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Abstract

Supply chain disturbances can lead to substantial increases in production costs. To mitigate

these risks, firms may take steps to reduce their reliance on volatile suppliers. We construct a

model of endogenous network formation to investigate how these decisions affect the structure

of the production network and the level and volatility of macroeconomic aggregates. When

uncertainty increases in the model, producers prefer to purchase from more stable suppliers,

even though they might sell at higher prices. The resulting reorganization of the network leads

to less macroeconomic volatility, but at the cost of a decline in aggregate output. The model

also predicts that more productive and stable firms have higher Domar weights—a measure of

their importance as suppliers—in the equilibrium network. We calibrate the model to U.S. data

and find that the mechanism can account for a sizable decline in expected GDP during periods

of high uncertainty like the Great Recession.
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1 Introduction

Firms rely on complex supply chains to provide the intermediate inputs that they need for

production. These chains can be disrupted by natural disasters, wars, trade barriers, changes

in regulations, congestion in transportation links, etc. These shocks can then propagate to the

rest of the economy through input-output linkages, resulting in aggregate fluctuations. However,

individual firms may also take steps that mitigate such propagation by reducing their reliance on

risky suppliers. In this paper, we study how this kind of mitigating behavior affects an economy’s

production network and, through that channel, macroeconomic aggregates.

Supply chain disruptions are one of the key challenges that business executives face, and firms

devote substantial resources to reduce these risks (Ho et al., 2015). The COVID-19 pandemic

provides a good example of how uncertainty can affect supply relationships. After the onset of the

pandemic, many firms realized that their supply chains were exposed to substantially more risk

than they previously thought. In a recent survey of firm managers, seventy percent agreed that the

pandemic pushed companies to favor higher supply chain resiliency instead of simply purchasing

from the lowest-cost supplier. Many also reported that they plan to diversify their supply chains

across suppliers and geographies.1

To study how supply chain uncertainty affects firms’ sourcing decisions and how, in turn, these

decisions affect the macroeconomy, we construct a macroeconomic model of endogenous network

formation. In the model, firms produce differentiated goods that can be consumed by a risk-

averse representative household or used as intermediate inputs by other producers. Firms can

produce their goods in different ways, which we refer to as production techniques. A technique

is a production function that specifies which intermediate inputs to use and how these inputs are

to be combined. Techniques can also differ in terms of productivity. When choosing a production

technique, a firm can marginally adjust the importance of a supplier or drop that supplier altogether.

As a result, these decisions, when aggregated, lead to changes in the production network along both

the intensive and extensive margins.

After production techniques have been chosen, firms are subject to random productivity shocks.

They can then adjust how much they produce and the quantity of inputs that they use, subject

to the constraints imposed by their selected technique. Competitive pressure between producers

implies that the productivity shocks, as they affect production costs, are reflected in prices.

Importantly, firms’ beliefs about the distribution of sectoral productivities can influence their

choice of production technique and, thus, the structure of the network. Since firms are owned

by the representative household, they compare profits across different states of the world using its

1Survey by Foley & Lardner LLP, available online at https://www.foley.com/-/media/files/insights/

publications/2020/09/foley-2020-supply-chain-survey-report-1.pdf. See also Wagner and Bode (2008) and
Zurich Insurance Group (2015) for other surveys documenting the importance of supply chain risks. Alessandria
et al. (2022) investigate the impact of supply chain disturbances in the context of the COVID pandemic.
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stochastic discount factor. As such they inherit the household’s attitude toward risk. Consequently,

while a firm would generally prefer to purchase from a more productive firm, it might decide not

to do so if this firm is also more risky. Such a firm would sell at a lower price on average, but it

is also more likely to suffer from a large negative productivity shock, in which case the price of its

good would rise substantially. Potential customers take this possibility into account and balance

concerns about average productivity and stability when choosing a production technique.

As an example, consider a car manufacturer that must decide what materials to use as inputs. If

carbon fiber prices are expected to increase or to be more volatile, it may instead use steel for some

components. If the change is large enough, it may switch away from using carbon fiber altogether,

in which case the link between the car manufacturer and its carbon fiber supplier would disappear.

We prove that there always exists an efficient equilibrium in this environment, so that the implied

equilibrium production network can be understood as resulting from a social planner maximizing

the utility of the representative household.2 That network thus optimally balances a higher level of

expected GDP against a lower variance, with the relative importance of these two objectives being

determined by the household’s risk aversion. We further show that in the efficient equilibrium the

importance of a producer (as measured by its sales share or Domar weight) increases in response

to (1) an increase in the expected value of its productivity, or (2) a decrease in the variance of its

productivity.

The model features a novel mechanism through which uncertainty can lower expected aggregate

output. In the presence of uncertainty, firms prefer stable input prices and, as a result, move away

from suppliers that are expected to be the most productive in favor of producers that are less sus-

ceptible to risk. This flight to safety implies that less productive producers gain in importance, and

aggregate productivity and GDP fall as a result. On the flip side, this supply chain reshuffling leads

to a more resilient network that dampens the effect of shocks and reduces aggregate fluctuations.

In some circumstances, our model mechanisms can have counterintuitive implications for how

the productivity process affects aggregate quantities. While an increase in expected productivity or

a decline in volatility always have a positive effect on welfare, their impact on expected GDP can be

the opposite of what one would expect. For instance, an increase in expected productivity can lead

to a decline in expected GDP, so that Hulten’s (1978) theorem is not a good guide to understanding

changes in GDP, even as a first-order approximation. To understand why, consider a producer with

(on average) low but stable productivity. Its high output price makes it unattractive as a supplier.

But if its expected productivity increases, its risk-reward profile improves, and other producers

might begin to purchase from it. Doing so, they might move away from more productive—but also

riskier—producers and, as a result, expected GDP might fall. We show that a similar mechanism is

also at work for the variance of shocks, such that an increase in the volatility of a firm’s productivity

2While we have been unable to find multiple equilibria in the model, we do not have a proof of uniqueness. We
focus throughout on the efficient equilibrium which is generically unique.
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can lead to a decline in the variance of aggregate output.

To evaluate the quantitative importance of allowing firms to adjust their production techniques

in response to changes in beliefs, we calibrate the model using sectoral data for the United States.

The model matches salient properties of the U.S. input-output structure such as the average and

the standard deviation of sectoral Domar weights reasonably well. The calibrated economy is also

able to replicate key features of the data that speak to the importance of beliefs for the structure

of the production network. In particular, the Domar weight of a sector is positively correlated with

its expected productivity and negatively correlated with its volatility. This evidence suggests that

firms move away from uncertain suppliers in the data, as is predicted by the model.

We then use the calibrated model to evaluate the importance of the changing structure of the

production network for macroeconomic aggregates. For this exercise, we first compare our baseline

calibration to an alternative economy in which the production network is kept fixed, so that firms

cannot move away from suppliers that become unproductive or volatile. We find that aggregate

output is about 2.1% lower in this case, so that the endogenous response of the network can have

a significant impact on welfare. This finding suggests that policies that impede the reorganization

of the network (for instance, trade barriers) might have a sizable adverse effect.

To isolate the impact of uncertainty, we also compare our calibrated model to an alternative

economy in which firms are unconcerned about risk when making sourcing decisions. While this

economy is similar to the calibrated one during normal times, significant discrepancies appear during

high-volatility periods, such as the Great Recession. During that episode, we find that firms respond

to uncertainty by moving to safer but less productive suppliers. Taken together, these decisions

lead to a 2.4% reduction in the volatility of GDP. However, the added stability comes at the cost

of a 0.25% additional decline in expected GDP. Interestingly, this increase in resilience appears to

have paid off ex post: According to our estimates, realized GDP in the baseline economy is 2.7%

higher during the Great Recession compared to the economy in which firms did not adjust their

techniques in response to the increased uncertainty. We also find a significant role for uncertainty

when comparing our calibrated model to an alternative economy in which firms know the realization

of the productivity shocks before deciding which production technique to adopt.

The model that we use for our quantitative analysis relies on some simplifying assumptions for

tractability. To verify the robustness of our findings, we provide some empirical evidence that does

not rely on the structure of the model. Taking advantage of rich firm-level data, we find that, as

in the model, higher uncertainty leads to a decline in Domar weight, and that network connections

involving riskier suppliers are more likely to break down. These results are robust to using different

measures of uncertainty and instruments to tease out exogenous variation in uncertainty.

Our work is related to a large literature that investigates the impact of uncertainty on macroe-

conomic aggregates (Bloom, 2009, 2014; Bloom et al., 2018). In this paper, we propose a novel

mechanism through which uncertainty can lower expected GDP. This mechanism operates through
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a flight to safety process in which firms facing higher uncertainty switch to safer but less productive

suppliers, leading to lower but less volatile GDP. In a recent paper, David et al. (2022) argue that

uncertainty may lead capital to flow to firms that are less exposed to aggregate risk, rather than

to those firms where it would be most productive. In their model, as in ours, uncertainty leads to

lower aggregate output and measured TFP.3

There is a large and growing literature that studies how shocks propagate through produc-

tion networks, in the spirit of early contributions by Long and Plosser (1983), Dupor (1999) and

Horvath (2000). Acemoglu et al. (2012) derive conditions on input-output networks under which

idiosyncratic shocks result in aggregate fluctuations even when the number of producers is large.4

Acemoglu et al. (2017) and Baqaee and Farhi (2019a) describe conditions under which production

networks can generate fat-tailed aggregate output. Foerster et al. (2011) and Atalay (2017) study

the empirical contributions of sectoral shocks for aggregate fluctuations. The mechanisms studied

in these papers are also present in our model. Carvalho and Gabaix (2013) argue that the reduc-

tion in aggregate volatility during the Great Moderation (and its potential recent undoing) can be

explained by changes in the input-output network.5

In most of the literature, Hulten’s (1978) theorem applies, so that sales shares are a sufficient

statistic to predict the impact of microeconomic shocks on macroeconomic aggregates. In contrast,

since firms can adjust production techniques ex ante, in our model Hulten’s theorem is not a useful

guide to how shocks affect expected GDP, even as a first-order approximation.6 An increase in

expected sectoral productivity can even have a negative impact on expected GDP.

Our paper is not the first to study the endogenous formation of production networks. Closely

related to our work are earlier papers by Oberfield (2018) and Acemoglu and Azar (2020) in

which the input-output network emerges as the outcome of individual technique choice by firms.

We adopt a similar network formation process but allow for uncertainty and beliefs to influence

the structure of the network. Taschereau-Dumouchel (2020), Acemoglu and Tahbaz-Salehi (2020)

and Elliott et al. (2022) study economies in which the firms’ decisions to operate or not shape

the production network. Lim (2018) and Huneeus (2018) evaluate the importance of endogenous

changes in the production network for business cycle fluctuations. Dhyne et al. (2021) build a model

of endogenous network formation and international trade. Boehm and Oberfield (2020) estimate a

3Fernández-Villaverde et al. (2011) investigate the real impact of interest rate volatility for emerging economies.
Jurado et al. (2015) provide econometric estimates of time-varying macroeconomic uncertainty. Baker et al. (2016)
measure economic policy uncertainty based on newspaper coverage. Nieuwerburgh and Veldkamp (2006) and Fajgel-
baum et al. (2017) develop models in which uncertainty can have long-lasting impacts on economic aggregates.

4Production networks are one mechanism through which granular fluctuations can emerge (Gabaix, 2011).
5Other works have looked at the importance of production networks outside of the business cycle literature.

Jones (2011) investigates their importance to explain the income difference between countries. Barrot and Sauvagnat
(2016), Boehm et al. (2019) and Carvalho et al. (2021) study the propagation of shocks after natural disasters.

6Baqaee and Farhi (2019a) investigate departures from Hulten’s theorem due to higher-order effects of shocks.
Recent work that has studied production networks under distortions, where Hulten’s theorem generally does not hold,
include Baqaee (2018), Liu (2019), Baqaee and Farhi (2019b), Bigio and La’O (2020) and Caliendo et al. (2022).
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network formation model using Indian micro data to study misallocation in input markets. Bernard

et al. (2022) build a model of network formation to explain firm heterogeneity.7 A key distinguishing

feature of our work is its focus on how uncertainty affects the structure of the production network.

Several papers in the network literature endow firms with CES production functions, so that

the input-output matrix varies with factor prices. Our model generates endogenous changes in

the production network through a different mechanism, which is closer to Oberfield (2018) and

Acemoglu and Azar (2020). In contrast to the standard CES setup, our model allows links between

sectors to be created or destroyed. In addition, the existing literature using CES production network

models has not studied how uncertainty and beliefs shape production networks, and introducing

such mechanisms while keeping the model tractable is not straightforward.

The next section introduces our model of network formation under uncertainty. In Section 3,

we first characterize the equilibrium when the network is kept fixed. We then consider the full

equilibrium with a flexible network in Section 4. In Section 5, we describe the mechanisms at work

in the model. In Section 6, we calibrate the model to U.S. data. Section 7 provides additional

empirical evidence in support of the mechanisms. The last section concludes. All proofs are in

Appendix E.

2 A model of endogenous network formation under uncertainty

We study the formation of production networks under uncertainty in a multi-sector economy.

Each sector is populated by a representative firm that produces a differentiated good that can

be used either as an intermediate input or for consumption. To produce, each firm must choose

a production technique, which specifies a set of inputs to use. Firms are owned by a risk-averse

representative household and are subject to sector-specific productivity shocks. Since firms choose

production techniques before these shocks are realized, the probability distribution of the shocks

affects the input-output structure of the economy.

2.1 Firms and production functions

There are n sectors, indexed by i ∈ {1, . . . , n}, each producing a differentiated good. In each

sector, there is a representative firm that behaves competitively so that equilibrium profits are

always zero. When this creates no confusion, we use sector i, product i and firm i interchangeably.

As in Oberfield (2018) and Acemoglu and Azar (2020), the representative firm in sector i has

access to a set of production techniques Ai. A technique αi ∈ Ai specifies the set of inputs that

are used in production, how these inputs are to be combined, and a productivity shifter Ai (αi).

7Atalay et al. (2011) show that a modified “preferential attachment” model can fit features of the U.S. firm-level
production network. Carvalho and Voigtländer (2014) build a rule-based model of network formation to study the
adoption and diffusion of intermediate inputs. Kopytov (2018) constructs a model to study financial interconnected-
ness and systemic risk under uncertainty.
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We model these techniques as Cobb-Douglas technologies that can vary in terms of factor shares

and total factor productivity. It is therefore convenient to identify a technique αi ∈ Ai with the

intermediate input shares associated with that technique, αi = (αi1, . . . , αin), and to write the

corresponding production function as

F (αi, Li, Xi) = eεiAi (αi) ζ (αi)L
1−

∑n
j=1 αij

i

n∏
j=1

X
αij

ij , (1)

where Li is labor and Xi = (Xi1, . . . , Xin) is a vector of intermediate inputs. The term εi is the

stochastic component of sector i’s total factor productivity. Finally, ζ (αi) is a normalization to

simplify future expressions.8

Since a technique αi corresponds to a vector of factor shares, we define the set of feasible

production techniques Ai for sector i as Ai =
{
αi ∈ [0, 1]n :

∑n
j=1 αij ≤ αi

}
, where 0 < 1−αi < 1

provides a lower bound on the share of labor in the production of good i. We denote by A = A1 ×
· · ·×An the Cartesian product of the sets {A1, . . . ,An}, such that an element α ∈ A corresponds to

a set of input shares for each sector. As such, it fully characterizes the production network and firms

can influence the structure of this network through their choice of techniques. Importantly, the set

A allows firms to adjust the importance of a supplier at the margin or to not use a particular input

at all by setting the corresponding share to zero. The model is therefore able to capture network

adjustments along both the intensive and extensive margins.9

The choice of technique influences the total factor productivity of sector i through the term

Ai (αi) in (1). This term is given by nature and represents how effective some combinations of

inputs are at producing a given good. For instance, beach towels and flowers are not very useful

when making a car, and a technique that relies only on these inputs would have a low Ai. In

contrast, a technique that would use aluminum, steel, car engines, etc. would be associated with

a higher productivity. When deciding on its optimal production technique a firm will take Ai into

account, but it will also evaluate the expected level and volatility of each input price.

We impose the following structure on Ai (αi).

Assumption 1. Ai (αi) is smooth and strictly log-concave.

This assumption is both technical and substantial in nature. The strict log-concavity ensures

that there exists a unique technique that solves the optimization problem of the firm. It also implies

that, for each sector i, there is a set of ideal input shares α◦
ij that maximize Ai and that represent

the most efficient way to combine intermediate inputs to produce good i.

8Namely, ζ (αi) =

[(
1−

∑n
j=1 αij

)1−
∑n

j=1 αij ∏n
j=1 α

αij

ij

]−1

. This normalization is useful to simplify the unit

cost expression, given by (8) below. ζ (αi) could instead be included in Ai (αi) without any impact on the model.
9This is in contrast to standard network models with CES production. In those models, the share of an input

can fluctuate but can never reach zero. As a result, these models cannot generate the destruction or creation of links
observed in the sectoral data that we use in Section 6 and in the firm-level network data studied in Section 7.
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Example. One example of a function Ai (αi) that satisfies Assumption 1 and that we will use in

the quantitative part of the paper is the quadratic form

logAi (αi) = a◦i −
n∑
j=1

κij
(
αij − α◦

ij

)2 − κi0

 n∑
j=1

αij −
n∑
j=1

α◦
ij

2

, (2)

where α◦
i = (α◦

i1, . . . , α
◦
in) is the vector of ideal TFP-maximizing input shares and a◦i is log TFP at

the ideal shares. The parameter κij > 0 determines the cost, in terms of productivity, of moving

the jth input share αij away from its ideal share α◦
ij . The last term captures the productivity

penalty of deviating from an ideal labor share.

The distribution of the sectoral productivity shock εi in (1) is a key primitive of the model and

an important input to firms’ technique choices. We collect the sectoral shocks in the vector ε =

(ε1, . . . , εn), which we assume to be normally distributed, ε ∼ N (µ,Σ). The vector µ determines

the expected level of sectoral productivities. The covariance matrix Σ, with typical element Σij ,

determines both uncertainty about individual elements of ε, as well as their correlation across

industries. We assume throughout that Σ is positive definite. The vector ε is the only source of

uncertainty in this economy.10

In equilibrium, ε will have a direct impact on prices, and the moments (µ,Σ) will affect ex-

pectations about the price system. For instance, a sector with a high µi will have a low unit cost

and therefore the price of good i will be low in expectation. Similarly, a high Σii implies large

productivity shocks and a volatile price. Since production techniques must be chosen before ε is

realized, the beliefs (µ,Σ) affect the sourcing decisions of the firms. Returning to the example from

the introduction, if carbon fiber prices are expected to increase or to be more volatile, a car man-

ufacturer might switch to using steel instead for some components. If the change is large enough,

the manufacturer may switch away from using carbon fiber altogether, in which case the link with

carbon fiber suppliers would disappear from the production network.

Importantly, we impose the restriction that the representative firm in sector i can only adopt

a single production technique αi. Without this restriction, the firm would set up a continuum of

individual plants, each with its own technique, to cover the whole set of available techniques Ai.

After the realization of the productivity shocks ε, the firm would only operate the plant that is

best suited to the specific ε draw. All the other plants would remain idle. In reality, we think that

fixed costs would prevent the firm from setting up all these plants. Information frictions might also

impede the reallocation of sectoral demand to the best suited technique. To avoid burdening the

10This choice of distribution implies that the expectation E [exp (ε)] of the vector of TFP shocks depends on the
covariance matrix Σ. This assumption is common in the literature but implies that an increase in the variance Σii

of a sector i has a beneficial impact on its expected TFP. Through this channel the adverse effect of an increase in
uncertainty is mitigated. One common way to correct for this effect is to remove half of the variance of ε from its
mean. In Appendix I, we describe why such a correction is problematic in our model. We also discuss other potential
corrections.
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exposition of the model, we adopt this restriction in an ad hoc fashion here, but provide a possible

microfoundation for it in Appendix A.

2.2 Household preferences

A risk-averse representative household supplies one unit of labor inelastically and chooses a

consumption vector C = (C1, . . . , Cn) to maximize

u

((
C1

β1

)β1
× · · · ×

(
Cn
βn

)βn)
, (3)

where βi > 0 for all i and
∑n

i=1 βi = 1.11 We refer to Y =
∏n
i=1

(
β−1
i Ci

)βi as aggregate consumption

or, equivalently in this setting, GDP. The utility function u is CRRA with a coefficient of relative

risk aversion ρ ≥ 1.12 The household makes consumption decisions after uncertainty is revealed

and so in each state of the world it faces the budget constraint

n∑
i=1

PiCi ≤ 1, (4)

where Pi is the price of good i and where we use the wage as numeraire so that W = 1.

Firms are owned by the representative household and maximize expected profits discounted by

the household’s stochastic discount factor

Λ = u′ (Y )× 1/P , (5)

where P =
∏n
i=1 P

βi
i is the price index. The stochastic discount factor captures how much an extra

unit of the numeraire contributes to the utility of the household in different states of the world.

From the optimization problem of the household it is straightforward to show that

y = −β′p, (6)

where y = log Y , p = (log (P1) , . . . , log (Pn)) and β = (β1, . . . , βn).
13 Log GDP is thus the negative

of the sum of log prices weighted by the consumption shares β. Intuitively, as prices become lower

11Several assumptions of the model can be relaxed at the cost of extra complications in the proofs. For instance,
the model can handle 1) βi = 0 for some goods, 2) Σ that is only positive semi-definite, and 3) TFP shifter functions
{Ai}ni=1 that are only log concave.

12The case 0 < ρ < 1 is straightforward to characterize but is somewhat unnatural since the household then seeks to
increase the variance of log consumption. To see this, note that when log Y is normal, maximizing E

[
Y 1−ρ

]
amounts

to maximizing E [log Y ]− 1
2
(ρ− 1)V [log Y ] such that ρ ≶ 1 indicates whether the household likes uncertainty in log

consumption or not. This is a consequence of the usual increase in the mean of a log-normal variable from an increase
in the variance of the underlying normal variable. See Appendix I for a version of the model in which we correct for
this term.

13See Appendix F.1 for a derivation of this equation and of the stochastic discount factor (5).
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relative to wages, the household can purchase more goods and aggregate consumption increases.

Equation (6) also implies that it is sufficient to derive the vector of prices to determine GDP.

2.3 Unit cost minimization

We solve the problem of a representative firm in two stages. In the first stage, the firm decides

which production technique to use. Importantly, this choice is made before the random productivity

vector ε is realized. In contrast, consumption, labor and intermediate inputs are chosen (and their

respective markets clear) in the second stage, after the realization of ε. This timing captures that

production techniques take time to adjust, as they might involve retooling a plant, teaching new

processes to workers, negotiating contracts with new suppliers, etc. We begin by solving the second

stage problem, by deriving the optimal input choice for a given production technique αi. The

resulting expressions are then used to solve the firm’s first-stage problem of choosing αi.

Under a given technique αi, the cost minimization problem of a firm in sector i is

Ki (αi, P ) = min
Li,Xi

Li + n∑
j=1

PjXij

 , subject to F (αi, Li, Xi) ≥ 1, (7)

where P = (P1, . . . , Pn) is the price vector, Li is the labor input and Xi = (Xi1, . . . , Xin) is the

vector of intermediate inputs.

The solution to this problem implicitly defines the unit cost of production Ki (αi, P ), which

plays an important role in our analysis. Since, for a given αi, the firm operates a constant returns

to scale technology, Ki does not depend on the scale of the firm and is only a function of the

(relative) prices P . It is straightforward to show (and we do so in Appendix F.2) that with the

production function (1) the unit cost function is

Ki (αi, P ) =
1

eεiAi (αi)

n∏
j=1

P
αij

j . (8)

Equation (8) is the standard unit cost for a Cobb-Douglas production function. It states that the

cost of producing one unit of good i is equal to the geometric mean of the individual input prices

(weighed by their respective shares) and adjusted for sectoral total factor productivity. The unit

cost Ki (αi, P ) therefore rises when inputs become more expensive and declines when total factor

productivity increases.
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2.4 Technique choice

Given an expression for the unit cost of production, the first stage of the representative firm’s

problem is to pick a technique αi ∈ Ai to maximize expected profits, that is,

α∗
i ∈ arg max

αi∈Ai

E [ΛQi (Pi −Ki (αi, P ))] . (9)

Here, Qi is the equilibrium demand for good i, and profits in different states of the world are

weighed by the stochastic discount factor Λ of the household. The representative firm takes prices

P , demand Qi and the stochastic discount factor Λ as given and so the only term in (9) over which

it has any control is the unit cost Ki (αi, P ). Problem (9) can therefore be written as

α∗
i ∈ arg min

αi∈Ai

E [ΛQiKi (αi, P )] . (10)

The firm thus selects the technique αi ∈ Ai that minimizes the expected discounted value of the

total cost of goods sold QiKi (αi, P ), while taking into consideration that final consumption goods

are valued differently across different states of the world, as captured by Λ. Because profits are

discounted by Λ, firms effectively inherit the risk aversion of the representative household.

