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Abstract

Nonlinear pricing is a standard practice used by firms in telecommunications,

electricity and advertising among others to discriminate among consumers. In this

paper, we analyze nonlinear pricing in yellow pages using a structural approach.

First, we develop a model that incorporates some features of the industry such as

the requirement by law to propose a minimal advertisement size at zero price to all

firms. Our model also includes a general cost function. The structure of the model

is defined by the distribution of unknown firms’ types, the inverse demand function

and the firm’s cost function. Under the assumption of a multiplicative inverse de-

mand function into a socalled base marginal utility function and the firm’s type, we

show that the structure is nonparametrically identified while using the first-order

conditions of the publisher’s optimization problem. The cost function is identified

through the marginal cost at the total amount produced only. We then propose

a simple nonparametric procedure to estimate the type distribution and the base

marginal utility function. We establish the asymptotic properties of our two-step

nonparametric procedure. In particular it is shown that the base marginal utility

fucntion is estimated uniformly at the parametric rate. Lastly, the method is applied

to analyze nonlinear pricing in yellow pages in Central Pennsylvania. The empir-

ical results show a substantial heterogeneity in firms’ tastes for advertising with a

decreasing marginal utility function. Some counterfactuals assess the cost of asym-

metric information and the benefits of nonlinear pricing in presence of asymmetric

information over other pricing rules.

Key words: Nonlinear Pricing, Nonparametric Identification, Nonparametric

Estimation, Advertising.



Nonlinear Pricing in Yellow Pages

Yao Huang, Isabelle Perrigne & Quang Vuong

1 Introduction

When firms face heteregeneous consumers, offering different prices across purchase sizes

is profitable by discriminating consumers according to their preferences. This practice is

often referred to as nonlinear pricing or second degree price discrimination. Nonlinear

pricing is a standard practice in electricity market where lower rates apply to successive

blocks of kilowatt hours. In the celllular phone industry, calling plans usually specify a

monthly fee and a minute rate, where a lower (higher) monthly fee is associated with a

higher (lower) minute rate. In advertising, a discount is offered to larger advertisement

making it less expensive to buy (say) a full page relative to two half pages. See Wilson

(1993) for examples of nonlinear pricing. Economists analyze nonlinear pricing in a frame-

work of imperfect information with adverse selection. Seminal papers by Spence (1977),

Mussa and Rosen (1978) and Maskin and Riley (1984) provide nonlinear pricing models

for a monopoly. The basic idea is to consider the consumer’s unobserved taste (type) as

a parameter of adverse selection. The principal or firm designs an incentive compatible

tariff through which the consumers will reveal their types. Revelation occurs because the

firm gives up some rents to consumers. The principal will induce all consumers except

those with the highest type to consume less than the efficient (first-best) amount. The

resulting optimal price schedule is concave in quantity implying quantity discounts. Thus
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nonlinear pricing can be considered as the simplest model of adverse selection relative to

comlex contract models. Extensions include Oren, Smith and Wilson (1983) who analyze

oligopoly competition with homogenous products. A recent literature considers oligopoly

competition with differentiated products with Ivaldi and Martimort (1994), Stole (1995),

Armstrong and Vickers (2001), Rochet and Stole (2003) and Stole (2007). When compe-

tition is introduced, the optimal schedule is less tractable and closed form solutions can

be obtained for some simple specifications only.1

The economic importance of nonlinear pricing and the substantial theoretical devel-

opments have given rise to an increasing empirical literature. Early empirical studies

focus on identifying the presence of nonlinear pricing. Lott and Roberts (1991) provide

an alternative cost-based explanation for some commonly viewed second degree price dis-

crimination cases. Later empirical studies have attempted to properly account for cost

differences while presenting evidence of nonlinear pricing. Examples include Shepard

(1991) who shows evidence of second degree price discrimination for full-service versus

self-service by gas stations providing both services, Clerides (2002) for hardback and soft-

back books and Verboven (2002) for diesel and gasoline cars. Other studies also document

the impact of competition on patterns of nonlinear pricing. Borenstein (1991) shows that

decreased competition in the leaded gas market has reduced differences in price margins

between unleaded gas and leaded gas. Borenstein and Rose (1994) show that price dis-

persion in the US airline industry increases as competition increases. Busse and Rysman

(2005) study advertising prices in yellow page directories. They show that a larger compe-

tition is associated with a larger degree of curvature, i.e. competition raises the discounts

to large buyers.

