

ia
te

le
ve

l.
St

an
da

rd
er

ro
rs

ar
e

co
m

pu
te

d
us

in
g

a
pa

ir
s

cl
us

te
r(

at
th

e
ow

ne
rs

hi
p

gr
ou

p)
bo

ot
st

ra
p

w
ith

10
0

re
pl

ic
at

io
ns

(i
n

(8
)w

ith
50

0)
ov

er
th

e
tw

o-
st

ep
es

tim
at

io
n

pr
oc

ed
ur

e
an

d
re

po
rt

ed
in

pa
re

nt
he

se
s

be
lo

w
po

in
te

st
im

at
es

.
C

ol
um

ns
(9

)
an

d
(1

0)
cl

us
te

r
at

th
e

co
un

tr
y-

in
du

st
ry

an
d

co
un

tr
y

of
th

e
pa

re
nt

,r
es

pe
ct

iv
el

y.
T

hi
s

ta
bl

e
re

po
rt

s
th

e
av

er
ag

e
of

th
e

in
du

st
ry

sp
ec

ifi
c

ou
tp

ut
el

as
tic

iti
es

of
ca

pi
ta

l,
la

bo
ur

an
d

m
at

er
ia

l,
re

sp
ec

tiv
el

y,
bo

th
fo

rt
he

af
fil

ia
te

(t
op

pa
ne

l)
an

d
pa

re
nt

(b
ot

to
m

pa
ne

l)
.L

as
tr

ow
re

po
rt

s
th

e
ob

se
rv

at
io

ns
us

ed
in

th
e

se
co

nd
-s

te
p

of
ea

ch
es

tim
at

io
n.

C-27



Figure C.8: Distributions of bootstraped values for different clustering levels
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Source: Author’s calculations based on estimates from the Baseline model.
Notes: For each estimated parameter of interest, the plotted distributions represent the kernel densi-
ties of the point estimates from the 100 replications of the pairs cluster bootstrap for different types
of clustering, i.e. parent (g0) country-industry (c j) and country (c).
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Figure C.9: Markup by year
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Source: Author’s calculations based on estimates from the CES and FGT model.
Notes: CES refers to yearly point estimates of markups from the extension of the Baseline model
with CES preferences and monopolistic competition, following GNR. FGT to yearly markups com-
puted as the material cost weighted average of firm-year estimated following FGT.
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