2.5 Equilibrium conditions

In equilibrium, competitive pressure from other firms in the same sector pushes prices to be

equal to unit costs so that

Pi = Ki (αi, P ) for all i ∈ {1, . . . , n} . (11)

For a given network α ∈ A, this equation, together with (8), allows us to fully characterize the

price system as a function of the random productivity shocks ε.14

An equilibrium is defined by the optimality conditions of both the household and the firms

holding simultaneously, together with the usual market clearing conditions.

Definition 1. An equilibrium is a choice of technique α∗ = (α∗
1, . . . , α

∗
n) and a stochastic tuple

(P ∗, C∗, L∗, X∗, Q∗,Λ∗) such that

1. (Optimal technique choice) For each i ∈ {1, . . . , n}, the technique choice α∗
i ∈ Ai solves (9)

given prices P ∗, demand Q∗
i and the stochastic discount factor Λ∗ given by (5).

2. (Optimal input choice) For each i ∈ {1, . . . , n}, factor demands per unit of output L∗
i /Q

∗
i and

X∗
i /Q

∗
i are a solution to (7) given prices P ∗ and technique choice α∗

i .

14Even without imposing that production techniques are Cobb-Douglas, the system (11) yields a unique price
vector P under standard assumptions. But the Cobb-Douglas structure implies that we can write the distribution of
P in closed form, which allows us to characterize the technique choice problem in a tractable way.
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3. (Consumer maximization) The consumption vector C∗ maximizes (3) subject to (4) given

prices P ∗.

4. (Unit cost pricing) For each i ∈ {1, . . . , n}, P ∗
i solves (11) where Ki (α

∗
i , P

∗) is given by (8).

5. (Market clearing) For each i ∈ {1, . . . , n},

C∗
i +

n∑
j=1

X∗
ji = Q∗

i = Fi (α
∗
i , L

∗
i , X

∗
i ) , and

n∑
i=1

L∗
i = 1. (12)

Conditions 2 to 5 correspond to the standard competitive equilibrium conditions for an economy

with a fixed production network. They imply that firms and the household optimize in a competitive

environment and that all markets clear given equilibrium prices. Condition 1 emphasizes that

the production techniques, and hence the production network represented by the matrix α∗, are

equilibrium objects that depend on the primitives of the economy.

It is straightforward to extend the model along several dimensions without losing tractability.

For instance, the model can accommodate disturbances that happen at the link level instead of at

the sectoral level. To do so, we can simply think of a link between two producers as a fictitious

“transport” sector that is also subject to shocks. It is also straightforward to extend the model to

include multiple primary factors, like different types of labor, or wedges that create a gap between

unit costs and prices. We work out this last extension in Appendix K.

On the other hand, certain ingredients are essential to keep the model tractable. Here the key

challenge comes from the fact that technique choices affect equilibrium prices which in turn affect

technique choices. The log-linearity implied by the Cobb-Douglas aggregators in (1) and (3) are

needed to keep the equilibrium beliefs tractable. While this implies a unit elasticity of substitution

in the production function (1), this elasticity only captures the response of intermediate inputs to

realized prices conditional on a chosen production technique. Since firms’ expectations affect their

technique choice, the model is able to handle richer substitution patterns between expected prices

and intermediate inputs, as we explore in more details in Section 5.

3 Equilibrium prices and GDP in a fixed-network economy

Before analyzing how the equilibrium production network α∗ responds to changes in the envi-

ronment, it is useful to first establish how prices and GDP depend on productivity under a fixed

network. To this end, we first define two variables that will play a central role in our analysis.

The first is the Leontief inverse L (α) = (I − α)−1, which can also be written as the geometric sum

L (α) = I + α + α2 + . . . .15 The element i, j of L (α) captures the importance of sector j as an

15This last expression makes clear that L is non-negative. Since
∑n

j=1 αij ≤ αi < 1, I − α is strictly diagonally
dominant and therefore invertible.
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input in the production of good i by taking into account direct and indirect connections between

them in the production network. It is also useful to define the Domar weight ωi of sector i as the

ratio of its sales to nominal GDP, i.e. ωi =
PiQi

P ′C . As we show in Appendix E.2, this quantity is

equal to ωi (α) = β′L (α) 1i > 0 in the model, where 1i is a column vector with a 1 as ith element

and zeros elsewhere. Domar weights combine the preferences of the household with the Leontief

inverse to provide an overall measure of the importance of a sector as a supplier in the aggregate

economy. Domar weights are constant in a fixed-network economy but vary when firms are free to

adjust their sourcing decisions.

With these definitions in hand, we establish a first result that links the vector of sectoral

productivities with prices and GDP.

Lemma 1. For a fixed production network α,

p (α) = −L (α) (ε+ a (α)) , (13)

and

y (α) = ω (α)′ (ε+ a (α)) , (14)

where a (α) = (logAi (αi) , . . . , logAn (αn)) and ω (α) = (ω1 (α) , . . . , ωn (α)).

Proof. All proofs are in Appendix E.

Lemma 1 describes how prices and GDP depend on 1) the vector of firm-level productivities

and 2) the production network. We will describe both channels in turn.

First, consider the impact of the vector of log productivities ε+ a (α). Since all the elements of

ω (α) and L (α) are non-negative, an increase in productivity has a negative impact on log prices

and a positive impact on log GDP. Intuitively, as firms become more productive, their unit costs

decline, and competition forces them to sell at lower prices. From the perspective of GDP, higher

productivity implies that the available labor can be transformed into more consumption goods.

Second, the lemma makes clear that production techniques α matter for prices and GDP through

two distinct channels. They have a direct impact on the productivity shifters a(α) because different

techniques have different productivities. In addition, α affects prices and GDP through its impact

on the Leontief inverse and the Domar weights. The matrix L (α) = I+α+α2+ . . . in (13) implies

that the price of good i depends not only on the productivity of producer i itself, but also on the

productivity of its suppliers, and on the productivity of their suppliers, and so on. These higher-

order connections also matter for GDP and thus the impact of sectoral productivity on aggregate

output depends on the sector’s importance, as captured by its Domar weight.

Lemma 1 also shows that p and y are linear functions of the productivity vector ε and, as a

result, inherit the normality of ε. It follows that the first and second moments of log GDP can be

13



written as

E [y (α)] = ω (α)′ (µ+ a (α)) and V [y (α)] = ω (α)′Σω (α) . (15)

It is clear from these expressions that the production network α, through its impact on the Domar

weights ω (α), matters for the mean and the variance of log GDP. In addition, note that the

covariance matrix Σ only affects expected log GDP through its influence on the structure of the

network. It follows that whenever we discuss the response of expected log GDP to a change in

uncertainty, the mechanism must operate through the endogenous reorganization of the network.

We conclude this section with a simple corollary, already known in the literature, that describes

the impact of beliefs on the mean and the variance of log GDP. In what follows, we use partial

derivatives to emphasize that the network α is kept fixed.

Corollary 1. For a fixed production network α, the following holds.

1. The impact of a change in expected TFP µi on expected log GDP E [y] is given by

∂ E [y]

∂µi
= ωi.

2. The impact of a change in volatility Σij on the variance of log GDP V [y] is given by16

∂V [y]

∂Σij
=

ω2
i i = j,

2ωiωj i ̸= j.

The first part of the lemma demonstrates that for a fixed production network, Hulten’s (1978)

celebrated theorem also holds in expectational terms. That is, the change in expected log GDP

following a change in the expected productivity of a sector i is equal to that sector’s sales share

ωi. The second part of the lemma establishes a similar result for changes in volatility. We see that

the impact of an increase in the uncertainty of a sector’s TFP on the variance of log GDP is equal

to the square of that sector’s sales share. The corollary also describes how aggregate volatility

responds to a change in the correlation between two sectors. In this case, the increase in V [y] is

proportional to the product of the two industries’ sales shares. Since Domar weights are always

positive, an increase in correlation always leads to higher aggregate volatility. Intuitively, positively

correlated shocks are unlikely to offset each other, and their expected aggregate impact is therefore

larger.

Finally, Corollary 1 emphasizes that for a fixed network knowing the sales shares of every

industry is sufficient to compute the impact of changes in µ and Σ on the moments of log GDP. In

16Throughout the paper, derivatives with respect to off-diagonal elements of Σ simultaneously change Σij and Σji

to preserve the symmetry of Σ.
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Section 5, we show that this is no longer true when firms can adjust their input shares in response

to changes in the distribution of sectoral productivity. In fact, when the network is free to adjust,

an increase in an element of µ can even lead to a decline in expected log GDP.

4 Equilibrium production network

In the full equilibrium the production network responds endogenously to changes in beliefs. To

explore the mechanisms involved, we begin by characterizing how firms select a production technique

in this environment. We then establish that an equilibrium exists under general conditions. We

also show that there exists an efficient equilibrium and that its associated production network is

characterized by a trade-off between the expected level and the volatility of GDP.

4.1 Technique choice

In the previous section, we described prices under a given network. Here, we use that information

to characterize the problem of the representative firm in sector i that must choose a technique αi ∈
Ai. It is convenient to work with the log of the stochastic discount factor λ (α∗) = log Λ (α∗), the log

of the unit cost ki (αi, α
∗) = logKi (αi, P

∗ (α∗)) and the log of sectoral demand qi (α
∗) = logQi (α

∗),

where α∗ denotes equilibrium network. The following lemma shows that these objects are normally

distributed and describes how they influence the firm’s problem.

Lemma 2. In equilibrium, λ (α∗), ki (αi, α
∗) and qi (α

∗) are normally distributed, and the technique

choice of the representative firm in sector i solves

α∗
i ∈ arg min

αi∈Ai

E [ki (αi, α
∗)] + Cov [λ (α∗) , ki (αi, α

∗)] . (16)

The terms on the right-hand side of (16) capture how beliefs and uncertainty affect the pro-

duction network. The first term implies that the firm prefers to adopt techniques that provide, in

expectation, a lower unit cost of production. Taking the expected value of the log of (8), we can

write this term as

E [ki (αi, α
∗)] = −µi − ai (αi) +

n∑
j=1

αij E [pj ] ,

so that, unsurprisingly, the firm prefers techniques that have high productivity ai and that rely on

inputs that are expected to be cheap.

The second term in (16) captures the importance of aggregate risk for the firm’s decision. It

implies that the firm prefers to have a low unit cost in states of the world in which the marginal

utility of aggregate consumption is high. As a result, the coefficient of risk aversion ρ of the

household indirectly determines how risk averse firms are. We can expand this term as Cov [λ, ki] =

Corr [λ, ki]
√

V [λ]
√

V [ki], which implies that the firm tries to minimize the correlation of its unit
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cost with λ. Furthermore, since prices and GDP tend to move in opposite directions (see Lemma

1), Corr [λ, ki] is typically positive, and so firms seek to minimize the variance of their unit cost.17

This has several implications for their choice of suppliers. To see this, it is convenient to write

V [ki] in terms of input prices as

V [ki (αi, α
∗)] =

n∑
j=1

α2
ij V [pj ] +

∑
j ̸=k

αijαik Cov [pj , pk] + 2Cov

−εi, n∑
j=1

αijpj

+Σii. (17)

The variance of the unit cost can thus be decomposed into four channels, shown on the right-hand

side of (17). The first term implies that the firm prefers inputs that have stable prices. The

second term implies that the firm avoids techniques that rely on inputs with positively correlated

prices and instead prefers to diversify its set of suppliers and adopt inputs whose variation in prices

offset each other. The third term implies that the firm prefers inputs whose prices are positively

correlated with its own productivity shocks. When the firm experiences a negative productivity

shock, the prices of its inputs are then more likely to also be low, reducing the expected increase

in its unit cost. Finally, the last term captures the fact that more volatile productivity contributes

to more volatile unit costs.

We will explore in more details how beliefs affect the structure of the network in general equi-

librium in the next section, but for now it is useful to highlight some of the key forces that affect

the choice of technique of a firm by considering the following partial equilibrium example.

Example (Sourcing decisions in partial equilibrium). Consider again a car manufacturer (firm i)

that must decide on the share of steel (good 1) and carbon fiber (good 2) to use in production.

We show in Figure 1 how the solution α∗
i to problem (16) is affected by changes in the mean and

the variance of p2. Panels (a) and (b) show that when good 2 is expected to be more expensive,

firm i lowers αi2 and increases αi1. A similar mechanism is at work when uncertainty about p2

increases, as seen in panels (c) and (d). When V [p2] is large, the firm prefers to use a larger share

of the relatively safer good 1. Notice that the share αi2 reaches zero when p2 is expected to be

sufficiently large or uncertain. In that case, firm i severs the link with the carbon fiber supplier

and an input/output relationship disappears from the production network. In this example, we

have assumed that steel and carbon fiber are substitutes, so that their input shares tend to move

in opposite directions. We show in Section 5.2 that the model can also accommodate inputs that

are complements.

17If the productivity shock of a sector i is strongly negatively correlated with that of the other sectors, it can
be that Corr [λ, ki] < 0, in which case the representative firm in sector i seeks to be more volatile, to insure the
household in states of low consumption.
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Figure 1: Beliefs and input shares
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Notes: Parameters: ρ = 5, Ai is as in (2) with κi = (1/3, 1/3, 1/3), a0i = 0, α◦
i = (1/3, 1/3). Input prices are (p1, p2) ∼

N (E [p] ,V [p]) with diagonal covariance matrix, E [p1] = 0 and V [p1] = 0.

4.2 Equilibrium existence and efficiency

The example above demonstrates how an individual firm’s technique choice responds to changes

in beliefs about input prices. However, prices are equilibrium objects that depend on the production

network and, therefore, on the choices made by other firms. Here, we first show that there exists an

equilibrium that satisfies the conditions in Definition 1. We then show that there exists a solution

to a social planner’s problem that coincides with a decentralized equilibrium. In this equilibrium,

the production network strikes an optimal balance between maximizing the mean level of log GDP

and minimizing its variance.

Existence of an equilibrium

Lemma 2 describes a self-map K : A → A that can be used to define an equilibrium network

α∗. At a fixed point of this mapping, we have that α∗
i = Ki (α

∗) for all i ∈ N , where Ki (α
∗) is

the right-hand side of (16). Hence, such a fixed point describes an equilibrium network. Given an

equilibrium network, it is then straightforward to compute prices from (13). From there, all other

equilibrium quantities can be uniquely determined. The following proposition shows that K has a

fixed point and that an equilibrium exists.

Proposition 1. An equilibrium exists.
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The proof uses that K is a continuous mapping on the compact set A. From Brouwer’s fixed

point theorem, we then know that there exists at least one element α∗ ∈ A such that α∗ = K (α∗).

While Proposition 1 guarantees the existence of an equilibrium, it is silent about the number

of such equilibria. However, the next subsection demonstrates that there always exists an efficient

equilibrium, which provides a natural benchmark to study since any inefficient equilibrium would

be the result of coordination failure among agents. While such coordination failures may exist in

reality, they are not the focus of this paper.

Equilibrium efficiency

There is a representative household in the economy, and hence finding the set of Pareto efficient

allocations amounts to solving the problem of a social planner that maximizes the utility function

(3) of the household, subject to the resource constraints (12). The next proposition demonstrates

that a solution to the planner’s problem exists, and that it corresponds to an equilibrium.

Proposition 2. There exists an efficient equilibrium.

From here on, our analysis will focus on the efficient equilibrium.18 One key advantage of Propo-

sition 2 is that it allows us to investigate the properties of the equilibrium by solving the problem of

the social planner directly. This last point implies that we can characterize the equilibrium network

as the outcome of a welfare maximization problem.

Corollary 2. The efficient equilibrium production network α∗ solves

W ≡ max
α∈A

E [y (α)]− 1

2
(ρ− 1)V [y (α)] , (18)

where W is a measure of the welfare of the household, and y is log GDP as defined in (14).19

Corollary 2 follows directly from the fact that, by Proposition 2, the equilibrium network α∗

must maximize the expected utility of the representative household. It is clear from the objec-

tive function (18) that the household prefers networks that strike a balance between maximizing

expected log GDP E [y (α)] and minimizing aggregate uncertainty V [y (α)], with the relative risk

aversion parameter ρ determining the importance of each term.20

18While the mapping K is in general not a contraction, iterating on that mapping turns out to be a convenient
method for finding an equilibrium. We have not been able to prove that the equilibrium is unique, although we have
also not been able to find an economy with multiple equilibria. We discuss conditions under which the solution to
the planner’s problem is generically unique in Appendix E.7. In particular, we establish a generic uniqueness result
when Ai (αi) takes the form (2), which we will adopt for our quantitative exercises.

19The variable W defined in (18) is a convenient monotone transformation of the expected utility of the household,
such that E

[
Y 1−ρ

]
(1− ρ)−1 = exp ((1− ρ)W) (1− ρ)−1 , and we adopt it as our main measure of welfare. If we

denote the expected utility of the household by W, we can write (W′ −W) / |W| ≈ (ρ− 1) (W ′ −W) so that it is
straightforward to convert changes in welfare between measures.

20From (18), we see that when ρ = 0 the household actually likes uncertainty in log GDP. This is because of the
properties of lognormal variables, as discussed in footnote 10. (18) also implies that uncertainty has no impact on
the planner’s decisions when ρ = 1. See Appendix I for more details.

18



5 Beliefs, the production network and aggregate outcomes

In this section, we explore how the mean µ and the covariance Σ of the productivity shocks

affect the equilibrium structure of the production network and, through that mechanism, GDP and

welfare.

5.1 Beliefs and Domar weights

In Corollary 1, we saw that the Domar weights are key objects to understand how changes

in µ and Σ affect the expected level and the variance of GDP. In a fixed-network environment,

these weights are fixed and do not respond to changes in beliefs. In contrast, when the network is

endogenous, they are equilibrium objects that vary with µ and Σ. The next proposition describes

the relationship between these quantities.

Proposition 3. The Domar weight ωi is increasing in µi and decreasing in Σii.

This proposition can be understood both from the perspective of individual producers as well as

from the perspective of the social planner. Individual producers rely more on sectors whose prices

are low and stable. As a result, these sectors are more important suppliers and their Domar weights

are relatively high. From the planner’s perspective, recall from (14) that the Domar weight of a

sector captures its contribution to log GDP. Since the planner wants to increase and stabilize log

GDP, it naturally increases the importance of more productive (larger µi) or less volatile (smaller

Σii) sectors in the production network. In Section 5.3 below we show that such an adjustment in

the network is welfare-improving. But before doing so, we first discuss how changes in beliefs affect

the precise structure of the equilibrium production network α.

5.2 Beliefs and the structure of the production network

While the Domar weights respond in an intuitive and unambiguous manner to changes in beliefs,

the same is not true for the matrix α that describes the complete structure of the production

network. In some cases an increase in the expected productivity of a sector i can even lead some

of its customers to lower their usage of input i. In this section, we highlight that substitution

patterns between input shares are key determinants of the impact of beliefs on the network. We

then explore these patterns through two examples and introduce a useful approximation that allows

us to analytically characterize them in terms of primitives. Finally, we use this approximation to

characterize the impact of beliefs on the production network.

Input shares substitutabilities

The model can handle rich substitution patterns between input shares. To have a sense of what

these patterns might involve, we can go back to our car manufacturer example. Suppose that the
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price of carbon fiber is expected to decrease (higher µcarbon). The firm might respond by choosing

a technique that is more intensive in carbon fiber and use that material instead of steel for key

components. Steel and carbon fiber would then be substitutes, and their shares would tend to move

in opposite directions. At the same time, the firm might purchase additional equipment that is

needed to handle carbon fiber. This equipment and carbon fiber would be complements and their

shares would tend to move together.

The model generates these substitution patterns through the shape of the TFP shifter functions

{ai}ni=1 and the set of available techniques A. Consider as an example a function ai such that
∂2ai(αi)
∂αij∂αik

≥ 0 for some j ̸= k. This implies that an increase in αij increases the incentives to raise

αik as well. It follows that these shares will tend to move in the same direction after a change in

beliefs.21 If instead ∂2ai(αi)
∂αij∂αik

< 0, the shares αij and αik will tend to move in opposite direction.

Substitution patterns can also arise through the set of admissible techniques Ai. Suppose, for

instance, that the minimum labor share constraint
∑n

l=1 αil ≤ αi binds and that the expected price

of good j falls. To increase the share of good j, a firm in sector i would have to lower its share of

some other input, say k, to avoid violating the constraint. In this case the shares of j and k would

behave as substitutes in the production of good i.

An example of factor share substitution patterns

To better illustrate these substitution patterns, consider the simple economy depicted in Figure

2. Sectors 1 to 3 produce their goods using only labor, while sector 4 can also use intermediate

inputs produced by other sectors. We parametrize the TFP shifter function a4 so that the factor

shares of goods 1 and 2 are complements in the production of good 4, while the shares of goods 1

and 3 are substitutes. Specifically, we introduce two additional terms to the functional form (2) so

that

a4 (α4) = a◦4 −
4∑
j=1

κj
(
α4j − α◦

4j

)2 − ψ1 (α41 − α42)
2 − ψ2 (α41 + α43 − (α◦

41 + α◦
43))

2 . (19)

The third term in (19) creates the complementarity between goods 1 and 2, while the last term

creates the substitutability between goods 1 and 3. It follows that goods 2 and 3 are also substitutes.

The parameters ψ1 ≥ 0 and ψ2 ≥ 0 determine the strength of these substitution patterns.

Panel (a) shows the initial state of the economy. Sector 4 relies heavily on sectors 1 and 2 as

suppliers (as shown by the thick arrows) and does not use good 3 in production. In panel (b), µ1

declines slightly. As we can see, the input share of good 1 declines in response (thinner arrow).

The complementarity between 1 and 2 then pushes firms in sector 4 to rely less on good 2, and

the substitutability between 1 and 3 pushes them to start using good 3 as an input. In panel (c),

21We show in Appendix H that when all shares are complements in the production of all goods we can predict
unambiguously how the production network responds to a change in beliefs.
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Figure 2: Substitutes and complements
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Notes: Arrows represent the movement of goods: there is a solid blue arrow from j to i if αij > 0. Dashed gray arrows indicate
αij = 0. The thickness of the arrow reflects the size of the input share. a is as in (2) with the additional terms (19). ai for
i ∈ {1, 2, 3} are such that those sector only use labor. a0i = 0 for all i. κj = 1/10 for all j, ψ1 = 1 and ψ2 = 1/10. α◦

4j = 1/3

for all j. βi = 1/n for all i. Σ = 0.3× In×n. µi = 1 for all i in panel (a). Panel (b): same as panel (a) except µ1 = 1/2. Panel
(c): same as panel (a) except µ1 = −1/2. The risk aversion of the household is ρ = 5.

µ1 declines some more. As a result, sector 4 stops using good 1 as an input completely and relies

more heavily on good 3. The share α42 also decreases slightly.

Cascading flight to safety

When input shares are substitutes, a small change in the volatility of a single sector can push

multiple producers to sequentially switch to safer suppliers. To give an example of that process,

consider the economy depicted in Figure 3. Firms in sectors 4 to 7 can only use labor as an input,

but firms in sectors 1 to 3 can each source inputs from two potential suppliers, indicated by the

arrows. The model is parameterized such that the shares of these suppliers are substitutes.

Figure 3: Cascading impact of Σ44
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Notes: Arrows represent the movement of goods: there is a solid blue arrow from j to i if αij > 0. Dashed gray arrows indicate
αij = 0. a is as in (2) with a0i = 0 for all i, κij = 0 if there is a potential link between two firms and infinity otherwise.
α◦
ij = 0.5 if there is a potential link, and 0 otherwise. µ = 0 except for µ4 = 0.1. In the left figure, Σ is diagonal with Σii = 0.1

for all i except Σ44 = 1. In the right figure Σ44 = 0. The risk aversion of the household is ρ = 2. βi = 1/n for all i.