Recent empirical studies evaluate the economic impact of nonlinear pricing on profits,

1See Wilson (1993) and Stole (2007) for more references and a comprehensive treatment of the early

and recent literature.
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consumer surplus and economic efficiency. Based on a random utility discrete choice

model for consumers’ preferences, Leslie (2004) analyzes tickets sales for a Broadway play,

where consumers choose between tickets for various seat qualities. The author estimates

the consumers’ random utility function and their taste distribution. He then compares the

consumer surplus and the firm’s profits under the observed pricing rule and alternative

pricing rules. McManus (2007) studies an oligopolistic market of specialty coffee in which

the coffee shops differ in terms of locations. The author estimates the consumers’ random

utility function, which depends on the consumers’ unobserved tastes towards different

sizes and types of coffee products. Using the estimated consumer utility function and

cost data, the magnitude of efficiency distortion (the difference between marginal utility

and marginal cost) across different sizes and types of coffee products is assessed. Cohen

(2007) applies a similar framework to measure the extent to which price differences across

different sizes of paper towels are the result of second degree price discrimination and how

profits and consumer welfare change under different pricing rules.

Another trend in the empirical literature on nonlinear pricing endogeneizes the optimal

price schedule to recover the demand and cost structure. Ivaldi and Martimort (1994) solve

a nonlinear pricing duopoly competition model under a specific structure. In their model,

a duopoly produces two differentiated products and the consumers are characterized by

a two-dimensional type parameter. The authors then apply this theoretical model to

French diary firms for electricity and oil products. Miravete and Roller (2004) apply

the same model to analyze the early U.S. cellular telephone industry. The estimated

structural parameters are used to evaluate the effect of competition, the policy change

in cellular license awarding and welfare under alternative pricing rules. Because their

data do not contain individual customers’ transactions, the ability to identify demand

parameters is limited and their policy conclusions are contingent on the validity of those

estimates. Miravete (2002) studies a situation where agents have uncertainty concerning
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their future consumption. The monopolist can offer either a mandatory nonlinear tariff

based on consumers’ ex post type or a two-part tariff based on consumers’ ex ante type.

The author analytically solves for the optimal nonlinear tariff and optimal optional two-

part tariff by using a linear demand function and specific distributions for ex post and

ex ante types. The author then uses data from a tariff experiment run by South Central

Bell to estimate the structural parameters. Crawford and Shum (2007) investigate the

magnitude of quality distortion when a cable television monopoly chooses endogenously

the quality of the services. The authors observe the services each cable system provides,

their prices and the corresponding demand for each service, but not the quality of each

service. They use a discrete choice model with the implicit assumption that each cable

system chooses the quality and price for each service optimally.

In this paper, we propose a fully structural analysis of nonlinear pricing in yellow page

advertising. Yellow page advertising data consitute a well suited case for such an analy-

sis. First, the data contain a large number of different price and quantity options, which

can approximate the continuous menu offered by the principal in the theoretical model.

Second, individual advertising purchases can be readily observed from phone directories.

A characteristic of yellow page advertising is that publishers are required by law to in-

corporate all businesses by providing basic information such as their name, address and

phone number at zero price. We then modify Maskin and Riley (1984) monopoly model

to incorporate such an institutional feature. This is equivalent to an optimal exclusion

problem, i.e. to find the optimal type below which firms will be offered the standard

listing at zero price. The inclusion of such firms has, however, a cost to the publisher

which should be taken into account. In contrast to the theoretical and empirical liter-

ature which assume a constant marginal cost, we consider a general cost function. The

previous empirical literature relies heavily on parametric specifications of the structure.

The econometric literature and the recent literature on the structural analysis of auction
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data have documented that identification of models may depend on particular functional

forms.2 In the spirit of the structural analysis of auction data, we investigate the nonpara-

metric identification of the nonlinear pricing model from observables, which are mainly

individual purchase data and tariffs offered by the firm. In a more general perspective

of development of a structural analysis of contract data, nonlinear pricing represents one

of the simplest case of incomplete information models for contractual relationships. Per-

rigne and Vuong (2007) establish the nonparametric identification of incentive regulation

models but the application of their results on data is pending due to the complexity of

estimation. Moreover, nonparametric identification and estimation allow to have policy

conclusions robust to functional misspecification.