When uncertainty about sector 4 is sufficiently high (left panel), sector 3 does not rely on good

4 for production. As uncertainty about sector 4 decreases (lower Σ44), firms in sector 3, seeking a

stable supply of goods, switch to using good 4 as an input. As a result, sector 3’s price becomes

less volatile which makes firms in sector 2 want to use good 3 in production instead of good 6. The

same logic applies to firms in sector 1, which then also switch from good 5 to the good with the
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now less volatile price provided by sector 2. A change in the uncertainty of a single sector can thus

lead to a cascading movement to safety. Because uncertainty about each sector’s input price is now

lower, aggregate uncertainty also decreases.

A useful approximation

To further describe the substitution patterns that emerge in the model, it is useful to consider

an economy in which the cost of deviating from the ideal shares α◦ is large. Concretely, let

ai (αi) = −κ̄ × âi (αi), where âi is such that âi (α
◦
i ) = 0, and suppose that α◦

i is in the interior of

Ai. We will characterize this economy when κ̄ > 0 is large. For that purpose, it will be convenient

to work with the risk-adjusted transformation of the log price vector given by

R◦ ≡ E [p◦] + cov (p◦, λ◦) ,

where p◦ and λ◦ denote the equilibrium log price vector and the log stochastic discount factor under

the ideal input shares α◦. The vector R◦ captures how (un)attractive each input is in risk-adjusted

terms. A good j that is expensive on average (high E
[
p◦j

]
) or that is particularly risky, in the sense

that its price is negatively correlated with consumption (high cov
(
p◦j , λ

◦
)
), has a high R◦

j and is

overall less attractive as an input. We show in Appendix E.9 that we can write R◦ in terms of the

fundamentals of the economy as

R◦ = −L◦ [µ− (ρ− 1)Σω◦] , (20)

where L◦ = (I − α◦)−1 and (ω◦)′ = β′L◦ are the Leontief inverse matrix and the vector of Domar

weights under the ideal shares.

We can then derive an approximate expression for the production network.

Proposition 4. For large κ̄ the vector of input shares in sector i is approximately given by

αi ≈ α◦
i − κ̄−1 (H◦

i )
−1R◦, (21)

where H◦
i is the Hessian matrix of âi evaluated at the ideal shares α◦

i .
22

Given (20) and since H◦
i only depends on α◦

i , (21) provides a closed-form characterization of

the production network in terms of the primitives of the model.

Equation (21) shows that sectors with larger risk-adjusted prices R◦ are overall less attractive

as input providers and firms tend to rely less on them in production. How a change in R◦ affects the

input shares αi depends on the inverse Hessian (H◦
i )

−1, which captures the substitution patterns

22We assume throughout that H◦
i is invertible for all i.
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embedded in the TFP shifters. If an element (H◦
i )

−1
jl is positive, we say that j and l are complements

in the production of good i. If instead (H◦
i )

−1
jl is negative, they are substitutes.

To better understand the role of (H◦
i )

−1, it is convenient to focus on a single share αij and to

write (21) as

αij ≈ α◦
ij − κ̄−1 (H◦

i )
−1
jj R◦

j︸ ︷︷ ︸
direct effect

− κ̄−1
∑
l ̸=j

(H◦
i )

−1
jl R◦

l︸ ︷︷ ︸
indirect effect

. (22)

Risk-adjusted prices R◦ affect the share αij of input j in the production of good i through two

channels. First, αij obviously depends on how attractive good j is. Since (H◦
i )

−1
jj is always positive,

a lowerR◦
j implies a higher αij through a direct effect, highlighted in (22). How large the direct effect

is depends on the cost of deviating from the ideal share α◦
ij , which is captured by κ̄−1 (H◦

i )
−1
jj > 0.23

The share of good j used in sector i also depends on an indirect effect that operates through

sectors other than j. Suppose for instance that the risk-adjusted price R◦
l of a good l ̸= j declines so

that good l becomes more attractive. If the shares of good j and l are substitutes in the production

of good i, that is if (H◦
i )

−1
jl < 0, then αij declines as R◦

l falls. If instead they are complements,

such that (H◦
i )

−1
jl > 0, a more attractive input l makes input j more attractive as well, and αij

increases.

The first-order approximation (21) together with (20) allows for a closed-form characterization

of the impact of changes in (µ,Σ) on the equilibrium production network.

Corollary 3. For large κ̄ the impact of an increase in µk on the network is approximately given

by
dαij
dµk

≈ κ̄−1 (H◦
i )

−1
jj L◦

jk︸ ︷︷ ︸
direct effect of k on j

+ κ̄−1
∑
l ̸=j

(H◦
i )

−1
jl L◦

lk︸ ︷︷ ︸
indirect effect of k

through other suppliers l ̸=j

, (23)

and the impact of an increase in Σkm on the network is approximately given by

dαij
dΣkm

≈

− (ρ− 1)ω◦
k
dαij

dµk
k = m,

− (ρ− 1)
(
ω◦
m
dαij

dµk
+ ω◦

k
dαij

dµm

)
k ̸= m,

(24)

where ω◦ is the vector of Domar weights at the ideal input shares.

If j relies on k as an input (L◦
jk > 0), an increase in µk lowers the risk-adjusted price Rj and

makes j more attractive. This direct effect pushes αij up. If another sector l ̸= j also relies on k

(L◦
lk > 0), then an increase in µk makes l more attractive. This indirect channel can lead to either

an increase or a decrease in αij , depending on whether j and l are complements or substitutes;

23Since H◦
i is invertible and that âi is strictly convex, H◦

i is positive definite. It follows that its inverse is also
positive definite and the diagonal elements (H◦

i )
−1
jj must be positive.
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that is, whether (H◦
i )

−1
jl is positive or negative. If the indirect effect is strongly negative, it can

dominate the direct effect and lead to an overall decline in αij .

Finally, (24) shows that the impact of a change in Σ is similar to that of a change in µ but with

the opposite sign. In particular, the same substitution patterns apply. Notice also that a higher

risk aversion ρ leads to a stronger impact of a change in Σ on the production network.

The examples of Figures 2 and 3 through the lens of the approximation

Proposition 4 and Corollary 3 can help us understand the example of Figure 2 in which the

productivity of sector 1 declines. Direct computation of the inverse Hessian (H◦
4 )

−1 from (19)

implies that (H◦
4 )

−1
12 > 0, (H◦

4 )
−1
13 < 0 and (H◦

4 )
−1
23 < 0. In the production of good 4, the shares

of goods 1 and 2 are thus complements, but the shares of goods 1 and 3 and goods 2 and 3 are

substitutes. As we move from panel (a) to panels (b) and (c), the risk-adjusted price of sector 1,

R◦
1, increases. Hence, the direct effect in (22) pushes α41 down, while the indirect effect pushes α42

down and α43 up.

We can also interpret the cascading downstream network adjustment in Figure 3 through the

lens of the approximation. Consider for instance the response of sector 1 to the change in the

uncertainty of sector 4, at the opposite end of the supply chain. Combining (23) and (24), we can

write

dα1j

dΣ44
≈ − (ρ− 1)ω◦

4

κ̄−1 (H◦
1 )

−1
jj L◦

j4 + κ̄−1
∑
l ̸=j

(H◦
1 )

−1
jl L◦

l4

 .

The response of α12 thus depends on how much sector 2 relies on sector 4 as an input. This is

captured by L◦
24, which is large in this example, because sector 2 is an (indirect) customer of good

4 under the ideal input shares. It follows that the decline in Σ44 has a strong positive direct effect

on α12. Instead, if we consider the response of α15, this direct effect is absent because sector 5 uses

only labor and never relies on sector 4 (L◦
54 = 0). Only the indirect effect remains, and since L◦

24 is

large, the relevant term here is (H◦
1 )

−1
52 . This quantity is negative because 5 and 2 are substitutes

in the production of good 1, so that a decline in Σ44 decreases α15. The same logic applies to the

responses of firms 2 and 3, and thus explains the cascading effect illustrated in Figure 3.24

5.3 Implications for GDP and welfare

Above we analyzed how the production network responds to changes in beliefs about the pro-

ductivity process. What the household ultimately cares about though is the level and variance

of consumption, and we now turn to the implications of an endogenous production network for

macroeconomic aggregates. Here we describe how GDP and welfare are affected by changes in the

24The approximation of Proposition 4 and Corollary 3 assumes that the production network α is in the interior of
A, which is not the case in Figures 2 and 3, but (23) and (24) still capture the main forces that push the shares in
response to changes in (µ,Σ) and are informative about the response of the network.
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mean µ and the variance Σ of productivity when the network is endogenous. We also show that

some changes to the productivity process can have surprising implications when the network itself

responds to changes in the distribution of shocks.

Uncertainty and expected GDP

We begin with a general result that shows how GDP reacts to uncertainty in equilibrium.

Proposition 5. Expected log GDP E [y] reaches its maximum at Σ = 0.

Proposition 5 follows directly from Corollary 2. When there is no uncertainty (Σ = 0), the

variance V [y (α)] of log GDP is zero for all networks α ∈ A, so that the equilibrium network

maximizes only E [y]. When, instead, the TFP vector is uncertain (Σ ̸= 0), the equilibrium network

also seeks to lower V [y (α)], which necessarily lowers expected log GDP.

Proposition 5 establishes a novel mechanism through which uncertainty reduces expected log

GDP. To understand why, consider the technique choice problem from the firm’s perspective. When

there is no uncertainty, firms do not worry about risk and move toward cheaper suppliers, which tend

to also be the most productive ones, and toward techniques with higher TFP shifters. As a result,

the aggregate economy is particularly productive, and E [y] is large. When some suppliers become

risky, firms worry that their inputs might become expensive and, to prevent large fluctuations in

their own unit cost, start purchasing from more stable but less productive suppliers. As a result,

the aggregate economy becomes less productive on average and expected log GDP falls.

The endogenous response of the network is essential for the result of Proposition 5. Indeed,

in our model uncertainty affects expected log GDP only through the endogenous response of the

firms’ sourcing decisions. As a result, the mechanism through which uncertainty lowers expected

log GDP is only active when the production network is flexible. If instead the shares α were fixed,

uncertainty would have no impact on E [y].

Beliefs and welfare

The next proposition characterizes the impact of µ and Σ on our measure of welfare W, as

defined in (18). Throughout this section, we again use partial differentiation to indicate that a

derivative is taken while keeping the network α fixed.

Proposition 6. When the network α is free to adjust to changes in µ and Σ the following holds.

1. The impact of an increase in µi on expected welfare is given by

dW
dµi

=
∂ E [y]

∂µi
= ωi. (25)
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2. The impact of an increase in Σij on expected welfare is given by

dW
dΣij

=

−1
2 (ρ− 1)

(
∂ E[y]
∂µi

)2
= −1

2 (ρ− 1)ω2
i i = j,

− (ρ− 1) ∂ E[y]∂µi

∂ E[y]
∂µj

= − (ρ− 1)ωiωj i ̸= j.
(26)

This proposition follows directly from applying the envelope theorem to (18). Its first part

provides a Hulten-like result. It states that the impact of an increase in µi on welfare is equal to its

marginal impact on expected log GDP taking the network α as fixed. By Corollary 1, this quantity

is also equal to the Domar weight ωi of sector i. Since Domar weights are positive, it follows that an

increase in µi always has a positive impact on welfare. The second part of the proposition provides

a similar result for an increase in Σij . In this case, the impact of the change is proportional to the

product of the Domar weights ωi and ωj . Again, (26) implies that an increase in uncertainty must

necessarily lower welfare when ρ > 1.

Amplification and dampening

One important consequence of the endogenous reorganization of the network is that changes

in the process for ε that are beneficial to welfare are amplified while changes that are harmful are

dampened. The following proposition establishes this result formally.

Proposition 7. Let α∗ (µ,Σ) be the equilibrium production network under (µ,Σ) and let W (α, µ,Σ)

be the welfare of the household under the network α. The change in welfare after a change in beliefs

from (µ,Σ) to (µ′,Σ′) satisfies the inequality

W
(
α∗ (µ′,Σ′) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ)︸ ︷︷ ︸
Change in welfare under the flexible network

≥ W
(
α∗ (µ,Σ) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ)︸ ︷︷ ︸
Change in welfare under the fixed network

. (27)

Under a flexible network, the extra margin of adjustment thus allows firms to produce more

efficiently and to better mitigate risk, which translates into higher welfare for the household. This

operates through the Domar weights, as the importance for GDP of sectors facing positive shocks

increase (see Proposition 3).

Beliefs and GDP

Proposition 6 shows that changes in the mean and the variance of ε have an intuitive impact

on welfare when the network is endogenous, qualitatively working in the same direction as in the

fixed network economy. The same is not true about the impact of such changes on the moments

of log GDP. To see how the endogenous adjustment of the network can lead to counterintuitive

implications for output, it is helpful to decompose the impact of a change in beliefs into its direct
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and indirect impacts. For instance, for a change in µi we can write

dE [y]

dµi
=

∂ E [y]

∂µi︸ ︷︷ ︸
direct impact with

fixed network

+
∂ E [y]

∂α

dα

dµi︸ ︷︷ ︸
network adjustment

. (28)

The first term on the right-hand side of (28) denotes the direct impact, keeping the network α

fixed. The second term captures the impact of µi on the network α, and the impact of the change

in the network on expected log GDP. When the network is fixed, this network adjustment term

is zero and the full impact of the change in µi is simply equal to its direct impact. This is the

situation that we explored in Corollary 1, which states that an increase in µi always has a positive

impact on E [y]. But with an endogenous network the indirect effect can amplify, mitigate, or even

completely overturn the direct impact, in which case an increase in µi can lower expected log GDP.

When this happens, the Hulten-like result established in Corollary 1 ceases to work, even as a local

approximation. A similar mechanism can also flip the impact of changes in uncertainty such that

an increase in Σii can lower the variance of log GDP. The following example illustrates how the

endogenous adjustment of the network can lead to counterintuitive responses to changes in the

productivity process.

Counterintuitive implications of changes in beliefs Consider the economy depicted in the

left column of Figure 4, where sectors 4 and 5 use only labor to produce, while sectors 1 to 3 can

also use goods 4 and 5 as intermediate inputs. Their TFP shifter functions are parametrized so

that the shares of goods 4 and 5 are substitutes. Sector 4 is more productive and volatile than

sector 5 (µ4 > µ5 and Σ44 > Σ55).

Consider the impact of a positive shock to µ5. The solid blue lines in panels (a), (b) and (c)

in the right column of Figure 4 illustrate the impact of this shock on E [y], V [y], and on welfare.

Point O on the graphs represents the economy before the shock. As we can see, the initial increase

in µ5 has a negative impact on expected log GDP. To understand why, notice that for a small

increase in µ5, sector 5 is still less productive (on average) than sector 4, but it now offers a better

risk-reward trade-off given its lower variance. As a result, firms in sectors 1 to 3 increase their

shares of good 5 and reduce their share of good 4. But since µ4 > µ5, this readjustment leads to a

fall in expected log GDP for a small increase in µ5. At the same time, the variance of log GDP also

declines because sector 5 is less volatile than sector 4. The implied changes in E [y] and V [y] thus

have opposite impacts on welfare. By Proposition 6, the overall effect on welfare must be positive

though, and this is indeed confirmed in panel (c). Naturally, as µ5 keeps increasing expected log

GDP eventually starts to increase as well.

To emphasize the importance of the endogenous network for this mechanism, we also show the

effect of the same increase in µ5 when the network is kept fixed (dashed red lines in the same
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panels). From Corollary 1, the marginal impact of µ5 on expected log GDP is equal to its Domar

weight, and increasing µ5 has a positive impact on E [y]. At the same time, the variance of log GDP

is unaffected by changes in µ. While an increase in µ5 is welfare-improving in this case, the effect

is less pronounced than in the flexible network economy. Indeed, in the latter case the equilibrium

network changes precisely to maximize the beneficial impact of the shock on welfare, as predicted

by Proposition 7.

We can use the same economy to illustrate how an increase in an element of Σ can lower the

variance of log GDP, and simultaneously lower welfare. Start from the economy in the left column

of Figure 4 (point O) and suppose that the volatility of sector 4 goes up. In response, firms 1

to 3 start to purchase from sector 5 more actively. Because sector 5 is less volatile (recall that

Σ55 < Σ44 initially), the variance of log GDP declines (panel e). At the same time, expected log

GDP goes down because sector 5 is also less productive on average than sector 4 (panel d). The

combined effect on welfare is negative, as predicted by Proposition 6 (panel f). In this case, the

reorganization of the network mitigates the adverse effect of the increase in volatility on welfare.

Instead, when the network is fixed, an increase in Σ44 does not affect expected log GDP but leads

to an increase in the variance of log GDP. As a result, welfare drops more substantially than when

the network is endogenous, as predicted by Proposition 7.

Figure 4: The non-monotone impact of shocks on GDP

1

5 4

3

2

(a) Impact of µ5 on E [y] (b) Impact of µ5 on V [y] (c) Impact of µ5 on W

(d) Impact of Σ44 on E [y] (e) Impact of Σ44 on V [y] (f) Impact of Σ44 on W

Notes. Left column: Arrows represent the movement of goods: there is a solid blue arrow from j to i if αij > 0. a is as in (2) with
a0i = 0 for all i, κij = 0 if there is a potential link between two firms and very large otherwise. α◦

ij = 0.5 if there is a potential

link and zero otherwise. The labor share for firms 1, 2 and 3 is fixed at 0.5 and for firms 4 and 5 it is one (deviations are punished
severely). The risk aversion of the household is ρ = 2.5. Household’s utility weights are β1 = β2 = β3 = 1

3
− ϵ, β4 = β5 = 3

2
ϵ,

where ϵ is a very small positive number. µ = (0.1, 0.1, 0.1, 0.1,−0.04), Σ is diagonal, with diag (Σ) = (0.2, 0.2, 0.2, 0.3, 0.05).
Right column: In panels (a)-(c), µ5 increase from −0.04 to 0.13. In panels (d)-(f), Σ44 increases from 0.3 to 0.4.
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First-order approximation of GDP and welfare

Under the approximation of Proposition 4, we can derive closed-form equations for log GDP

and welfare. For that purpose, it is useful to first approximate the equilibrium network and the

Domar weights around their values at the ideal shares. That is, let

α ≈ α◦ +∆α and ω ≈ ω◦ +∆ω, (29)

where ∆α is implicitly defined as ∆αi = −κ̄−1 (H◦
i )

−1R◦ by (21) and where a first-order approxi-

mation of the Leontief inverse around α◦ implies (∆ω)′ = β′L◦∆αL◦. Similarly, we can approximate

the TFP shifter vector a (α) around α◦ as

[a (α)]′ ≈ [a (α◦) + ∆a]′ = −κ̄
[
(∆α1)

′H◦
1∆α1, . . . , (∆αi)

′H◦
i ∆αi, . . . , (∆αn)

′H◦
n∆αn

]
, (30)

where the last equality follows because a (α◦) = 0 and
∂âi(α◦

i )
∂αij

= 0 for all i and j. Log GDP can

then be approximated by (see Appendix B for the full derivations)

y ≈ (ω◦)′ ε+ (∆ω)′ ε+ (ω◦)′∆a. (31)

The first term in (31) corresponds to log GDP at the ideal input shares α◦, while the next two

terms capture the impact of the deviation from α◦. Specifically, the second term takes into account

that the Domar weights deviate from ω◦, and that this affects how sectoral shocks ε translate into

GDP. The third term captures the fact that deviating from the ideal shares incurs a TFP loss,

which also affects GDP. This last term is always negative.

Whether the second term is positive or negative depends on ∆α. Combining (21) and (20), we

see that ∆α depends on the beliefs (µ,Σ) and on the substitution patterns embedded in the TFP

shifter functions {ai}ni=1. Consider for instance an increase in µi for some sector i. In response

other sectors increase their reliance on i, thus pushing ωi up (Proposition 3). Through the second

term in (31) this change magnifies the impact of i on GDP. At the same time, the deviation from

the ideal shares leads to a decline in TFP, as captured by the third term in (31).

From (31), it is straightforward to derive closed-form approximations for E [y] and V [y], as well

as for welfare W, in terms of the primitives of the economy. We do so in Appendix B, where we

also describe how these quantities vary in response to change in beliefs.25

25In Appendix J we also explore how changes in the beliefs (µ,Σ) affect the correlations between different sectors.
Furthermore, we show in Appendix L that the planner’s problem can be solved analytically in the special case in
which the TFP shifter functions are Ai (αi) = 1 for all i and all αi ∈ Ai. In this case, we can derive closed-form
expressions for the Domar weights, GDP and welfare.
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6 Endogenous network response in a calibrated model

To illustrate the quantitative implications of the mechanism, we calibrate the model to the

United States economy. We rely on sectoral shares and productivity data constructed from the

Bureau of Economic Analysis’ input-output tables, and use a mix of direct estimation and indirect

inference to choose values for the model parameters. We start by describing our data sources and

calibration strategy. We then show that the calibrated model is able to replicate several important

features of the data. Finally, we use the calibrated model to evaluate the role of beliefs in shaping

the production network and to investigate how the changing structure of the network influences

aggregate output and welfare.

6.1 Data

The Bureau of Economic Analysis (BEA) provides sectoral input-output tables that allow us

to compute the intermediate input shares as well as the shares of final consumption accounted for

by different sectors. We rely on the harmonized tables constructed by vom Lehn and Winberry

(2021) that provide consistent annual data for n = 37 sectors over the period 1948-2020. Table 5

in Appendix C.1 provides the list of the sectors included in this data set.

From these data, we can compute the input shares αijt of each sector in each year t. The typical

share αij in the data has an average of 0.0128 and a standard deviation over time of 0.0048, for

a coefficient of variation of 0.37. We also use the input-output tables to compute sectoral total

factor productivity, following the procedure in vom Lehn and Winberry (2021) closely. Specifically,

sectoral TFP is measured as the Solow residual, i.e. the residual that remains after removing the

contribution of input factors from a sector’s gross output.26

6.2 Calibration strategy

The three groups of parameters that we need to calibrate are 1) the household’s preferences, i.e.

the consumption shares β and the risk-aversion ρ, 2) the parameters κ and α◦ of the TFP shifter

function (2), and 3) the processes for the exogenous sectoral productivity shocks, i.e. µt and Σt.

Some of these parameters can be computed directly from the data. The other ones are estimated

using a combination of indirect inference and standard time-series methods. Below, we describe

the exact procedure used for each set of parameters.

26We make three departures from vom Lehn and Winberry (2021) in constructing the TFP series. First, to be
consistent with our model, we let the input shares αijt vary over time. Second, we do not smooth the resulting Solow
residuals. Finally, we update the time series to include the years up to 2020.

30



Household preferences

Since the preference parameter βi corresponds to the household’s expenditure share of good i,

we can pin down its value directly from the data by averaging the consumption share of good i over

time.27 The sectors with the largest consumption shares are “Real estate” (14%), “Retail trade”

(12%) and “Health care” (11%).

The relative risk aversion parameter ρ determines to what extent firms are willing to trade off

higher input prices for access to more stable suppliers. The literature uses a broad range of values

for ρ and it is unclear a priori which one is best for our application. We therefore estimate ρ using

a method of simulated moments (MSM) described below.

Endogenous productivity shifter

We adopt the functional form (2) for the productivity shifter Ai (αit). This functional form

takes as inputs the ideal shares α◦
ij , the actual shares αijt, the coefficients κij and the constant a◦i .

The ideal shares α◦
ij are set to the time average of the input shares observed in the data.28 We set

the constant a◦i equal to the average TFP of sector i. The coefficients κij , which determine how

costly it is to deviate from the ideal shares in terms of productivity, are estimated using the MSM

procedure described below. Without any restrictions the matrix κ would have n× (n+ 1) = 1406

elements. To reduce the number of free parameters to estimate, we restrict κ to be of the form

κ = κiκj where κi is an n× 1 column vector and κj is an 1× (n+ 1) row vector. The kth element

of κi then scales the cost for producer k of changing the share of any of its inputs, and the lth

element in κj scales the cost of changing the share of input l for any producer. We normalize the

first element in κi to pin down the scale of κi and κj . The matrix κ then contains only 2n = 74

free parameters to estimate.

Exogenous productivity process

The source of uncertainty in the model is the vector of productivity shocks εt ∼ N (µt,Σt). In

the calibrated model, we allow µt and Σt to vary over time to account for changes in the stochastic

process for εt over the sample period. To parameterize the evolution of µt and Σt, we first filter out

the endogenous productivity shifter Ai (αit) and the normalization term ζ (αit) from the measured

sectoral TFP, eεitAi (αit) ζ (αit), implied by the production function (1). We then estimate the

evolution of µt and Σt from the remaining component. To do so, we assume that εt follows a

random walk with drift,

εt = γ + εt−1 + ut, (32)

27See Appendix G.3 for a version of the calibrated economy with time-varying β’s.
28We experimented with an alternative calibration in which we include and estimate a j-specific shifter to α◦

ij .
The results are similar to our baseline calibration.
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where γ is an n × 1 vector of deterministic drifts and ut ∼ iid N (0,Σt) is a vector of shocks. We

estimate γ by computing the average of the productivity growth rates ∆εt = εt − εt−1 over time.

When making decisions in period t, firms know the past realizations of εt so that the conditional

mean of εt is given by µt = γ + εt−1. The covariance Σt of the innovation ut is estimated using

a rolling window that puts more weight on more recent observations to allow for time-varying

uncertainty about sectoral productivity. Specifically, we estimate the covariance between sector i

and j at time t by computing Σijt =
∑t−1

s=1 ϕ
t−s−1uisujs, where 0 < ϕ < 1 is a parameter that

determines the relative weight of more recent observations. Its value is set to the sectoral average

of the corresponding parameters of a GARCH(1,1) model estimated on each sector’s productivity

innovation uit. In the calibrated economy, its value is ϕ = 0.47. Note that this procedure implies

that the time series for εt depends on the parameters of the TFP shifters. Therefore, the estimation

of the stochastic process for sectoral productivity has to be done jointly with the estimation of κ.

Matching model and data moments

We use an indirect inference approach and estimate the parameters Θ ≡ {ρ, κ} by minimizing

Θ̂ = argmin
Θ

(m (z)−m (Θ))′W (m (z)−m (Θ)) ,

where m (z) is a vector of moments computed from the data, and m (Θ) is the vector of corre-

sponding model-implied moments conditional on the parameters Θ. The moments that we target

are the time series of the production shares αijt, normalized by their average in the data, and the

demeaned time series of aggregate consumption growth, normalized by the average of its absolute

value in the data. We target consumption since the stochastic discount factor of the household is

central to the trade-off that firms face when choosing production techniques.29

We match n2×T +T −1 moments with only 2n+1 free parameters. The model is thus strongly

over-identified. We use particle swarm optimization to find the global minimizer Θ̂ (Kennedy and

Eberhart, 1995). The estimated coefficient of relative risk aversion ρ̂ is 4.27, which is similar to

values used or estimated in the macroeconomics literature. We provide additional details about

the calibrated economy in Appendix C.2.

6.3 Model-implied moments and the data

We want our model to fit key features of the data that relate to 1) the structure of the production

network, 2) how the network responds to changes in beliefs, and 3) how this response affects

macroeconomic aggregates. As we have seen earlier, the Domar weights, and how they react to

29To strike a balance between matching both the shares and consumption growth reasonably well, the weighting
matrix W assigns a weight of

(
n2 × T

)−1
to the shares moments (recall that there are n2 shares time series, each

of length T ) and a weight of (T − 1)−1 to the consumption growth moment (the length of the consumption growth
time series is T − 1).
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changes in µt and Σt, play a central role for these mechanisms. In this section, we first describe

the evolution of µt and Σt in the calibrated economy. We then report unconditional moments of

the model-implied Domar weights and how they compare to the data. Finally, we look at the

relationship between the Domar weights and the beliefs µt and Σt and verify that the correlations

predicted by the mechanisms of the model are present in the data.

Time-variation in the aggregate productivity process

To illustrate the overall evolution of beliefs over our sample period, we compute two measures

that capture the aggregate impact of changes in µt and Σt. The first measure is the Domar-weighted

average growth in the conditional mean of productivity, defined as

∆µ̄t =
n∑
j=1

ωjt∆µjt. (33)

We use the Domar weights ωjt in this equation to properly reflect the importance of a sector for

GDP, as implied by (14). The solid blue line in Figure 5 shows the evolution of ∆µ̄t over the sample

period. As expected, ∆µ̄t tends to go below zero during NBER recessions and is positive during

expansions.

To describe how aggregate uncertainty evolves in the calibrated economy, we also compute the

within-period perceived standard deviation of log GDP. From (15), this can be written as

σyt =
√

V [y] =
√
ω′
tΣtωt. (34)

The red dashed line in Figure 5 represents the evolution of σyt over the sample period. While

uncertainty is on average relatively low, especially during the Great Moderation era, spikes are

clearly visible in the earlier years and, in particular, during the Great Recession of 2007-2009.30

Unconditional Domar weights

Figure 6 shows the average Domar weight of each sector in the data (blue bars) and in the model

(black line). The sectors with the highest Domar weights in the data are “Real estate”, “Food and

beverage”, “Retail trade”, “Finance and insurance” and “Health care”. According to our theory

(Proposition 6), changes in the expected level and variance of productivity in those sectors will

have the largest effects on welfare.

The cross-sectional correlation between the average Domar weights in the model and in the

data is 0.96, so that the calibrated model fits this important feature of the production network

well. However, the average Domar weight in the model (0.032) is lower than its counterpart in the

30σyt pertains only to uncertainty about the stochastic part of TFP ε. As such, it does not capture overall economic
uncertainty, which might also be affected by changes in employment, investment, monetary and fiscal policy, etc.
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Figure 5: Domar-weighted TFP and uncertainty changes

Notes: Solid blue line: Domar-weighted average growth in the conditional mean of productivity, ∆µ̄t =
∑n

j=1 ωjt∆µjt. Red

dashed line: Domar-weighted conditional variance of productivity, σyt =
√
ω′
tΣtωt. Shaded areas represent NBER recessions.

data (0.047). This is because the estimation also targets aggregate consumption growth. Given the

observed variation in TFP, if the model were to match the Domar weights perfectly, consumption

would be too volatile compared to the data. Under our calibration, the volatility of consumption

growth in the model is 2.73%, close to its data target of 2.65% (row (6) of Table 1).31

Figure 6: Sectoral Domar weights in the data and the model

Notes: The Domar weights are computed for each sector in each year and then averaged over all time periods.

The model can account for about 40% of the observed average standard deviation of the Domar

weights over time, as shown in row (2) of Table 1. Row (3) also reports that the coefficient of

variation of the Domar weights in the model is 0.07 compared to 0.11 in the data. Once we

take into account their relative scale, the model can thus account for a substantial portion of the

31Since there is no investment and that the only primary factor of production (labor) is in fixed supply, consumption
and aggregate TFP are equal in the model. It follows that we cannot match the volatility of both quantities and the
model somewhat overpredicts TFP volatility (see Table 1). Including an investment margin in the model, so that
GDP no longer equals consumption, might improve the fit of the Domar weights while keeping consumption growth
in the model as volatile as in the data.
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variation in a key moment that characterizes the production network.32

Table 1: Domar weights, consumption and TFP in the model and in the data

Statistic Data Model

(1) Average Domar weight ω̄j 0.047 0.032
(2) Standard deviation σ (ωj) 0.0050 0.0021
(3) Coefficient of variation σ (ωj) /ω̄j 0.107 0.067
(4) Corr (ωjt, µjt) 0.08 0.08
(5) Corr (ωjt,Σjjt) −0.37 −0.31
(6) Consumption growth volatility 2.65% 2.73%
(7) TFP growth volatility 1.83% 2.73%

Notes: For each sector, we compute the time series of its Domar weight ωjt, as well as its standard
deviation σ(ωj) and its mean ω̄j . Rows (1) and (2) report cross-sectional averages of these statistics.
Row (3) is the ratio of rows (2) and (1). Each period, we compute cross-sectional correlations of
the Domar weights ωjt with µjt and Σjjt (mean and variance of exogenous TFP εjt). Rows (4)
and (5) report time-series averages of these correlations. Rows (6) and (7) compare consumption
growth and TFP growth volatilies across the model and the data. The TFP data comes from
Fernald (2014) and is not adjusted for capacity utilization.

Domar weights and beliefs

One of the key mechanisms of the model predicts that a decline in the expected productivity of

a sector, or an increase in its variance, should lead firms to reduce the importance of that sector

as an input provider, leading to a decline in its Domar weight. Proposition 3 makes this point

formally for a single change in µi or Σii. Of course, in the data multiple changes in µt and Σt occur

at the same time, and it would be difficult to isolate the impact of a single change on the Domar

weights. Instead, we look at simple cross-sector correlations between the Domar weights ωit and

the first (µit) and the second moments (Σiit) of sectoral TFPs, both in the data and in the model.

These correlations provide a straightforward, albeit noisy, measure of the interrelations between

ωt, µt and Σt. As can be seen in rows (4) and (5) of Table 1, the predictions of the model are

borne out in the data. The model can not only explain these correlations qualitatively but is also

doing a good job quantitatively. The model is thus able to capture well the impact of beliefs on

the structure of the production network. In Appendix C.4, we also show that the model is able to

replicate features of the empirical correlations between sectoral sales.

6.4 The production network, welfare and output

To evaluate the importance of an endogenous production network for welfare and GDP, we

compare the calibrated model to two sets of alternative economies. First, we compare our baseline

32One reason why the Domar weights are less volatile in the model than in the data is that we assume that the
{Ai}ni=1 functions are time invariant. In reality, technological changes might affect the shape of these functions which
would translate into additional variation in the Domar weights.
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model to an economy in which the network is kept completely fixed. This exercise therefore informs

us about the overall impact of changes in the structure of the production network. We then

investigate the role of uncertainty alone in shaping the production network. We do so by considering

an economy in which production techniques are chosen as if Σt = 0, and a perfect foresight economy

in which firms observe the realization of εt before making technique choices. These exercises allow

us to isolate the impact that uncertainty has on the production network and, through that channel,

on macroeconomic aggregates.

Fixed vs endogenous production networks

We start by comparing the baseline model to the alternative economy in which the production

network cannot respond to changes in µt and Σt. Specifically, we fix the input share matrix α

to its time average in the data and recompute all other equilibrium quantities. We find that the

economy with a fixed network is on average 2.12% less productive than the economy with a flexible

network (see Table 2). The intuition for this difference is straightforward. As some sectors of the

economy become more productive, firms would like to take advantage of their cheaper inputs by

relying more on them in production. With a flexible network this is possible, and the aggregate

economy becomes more productive as a result. In contrast, when the network is fixed, firms are

stuck with less productive suppliers and the economy produces less. Perhaps surprisingly, the fixed

network economy is also slightly more stable than its flexible counterpart with a standard deviation

of log GDP that is 0.13% smaller. To understand why, recall that the planner balances increasing

the expected value of log GDP against lowering its variance. In the calibrated model, the planner

is willing to suffer a slight increase in variance, compared to the fixed network alternative, for

large gains in expected value. Overall, this comparison with a fixed network suggests that policy

interventions that impede or slow down the reorganization of supply chains might have a sizable

impact on welfare.

While the differences between the fixed and endogenous network economies are substantial,

they are particularly large during volatile periods, when adjusting the network is most beneficial.

In Appendix G.2, we show that allowing the network to adjust in response to shocks leads to large

gains in expected GDP during the Great Recession.

The role of uncertainty

The differences between the flexible and fixed network economies come from variations in both

µt and Σt. To isolate the role of uncertainty in shaping the production network and GDP, we

consider two alternative economies. Our comparison below is focused on GDP (and its moments)

and expected welfare, but Appendix C.3 also compares the input shares and the Domar weights in

the baseline and the alternative economies.
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Table 2: Uncertainty, GDP and welfare in the post-war sample

Baseline model compared to...

Fixed network as if Σt = 0 Known εt

Expected log GDP, E[y] +2.12% −0.01% +0.68%

Expected st. dev. of log GDP,
√

V[y] +0.13% −0.10% −0.22%
Expected welfare, W +2.11% +0.01% +0.71%
Realized log GDP, y +1.61% +0.07% −0.54%

Notes: Baseline variables minus their counterparts in the “fixed network”, the “as if Σt = 0”, the “known εt” alterna-
tives.

The “as if Σt = 0” economy We first consider an alternative economy in which firms choose

their production technique as if Σt = 0. In practice we set Σ = 0 when solving the problem of

the social planner (18) for the equilibrium network α∗. We then reintroduce uncertainty when

computing the moments of GDP and welfare. Table 2 reports these moments. In line with the

theory, the baseline economy is less productive and less volatile than the alternative. When Σt ̸= 0,

it is worthwhile from the firms’ perspective to use suppliers that are less productive but safer, which

translates into the observed differences in E[y] and V [y]. The differences are however fairly small.

The reason for this is that for most of the sample period, uncertainty is relatively low, so that

firms simply buy their inputs from the most productive suppliers without much concern for any

risk involved.33 We explore the sensitivity of our results to different values of ρ in Appendix G.1.

Since uncertainty changes over time, its impact on GDP and welfare is also time-varying. The

panels in the left column of Figure 7 compare the baseline economy to the “as if Σt = 0” alternative

(denoted with tildes in the figure) over the sample period. The comparison is made in terms of

expected log GDP (top panel), the standard deviation of log GDP (second panel), expected welfare

(third panel), and realized log GDP (bottom panel). As we can see, the biggest differences occur

during periods of high uncertainty such as the oil shocks of the 1970’s, the dot-com bubble, and

the Great Recession.

We know from Figure 5 that uncertainty was particularly high during the Great Recession and,

accordingly, this is also when the differences between the two models are the largest. The top

panel of Figure 7 shows that expected GDP in the baseline economy is about 0.25% lower in 2009

than in the alternative economy. Because of the large increase in uncertainty, firms adjust their

production techniques toward safer but less productive suppliers to avoid potentially disastrous

increases in costs. The result in terms of aggregate volatility is visible in the second panel, where

we see that GDP is about 2.37% less volatile in 2009 in the baseline economy. While the implied

reduction in expected log GDP in the baseline economy is sizable, the reduction in its variance

is important enough to lead to an increase in welfare of about 0.36% when compared to the “as

33As in Lucas (1987), the utility cost of business cycle fluctuations is on average small in our model and the planner
does not want to sacrifice much in terms of the level of GDP for a reduction in volatility.
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if Σt = 0” economy (third panel). Interestingly, realized log GDP, shown in the bottom panel, is

substantially higher in the baseline economy than in the alternative. Essentially, firms were worried

about particularly bad TFP draws and opted for safer suppliers, and then their fears were realized.

The year 2009 saw bad TFP draws (as evident from Figure 5), and so the baseline economy fared

about 2.67% better in terms of realized GDP compared to the alternative.

The perfect foresight (“known εt”) economy We also consider a second alternative econ-

omy in which firms can observe the random draw of the productivity vector εt prior to choosing

their production techniques. One interpretation of this setup is that adopting a new technique is

immediate, so that firms can wait to pick the best technique for a particular εt draw. Techniques

and intermediate input choices are thus made simultaneously and conditional on observed prices.

In this alternative economy, beliefs (µt,Σt), and in particular uncertainty, play no role in shaping

the network and, from the planner’s problem, the optimal network is simply the one that maximizes

(realized) consumption. It follows that consumption (or GDP) is always larger than in the baseline

model (bottom right panel in Figure 7). Unsurprisingly, the difference is particularly pronounced

during episodes of high uncertainty, when knowing εt provides a larger advantage, and reaches a

high of 3% during the Great Recession. On average, GDP is 0.54% larger than in the baseline

economy suggesting a sizable impact of uncertainty on the economy (bottom row in Table 2).

The top three panels in the right column of Figure 7 show how the baseline and alternative

economies differ in terms of expected log GDP, the standard deviation of log GDP, and (expected)

welfare. Crucially, these measures are evaluated before ε is realized.34 Welfare W is always lower

in the alternative economy because, by construction, W is what the network in the baseline model

maximizes. Furthermore, the optimal network in this economy does not seek to increase E [y] and

reduce V [y]. As a result, E [y] is on average lower and V [y] is on average higher (right column in

Table 2).

Overall, our findings suggest that allowing the production network to reorganize itself in re-

sponse to changes in the productivity process can lead to large welfare gains. During volatile

periods, uncertainty alone can play an important role in shaping the production network, with sub-

stantial consequences for expected and realized GDP, as well as for welfare. Our results therefore

highlight the importance for firms of reorganizing supply lines during turbulent periods. It also

suggests that policies, such as trade barriers, that would impede this reorganization might have

significant side effects.

While the calibrated model suggests that the effect of uncertainty on welfare and output may

be substantial, there are reasons to believe that the model estimates are conservative. In reality,

many firms are owned by individuals whose consumption is likely to be more volatile than that

of the representative household in the model. It is also likely that many entrepreneurs have a

34Note that realized welfare in this economy is simply equal to realized log GDP.
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Figure 7: The role of uncertainty in the postwar period

Left column: the “as if Σt = 0” alternative Right column: the “known εt” alternative

(a) Difference in expected log GDP [%] (b) Difference in expected log GDP [%]

(c) Difference in expected st. dev. of log GDP [%] (d) Difference in expected st. dev. of log GDP [%]

(e) Difference in expected welfare [%] (f) Difference in expected welfare [%]

(g) Difference in realized log GDP [%] (h) Difference in realized log GDP [%]

Notes: The differences between the series implied by the baseline model (without tildes) and the two alternatives (marked by
tildes): the “as if Σt = 0” alternative (left column) and the “known εt” alternative (right column). All economies are hit by
the same shocks that are filtered out from the TFP data under our baseline model. All differences are expressed in percentage
terms. Expected log GDP E[y] and expected standard deviation of log GDP V[y] are evaluated before εt is realized.

less diversified portfolio than the representative household and earn most of their income from a

single firm. More uncertain consumption that covaries more strongly with firm profits would make

entrepreneurs more sensitive to risk, hence making them more likely to take action to mitigate

uncertainty about input prices. In addition, the model probably underestimates the risk associated

with input prices. While the firms within each sector in our model are homogenous, in reality each

sector is made up of heterogeneous firms that, in addition to sector-specific shocks, are also subject

to firm-specific disturbances. To the extent that individual firms buy intermediate inputs from

other individual firms, this will add to the input price uncertainty that they are facing.

Finally, it is important to note that for tractability the model abstracts from other forces that

might affect the network and the Domar weights. For instance, technological changes might have

an impact on the TFP shifter functions and push firms to adjust their technique choice. Similarly,

the elasticity of substitution, given a technique, could differ from one, so that price changes would
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also affect Domar weights. Including these forces in the model may affect the quantitative response

of the production network to changes in uncertainty.

7 Model-free evidence for the mechanisms

The model used in the previous section to study the impact of uncertainty on the production

network and the macroeconomy, while tractable, imposes a lot of structure on the data. In this

section, we present additional evidence in support of the main mechanisms of the paper that does

not rely on this structure. Through firm-level regressions that closely follow Alfaro et al. (2019) we

document that 1) higher uncertainty leads to a decline in Domar weight, and 2) network connections

involving riskier suppliers are more likely to break down. We test these predictions at the firm level

to take advantage of the abundance of data and of instrumental variables that are available at this

level of aggregation. Appendix D describes the data and the instruments in detail.

7.1 Uncertainty and Domar weights

We first test the model’s prediction that Domar weights decrease with supplier uncertainty. We

use annual U.S. data from 1963 to 2016 provided by Compustat. Our main variables of interest

are a firm’s Domar weight, constructed by dividing its sales by nominal GDP, and a measure of

its stock price volatility, which we use as a proxy for uncertainty.35 We then regress the change

in Domar weight on the change in stock price volatility. The results are presented in the first

column of Table 3. In column (2), we follow Alfaro, Bloom, and Lin (2019) and address potential

endogeneity concerns by instrumenting stock price volatility with industry-level exposure to ten

aggregate sources of uncertainty shocks. In column (3), we use option prices to back out an implied

measure of future volatility. In all cases, we find a negative and significant relationship between

uncertainty and Domar weights. The effect is also economically large with a decline in Domar

weight of about 18% following a doubling in firm-level volatility (roughly a 3.3 standard deviation

volatility shock), according to the IV estimates. Overall, these results provide evidence that higher

uncertainty leads to lower Domar weights, in line with the predictions of our theoretical model.

7.2 Uncertainty and link destruction

We conduct a similar exercise, this time at the firm-to-firm relationship level, to investigate

whether higher supplier uncertainty is associated with a higher likelihood of link destruction. We

proceed by combining the uncertainty data described above with data from 2003 to 2016 about

firm-level supply relationships provided by Factset. We then regress a dummy variable that equals

35Ersahin et al. (2022) use textual analysis of earning conference calls to measure firm-level supply chain risk, and
find that it is positively correlated with stock price volatility. They also find that firms respond to higher supply
chain risks by switching to a wider range of less risky suppliers.
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Table 3: Domar weights and uncertainty

Change in Domar weight
(1): OLS (2): IV (3): IV

∆Volatilityi,t−1 −0.058∗∗∗ −0.137∗∗∗ −0.218∗∗∗

(0.004) (0.034) (0.073)

1st moment 10IVi,t−1 No Yes Yes
Type of volatility Realized Realized Implied
Fixed effects Yes Yes Yes
Observations 112,563 27,380 17,151
F -statistic — 14.2 9.8

Notes: Table presents OLS and 2SLS annual regression results of firm-level voltality. The dependent variable is the growth rate in Domar weight.
Supplier ∆Volatilityi,t−1 is the 1-year lagged change in firm-level volatility. Realized volatility is the 12-month standard deviation of daily stock

returns from CRSP. Implied volatility is the 12-month average of daily (365-day horizon) implied volatility of at-the-money-forward call options
from OptionMetrics. As in Alfaro et al. (2019), “we address endogeneity concerns on firm-level volatility by instrumenting with industry-level
(3SIC) non-directional exposure to 10 aggregate sources of uncertainty shocks. These include the lagged exposure to annual changes in expected
volatility of energy, currencies, and 10-year treasuries (as proxied by at-the-money forward-looking implied volatilities of oil, 7 widely traded
currencies, and TYVIX) and economic policy uncertainty from Baker et al. (2016). [...] To tease out the impact of 2nd moment uncertainty
shocks from 1st moment aggregate shocks we also include as controls the lagged directional industry 3SIC exposure to changes in the price of
each of the 10 aggregate instruments (i.e., 1st moment return shocks). These are labeled 1st moment 10IVt−1.” See Alfaro et al. (2019) for more
details about the data and the construction of the instruments. All specifications include year×industry (2SIC) fixed effects. Standard errors (in
parentheses) are clustered at the industry (3SIC) level. F -statistics are Kleibergen-Paap. ∗,∗∗ ,∗∗∗ indicate significance at the 10%, 5%, and 1%
levels, respectively.

one in the last year of a relationship on the change in the supplier’s stock price volatility. The

results are presented in column (1) of Table 4. As in the last exercise, column (2) uses industry-

level sensitivity to aggregate shocks as instruments, and column (3) uses implied volatility from

option prices as a measure of uncertainty. In all cases, we find a positive and statistically significant

relationship between supplier volatility and the end of supply relationships, which is consistent with

buyers moving away from riskier suppliers. The effect is also economically large with a doubling

in volatility associated with a 12 percentage point increase in the likelihood that a relationship is

destroyed, according to the IV estimates.
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Table 4: Link destruction and supplier volatility

Dummy for last year of supply relationship
(1): OLS (2): IV (3): IV

∆Volatilityt−1 of supplier 0.026∗∗ 0.097∗∗∗ 0.144∗∗

(0.012) (0.035) (0.063)

1st moment 10IVt−1 of supplier No Yes Yes
Type of volatility Realized Realized Implied
Fixed effects Yes Yes Yes
Observations 35,629 35,620 26,195
F -statistic — 22.9 10.39

Notes: Table presents OLS and 2SLS annual regression results of firm-level voltality. The dependent variable is a dummy variable that equals one in
the last year of a supply relatonship and zero otherwise. We limit the sample to relationships that have lasted at least five years. The IV estimates
remain significant when relationships of other lengths are considered. Supplier ∆Volatilityt−1 is the 1-year lagged change in supplier-level volatility.