After developing the model, we establish its nonparametric identification. To do so,

we follow the approach proposed by Guerre, Perrigne and Vuong (2000) and exploit the

monotonicity of the equilibrium strategy to rewrite the first-order conditions of the pub-

lisher’s maximization problem in terms of observables. The equilibrium strategy defines

the unique mapping between the firm’s and its purchase. Because the structure contains

multiple elements such as the inverse demand, the type distribution and the publisher’s

cost function, the identification problem is more involved than in auctions. Under a mul-

tiplicative decomposition of the inverse demand function into a socalled base marginal

utility function and the firm’s type, we show that the model structure is nonparametri-

cally identified. As matter of fact, the base marginal utility function and the firm’s type

distribution are not identified below a truncation introduced by the optimal exclusion of

firms. Moreover, the cost function is only identified at the margin for the total amount

produced. Based on this identification result, we propose a natural nonparametric esti-

2For instance, the common value auction model can be estimated using particular functional forms for

the underlying distributions while this model is not identified in general as shown by Laffont and Vuong

(1996) and Li, Perrigne and Vuong (2000).
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mator for the base marginal utility function and the type distribution. The asymptotic

properties of our estimator are established. In particular, it is shown that the estimator

of the marginal utility function is uniformly consistent while its asymptotic distribution

converges at the parametric rate.

Next, we analyze a unique data set that we constructed from a phone directory in

Pennsylvania and from the Yellow Page Association. The data display a nonlinear pric-

ing pattern as previously documented by Busse and Rysman (2005) for the yellow page

advertising industry.3 The price schedule provides a large number of advertising cate-

gories, which allows us to treat the price schedule as nearly continuous. In other empirical

studies, only a limited number of different price options is observed. A difficulty arises

as the classification of advertisements involves different qualities in addition to advertis-

ing space.4 We construct a quality-adjusted quantity to incorporate different qualities in

the price schedule. In addition to the full price schedule, the data contain each firm’s

purchase totaling more than 7,000 observations. In particular, we observe 149 different

advertising categories chosen by firms. As such, this data set is unique because (i) the

full price schedule offered to firms is available, (ii) individual data on price and quantity

chosen by firms are provided and (iii) the whole population of firms is included.5 Our

empirical results show an important heterogeneity in businesses’ taste for advertising or

willingness to pay. The estimated base marginal utility function is decreasing as expected.

3Rysman (2004) studies the yellow page industry from another angle by considering the phone directory

market as a two-sided market where consumers value directories for information and advertisers value

directories as a mean to advertise to consumers, giving rise to network effects. The author assumes that

publishers use prices for a single quality.
4Busse and Rysman (2004) use only advertising spaces within the one color category.
5Such nice data features do not exist in other sectors such as telecommunications and electricity. For

instance, in telecommunications, marketing survey data contain information on purchased amount in

value but not always in quantity (minutes), while the price schedule offered to each consumer is usually

unknown. Moreover, part of the market is usually observed.
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Counterfactuals assess the cost of asymmetric information in terms of lost profit for the

publisher relative to a complete information setting. When asymmetric information is

prevalent, we simulate the gain in publisher’s revenue and firms’ utility levels of nonlinear

pricing over other pricing rules. To be completed.

The paper is organized as follows. Section 2 introduces the model. Section 3 establishes

the nonparametric identification of the model and presents the nonparametric estimation

procedure. Section 4 describes the data. Section 5 is devoted to the estimation results

and counterfactual experiments. Section 6 concludes with some future lines of research.

An appendix collects the proofs.