Realized volatility is the 12-month standard deviation of daily stock returns from CRSP. Implied volatility is the 12-month average of daily (365-day
horizon) implied volatility of at-the-money-forward call options from OptionMetrics. As in Alfaro et al. (2019), “we address endogeneity concerns
on firm-level volatility by instrumenting with industry-level (3SIC) non-directional exposure to 10 aggregate sources of uncertainty shocks. These
include the lagged exposure to annual changes in expected volatility of energy, currencies, and 10-year treasuries (as proxied by at-the-money
forward-looking implied volatilities of oil, 7 widely traded currencies, and TYVIX) and economic policy uncertainty from Baker et al. (2016). [...]
To tease out the impact of 2nd moment uncertainty shocks from 1st moment aggregate shocks we also include as controls the lagged directional
industry 3SIC exposure to changes in the price of each of the 10 aggregate instruments (i.e., 1st moment return shocks). These are labeled 1st
moment 10IVt−1.” See Alfaro et al. (2019) for more details about the data and the construction of the instruments. All specifications include
year×customer×supplier industry (2SIC) fixed effects. Standard errors (in parentheses) are two-way clustered at the customer and the supplier
industry (3SIC) levels. F -statistics are Kleibergen-Paap. ∗,∗∗ ,∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

8 Conclusion

We construct a model in which agents’ beliefs about productivity affect the structure of the

production network and, through that channel, other macroeconomic aggregates such as output

and welfare. We prove that there exists an equilibrium that is efficient and that this equilibrium

is characterized by a trade-off between the expected level and the volatility of GDP. We also prove

that uncertainty, through its effect on the network, unambiguously lowers expected log GDP. When

calibrated to the United States economy, the model predicts that the impact of uncertainty on the

network can have a sizable effect on GDP and welfare, especially during periods of high uncertainty

such as the Great Recession.

The model is tractable and can serve as a framework to study other related questions. For

instance, with some adjustments, our closed economy model could be extended to study uncertainty

about international supply chains. Such a model could inform recent policy discussions about

onshoring by spelling out both the benefits and the costs of reallocating production to locations

with lower geopolitical risk. It would also be natural to extend the analysis in this paper to a model

calibrated to firm-level data and to allow firms to enter and exit. However, such an extension would

be more involved, as it would necessitate moving away from the perfect competition framework

proposed here. Finally, we believe that in reality dynamic considerations might play an important

role when firms are deciding to create relationships with suppliers, and so a dynamic version of our

model can be a worthwhile extension.
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Online Appendix

A Microfoundation for the “one technique” restriction

In the main text, we made the ad hoc assumption that each sector can only adopt one production

technique. Without this restriction, a large number of production techniques might be adopted and,

after the shock ε is realized, only the technique that is best suited to this specific realization of ε

would produce. In practice, we believe that several frictions might prevent this type of behavior.

For instance, information frictions might make it impossible to redirect demand to the plant with

the best technique after the shock is realized. Alternatively, engineers might be needed to explore

how to set up a production technique, and there might be economies of scales pushing firms to

adopt the same technique to save on engineering costs.

In this appendix, we propose one possible microfoundation for the “one technique” restriction.

This microfoundation relies on decentralized trade for goods and on an information friction that

prevents buyers from targeting specific producers. To describe this microfoundation, we first go

over the economic agents in this environment. As in the main text, we still assume that there are n

sectors/goods, but we are now explicit about the firms that operate within a sector. Specifically, in

each sector i ∈ {1, . . . , n} there is a continuum of firms indexed by l ∈ [0, 1]. Each firm l operates

a plant that can produce using a single production technique αli ∈ Ai. We assume that physical

restrictions, such as available factory space, prevent a plant for adopting multiple techniques.

Different firms/plants in the same sector are however free to adopt different techniques.

Transactions between buyers (the household and intermediate firms) and sellers are conducted

through shoppers. These shoppers are sent out by the buyers to meet sellers and negotiate terms

of trade. Each shopper is atomistic, can purchase a measure one of goods and is matched with a

seller at random. It follows that if in the market for good i there is a total demand of Qi, each

producer l is matched with a mass Qidl of shoppers. Importantly, we assume that shoppers do not

observe anything about the producers before they meet, and so cannot direct their search in any

way.

If a shopper from firm m in sector j (or from the household) meets producer l in sector i, they

agree to trade at a price P̃ jmil through a protocol described below.36 From these prices we can

compute the effective price paid by a firm in j (or by the household) for goods i. Since m sends a

continuum of shoppers to all producers in sector i, the effective price it pays is equal to the average

price

P̃ jmi =

∫ 1

0
P̃ jmil dl.

36For notational convenience, let j = 0 denote the household and assume that there is a unit mass of “sub-
households” indexed by m ∈ [0, 1].
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Individual prices P̃ jmil are set by splitting the joint surplus of the match through Nash bargaining.

Specifically, if we denote the marginal benefit to the buyer of acquiring good i as Bjm
i , then the

transaction price is such that the surplus of the seller is equal to a fraction 0 ≤ ς ≤ 1 of the total

surplus. That is to say,

P̃ jmil −Ki

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

)
= ς

(
Bjm
i −Ki

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

))
, (35)

where Ki

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

)
is the unit cost of producer l in sector i under a chosen technique

αli.

From this last equation, we can write the technique choice problem of firm l. Since techniques

are chosen before uncertainty is realized, we must average (35) across all states of the world,

taking into account the stochastic discount factor of the household and the varying demand (mass

of shoppers) for the good. It follows that firm l in sector i picks a production technique αli to

maximize

E

Λ n∑
j=0

Qjidl

∫ 1

0
ς

(
Bjm
i −Ki

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

))
dm

 ,
where Qjidl denotes the demand from sector j for goods produced by firm l in sector i. Since αli

only affects this expression through Ki, this maximization problem is equivalent to minimizing

E

[
ΛQiKi

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

)]
, (36)

where Qi =
∑n

j=0Qji is total demand for sector i. Notice that this technique choice problem would

be the same as the one described by (9) in the main text if the vector of input prices did not depend

on the specific buying firm l and if all prices were equal to unit costs. To get that outcome, we now

take the limit ς → 0, so that the bargaining power of the sellers goes to zero. In that case, (35)

implies that

P̃ jmil = Ki

(
αli,
{
P̃ ilk

}
k∈{1,...,n}

)
,

and so P̃ jmil does not depend on the identity of the buyer, i.e. on j or m. It follows that effective

demand P̃ ilk =
∫ 1
0 P̃

il
ksds does not depend on i and l, and we therefore can write P̃ ilk = Pk. Finally,

this implies that the cost minimization problem (36) does not depend on the specific identity l of

the firm. Given that the TFP shifter function is log concave, all firms in sector i therefore make

the same technique choice αi, have the same unit cost Ki (αi, P ) where P = (P1, . . . , Pn), and that

all prices are equal to unit cost, as in the model in the main text.
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B First order approximation of the equilibrium network

In Section 5, we described how beliefs affect the structure of the production network when

the cost of deviating from the ideal shares is large. In this appendix, we are explicit about these

derivations. Recall that for this exercise we assume that the TFP shifter ai (αi) can be written

as ai (αi) = −κ̄ × âi (αi) with âi (α
◦
i ) = 0 and

∂âi(α◦
i )

∂αij
= 0. Throughout, we also assume that the

Hessian H◦
i of âi evaluated at α◦

i , i.e. the matrix with typical element [H◦
i ]jk =

∂2âi(α◦
i )

∂αij∂αik
, is positive

definite for all i.

GDP and welfare when κ̄ is large

We now derive approximate equations for GDP and welfare when the cost of deviating from

the ideal shares is large. These equations are described in the main text in Section 5.3. Recall

from (14) that GDP is the inner product of the Domar weight and sectoral TFP vectors. Using the

standard formula for the derivative of a matrix inverse, we can approximate the vector of Domar

weights around α◦ as

ω′ = β′L ≈ (ω◦)′ + β′L◦ (∆α)L◦︸ ︷︷ ︸
(∆ω)′

, (37)

where ω◦ = β′L (α◦) and ∆α is the change in the production network as defined in (50). In (37)

we implicitly define ∆ω for future reference.

Multiplying (37) with an approximation of the sectoral TFP vector, we can write log GDP as

y ≈ (ω◦ +∆ω)′ ×


ε−κ̄



(∆α1)
′H◦

1∆α1

...

(∆αi)
′H◦

i ∆αi
...

(∆αn)
′H◦

n∆αn


︸ ︷︷ ︸

∆a


, (38)

where we have used the fact that a (α◦) = 0 and
∂âi(α◦

i )
∂αij

= 0 for all i and j. Keeping only linear

terms in κ̄−1 (from (50), ∆α is of order κ̄−1, which means that ∆a is also of order κ̄−1) we find

y = (ω◦)′ ε+ (∆ω)′ ε+ (ω◦)′∆a, (31)

which is the equation displayed in the main text. It is then straightforward to compute the expected
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value and the variance of log GDP, to a first order, as

E [y] ≈ (ω◦)′ µ+ (∆ω)′ µ+ (ω◦)′∆a,

V [y] ≈ (ω◦)′Σω◦ + 2 (∆ω)′Σω◦.

Using (18), we can then compute welfare as

W ≈ (ω◦)′ µ+ (∆ω)′ µ+ (ω◦)′∆a︸ ︷︷ ︸
E[y]

−1

2
(ρ− 1)

(
(ω◦)′Σω◦ + 2 (∆ω)′Σω◦)︸ ︷︷ ︸

V[y]

.

These equations provide closed-form characterizations of the key aggregate quantities in the econ-

omy.

It is then straightforward to compute how log GDP responds to changes in beliefs. The deriva-

tives of E [y] are given by

dE [y]

dµi
≈ ω◦

i +∆ωi +

(
d∆ω

dµi

)′
µ+ (ω◦)′

d∆a

dµi
,

dE [y]

dΣii
≈
(
d∆ω

dΣii

)′
µ+ (ω◦)′

d∆a

dΣii
,

where

d∆ω

dµi
≈ β′L◦

(
d∆α

dµi

)
L◦,

d∆ω

dΣii
≈ β′L◦

(
d∆α

dΣii

)
L◦,

d∆aj
dµi

≈ 2

(
d∆αj
dµi

)′
H◦
j∆αj ,

d∆aj
dΣii

≈ 2

(
d∆αj
dΣii

)′
H◦
j∆αj ,

and where d∆α
dµi

and d∆α
dΣii

are given by (23) and (24). Similarly, the derivatives of V [y] are

dV [y]

dµi
≈ 2

(
d∆ω

dµi

)′
Σω◦,

dV [y]

dΣii
≈ 2

(
d∆ω

dΣii

)′
Σω◦ + (ω◦

i )
2 + 2∆ωiω

◦
i ,

and the derivatives of W can be computed by combining the underlying derivatives of E [y] and

V [y].
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C Additional results related to the calibrated economy

C.1 List of the sectors in our analysis

Table 5 provides the list of the sectors in the vom Lehn and Winberry (2021) dataset and in

the calibrated economy

Table 5: The 37 sectors used in our analysis

Mining Utilities

Construction Wood products

Nonmetallic minerals Primary metals

Fabricated metals Machinery

Computer and electronic manufacturing Electrical equipment manufacturing

Motor vehicles manufacturing Other transportation equipment

Furniture and related manufacturing Misc. manufacturing

Food and beverage manufacturing Textile manufacturing

Apparel manufacturing Paper manufacturing

Printing products manufacturing Petroleum and coal manufacturing

Chemical manufacturing Plastics manufacturing

Wholesale trade Retail trade

Transportation and warehousing Information

Finance and insurance Real estate and rental services

Professional and technical services Management of companies and enterprises

Administrative and waste management services Educational services

Health care and social assistance Arts and entertainment services

Accommodation Food services

Other services

Notes: Sectors are classified according to the NAICS-based BEA codes. See vom Lehn and Winberry
(2021) for details of the data construction.

C.2 Details of the calibrated economy

Cost of deviating from the ideal input shares

The overall mean of the elements of the calibrated cost matrix κ̂ is 194 with a standard deviation

of 447. The average and the standard deviation of the elements of the estimated vector κ̂i are 14.11

and 17.56, respectively. The analogous statistics for κ̂j are 13.73 and 17.18. To interpret these

numbers, it helps to transform them into what they imply for productivity. If we increase one

input share from its ideal value by one standard deviation in one sector, the average TFP loss for

that sector is 0.06%.

To better understand the structure of the κ̂ matrix, Figure 8 shows for each sector the elements

of the vectors κ̂i and κ̂j . As we can see, the amount of variation across sectors is quite substantial.

The sectors with the highest κ̂i are “Misc. manufacturing” and “Machinery”, indicating that it is
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particularly costly for these sectors to deviate from their ideal input shares. The sectors with the

highest κ̂j are “Petroleum”, “Furniture” and “Health care”, implying that all firms tend to find it

costly to adjust their input share of these sectors.

Figure 8: The calibrated costs of deviating from the ideal input shares

(a) Vector of costs κi (b) Vector of costs κj

Sectoral total factor productivity

The estimated drift vector γ̂ features substantial variation across sectors, indicating sizable

dispersion in the trajectory of sectoral TFP. “Computer and electronic manufacturing” has the

highest average annual growth in the sample, with εit growing 5.6% faster than the average sector.

At the other end of the spectrum, productivity in “Food services” shrank by −2.9% per year relative

to the average sector.

Similarly, the estimated covariance matrix Σ̂t suggests that there is also substantial dispersion

in uncertainty across sectors. The most volatile productivity is found in “Electrical equipment”

with an average
√

Σ̂iit of 38.0%, and the least volatile sector is “Real estate” with an average√
Σ̂iit of 1.8%. There is also a lot of variation across sectors in how much volatility changes over

time. The standard deviation of
√
Σ̂iit is largest for the “Electrical equipment” sector at 25.6%

and smallest for “Real estate” at 1.1%.

C.3 Input shares and Domar weights

In this appendix, we compare the behavior of the input shares and the Domar weights in the

baseline economy and in the two alternative economies introduced in Section 6: the one with Σt = 0

and the economy in which production techniques are chosen after observing εt. As we can see from

Table 6 all versions of the model perform almost identically in terms of average shares and Domar

weights. The standard deviations differ however across models. Specifically, the baseline model, in

which firms care about uncertainty, features standard deviations that 4% to 8% lower than in the

alternatives, depending on the precise comparison.
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Table 6: Domar weights and input shares in the model and in the data

Statistic
Version of the model

Data Baseline Σt = 0 Known εt

(1) Average Domar weight ω̄j 0.047 0.032 0.032 0.032
(2) Standard deviation σ (ωj) 0.0050 0.0021 0.0022 0.0023
(3) Coefficient of variation σ (ωj) /ω̄j 0.107 0.066 0.070 0.070
(4) Average share, ᾱij 0.013 0.008 0.008 0.008
(5) Standard derivation σ (αij) 0.0048 0.0023 0.0024 0.0024
(6) Coefficient of variation σ (αij) /ᾱij 0.37 0.30 0.31 0.31

Notes: For each sector, we compute the time series of its Domar weight ωjt, as well as their their mean ω̄j and standard deviation
σ(ωj). Rows (1) and (2) report the cross-sectional average of these statistics. Row (3) is the ratio of rows (2) and (1). For each
pair of sectors, we compute the time series of the input share αijt, as well as their their mean ᾱij and standard deviation σ(αij).
Rows (4) and (5) report the cross-sectional average of these statistics. Row (6) is the ratio of rows (5) and (4). The “Baseline”
model is the model in which risk-averse firms choose techniques before TFP shocks ε are realized. The “Σt = 0” model is the
model in which the planner selects the network as if Σ = 0. The “Known εt” model is the model in which firms choose techniques
after the TFP shocks ε are realized.

The response of the network to uncertainty differs particularly strongly across models during

periods of high uncertainty. To show this, we compute changes in sectoral Domar weights ∆ωit =

ωit−ωi,t−1 in the baseline model and in the two alternatives. As usual, we denote changes in sectoral

Domar weights in the alternative models by tildes, i.e. ∆ω̃it. We then compute the cross-sectional

average of the absolute differences between ∆ωit and ∆ω̃it, and normalize it by the cross-sectional

average of standard deviations of |∆ωit|. This measure captures the difference between models in

how Domar weights change over time.

Figure 9 shows the resulting graphs. In the top panel, the “Σt = 0” model is used as alternative.

In the bottom panel, the “known εt” model is used as alternative. In the top panel the differences are

particularly pronounced during high-uncertainty episodes, when risk-averse firms actively switch to

safer production inputs. In the bottom panel, the Domar weights deviate from the baseline model

much more. This is because the production network adapts to the specific εt draw, and so the

differences are visible even in relatively tranquil times.

C.4 Correlations between sectors

In this section, we report the correlation between sectoral output in the calibrated model and in

the data. We focus on growth rates to accommodate different trends in the data and in the model.

The results are presented in Table 7. In the first column, we see that sectoral sales are positively

correlated in both the model and in the data data, although the model correlation is a bit weaker.

We also report these correlations during periods of low and high TFP growth and uncertainty

growth, as measured by (33) and (34). We see that in the data these correlations are lower in good

times, when TFP growth is robust and uncertainty growth is low. The model is able to replicate

that ranking. Intuitively, in bad times consumption is low and so the household is particularly
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Figure 9: Average of absolute differences in Domar weight growths in the postwar period

(a) The “as if Σt = 0” alternative

(b) The “known εt” alternative

Notes: Panel (a): difference between the series implied by the baseline model (without tildes) and the ”as if Σt = 0” alternative
(with tildes) ; Panel (b): difference between the baseline model (without tildes) and the alternative in which firms choose
techniques after TFP shocks ε are realized (with tildes). Both economies are hit by the same shocks that are filtered out from
the TFP data under our baseline model. Both series are normalized by the cross-sectional average of the standard deviations
of growths in sectoral Domar weights.

worried about bad shocks. To avoid them, firms rely more on the most stable producers. As firms

are mostly purchasing from the same sectors, sectoral outputs become more correlated.

Table 7: Correlations in sectoral sales growth

All years TFP growth Uncertainty growth
Low High Low High

Model 0.18 0.22 0.13 0.16 0.20
Data 0.36 0.37 0.34 0.32 0.38

Notes: Correlation of sectoral sales growth in the model and in the data. TFP growth
and Uncertainty growth are measured as in Figure 5. We use high/low to refer to years
with TFP growth or uncertainty growth above/below corresponding median levels.

D More details about the regressions of Section 7

In this section, we provide more details about the regressions presented in Tables 3 and 4.

The firm-level production network data comes from the Factset Revere database and covers the

period from 2003 to 2016. We limit the sample to relationships that have lasted at least five years.

The IV estimates remain significant when relationships of other lengths are considered. The firm-

level uncertainty data comes from Alfaro et al. (2019) and was downloaded from Nicholas Bloom’s

website at https://nbloom.people.stanford.edu. We thank the authors for sharing their data.
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Alfaro et al. (2019) describes how the data is constructed in detail, and we only include here a

summary of how the instruments are computed. The instruments are created by first computing

the industry-level sensitivity to each aggregate shock c, where c is either the price of oil, one of seven

exchange rates, the yield on 10-year U.S. Treasury Notes and the economic policy uncertainty index

of Baker et al. (2016). As Alfaro et al. (2019) explain, “for firm i in industry j, sensitivitycj = βcj is

estimated as follows

rriskadji,t = αj +
∑
c

βcj · rct + ϵi,t,

where rriskadji,t is the daily risk-adjusted return of firm i, rct is the change in the price of commodity

c, and αj is industry j’s intercept. [...] Estimating the main coefficients of interest, βcj , at the

SIC 3-digit level (instead of at the firm-level) reduces the role of idiosyncratic noise in firm-level

returns, increasing the precision of the estimates. [...] We allow these industry-level sensitivities to

be time-varying by estimating them using 10-year rolling windows of daily data.” The instruments

zci,t−1 are then computed as follows:

zci,t−1 =
∣∣βcj,t−1

∣∣ ·∆σct−1,

where ∆σct−1 denotes the volatility of the aggregate variable c. As a result, instruments vary on the

3-digit SIC industry-by-year level. As in Alfaro et al. (2019), we also include in the IV regressions

the first moments associated with each aggregate series c (“1st moment 10IVi,t−1” in Tables 3

and 4) to isolate the impact of changes in their second moment alone. Note that we control

for year×customer×supplier industry (2-digit SIC) fixed effects in Tables 3 and 4. Therefore,

instruments and control variables used in columns (2) and (3) exhibit nontrivial variation within

fixed-effects bins. At the same time, such rich fixed effects allow us to compare how a given customer

firm in a given year reacts to different volatility shocks hitting its suppliers within the same 2-digit

SIC industry.

E Proofs

This section contains the proofs of the formal results from the main text.

E.1 Proof of Lemma 1

Lemma 1. For a fixed production network α,

p (α) = −L (α) (ε+ a (α)) , (13)

54



and

y (α) = ω (α)′ (ε+ a (α)) , (14)

where a (α) = (logAi (αi) , . . . , logAn (αn)) and ω (α) = (ω1 (α) , . . . , ωn (α)).

Proof. Combining the unit cost equation (8) with the equilibrium condition (11) and taking the

log we find that, for all i,

pi = −εi − ai (αi) +
n∑
j=1

αijpj , (39)

where ai (αi) = log (Ai (αi)) . This is a system of linear equations whose solution is (13). The

log price vector is also normally distributed since it is a linear transformation of normal random

variable. Combining with (6) yields (14).

E.2 Proof of Corollary 1

Corollary 1. For a fixed production network α, the following holds.

1. The impact of a change in expected TFP µi on expected log GDP E [y] is given by

∂ E [y]

∂µi
= ωi.

2. The impact of a change in volatility Σij on the variance of log GDP V [y] is given by37

∂V [y]

∂Σij
=

ω2
i i = j,

2ωiωj i ̸= j.

Proof. (15) implies that ∂ E[y(α)]
∂µi

= β′L (α) 1i. Since P ′C = WL = 1 by the household’s budget

constraint, we need to show that β′L (α) 1i = PiQi to complete the proof of the first result. From

(53), we know that PiCi = βi. Using Shepard’s Lemma together with the marginal pricing equation

(11), we can find the firm’s factor demands equations

PjXij = αijPiQi

Li =

1−
n∑
j=1

αij

PiQi. (40)

37Throughout the paper, derivatives with respect to off-diagonal elements of Σ simultaneously change Σij and Σji

to preserve the symmetry of Σ.
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Using these results, we can write the market clearing condition (12) as

PiQi = βi +
n∑
j=1

αjiPjQj .

Solving the linear system implies

β′L (α) 1i = PiQi, (41)

which proves the first part of the proposition (recall that P ′C = 1 by the household’s budget

constraint). For the second part of the result, differentiating (15) with respect to Σij and holding

Σ symmetric yields

∂V [y (α)]

∂Σij
=

β
′L (α) 1i1

′
iL (α)′ β i = j,

β′L (α)
[
1i1

′
j + 1j1

′
i

]
L (α)′ β i ̸= j

=

ω2
i i = j,

2ωiωj i ̸= j,

which is the result.

E.3 Proof of Lemma 2

Lemma 2. In equilibrium, λ (α∗), ki (αi, α
∗) and qi (α

∗) are normally distributed, and the technique

choice of the representative firm in sector i solves

α∗
i ∈ arg min

αi∈Ai

E [ki (αi, α
∗)] + Cov [λ (α∗) , ki (αi, α

∗)] . (16)

Proof. We first consider the stochastic discount factor. (55) in Appendix F.1 shows that aggregate

consumption can be written as a function of prices. Combining that equation with (5) we can write

λ = log (Λ) as

λ (α∗) = − (1− ρ)
n∑
i=1

βipi (α
∗) . (42)

Taking the log of (8) yields

ki (αi, α
∗) = − (εi + a (αi)) +

n∑
j=1

αijpj (α
∗) . (43)

Both λ (α∗) and ki (αi, α
∗) are normally distributed since they are linear combinations of ε and the

log price vector, which is normally distributed by Lemma 1.

Turning to the firm problem (10), we can write

α∗
i ∈ arg min

αi∈Ai

E

[
Λ
β′L (α∗) 1i

Pi
Ki (αi, P )

]
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where we have used (41). We can drop β′L (α∗) 1i ≥ 0 since it is a deterministic scalar that does

not depend on αi. Rewriting this equation in terms of log quantities yields

α∗
i ∈ arg min

αi∈A
E [exp [λ (α∗)− pi (α

∗) + ki (αi, α
∗)]] ,

where we emphasize that λ and pi depend only on the equilibrium technique choice α∗. All the

terms in the exponential are normally distributed. We can therefore use the expression for the

expected value of a lognormal distribution and write

α∗
i ∈ arg min

αi∈A
exp

{
E [λ (α∗)− pi (α

∗) + ki (αi, α
∗)] +

1

2
V [λ (α∗)− pi (α

∗) + ki (αi, α
∗)]

}
.

Taking away the exponentiation, as it is a monotone transformation, and E [λ (α∗)− qi (α
∗)] since

it does not affect the minimization yields

α∗
i ∈ arg min

αi∈A
E [ki (αi, α

∗)] +
1

2
V [λ (α∗)− pi (α

∗) + ki (αi, α
∗)] . (44)

This expression can be written as

α∗
i ∈ arg min

αi∈A
E [ki (αi, α

∗)] +
1

2
V [λ (α∗)] +

1

2
V [ki (αi, α

∗)− pi (α
∗)]

+ Cov [λ (α∗) , ki (αi, α
∗)] + Cov [λ (α∗) ,−pi (α∗)] ,

where we can drop V [λ (α∗)] and 2Cov [λ (α∗) ,−pi (α∗)] as they do not affect the maximization.

Finally, we can expand V [ki (αi, α
∗)− pi (α

∗)] to get

α∗
i ∈ arg min

αi∈A
E [ki (αi, α

∗)] +
1

2
E
[
(ki (αi, α

∗)− pi (α
∗)− E [ki (αi, α

∗)− pi (α
∗)])2

]
+Cov [λ (α∗) , ki (αi, α

∗)] .

Taking the first-order condition with respect to αik, we find

1

2
E

[
2 (ki (αi, α

∗)− pi (α
∗)− E [ki (αi, α

∗)− pi (α
∗)])

(
dki (αi, α

∗)

dαik
− E

[
dki (αi, α

∗)

dαik

])]
+E

[
dki (αi, α

∗)

dαik

]
+Cov

[
λ (α∗) ,

dki (αi, α
∗)

dαik

]
+ ηi + νik = 0,

where ηi is the Lagrange multiplier on
∑n

j=1 αij ≤ αi and νik is the multiplier on αik ≥ 0. At an

equilibrium, α = α∗ and ki (α
∗
i , α

∗) = pi (α
∗), and so

E

[
dki (α

∗
i , α

∗)

dαik

]
+Cov

[
λ (α∗) ,

dki (α
∗
i , α

∗)

dαik

]
+ ηi + νik = 0,
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describes the equilibrium choice of firm i. Notice that this equilibrium first-order condition can

also come from the problem

α∗
i ∈ arg min

αi∈A
E [ki (αi, α

∗)] + Cov [λ (α∗) , ki (αi, α
∗)] ,

which completes the proof.

E.4 Proof of Proposition 1

Proposition 1. An equilibrium exists.

Proof. We proceed in three steps. First, we show that there is a unique technique αi that solves

the problem of the firm, i.e. Ki is a function. Second, we show that that function is continuous.

Finally, we use a fixed-point theorem to show the existence of an equilibrium.

Step 1. We show that the right-hand side of (44) is a strictly concave function. First, note

that from (43) we can write

E [ki (αi, α
∗)] = E

− (εi + a (αi)) +
n∑
j=1

αijpj (α
∗)


= −a (αi) + E

[
−εi − α′

iL (α∗) (ε+ a (α∗))
]

which is strictly convex in αi since a (αi) = logAi (αi) is strictly concave by Assumption 1.

Similarly, combining (42) and (43) we can write

1

2
V [λ (α∗)− pi (α

∗) + ki (αi, α
∗)] =

1

2
V

− (εi + a (αi))− pi (α
∗) +

n∑
j=1

(αij − (1− ρ)βj) pj (α
∗)

 .
We can remove the term a (αi) from the variance as it is not stochastic. Combining with the

equilibrium price equation (13), we get

1

2
V [λ (α∗)− pi (α

∗) + ki (αi, α
∗)] =

1

2
V
[
−εi + 1′iL (α∗) (ε+ a (α∗))− (αi − (1− ρ)β)′ L (α∗) (ε+ a (α∗))

]
=

1

2
V
[
−εi − (αi − 1i − (1− ρ)β)′ L (α∗) (ε+ a (α∗))

]
where 1i is a column vector with a 1 in element i and zeros elsewhere. Once again we can drop the

term in a (α∗) as it is non stochastic. Define the row vector B as

B (αi, α
∗) = − (αi − 1i − (1− ρ)β)′ L (α∗)− 1′i,
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where β = (β1, . . . , βn) is a column vector. Then

V [λ (α∗)− pi (α
∗) + ki (αi, α

∗)] = B (αi, α
∗) ΣB (αi, α

∗)′ ,

where Σ is the covariance matrix of ε. The right-hand side will have a term that is linear in αi,

and that therefore does not affect the concavity of the expression, and the quadratic term

α′
iL (α∗) ΣL (α∗)′ αi.

The matrix L (α∗) ΣL (α∗)′ is a covariance matrix and hence positive semi-definite.The expression

V [λ (α∗)− pi (α
∗) + ki (αi, α

∗)] is therefore convex in αi. Since the sum of a strictly convex function

and a convex function is strictly convex, the expression

E [ki (αi, α
∗)] +

1

2
V [λ (α∗)− pi (α

∗) + ki (αi, α
∗)]

is strictly convex in the vector αi.

To complete this first step, note that the set of techniques A is convex. Since the problem

of the firm involves the minimization of strictly convex function on a convex set it has a unique

minimizer. The mapping Ki (α
∗) is therefore a function for every i and every α∗ ∈ A.

Step 2. We now show that Ki is continuous. To simplify the notation, define

gi (α, α
∗) = E [ki (α, α

∗)] +
1

2
V [λ (α∗)− pi (α

∗) + ki (α, α
∗)] .

where we have temporarily removed the subscript i on the column vector αi to avoid cluttering the

notation.

We will first show that gi (α, α
∗) is continuous. From (42) and (43), λ and k are continuous

functions of α and linear functions of p (α∗). It therefore suffices to show that p (α∗) is continuous.

From (13), we see that p (α∗) is continuous since L (α∗), as a matrix inverse, in continuous and

a (α∗) is continuous by Assumption 1. So gi (α, α
∗) is continuous.

We now turn to the proof of the continuity of Ki. We have already shown that g is strictly convex

in α so there is a unique minimizer Ki (α
∗) = argminα gi (α, α

∗). Take a sequence α∗
k → α∗

⋆ and

let αk = Ki (α
∗
k) and α⋆ = Ki (α

∗
⋆). Choose any subsequence I ⊂ N, then αk has an accumulation

point α′
k since A is compact. Since g (αk, α

∗
k) ≤ g (α, α∗

k) for all α ∈ A and k ∈ I we have, by

continuity of g, that gi (α
′
k, α

∗) ≤ gi (α, α
∗) for all α ∈ A and since the minimizer is unique it must

be that α′
k = α⋆. As a result, αk → α⋆ and κi is continuous.

Step 3. We have shown that the mapping Ki (α
∗) is continuous for all i = 1, . . . , n. Define

the mapping K (α∗) = (K1 (α
∗) , . . . ,Kn (α

∗)). Then K (α∗) is a continuous mapping from A (a

compact and convex set) to itself. Therefore, by Brouwer’s fixed-point theorem K has a fixed point

59



and an equilibrium exists.

E.5 Proof of Proposition 2

Proposition 2. There exists an efficient equilibrium.

Proof. Since we only have one agent in the economy, any Pareto efficient allocation must maximize

the utility of the representative household. Under a given network and a given productivity shock

ε the first welfare theorem applies, and the equilibrium is efficient. The consumption chosen by

the planner is therefore given by (14). Taking a step back, the efficient production network must

therefore solve

max
α∈A

E [u (Y )] = max
α∈A

1

1− ρ
E [exp ((1− ρ) log Y )]

= max
α∈A

1

1− ρ
exp

(
(1− ρ) E [log Y ] +

1

2
(1− ρ)2V [log Y ]

)
(45)

= max
α∈A

E [log Y ]− 1

2
(ρ− 1)V [log Y ]

where we have used the fact that log Y is normally distributed. Note that this problem involves

maximizing a continuous function over a compact set so that a solution in A exists by the extreme

value theorem. The rest of the proof compares the first-order conditions of the planner and of the

firms in the equilibrium.

First-order conditions of the planner. Using (15), we can write (45) as

max
α∈A

β′L (α) (µ+ a (α)) +
1

2
(1− ρ)β′L (α) ΣL (α)′ β.

The first-order conditions are

0 = β′
(

∂

∂αij
L (α)

)(
µ+ a (α) +

1

2
(1− ρ) ΣL (α)′ β

)
+ β′L (α)

(
∂

∂αij
a (α) +

1

2
(1− ρ) Σ

(
∂

∂αij
L (α)

)′
β

)
+ µ

ij
− γi

where µ
ij

are the Lagrange multipliers on the constraints on αij ≥ 0 and γi is the Lagrange

multiplier on the constraint
∑

j αij ≤ αi.
38 Now,

∂

∂αij
L (α) =

∂

∂αij
(I − α)−1 = − (I − α)−1

[
∂

∂αij
(I − α)

]
(I − α)−1 (46)

= (I − α)−1 [Oij ] (I − α)−1 = L (α)OijL (α) (47)

38Note that
∑

j αij ≤ αi < 1 implies that αij < 1, so we do not need to explicitly consider a constraint αij ≤ 1.
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where Oij = 1i1
′
j is a matrix full of zero except for a one at element (i, j). Plugging back in and

grouping terms yields

0 = β′L (α) 1i1
′
jL (α) [µ+ a (α)] + β′L (α) 1i

∂

∂αij
ai (α)

+ (1− ρ)β′L (α) 1i1
′
jL (α) ΣL (α)′ β + µ

ij
− γi

Since β′L (α) 1i is a strictly positive scalar we can divide the whole equation by it to find

0 = 1′jL (α) [µ+ a (α)] +
∂

∂αij
ai (α) + (1− ρ) 1′jL (α) ΣL (α)′ β (48)

+
(
β′L (α) 1i

)−1
(
µ
ij
− γi

)
.

Firms first-order conditions. We can repeat similar steps for the equilibrium. Combining

(44) with (13), (42) and (43), we find that firm i’s problem can be written as

α∗
i = arg min

αi∈Ai

−a (αi)− α′
iL (α∗) (µ+ a (α∗))

+
1

2

(
(αi − 1i − (1− ρ)β)′ L (α∗) + 1′i

)
Σ
(
(αi − 1i − (1− ρ)β)′ L (α∗) + 1′i

)′
.

Differentiating with respect to αij we can write the first-order conditions as

0 = −∂a (αi)
∂αij

− 1′jL (α∗) (µ+ a (α∗)) +
1

2

(
1′jL (α∗)

)
Σ
(
(αi − 1i − (1− ρ)β)′ L (α∗) + 1′i

)′
+

1

2

(
(αi − 1i − (1− ρ)β)′ L (α∗) + 1′i

)
ΣL (α∗)′ 1j + µe

ij
− γei

or

0 = −∂a (αi)
∂αij

− 1′jL (α∗) (µ+ a (α∗))

+
(
(αi − 1i − (1− ρ)β)′ L (α∗) + 1′i

)
ΣL (α∗)′ 1j + µe

ij
− γei ,

where the Lagrange multipliers have a superscript e to indicate the equilibrium. In equilibrium

α = α∗ and so

−∂a (α
∗
i )

∂αij
− 1′jL (α∗) (µ+ a (α∗)) +

(
(α∗

i − 1i − (1− ρ)β)′ L (α∗) + 1′i
)
ΣL (α∗)′ 1j + µe

ij
− γei = 0.

Finally, we can show that (1i − α∗
i )

′ L (α∗)− 1′i = 0 by right-multiplying both sides by (L (α∗))−1.

As a result, the first-order conditions become

−∂a (α
∗
i )

∂αij
− 1′jL (α∗) (µ+ a (α∗))− (1− ρ)β′L (α∗) ΣL (α∗)′ 1j + µe

ij
− γei = 0.
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Notice that these are the same first-order conditions (up to a normalization of the Lagrange multi-

pliers) as the planner’s (equation 48). The complementary slackness conditions are also the same

in both problems. As a result, any equilibrium allocation also satisfies the planner’s first-order

conditions and vice versa. Since the planner’s first-order conditions are necessary to characterize

the efficient allocation, it follows that there is an equilibrium that coincides with the efficient allo-

cation. Note however that the planner’s problem is in general not concave and that the first-order

conditions are therefore not sufficient.

E.6 Proof of Corollary 2

Corollary 2. The efficient equilibrium production network α∗ solves

W ≡ max
α∈A

E [y (α)]− 1

2
(ρ− 1)V [y (α)] , (18)

where W is a measure of the welfare of the household, and y is log GDP as defined in (14).

Proof. This is an intermediate result that was proven at (45) in the proof of Proposition 2.

E.7 Generic uniqueness of the efficient equilibrium

Consider the planner’s objective function from (18): W (α; z) = β′L (α) (µ+ a (α, z)) +
1
2 (1− ρ)β′L (α) ΣL (α)′ β, where z is a vector of parameters, which includes µ,Σ, β, ρ and any

additional parameters of the a (α, z) function. Define a space Z on the set of parameters z. We

endow this space with an absolutely continuous probability measure P. We will call the solution

to that problem generically unique if the set Z∗ for which W has multiple maximizers is almost

surely empty, i.e. P (z ∈ Z∗) = 0.

Our proof strategy relies on Lemma 1 from Cox (2020).

Proposition A1. Suppose that Ai (αi) takes the form (2) and all elements of the κ matrix are

positive.39 Then the Pareto efficient equilibrium is generically unique.

Proof. Lemma 1 of Cox (2020) requires that three properties be satisfied.

1. The set A = A1 × · · · × An, where Ai is the set of feasible production technique for firm i,

must be a disjoint union of finitely or countably many second-countable Hausdorff manifolds,

possibly with boundary or corner. This assumption is satisfied in our case since A is a

manifold in Rn2
of dimension n2 − n.

2. We need W (α, z) to be differentiable with respect to z and the derivative to be continuous

with respect to α and z. This is satisfied in our case given the form (2).

39This is the functional form we use for the quantitative analyses. In our calibrated model, all elements of the κ
matrix are positive.
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3. It must be that for all α1, α2 ∈ A such that α1 ̸= α2 we have dW(α1,z)
dz ̸= dW(α2,z)

dz , where the

derivative here indicates the gradient. We prove this by contraposition. For that purpose,

take α1, α2 ∈ A such that dW(α1,z)
dz = dW(α2,z)

dz . We are going to show that it implies that

α1 = α2. From Proposition 6, it must be that dW(α1,z)
dµi

= ωi (α1, z) = ωi (α2, z) =
dW(α2,z)

dµi
.

Since this is true for all i, it follows that the vector of Domar weights must be the same, that

it ω (α1, z) = ω (α2, z) > 0. Next, differentiate W (α, z) with respect to α◦
il to write

dW (α, z)

dα◦
il

= 2ωi

κil (αil − α◦
il) + κi0

 n∑
j=1

αij −
n∑
j=1

α◦
ij

 .
Suppose by contradiction that α1 ̸= α2. Then there exists a pair i, l such that (αil)1 ̸= (αil)2.

Without loss of generality, suppose that (αil)1 > (αil)2. Then it must be that
∑n

j=1 (αij)1 <∑n
j=1 (αij)2 for dW(α1,z)

dα◦
il

= dW(α2,z)
dα◦

il
to hold. Therefore, there exists l′ such that (αil′)1 <

(αil′)2. But then it must be dW(α1,z)
dα◦

il′
< dW(α2,z)

dα◦
il′

. Therefore, we have a contradiction and

α1 = α2.

We have shown that the three properties required by Lemma 1 of Cox (2020) are satisfied. It

follows that P (z ∈ Z∗) = 0 and the planner’s solution is generically unique. As a result, there is a

generically unique efficient equilibrium.

E.8 Proof of Proposition 3

Proposition 3. The Domar weight ωi is increasing in µi and decreasing in Σii.

Proof. Fix the initial mean and variance-covariance matrix at µ0 and Σ0, and denote the op-

timal network by α∗ (µ0,Σ0
)
. Now, consider an increase in µi from µ0i to µ1i (holding other

elements of µ0 and Σ0 fixed). The welfare changes from W
(
α∗ (µ0i , µ0−i,Σ0

)
;µ0i , µ

0
−i,Σ

0
)

to

W
(
α∗ (µ1i , µ0−i,Σ0

)
;µ1i , µ

0
−i,Σ

0
)
, which, by Proposition 6, can be written as

W
(
α∗ (µ1i , µ0−i,Σ0

)
;µ1i , µ

0
−i,Σ

0
)
= W

(
α∗ (µ0i , µ0−i,Σ0

)
;µ0i , µ

0
−i,Σ

0
)
+

∫ µ1i

µ0i

ωi
(
µi, µ

0
−i,Σ

0
)
dµi.

Now suppose instead that the network is fixed at its original value α∗ (µ0i , µ0−i,Σ0
)
. From Equations

(15), a change in µi affects welfare only through its impact on expected GDP. By Lemma 1, the

change in welfare can be written as

W
(
α∗ (µ0i , µ0−i,Σ0

)
;µ1i , µ

0
−i,Σ

0
)
= W

(
α∗ (µ0i , µ0−i,Σ0

)
;µ0i , µ

0
−i,Σ

0
)
+ ωi

(
µ0i , µ

0
−i,Σ

0
) (
µ1i − µ0i

)
.

Since the initial network α∗ (µ0i , µ0−i,Σ0
)

is attainable at
(
µ1i , µ

0
−i,Σ

0
)
, it must be that

W
(
α∗ (µ1i , µ0−i,Σ0

)
;µ1i , µ

0
−i,Σ

0
)
≥ W

(
α∗ (µ0i , µ0−i,Σ0

)
;µ1i , µ

0
−i,Σ

0
)
. Because µ1i can be picked
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arbitrary close to µ0i , it must therefore be that ωi
(
µ1i , µ

0
−i,Σ

0
)
≥ ωi

(
µ0i , µ

0
−i,Σ

0
)
, or dωi

dµi
≥ 0.

For the second part of the proposition, recall that dW
dΣii

= (1− ρ)ω2
i by Proposition 6. Using

analogous steps, we then can establish the second part of this proposition.

E.9 Proof of Proposition 4

Proposition 4. For large κ̄ the vector of input shares in sector i is approximately given by

αi ≈ α◦
i − κ̄−1 (H◦

i )
−1R◦, (21)

where H◦
i is the Hessian matrix of âi evaluated at the ideal shares α◦

i .

Proof. An interior solution to the planner’s problem must satisfy the first-order conditions (48),

which in our setup can be written as

−∂âi (αi)
∂αij

+ 1′jL (α)
[
κ̄−1µ− â (α)

]
− κ̄−1 (ρ− 1) 1′jL (α) ΣL (α)′ β = 0, (49)

for all i and j. These conditions implicitly define the efficient network as a function of κ̄, and so we

write α = α (κ̄). We characterize this mapping when κ̄ is large or, equivalently, when κ̄−1 is small.

Given our assumptions on âi, it must be that in the limit as κ̄→ ∞ we have αi = α◦
i . By Taylor’s

theorem, we can write
α1

...

αn

 =


α◦
1
...

α◦
n

+


dα1
dκ̄−1

...
dαn
dκ̄−1


κ̄−1=0

× κ̄−1 + o
(
κ̄−1

)
.

To compute the first-order term, we use the implicit function theorem together with (49) to write
dα1
dκ̄−1

...
dαn
dκ̄−1


κ̄−1=0

= (H◦)−1 ×


L◦µ− (ρ− 1)L◦Σω◦

...

L◦µ− (ρ− 1)L◦Σω◦

 ,

where (H◦)−1 is a block-diagonal matrix with the inverse Hessians
{
(H◦

i )
−1
}n
i=1

on the main

diagonal. Therefore, the linearized equilibrium shares are

αi ≈ α◦
i + κ̄−1 (H◦

i )
−1 [L◦µ− (ρ− 1)L◦Σω◦]︸ ︷︷ ︸

∆αi

, (50)

where we implicitly define the linear term ∆αi for future reference.

We can write (50) in terms of prices. Since ai (α
◦
i ) = 0 for all i, it follows from (13) that the
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equilibrium expected log price vector evaluated at the ideal shares is given by E [p (α◦)] = −L◦µ.

Similarly, from (42) we can write

cov (p (α◦) , λ (α◦)) = cov
(
p (α◦) , (ρ− 1)β′p (α◦)

)
= (ρ− 1)L◦Σ (L◦)′ β = (ρ− 1)L◦Σω◦,

where λ (α◦) is the log of the stochastic discount factor under the ideal input shares. It follows that

we can write (50) as

αi ≈ α◦
i + κ̄−1 (H◦

i )
−1 [−E [p◦]− cov (p◦, λ◦)]︸ ︷︷ ︸

−R◦

, (21)

which is the equation that we use in the main text.

E.10 Proof of Corollary 3

Corollary 3. For large κ̄ the impact of an increase in µk on the network is approximately given

by
dαij
dµk

≈ κ̄−1 (H◦
i )

−1
jj L◦

jk︸ ︷︷ ︸
direct effect of k on j

+ κ̄−1
∑
l ̸=j

(H◦
i )

−1
jl L◦

lk︸ ︷︷ ︸
indirect effect of k

through other suppliers l ̸=j

, (23)

and the impact of an increase in Σkm on the network is approximately given by

∂αij
∂Σkm

≈

− (ρ− 1)ω◦
k
dαij

dµk
k = m,

− (ρ− 1)
(
ω◦
m
dαij

dµk
+ ω◦

k
dαij

dµm

)
k ̸= m,

(24)

where ω◦ is the vector of Domar weights at the ideal input shares.

Proof. The proof follows by directly differentiating (50).

E.11 Proof of Proposition 5

Proposition 5. Expected log GDP E [y] reaches its maximum at Σ = 0.

Proof. The proof follows from Lemma 2. Without uncertainty (Σ = 0), the term V [c (α)] is 0 for

all α, and so α is set to maximize E [c (α)]. When uncertainty is introduced, the objective function

also depends on V [c (α)] and so E [c] is no longer maximized.

E.12 Proof of Proposition 6

Proposition 6. When the network α is free to adjust to changes in µ and Σ the following holds.
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1. The impact of an increase in µi on expected welfare is given by

dW
dµi

=
∂ E [y]

∂µi
= ωi. (25)

2. The impact of an increase in Σij on expected welfare is given by

dW
dΣij

=

−1
2 (ρ− 1)

(
∂ E[y]
∂µi

)2
= −1

2 (ρ− 1)ω2
i i = j,

− (ρ− 1) ∂ E[y]∂µi

∂ E[y]
∂µj

= − (ρ− 1)ωiωj i ̸= j.
(26)

Proof. Recall from Lemma 2 that the equilibrium α∗ solves the welfare-maximization problem

W (µ,Σ) = max
α∈A

{
E [y (α)]− 1

2
(ρ− 1)V [y (α)]

}
.

Since that the objective function and the constraints are continuously differentiable functions of α,

we can apply the envelope theorem, such that

dW
dµi

=
∂ E [y]

∂µi
= β′L (α) 1i = ωi,

and
dW
dΣij

= −1

2
(ρ− 1)

∂V [y (α)]

∂Σij
= (1− ρ)β′L (α)

(
1i1

′
j

)
L (α)′ β = (1− ρ)ωiωj ,

where we used the expressions for the expectation and the variance of output given by (15).

E.13 Proof of Proposition 7

Proposition 7. Let α∗ (µ,Σ) be the equilibrium production network under (µ,Σ) and let W (α, µ,Σ)

be the welfare of the household under the network α. The change in welfare after a change in beliefs

from (µ,Σ) to (µ′,Σ′) satisfies the inequality

W
(
α∗ (µ′,Σ′) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ)︸ ︷︷ ︸
Change in welfare under the flexible network

≥ W
(
α∗ (µ,Σ) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ)︸ ︷︷ ︸
Change in welfare under the fixed network

. (27)

Proof. By definition, the change in welfare under the flexible network is

W
(
α∗ (µ′,Σ′) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ) .