2 The Model

We extend the Maskin and Riley (1984) nonlinear pricing model in two ways. In our case,

the principal is the publishing company and the agents are the firms buying advertising

in yellow pages. Firms are characterized by an unknown taste (type) parameter θ for

advertising. First, the utility publisher is required to list all businesses’ phone numbers in

the yellow page section. Thus, the minimum quantity of advertising provided in the price

schedule is strictly positive and the price for it is zero. We consider this lowest quantity

offered as exogenous and we denote it by q0, q0 > 0.6 The problem becomes similar to an

optimal exclusion of consumers. The publisher chooses optimally the threshold level θ0 of

the firm’s type below which q0 is provided at zero price. Second, we assume a general cost

function instead of a constant marginal cost. A constant marginal cost is a parametric

restriction. Doing so will allow us to examine to what extent the cost function can be

identified from the observables. These two features alter the publisher’s optimization

6This quantity is exogenous as it is set by technical constraints, it corresponds to two lines of space

over a column.
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problem.

Each firm has a utility function defined as

U(q, θ) = U0 +
∫ q

q0

v(x, θ)dx− T (q) ∀q > q0

(1)

U(q, θ) = U0 − T (q0) ∀q ≤ q0,

where q is the quantity of advertising purchased and T (q) is the total payment for q units

of advertising. In particular, for q = q0, the firm’s utility is a constant independent of θ.

The latter assumption is made to avoid countervailing incentives, which arises when the

firm’s reservation utility depends on its type θ as studied by Lewis and Sappington (1989)

and Maggi and Rodriguez-Clare (1995). The term U0 can be interpeted as the level of

utility for the firm to have its name, address and phone number in the yellow pages. For

q > q0, the function v(q, θ) expresses the θ firm’s willingness to pay for the qth unit of

advertising. The function v(q, θ) is then the marginal utility of consuming the qth unit of

advertising or the inverse demand function for each firm’s type. The term θ is distributed

as F (·) with continuous density f(·) > 0 on its support [θ, θ], 0 ≤ θ < θ < ∞. The

publisher does not know each firm’s type but knows the distribution F (·). The following

assumptions are made on v(q, θ).

Assumption A1: The marginal utility function v(·, ·) is continuously differentiable on

[q0,+∞) × [θ, θ], and ∀q ≥ q0, ∀θ ∈ [θ, θ̄]

(i) v(q, θ) > 0

(ii) v1(q, θ) < 0

(iii) v2(q, θ) > 0.7

7Whenever a function has more than one variable, we denote its derivative with respect to the kth

argument by a subscript k.
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Assumption A1-(i) says that the marginal utility of consuming advertising is always non-

negative. Assumption A1-(ii) says that the marginal utility is decreasing in the quantity

purchased. Assumption A1-(iii) says that firms with larger willingnesses to pay θ for

advertising enjoy a larger marginal utility across every q. This property is known as the

single crossing property.

The publisher chooses optimally the functions q(·) and T (·) and a cutoff type θ0 ∈ [θ, θ)

to maximize its profit. The function q(·) is defined on [θ, θ] with q(θ) = q0 for θ ∈ [θ, θ0]

and q(θ) ≥ q0 for θ ∈ (θ0, θ]. The payment T (·) is defined on [q0, q(θ)] with T (q0) = 0 as

the publisher has to offer the minimum advertising q0 at zero price. As usually done in the

literature, we restrict q(·) to be continuously differentiable on (θ0, θ). We also assume for

the moment that q(·) is a strictly increasing function on (θ0, θ]. Later, we will show that

with additional assumptions on the game structure the resulting optimal q(·) is strictly

increasing.8

Without loss of generality, we assume that the publisher faces a population of firms of

size one. The publisher’s profit can then be written as

Π =
∫ θ

θ0

T (q(θ))f(θ)dθ − C

[
q0F (θ0) +

∫ θ

θ0

q(θ)f(θ)dθ

]
,

where the first term is the revenue collected from all firms buying advertising and the

second term expresses the cost for producing the total advertising quantity with a cost

function C(·). Because firms characterized by a type below θ0 do not pay for their adver-

tising quantity q0, these firms do not show up in the publisher’s revenue. On the other

hand, this production has a cost that the publisher needs to take into account. This

explains the argument of the cost function in two parts: (i) q0F (θ0) represents the total

quantity provided to firms choosing the minimum quantity q0 and (ii)
∫ θ
θ0
q(θ)f(θ)dθ is

8This result is based on the complete sorting optimum result in Maskin and Riley (1984, Proposition

4).
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the total quantity provided to other firms. The cost function is assumed to be strictly

increasing.9

Assumption A2: The marginal cost function C ′(·) satisfies C ′(q) > 0 ∀q ≥ q0.