By Proposition 2, α∗ (µ′,Σ′) maximizes welfare under (µ,Σ) so that

W
(
α∗ (µ′,Σ′) , µ′,Σ′) ≥ W

(
α∗ (µ,Σ) , µ′,Σ′) .

66



Combining the two expression gives the result.
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Supplemental appendix (Not for publication)

F Additional derivations

This appendix contains additional derivations that are used in the main text.

F.1 Derivation of the stochastic discount factor

The Lagrange multiplier on the budget constraint of the household captures the value of an

extra unit of the numeraire and serves as stochastic discount factor for firms to compare profits

across states of the world. The following lemma shows how to derive the expression in the main

text.

Lemma 3. The Lagrange multiplier on the budget constraint of the household (4) is

Λ =
u′ (Y )

P
,

where Y =
∏n
i=1

(
β−1
i Ci

)βi and P =
∏n
i=1 P

βi
i .

Proof. The household makes decisions after the realization of the state of the world ε. The state-

specific maximization problem has a concave objective function and a convex constraint set so that

first-order conditions are sufficient to characterize optimal decisions. The Lagrangian is

u

((
C1

β1

)β1
× · · · ×

(
Cn
βn

)βn)
− Λ

(
n∑
i=1

PiCi − 1

)

and the first-order condition with respect to Ci is

βiu
′ (Y )Y = ΛPiCi. (51)

Summing over i on both sides and using the binding budget constraint yields

u′ (Y )Y = Λ, (52)

which, together with (51), implies that

PiCi = βi. (53)
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We can also plug back the first-order condition in Y =
∏n
i=1

(
β−1
i Ci

)βi to find

Y =
n∏
i=1

(
β−1
i Ci

)βi = n∏
i=1

(
β−1
i

βiu
′ (Y )Y

ΛPi

)βi
Λ = u′ (Y )

n∏
i=1

P−βi
i (54)

which, combined with (52), yields

Y =

n∏
i=1

P−βi
i . (55)

This last equation implicitly defines a price index P =
∏n
i=1 P

βi
i such that PY = 1. Combining

that last equation with (52) yields the result.

F.2 Derivation of the unit cost function

The cost minimization problem of the firm is

Ki (αi, P ) = min
Li,Xi

Li + n∑
j=1

PjXij


subject to F (αi, Li, Xi) ≥ 1,

where F is given by (1). The first-order conditions are

Li = θ

1−
n∑
j=1

αij

F (αi, Li, Xi) ,

PjXij = θαijF (αi, Li, Xi) ,

where θ is the Lagrange multiplier. Plugging these expressions back into the objective function,

we see that Ki (αi, P ) = θ since F (αi, Li, Xi) = 1 at the optimum. Now, plugging the first-order

conditions in the production function we find

1 = eεiAi (αi) θ

n∏
j=1

P
−αij

j ,

which is the result.
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G Additional results related to the calibrated economy

G.1 Sensitivity to the risk aversion parameter ρ

In this section, we investigate the sensitivity of our results to the value of the risk aversion

parameter ρ. To do so, we solve the model for different values of ρ without recalibrating the matrix

κ. We then compare this economy to the alternative with Σ = 0. Not surprisingly, we find that

ignoring uncertainty is costlier for higher values of ρ (Table 8).

Table 8: Uncertainty, GDP and welfare: the Role of risk aversion

Comparison with Σ = 0 model
ρ = 2 ρ = 4.27

(baseline)
ρ = 10

Expected log GDP E [y (α)] +0.001% +0.008% +0.033%

Std. dev. of log GDP
√

V [y (α)] +0.038% +0.105% +0.208%
Welfare W −0.001% −0.010% −0.057%

Notes: Baseline economy variables minus their counterparts in the Σ = 0 alternative for
different values of risk aversion ρ.

The economy also responds to the spike in uncertainty during the Great Recession much more

for ρ = 10 (Figure 10). Specifically, if ρ = 10, the network adjusts such that the standard devi-

ation of GDP is almost 4.2% lower in 2009 relative to the risk-neutral alternative (second panel,

yellow crossed line). Although this adjustment is associated with a sizable decline in expected

GDP (−0.8%; first panel), welfare raises substantially (1.8%; third panel). This is because the

representative household enjoys a larger utility gain from a reduction in uncertainty under a higher

risk aversion parameter.

G.2 Great Recession: Flexible vs fixed network

In this section, we explore the role of network flexibility during the Great Recession—the period

in which the economy was hit by large adverse shocks (see Figure 5). Specifically, we fix the network

α at its 2006 pre-recession level and then hit the economy with the same shocks as in the baseline

economy with endogenous network. Figure 11 shows how the baseline economy compares to the

fixed-network alternative (denoted with tildes in the figure) over the years 2006 to 2012. We find

that expected GDP (top panel) is higher under the flexible network. This is because firms are able to

respond to changes in TFP and move away from sectors that are expected to perform badly. When

doing so, firms become exposed to more productive but also more volatile suppliers, which results

in an increase in GDP volatility (second panel). However, the first effect dominates, and welfare is

quite substantially higher when the network is allowed to adjust (third panel). Interestingly, the

economy with a flexible network does substantially worse in terms of realized GDP (bottom panel)

during the Great Recession years. As evident from the two top panels, firms optimally choose to
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Figure 10: The role of uncertainty during the Great Recession: Role of risk aversion

(a) Difference in expected log GDP [%]

(b) Difference in expected standard deviation of log GDP [%]

(c) Difference in expected welfare [%]

(d) Difference in realized log GDP [%]

Notes: The differences between the series implied by the models featuring various degrees of risk aversion (without tildes) and
the “as if Σt = 0” alternative (with tildes). All differences are expressed in percentage terms.

be exposed to more productive but riskier suppliers. During the Great Recession, some of those

risks were realized, pushing realized GDP down for the baseline case.

G.3 Time-varying consumption shares

In this appendix, we consider a version of the calibrated economy in which we let the β preference

vector change over time to match the observed consumption shares in the data. Figure 12 shows

the difference between that economy and the Σ = 0 alternative in which uncertainty has no impact

on the production network. As we can see, this figure is quite similar to Figure 7 (left column) in

the main text, suggesting that allowing β to change over time does not have a large effect on the

impact of uncertainty on the network.
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Figure 11: The role of network flexibility during the Great Recession

(a) Difference in expected log GDP [%]

(b) Difference in expected standard deviation of log GDP [%]

(c) Difference in expected welfare [%]

(d) Difference in realized log GDP [%]

Notes: The differences between the series implied by the full model (without tildes) and the model in which the network is
fixed at its 2006 level (with tildes). All differences are expressed in percentage terms.
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Figure 12: The role of uncertainty in the postwar period with time-varying β

(a) Difference in expected log GDP [%]

(b) Difference in expected standard deviation of log GDP [%]

(c) Difference in expected welfare [%]

(d) Difference in realized log GDP [%]

Notes: The differences between the series implied by the baseline model with time-varying β (without tildes) and the “as if
Σt = 0” alternative (with tildes). Both economies are hit by the same shocks that are filtered out from the TFP data under
our baseline model. All differences are expressed in percentage terms.
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H Network response when shares are complements

In this appendix, we show that when input shares are complement, we can unambiguously sign

the impact of changes in beliefs on the production network. We consider economies in which the

functions (a1, . . . , an) satisfy the following property.

Assumption 2 (Weak Complementarity). For all i, ai satisfies
∂2ai(αi)
∂αij∂αik

≥ 0 for all j ̸= k.

Assumption 2 defines a weak complementarity property between the shares that a producer

allocates to its suppliers. It states that as a firm increases the share of one input, the marginal

benefit of increasing the share of the other inputs weakly increases as well. In the context of the

functional form (2), weak complementarity is satisfied if κi0 ≤ 0.40

The following lemma shows that the impact of µ and Σ on the equilibrium network is straight-

forward when Assumption 2 holds.

Lemma 4. Let α∗ ∈ int (A) be the equilibrium network and suppose that Assumption 2 holds.

There exists a scalar Σ > 0 such that if |Σij | < Σ for all i, j, there is a neighborhood around α∗ in

which

(i) an increase in µj leads to an increase in the shares α∗
kl for all k, l;

(ii) an increase in Σjj leads to a decline in the shares α∗
kl for all k, l;

(iii) an increase in Σij leads to a decline in the shares α∗
kl for all k, l.

Part (i) of this lemma shows that when µj increases there is a widespread increase in input shares

throughout the economy. To understand this result, it is useful to decompose the impact of the

change into three channels: 1) the direct impact, 2) the indirect impact, and 3) the complementarity

effect. First, the increase in µj makes good j cheaper in expectation which pushes all of j’s direct

customers to increase their share of j in production. Second, all of j’s customers now benefit

from cheaper input prices, which makes their own goods cheaper through competition, and so

other firms are also increasing their share of these goods into production (indirect effect). Finally,

these increases in shares from the direct and indirect effects push firms to adopt techniques with

higher input shares because of the complementarities implied by Assumption 2. Taking these effects

together, all shares α in the economy increase, and so the entire production structure moves away

from labor.

Parts (ii) and (iii) of Lemma 4 provide similar results for increases in uncertainty and in cor-

relations. As discussed in Section 4.1, firms prefer suppliers with stable and uncorrelated prices.

As a result, the additional risk introduced by a higher Σjj pushes firm j’s direct and indirect cus-

tomers to reduce their exposure to j. Similarly, an increase in the covariance Σij pushes firms to

40Note that κi0 < 0 does not necessarily break the concavity requirement of Assumption 1.
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avoid inputs i and j. The complementarity effect is also at work, and so firms overall move toward

production techniques that are more labor intensive.41

Proof of Lemma 4

Proof. Point (i). Away from the constraints, the first-order conditions of the planner are

Fjk :=
∂aj
∂αjk

+ 1′kL (µ+ α) + (1− ρ)β′LΣL′1k = 0.

We use the implicit function theorem to investigate how α changes with µi. First, differentiate Fjk

with respect to µi to find

∂Fjk
∂µi

= 1′kL1i = Lki.

It follows that

∂F

∂µi
=



(
∂F1·
∂µi

)′(
∂F2·
∂µi

)′
...(

∂Fn·
∂µi

)′

 = 1n×1 ⊗ (L1i) ,

where 1n×1 is an n× 1 column vector of ones, ∂F
∂µi

is an n2 × 1 column vector which consists of the

n column vectors
(
∂Fj·
∂µi

)′
with elements

(
∂Fjk

∂µi

)
k=1,...,n

.

Next, differentiate Fjk with respect to αlm to get

∂Fjk
∂αlm

=
∂2aj

∂αjk∂αlm
+ 1′kL1l

∂al
∂αlm

+ 1′kL
(
1l1

′
m

)
L (µ+ a)

+ (1− ρ) 1′kLΣ
(
β′L1l1′mL

)′
+ (1− ρ)β′LΣ

(
1′kL1l1′mL

)′
=

∂2aj
∂αjk∂αlm

+ (1− ρ) 1′kLΣ
(
β′L1l1′mL

)′
+ Lkl

 ∂al
∂αlm

+ 1′mL (µ+ a) + (1− ρ)β′LΣL′1m︸ ︷︷ ︸
=Flm=0

 ,
where we use the first-order condition to set the last term to 0.

41The assumption that α∗ ∈ int (A) in Lemma 4 is needed to avoid potential substitution patterns between firms.
For instance, if

∑n
k=1 αik = αi for a given firm i, an increase in µj might lead to a decline in some αik, k ̸= j,

to accommodate an increase in αij . The restriction on Σ is needed to prevent a strong uncertainty feedback. For
example, if all firms increase their reliance on sector j (e.g., due to an increase in µj or a reduction in Σjj), the
economy’s exposure to j’s risk may become so large that it would be optimal to reduce αkj for some k. This does
not happen when Σ is sufficiently small.
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Now, denote by A the n2 × n2 block-diagonal matrix with the n blocks A1, A2, . . . , An along

the main diagonal such that (Aj)kl =
(

∂2aj
∂αjk∂αjl

)
k,l=1,...,n

. Denote by D the n × n2 matrix

(1− ρ)
[(
βTL

)
⊗ (LΣL′)

]
, and by B the n2 × n2 matrix that consists of n copies of D, i.e.

B = 1n×1 ⊗D. Then, by the implicit function theorem, we have

(
∂α1·
∂µi

)′(
∂α2·
∂µi

)′
...(

∂αn·
∂µi

)′

 = − (A+B)−1 ∂F

∂µi
. (56)

We will now show that when Σ = 0 (and so B = 0), all the elements on the left-hand side of (56)

are positive. Since the right-hand side of (56) is continuous in the elements of Σ, the left-hand side

will remain positive for small Σ.

We first establish that the elements of −A−1 are positive. Since ai is strictly concave by

Assumption 1, Ai is strictly negative definite for all i. As, in addition, Weak Complementarity

(Assumption 2) holds, −Ai is a (non-singular) M-matrix and so its inverse −A−1
i is nonnegative.

The diagonal elements of−A−1
i are also strictly positive. To see this, note that since Ai is Hermitian,

so is A−1
i , and we know from the Rayleigh quotient that

λmin

(
A−1
i

)
≤
x′A−1

i x

x′x
≤ λmax

(
A−1
i

)
,

where λmin

(
A−1
i

)
and λmax

(
A−1
i

)
are the smallest and largest eigenvalues of A−1

i , respectively,

and where x is any nonzero vector. By setting x = 1t, the tth basis vector we get λmin

(
A−1
i

)
≤(

A−1
i

)
tt

≤ λmax

(
A−1
i

)
. Since the eigenvalues of Ai are strictly negative by Assumption 1, we

know that λmin

(
A−1
i

)
= 1/λmax (Ai) and λmax

(
A−1
i

)
= 1/λmin (Ai). We therefore have that

(λmax (Ai))
−1 ≤

(
A−1
i

)
tt
≤ (λmin (Ai))

−1 , and so all diagonal elements of A−1
i are strictly negative

and bounded away from zero by some number 0 > A ≥
[
A−1
i

]
tt
, and so the diagonal elements of

−A−1
i are positive.

Now, due to the block-diagonal structure of A, it is true that −A−1 is a matrix with all positive

diagonal elements and nonnegative off-diagonal elements. Notice also that all elements of ∂F
∂µi

are

elements of the Leontief inverse matrix L = I + α + α2 + . . . and are positive since αi ∈ int (Ai)

for all i.

Now, in the case of no uncertainty, Σ = 0, B = 0 and the right-hand side of 56 must be

strictly positive and so is the vector of ∂αkl
∂µi

. In this case, both parts of the Lemma hold. If there

is uncertainty (Σ = 0), the result still holds if all the elements of Σ are sufficiently close to zero.

Indeed, − (A+B)−1 is continuous in Σ and, thus there exists Σ > 0 such that if |Σij | < Σ for all

i, j ∈ N 2 then elements of − (A+B)−1 ∂F
∂µi

have the same signs as the corresponding elements of
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−A−1 ∂F
∂µi

.42

Point (ii). The proof is analogous to that of point (i). We differentiate the first order conditions

with respect to a diagonal element of Σ

∂F

∂Σii
= (1− ρ)

[
1n×1 ⊗

((
β′L1i

)
(Lιi)

)]
= (1− ρ)

(
β′L1i

) ∂F
∂µi

.

Since ρ > 1 and ωi = β′L1i > 0 for all i ∈ N , the result follows from the same steps as in point (i)

Point (iii). The proof is analogous to that of point (i). We differentiate the first order

conditions with respect to an off-diagonal element of Σ. To preserve the symmetry of Σ, we

simultaneously change Σij and Σji to find

∂F

∂Σij
= (1− ρ)

[
1n×1 ⊗

((
β′L1i

)
(Lιj) +

(
β′L1j

)
(Lιi)

)]
= (1− ρ)

[(
β′L1i

) ∂F
∂µj

+
(
β′L1j

) ∂F
∂µi

]
.

Since ρ > 1 and ωi = β′L1i > 0 for all i ∈ N , the result follows from the same steps as in point

(i).

I Alternative specifications for the distribution of ε

The parametrization of the shock process ε that we use in the model is common in the uncer-

tainty literature (see for instance, Bloom et al., 2018), but has the implication that a change in

the covariance matrix Σ has a direct impact on expected GDP E [Y ], and so can affect decisions

even when the household is risk neutral (ρ = 0). This happens because the mean of a log-normal

variable like GDP is an increasing function of the variance of the underlying normal distribution. A

common approach used by many papers is to undo this effect by removing half of the variance from

the mean of the normal distribution. Unfortunately, such a change is problematic in our setup.

In this appendix, we first describe that in our setting there is no parametrization of ε such that

1) ε is normally distributed, 2) Σ does not affect decisions when ρ = 0, and 3) the distribution of

ε does not depend on endogenous objects. We then consider a version of the model in which the

distribution of ε is such that changes in Σ do not affect any decision when ρ = 0. This specification

is however conceptually problematic as the distribution of ε depends on endogenous equilibrium

objects. Finally, we consider a specification in which we adjust the mean of ε so that changes in Σ

have no effect on E [eε]. In that case, the expectation of firm-level TFP shocks is unaffected by Σ;

however, the expectation of macroeconomic aggregates, e.g. E [Y ], still depend on Σ.

42Note that (A+B)−1 exists for small Σ because the eigenvalues of A are strictly negative (and so det (A) ̸= 0
and A is invertible) and that the determinant of A+B is a continuous function of Σ. Note also that as Σ moves away
from 0 the optimal matrix α changes and so do A and L. But these changes are continuous so the strict inequality
− (A+B)−1 ∂F

∂µi
> 0 is preserved for small enough Σ.
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I.1 How to parametrize ε so that a risk-neutral household does not respond to

uncertainty

In this subsection we describe how ε must be parametrized so that a risk-neutral household

(ρ = 0) does not change its behavior in response to changes in uncertainty Σ. For that purpose, it

is useful to go back to central equations of the model that hold whenever ε is normally distributed.

Hulten’s theorem implies that for any given network α, log GDP is given by y = ω (α)′ (ε+ a (α)),

where ω (α) is the vector of Domar weights. Together with CRRA preferences, this implies that

the social planner’s problem can be written as

W ≡ max
α∈A

E [y (α)]− 1

2
(ρ− 1)V [y (α)]

= max
α∈A

ω (α)′ (E [ε] + a (α))− 1

2
(ρ− 1)ω (α)′V [ε]ω (α) .

In the benchmark model we have ε ∼ N (µ,Σ) and clearly Σ matters for the planner’s decisions

when ρ = 0. Suppose instead that ε ∼ N
(
µ− 1

2B,Σ
)
where B is some quantity that can depend

on Σ and that would make α∗ invariant to Σ when ρ = 0. Plugging in the planner’s problem, we

find

W = max
α∈A

ω (α)′
(
µ− 1

2
B + a (α)

)
− 1

2
(ρ− 1)ω (α)′Σω (α)

= max
α∈A

ω (α)′ (µ+ a (α))− 1

2
ρω (α)′Σω (α) +

1

2
ω (α)′ (Σω (α)−B) .

For Σ to have no influence when ρ = 0 we therefore need the last term to be zero, which requires

B = Σω (α). In other words, this requires that the distribution of firm-level TFP shocks itself

depends on endogenous equilibrium objects, namely the Domar weights ω (α). This is problematic

for at least two important reasons. First, we cannot think of a good reason why the distribution

of productivity shocks that affect one industry would depend on the production technique chosen

by another industry. Why that dependence would operate through Domar weights is also unclear.

Second, the parametrization ε ∼ N
(
µ− 1

2Σω (α) ,Σ
)
potentially introduces an externality in the

economy: when deciding on its input shares αi, firm i is modifying the TFP process of all other

firms in the economy. This would create a gap between the efficient and the equilibrium allocations.

I.2 A model in which risk considerations are absent when ρ = 0

Here, we propose a distribution for ε such that 1) changes in Σ do not affect decisions when

the household is risk neutral (ρ = 0), and 2) the equilibrium coincides with the solution to the

planner’s problem. Note that simply setting B = Σω (α) does not accomplish this because of the

externalities mentioned above.
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Specifically, we assume that

ε ∼ N (µ− g (α, α∗,Σ) ,Σ) , (57)

where

g (α, α∗,Σ) =
1

2
ΣL (α∗)′ β +

1

2
(α− α∗)′ L (α∗) ΣL (α∗)′ β. (58)

The term α∗ in this expression is the equilibrium network, so that in equilibrium we have

g (α∗, α∗,Σ) = 1
2ΣL (α∗)T β. When making decisions, the representative firm in sector i chooses

αi = (αi1, . . . , αin) but takes α
∗ as given.

A few comments are in order. First, this specification implies that the distribution of shocks

depends on endogenous equilibrium objects. This is clearly conceptually problematic, but it is,

as we have discussed above, required for the result. We are not arguing that this specification

is desirable or plausible. Our goal here is to explore the conditions under which decisions are

unaffected by Σ under risk neutrality. Second, instead of assuming that g shifts the mean of ε, we

could equivalently include it in the TFP shifter A. In that case, A would depend on equilibrium

objects, unlike in the baseline specification. Third, the specification (57)–(58) differs from the

one discussed above, ε ∼ N
(
µ− 1

2Σω (α) ,Σ
)
, which made the planner’s problem unaffected by Σ

under ρ = 0. Notice that both specification coincide in equilibrium but extra terms are required in

(57)–(58) to ensure that the decentralized equilibrium allocation is efficient.

Once production techniques have been chosen and a specific realization of ε has been drawn, the

distribution of ε has no impact on the economy. Therefore, Lemmas 1 and 2 also hold under this

alternative specification. Furthermore, the existence proof of Proposition 1 can be straightforwardly

extended to this new setting. The next proposition adapts Proposition 2 and Corollary 2 from the

main text to the specification (57)–(58).

Proposition 8. Let the distribution of ε be as in (57)–(58). There exists an efficient equilibrium,

and the efficient equilibrium network α∗ solves

W ≡ max
α∈A

β′L (α) (µ+ a (α))︸ ︷︷ ︸
log E[Y (α)]

−1

2
ρ β′L (α) ΣL (α)′ β︸ ︷︷ ︸

V[y(α)]

. (59)

Proof. First-order conditions of the planner. We first consider the problem of the social

planner. In that case, the second term in (58) disappears and by (14) we therefore have

y (α) ∼ N
(
β′L (α)

(
µ− 1

2
ΣL (α)′ β + a (α)

)
, β′L (α) ΣL (α)′ β

)
. (60)

Using the usual expression for the expected value of a lognormal variable, we can write expected

GDP as
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E [Y (α)] = exp
(
β′L (α) (µ+ a (α))

)
.

Notice that this expression does not depend on Σ. Combining the planner’s problem given by (18)

with (60), we can derive (59). Following the same steps as in the proof of Proposition 2, we obtain

the following first-order conditions,

0 = 1′jL (α) [µ+ a (α)] +
∂

∂αij
ai (α)− ρ1′jL (α) ΣL (α)′ β (61)

+
(
β′L (α) 1i

)−1
(
µ
ij
− γi

)
,

where µ
ij
are the Lagrange multipliers on the constraints αij ≥ 0 and γi is the Lagrange multiplier

on the constraint
∑

j αij ≤ ᾱi.

First-order conditions of a firm in equilibrium. We can repeat similar steps for the

equilibrium. Combining (44) with (13), (42) and (43), we find that the problem of the representative

firm in sector i can be written as

α∗
i = arg min

αi∈Ai

1

2
(αi − α∗

i )
′ L (α∗) ΣL (α∗)′ β − a (αi)− α′

iL (α∗)

(
µ− 1

2
ΣL (α∗)′ β + a (α∗)

)
+

1

2

(
(αi − 1i − (1− ρ)β)′ L (α∗) + 1′i

)
Σ
(
(αi − 1i − (1− ρ)β)′ L (α∗) + 1′i

)′
.

Differentiating with respect to αij we can write the first-order conditions as

0 = 1′jL (α∗) ΣL (α∗)′ β − ∂a (αi)

∂αij
− 1′jL (α∗) (µ+ a (α∗))

+
(
1′jL (α∗)

)
Σ
(
(αi − 1i − (1− ρ)β)′ L (α∗) + 1′i

)′ − µeij + γei ,

where µe
ij
are the Lagrange multipliers on the constraints αij ≥ 0 and γei is the Lagrange multiplier

on the constraint
∑

j αij ≤ ᾱi. In equilibrium α = α∗ and so the above expression simplifies to

∂a (α∗
i )

∂αij
+ 1′jL (α∗) (µ+ a (α∗))− ρβ′L (α∗) ΣL (α∗)′ 1j + µe

ij
− γei = 0,

where we used the fact that (1i − α∗
i )

′ L (α∗)−1′i = 0. These are the same first-order conditions (up

to a normalization of the Lagrange multipliers) as the planner’s (equation 61). The complementary

slackness conditions are also the same in both problems. As a result, any equilibrium allocation

satisfies the planner’s first-order conditions and vice versa, and there exists an efficient equilibrium.

Notice that the objective function (59) is identical to (18) in the main text once we replace E [y]

and V [y] by their expressions from (15), except that the term multiplying V [y (α)] is ρ instead of
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ρ − 1. It follows that, unlike in the benchmark model, the decisions of a risk-neutral household

(ρ = 0) are unaffected by uncertainty Σ about the TFP shock ε, which was our goal with this

exercise.

Changes to analytical results

We have already described how some of the formal analytical results of Section 2 were not

affected by the change in specification. This is also true for almost all the results in Section 5.

The only exception is Proposition 6 where (ρ− 1) should replaced by ρ. It follows that this model

behaves in a very similar way to the one in the main body of the paper.

I.3 Making the expectation of firm-level TFP shocks independent of Σ

One specification for ε which is used in the literature is ε ∼ N
(
µ− 1

2diag (Σ) ,Σ
)
. This ad-

justment implies that the expected value of firm-level TFP E [exp (εi)] = exp
(
µi − 1

2Σii +
1
2Σii

)
=

exp (µi) does not depend on Σ. Changes to Σ are therefore closer to pure changes in uncertainty.

But, as follows from the discussion above, Σ still matters for decisions even when the household is

risk neutral.

Changes to analytical results

Almost all our analytical results are unaffected by this change in specification. This is the case

for the results that pertain to the existence and the efficiency of an equilibrium, and the results

that consider a change in µ. Of the results that consider changes in Σ, Proposition 3 and Lemma 4

describe how an increase in Σ leads to a reduction in Domar weights and in shares α in the baseline

model. In the new specification, an increase in Σ also leads to a decline in E [ε], which also pushes

for smaller Domar weights and shares.43 As both effects go in the same direction, the statements

of Proposition 3 and Lemma 4 remain the same with the new specification. Proposition 5 also

remains valid under the new specification. In this case, the proof goes through since any Σ ̸= 0 has

an adverse effect on E [y]. The only result that is meaningfully affected by the change is point 2 of

Proposition 6 which describes how a change in Σ affects welfare W. Using the envelope theorem,

it is straightforward to see that this statement becomes

dW
dΣij

=

−1
2ωi −

1
2 (ρ− 1)ω2

i i = j,

− (ρ− 1)ωiωj i ̸= j,

which implies that uncertainty has a larger negative impact on welfare in this alternative specifi-

cation.

43Here, it is important that only the diagonal of Σ is included in the correction to the mean of ε. These terms are
positive and so any increase in elements of Σ has a detrimental impact on E [ε].
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Changes to quantitative results

We also investigate the implications of this change in specification for our quantitative model.

To do so, we consider an alternative economy, denoted with tildes, in which

ε̃ ∼ N
(
µ̃− 1

2
diag

(
Σ̃
)
, Σ̃

)
.

If we were to calibrate this economy, we would find that

µ̃t −
1

2
diag

(
Σ̃t

)
= µt,

Σ̃t = Σt,

where µt and Σt are the mean and covariance of εt in our baseline calibration. That is because the

calibration matches the vector of sectoral TFP perfectly. If we remove 1
2Σii from the expectation

of εi, the estimation would increase the expectation µ̃t to compensate and match the data.

We reproduce the exercise in the left column of Figure 7 in this setup. This amounts to

comparing the economy described above with an alternative in which the production network is

chosen as if Σ̃t = 0. The results are presented in Figure 13. Overall, we find that uncertainty has a

larger impact on the economy in this setting than in the baseline model of Section 6. As in Figure

7, the variance of log GDP is smaller in the baseline model. Expected log GDP is however quite

different, with E [y] larger in the baseline than in the alternative model. This is because the network

in the alternative economy is not well adapted to the TFP process. In the alternative model, firms

choose production techniques as if E [ε̃] = µ̃, when in reality E [ε̃] = µ̃ − 1
2diagΣ̃. This implies

that firms ignore the fact that risky suppliers (i.e. those with high Σii) are also less productive on

average, which results in a decline in expected log GDP relative to the baseline model (first panel

of Figure 13). Given that the alternative model performs worse than the baseline both in terms of

E [y] and V [y], the welfare losses in the alternative model are substantial (third panel).
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Figure 13: The role of uncertainty when ε ∼ N
(
µ− 1

2diag (Σ) ,Σ
)

(a) Difference in expected log GDP [%]

(b) Difference in expected standard deviation of log GDP [%]

(c) Difference in expected welfare [%]

(d) Difference in realized log GDP [%]

Notes: The differences between the series implied by the baseline model with ε ∼ N
(
µ− 1

2
diag (Σ) ,Σ

)
(without tildes) and

the “as if Σ̃t = 0” alternative (with tildes). Both economies are hit by the same shocks that are filtered out from the TFP data
under our baseline model. All differences are expressed in percentage terms.

J Sectoral correlations

In this appendix, we explore the model’s implications for sectoral correlations. By combining

(13) and (41), we can write the covariance matrix of log sectoral output q as

V [q] = L (α) Σ (L (α))′ , (62)

or, if we focus on a specific element,

[V [q]]ij =

n∑
k=1

[L (α)]ik [L (α)]jk Σkk︸ ︷︷ ︸
loading on same supplier

+
∑
k ̸=l

[L (α)]ik [L (α)]jl Σkl︸ ︷︷ ︸
loading on correlated suppliers

. (63)
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This expression is intuitive. It highlights that the correlation between any two sectors i and j

depends on how much they rely on common suppliers, and how much they rely on correlated

suppliers. The first summation in (63) captures the first channel. If firms i and j both rely on

firm k as a supplier, so that [L (α)]ik > 0 and [L (α)]jk > 0, then a shock to k jointly affects the

production of i and j, which contributes to a positive correlation between the two sectors. Notice

that this first term is always positive. The second summation in (63) captures the dependence of i

and j on correlated suppliers. Suppose that sector i relies on k as an input and sector j relies on

l as an input. Any covariance Σkl between k and l will then translate into a covariance between

i and j. Unlike the first channel, the contribution of this second term to the covariance can be

negative if Σkl < 0.

Correlations under weak complementarity

Changes in beliefs (µ,Σ), through their impact on the network α, modify the correlation patterns

highlighted in (63). Consider first a change in µi. Differentiating (62) yields

dV [q]

dµi
= L (α)

dα

dµi
V [q] + V [q]

(
dα

dµi

)′
(L (α))′ . (64)

It follows that the impact on µi on the covariance matrix of q depends crucially on how the

production network α responds to the change. As we have discussed in Section 5.2, this response

depends in general on the specific structure of the economy. There is however one special case in

which we know how α reacts. Under our weak complementarity assumption (Assumption 2), an

increase in µi leads to an increase in α by Lemma 4. This in turn results in an increase in all the

sectoral output correlations.

Lemma 5. Suppose that the assumptions of Lemma 4 hold and that Σij ≥ 0 for all i and j. Then

an increase in µk leads to an increase in [V [q]]ij for all i and j.

Proof. By Lemma 4, such a change in µk leads to an increase in α. Since Σij ≥ 0 for all i and j,

the right-hand side of 64 is positive.

Similarly, for a change in Σij , differentiating (62) yields

dV [q]

dΣij
= L (α)

dα

dΣij
V [q] + V [q]

(
dα

dΣij

)′
(L (α))′ + L (α) 1i1

′
j (L (α))′ . (65)

This expression is similar to (64) except that we must now take into account the direct impact

of the change in Σ on the covariance matrix (last term in the equation). In particular, under the

conditions of Proposition 5, an increase in Σij implies a reduction in input shares α which pushes

V [q] down (the first two terms in the right-hand side of (65) are negative). The direct effect,

however, works in the opposite direction.
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Approximate impact of beliefs on sectoral correlations

When Assumption 2 does not hold, we can rely on an approximation to characterize sectoral

correlations. To simplify the notation, denote V [q] ≡ Σq and note that by (62) we can write

Σqkl = 1′kLΣL′1l.

Using the same approximation as in Appendix B, we can write

Σqkl ≈ Σ◦q
kl + κ̄−1

1′k
∑

i,j

∂L
∂αij

∂αij
∂κ̄−1

ΣL′1l + 1′kLΣ

∑
i,j

∂L
∂αij

∂αij
∂κ̄−1

′

1l


κ̄−1=0

= Σ◦q
kl + κ̄−1

1′k∑
i,j

[
∂αij
∂κ̄−1

]
κ̄−1=0

L◦1i1
′
jL◦Σ (L◦)′ 1l + 1′kL◦Σ

∑
i,j

L◦1i1
′
jL◦ ∂αij

∂κ̄−1

′

1l


= Σ◦q

kl + κ̄−1
∑
i,j

[
∂αij
∂κ̄−1

]
κ̄−1=0

[
L◦
kiΣ

◦p
jl + L◦

liΣ
◦p
kj

]
= Σ◦q

kl + κ̄−1
∑
i,j

1′j (H
◦
i )

−1 [L◦µ− (ρ− 1)L◦Σ (L◦)′ β
] [

L◦
kiΣ

◦q
jl + L◦

liΣ
◦q
kj

]
,

where we used (50) and where Σ◦q = L (α◦) Σ (L (α◦))′ is V [q] evaluated at the ideal shares. It

follows that

dΣqkl
dµm

≈ κ̄−1
∑
i,j

1′j (H
◦
i )

−1 L◦1m

[
L◦
kiΣ

◦q
jl + L◦

liΣ
◦q
kj

]

= κ̄−1
∑
i,j

[∑
s

(H◦
i )

−1
js L◦

sm

] [
L◦
kiΣ

◦q
jl + L◦

liΣ
◦q
kj

]
. (66)

The overall effect of µm on Σqkl can be decomposed in two terms. The first term reflects how the

input share αij respond to an increase in µm. The second term reflects how this adjustment in αij

affect the covariance matrix Σqkl. Specifically, the term
∑

s (H
◦
i )

−1
js L◦

sm captures the response of

αij following an increase in µm. In a nutshell, we look at all sectors s that depend on m directly

on indirectly (L◦
sm > 0). Firms in these sectors become more attractive after the increase in µm.

If j is complement with s in the production of good i, that is (H◦
i )

−1
js > 0, then that pushes for

a higher αij . The second term, L◦
kiΣ

◦q
jl + Σ◦q

kjL
◦
li, captures the exposure of k and l to that change.

Suppose that αij increases after the increase in µm. If k and l rely on i (L◦
ki > 0 and L◦

li > 0) then

their covariance Σqkl will increase if both also covary with j (Σ◦q
jl > 0 and Σ◦q

kj > 0). We repeat that

process for all sectors i and j to get the full impact of the increase in µm on Σqkl.

We can also look at the derivatives with respect to Σ,
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dΣqkl
dΣmm

= L◦
kmL◦

lm − κ̄−1 (ρ− 1)
∑
i,j

[∑
s

(H◦
i )

−1
js L◦

sm

]
ω◦
m

[
L◦
kiΣ

◦q
jl + L◦

liΣ
◦q
kj

]
+ κ̄−1

∑
i,j

1′j (H
◦
i )

−1 [L◦µ− (ρ− 1)L◦Σ (L◦)′ β
] [
L◦
kiL◦

jmL◦
lm + L◦

kmL◦
jmL◦

li

]
,

where we have used the fact that
dΣ◦q

kl
dΣmm

= L◦
kmL◦

lm. The first term, L◦
kmL◦

lm ≥ 0, captures the

direct exposure of k and l to m. That is, if both k and l rely on m (L◦
km > 0 and L◦

lm > 0), and

m becomes more volatile, the covariance between k and l increases. Note that this term always

dominates if changes in shares are small, that is, if κ̄ is large enough. The last two terms appear

because equilibrium input shares deviate from ideal values. To understand the second term, notice

that
[∑

s (H
◦
i )

−1
js L◦

sm

]
ω◦
m captures the response of αij to an increase in Σmm. If k and l are

connected to i (L◦
ki > 0 and L◦

li > 0) then their covariance Σqkl will increase if both also covary

with j (Σ◦q
jl > 0 and Σ◦q

kj > 0). Finally, the last term captures the direct change in the covariance

between j and l and between k and j. These changes in covariances are scaled by the deviation of

the input share αij from its ideal value, i.e. by ∆αij given by (50).

K Wedges and inefficient allocation

In this appendix, we consider a version of the competitive economy of Section 2 with wedges.

To do so, we modify our setup as in Acemoglu and Azar (2020). Specifically, we assume that firms

in industry i sell their goods at a markup τi ≥ 0 over their unit cost. A fraction ζi ∈ [0, 1] of

the revenue from the distortions is rebated to the representative household. The remaining 1− ζi

share is pure waste. We assume that τi and ζi are exogenous and do not depend on ε. Below, we

first describe the decentralized equilibrium with wedges and then show that there exists a distorted

“planner” whose decisions coincide with the distorted equilibrium. Finally, we characterize how

distortions affect equilibrium outcomes.

K.1 A distorted equilibrium

Several parts of the model are not affected by the wedges. In particular, the objective function

of the household remains unchanged. Its budget constraint must however be adjusted to take into

account the profits generated by the wedges. It becomes

n∑
i=1

PiCi ≤ 1 + T (α) ,
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where T (α) =
∑n

i=1 ζi
τi

1+τi
PiQi is the rebate due to distortions. As we show below, T depends on

α but not on ε, which justifies the notation T (α). In the absence of distortions (τi = 0 for all i) or

if distortions are pure waste (ζi = 0 for all i), T = 0. The additional term in the budget constraint

implies a different stochastic discount factor Λ. From the first-order conditions of the household

we can write

λ = (ρ− 1)β′p− ρ log (1 + T ) , (67)

where λ = logΛ is the log of the stochastic discount factor.

On the side of the firm, the cost minimization problem (7) is unaffected by the wedges, and

so the unit cost Ki conditional on a technique αi and a price vector P can still be written as (8).

Similarly, the technique choice problem of the firm, conditional on prices, is unaffected and is still

defined by (9). We will see however that in equilibrium the wedges affect the technique choices of

the firms through their impact on prices.

Equilibrium conditions

We now turn to the market clearing conditions and the pricing equations. Those are affected

by the wedges. In particular, the pricing equation (11) becomes

Pi = (1 + τi)Ki (α, P ) , (68)

such that prices are set at a markup over unit cost. We can combine this equation with (8) to write

an expression for log prices as a function of the network α,

p = −L (α) (ε+ a (α)− log (1 + τ)) , (69)

where log (1 + τ) is a column vector with typical element log (1 + τi). As we can see, wedges τ

affect prices as productivity shifters.

The market clearing condition (12) for good i must also be adjusted for the potential loss in

resources. It becomes

Qi

(
1− (1− ζi)

τi
1 + τi

)
= Ci +

∑
j

Xji. (70)

We can use these equations to find an expression for the rebate to the household T . Combining
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the first-order conditions of the firms with (68) and (70), we get

T (α) =


ζ1τ1

ζ2τ2

. . .

ζnτn


′ 


1 + ζ1τ1 0 . . . 0

0 1 + ζ2τ2 . . . 0

. . . . . . . . . . . .

0 0 . . . 1 + ζnτn

− β


ζ1τ1

ζ2τ2

. . .

ζnτn


′

− α′



−1

β, (71)

and so we can fully characterize the stochastic discount factor (67) for a given network α. Note

also that T = 0 whenever ζ = 0 or τ = 0.

Using the expression for T together with the price vector p, we can write log GDP as

y = β′L (α) (ε+ a (α)− log (1 + τ)) + log (1 + T (α, ζ, τ)) . (72)

We see that the wedges have two different impacts on GDP. First, the distortions effectively lead to

a decline in productivity through log (1 + τ) . At the same time, the part of these distortions that

is rebated to the household has a positive impact on GDP through T .

Finally, in the following lemma we characterize the comparative statics of the rebate amount.

Lemma 6. Holding everything else equal, T (α) increases in αij for all i, j.

Proof. Denote χi = ζiτi. Rewrite (71) as

T (α, χ) = χ′ [I + diag (χ)− βχ′ − α′]−1
β,

where diag (χ) is a diagonal matrix with the vector χ on its main diagonal. Note that I+diag (χ)−
χ′β−α is a diagonally dominant matrix with a positive main diagonal. Therefore, it is an M-matrix

whose inverse has all nonnegative inputs. Therefore, [I + diag (χ)− βχ′ − α′]−1 is a nonnegative

matrix as well. Differentiating T (α, χ) with respect to αij yields

∂T

∂αij
= χ′ [I + diag (χ)− βχ′ − α′]−1 (

1j1
T
i

) [
I + diag (χ)− βχ′ − α′]−1

β.

Since all vectors and matrices in the right-hand side of the above expression are nonnegative,
∂T
∂αij

≥ 0.

Equilibrium network

We now have all the ingredients to write down the technique choice problem of the firms.

Following steps analogous to those of the proof of Proposition 8, we find that the equilibrium
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network α∗ must satisfy

−∂a (α
∗
i )

∂αij
− 1′jL (α∗) (µ+ a (α∗)− log (1 + τ))− (1− ρ)β′L (α∗) ΣL (α∗)′ 1j + µe

ij
− γei = 0, (73)

where as before µe
ij
are the Lagrange multipliers on the constraints αij ≥ 0 and γei is the Lagrange

multiplier on the constraint
∑

j αij ≤ ᾱi. Note that the fraction rebated ζ does not show up in (73)

because, first, firms do not internalize how their decisions affect the household’s stochastic discount

factor and, second, the rebate amount T is non-stochastic and thus does not affect the covariance

of firms’ unit costs with the stochastic discount factor (67). However, firms’ individual decisions

are distorted by τ since prices are above unit costs. For instance, if the wedge τi in industry i is

positive, firms perceive industry i as effectively less productive on average. This in turn affects

their production technique choice.

K.2 A distorted planner’s problem

In the main text, we exploit the fact that the equilibrium allocation can be written as the

outcome of the planner’s optimization problem to derive several results. Here, because of the

distortions, it is no longer true that the equilibrium coincides with the planner’s allocation. We can

however derive the problem of a distorted fictitious planner whose preferred allocation coincides

with the distorted equilibrium. We can then take advantage of that optimization problem to

characterize the distorted equilibrium.

We define this distorted planner’s problem as

Wd ≡ max
α∈A

E
[
yd (α)

]
− 1

2
(ρ− 1)V

[
yd (α)

]
, (74)

where

yd (α) = β′L (α) (ε+ a (α)− log (1 + τ))

is what log GDP would be if nothing was rebated to the household. Taking the first-order conditions

of this distorted planner’s problem yields (73). Therefore, we can analyze this problem instead of

the decentralized equilibrium.

K.3 Characterizing the distorted equilibrium

We can use the distorted planner’s problem to characterize the distorted equilibrium. The next

proposition describes how the Domar weights are affected by beliefs (µ,Σ) and the wedges τ .

Proposition 9. The Domar weight ωi of sector i is increasing in µi, decreasing in Σii and de-

creasing in τi.
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Proof. The proof is similar to that of Proposition 3. We can write

Wd = max
α∈A

β′L (α) (µ+ a (α)− log (1 + τ))− 1

2
(ρ− 1)β′L (α) Σ (L (α))′ β,

so that, by the envelope theorem,

dWd

dµ
= ω,

dWd

dΣ
= − (ρ− 1)ωω′, and

dWd

d log (1 + τ)
= −ω.

With these derivatives in hand, we can follow analogous steps to those in the proof of Proposition

3 to find that an increase in µi or a decline in Σii leads to a higher ωi. Finally, an increase in τi is

equivalent to a decline in µi, and so the last part of the proposition follows.

Next, we investigate how changes in beliefs and wedges affect welfare, which can be written as

W (α∗) = Wd (α∗) + log (1 + T (α∗)) ,

where α∗ solves (74).

Proposition 10. In the distorted equilibrium, the following holds.

1. The impact of an increase in µi on welfare is given by

dW
dµi

= ωi +
1

1 + T (α∗)

∂T

∂α

dα∗

dµi
.

2. The impact of an increase in Σii on welfare is given by

dW
dΣii

= −1

2
(ρ− 1)ω2

i +
1

1 + T (α∗)

∂T

∂α

dα∗

dΣii
.

3. If ζ = 0, then the results of Proposition 6 hold in the distorted equilibrium.

Proof. Taking derivatives of W yields

dW
dµi

=
dWd (α∗)

dµi
+

1

1 + T (α∗)

∂T

∂α

dα∗

dµi
= ωi +

1

1 + T (α∗)

∂T

∂α

dα∗

dµi
.

Similar steps yield the expression for the derivative with respect to Σii. Note that T = 0 when

ζ = 0 and so ∂T
∂α = 0 in this case. We then get the expressions of Proposition 6.

We see from these equations that changes in µ and Σ have two effects on welfare. There is a

term that is the same as in the efficient allocation, as described by Proposition 6. But there is

also a second term that reflects how changes in the production network lead to a higher or smaller

rebate to the household. For example, under Assumption 2, an increase in µi leads to an increase
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in all shares, i.e. all elements of dα
∗

dµi
are positive. This in turn increases the rebated amount T by

Lemma (6) and, as a result, dWdµi > ωi.

L Special case with Ai (αi) ≡ 1

The problem of the social planner must in general be solved numerically. There is however

one special case that can be solved analytically and that sheds light on the forces at work in the

economy. If the TFP shifter functions Ai (αi) are identically equal to 1 for all i,44 we can write the

planner’s problem as

W ≡ max
α∈A

ω (α)′ µ− 1

2
(ρ− 1)ω (α)′Σω (α) , (75)

where the Domar weights are defined ω (α)′ = β′ (I − α)−1. Notice that the objective function only

depends on Domar weights ω. We can then recast the constraint set α ∈ A to be in terms of ω.

This leads to the restrictions

ω ≥ β, (76)

ω′ (1− ᾱ) ≤ 1.

By combining these equations with (75), we have an optimization problem that is cast only in terms

of ω. Since its objective function is strictly concave and the constraints are linear the first-order

conditions are necessary and sufficient to characterize its solution. The first-order condition for an

interior solution yields

ω =
1

ρ− 1
Σ−1µ, (77)

which makes explicit the importance of beliefs µ and Σ for the production network. To describe

the forces at work in this equation, we will focus on the case µ > 0.45 If we focus on a particular

sector i, we can write

ωi =
1

ρ− 1

n∑
j=1

[
Σ−1

]
ij
µj ,

where
[
Σ−1

]
ij

is the the typical element of Σ−1. Clearly, ωi depends on µi, and the diagonal

term
[
Σ−1

]
ii
determines the strength of that dependence. Remember that we can interpret the

inverse 1/
[
Σ−1

]
ii
of the ith diagonal element of Σ−1 as the variance of the component of εi that is

uncorrelated with the other elements of ε. If this variance increases, industry i becomes more risky

and its Domar weight ωi shrinks ceteris paribus.

The Domar weight ωi also depends on the other sectors in the economy. Here the dependence

44Assumption 1 is not satisfied in that case but the existence and efficiency results go through as long as Σ is
positive definite.

45If some elements of µ are negative, the constraint (76) tends to bind and we need to include Lagrange multipliers
in (77).
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operates through the off-diagonal terms in Σ−1. These terms are informative about the partial

correlations ρij , such that

ρij = −

[
Σ−1

]
ij√

[Σ−1]ii

√
[Σ−1]jj

.

It follows that an increase in partial correlation ρij between sector i and j leads to a decline in ωi.

Intuitively, the planner wants to diversify the risk embedded in ε and therefore prefers to avoid

correlated sectors.

We can also use (77) together with (14) and (18) to write log GDP and welfare as

y =
1

ρ− 1
µ′Σ−1ε and W =

1

2

1

ρ− 1
µ′Σ−1µ.

Furthermore, when the shocks are uncorrelated, we can write

E [y] =
1

ρ− 1

n∑
i=1

µ2i
Σii

.

This equation shows that an increase in uncertainty leads to a decline in expected log GDP, which

is a more general version of Proposition 5 for this particular setup.
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