The publisher’s profit needs to be maximized subject to the individual rationality (IR)

and the incentive compatibility (IC) constraints of the firms. These two constraints are

derived from the firm’s optimization problem. For the IR constraints, consider first a firm

with type θ > θ0. It must prefer to buy q(θ) rather than q0, i.e.

U(q(θ), θ) ≥ U0 ∀θ ∈ (θ0, θ]. (2)

The previous assumption of a firm’s utility independent of θ at q0 is crucial here. Without

it, the reservation utility level of the firm would have been a function of θ leading to

countervailing incentives. For a firm with type θ ≤ θ0, it receives q0, which provides a

utility level U0 thereby satisfying trivially its individual rationality constraint.

For the IC constraints, we consider four cases. First, a firm with θ > θ0 must prefer

to buy q(θ) rather than any other quantity q(θ̃) for θ̃ ∈ (θ0, θ], i.e. it must not pretend

to be another type in (θ0, θ]. Formally, let U(θ̃, θ) ≡ U(q(θ̃), θ) ∀θ, θ̃ ∈ (θ0, θ]. The

IC constraint can be written as U(θ, θ) ≥ U(θ̃, θ) ∀θ, θ̃ ∈ (θ0, θ]. The local first-order

condition for the IC constraint to hold is

U1(θ, θ) = 0 ∀θ ∈ (θ0, θ]. (3)

By definition U(θ̃, θ) = U0+
∫ q(θ̃)
q0

v(x, θ)dx−T (q(θ̃)). Thus U1(θ, θ) = [v(q(θ), θ) − T ′(q(θ))]

9If we consider a population of size N , the publisher’s revenue needs to be multiplied by N , while

the cost would be written as CN (N(q0F (θ0) +
∫ θ

θ0
q(θ)f(θ)dθ)). When dividing the total profit by N ,

we remark that the cost term would become C(x) = (1/N)C(Nx). Thus, the function C(·) can be

interpreted as an average cost per firm. On the other hand, because C ′(x) = C ′(Nx), C ′(·) can be

interpreted as the marginal cost at the total amount of production.
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q′(θ). Since by assumption q′(·) > 0 on (θ0, θ], (3) is equivalent to

v(q(θ), θ) = T ′(q(θ)) ∀θ ∈ (θ0, θ]. (4)

Second, a firm with type θ > θ0 must prefer to buy q(θ) rather than q(θ̃) for θ̃ ∈ [θ, θ0],

i.e it must not pretend to be another type in [θ, θ0]. But q(θ̃) = q0 providing U0. Thus,

the IC constraint is U(q(θ), θ) ≥ U0, which is the IR constraint (2). Third, a firm with

type θ ≤ θ0 must prefer to receive q(θ) = q0 rather than q(θ̃) for θ̃ ∈ [θ, θ0], i.e. it

must not pretend to be another type in [θ, θ0]. But q(θ̃) = q0 providing U0. Thus,

the IC constraint is trivially verified. Fourth, a firm with type θ ≤ θ0 must prefer to

receive q0 rather than to buy q(θ̃) for θ̃ ∈ (θ0, θ], i.e. it must not pretend to be another

type in (θ0, θ]. Thus the IC constraint is U0 ≥ U(θ̃, θ). To show such an inequality, we

need to use some equalities established later. Specifically, from (6) and U+ = U0, we

have T (q(θ)) =
∫ q(θ)
q0

v(x, θ)dx −
∫ θ
θ0
{
∫ q(u)
q0

v2(x, u)dx}du ≥
∫ q(θ)
q0

v(x, θ)dx for θ ∈ (θ0, θ],

where the inequality uses A1-(ii). Equivalently, we can write T (q(θ̃)) ≥
∫ q(θ̃)
q0

v(x, θ̃)dx ≥
∫ q(θ̃)
q0

v(x, θ)dx for θ̃ ∈ (θ0, θ], where the inequality uses A1-(ii). Thus, adding U0−T (q(θ̃))

to both sides gives U0 ≥ U(θ̃, θ). The next lemma shows that the local FOC defined in

(4) is sufficient for the IC constraint to hold globally. The proof can be found in the

appendix.

Lemma 1: Under Assumption A1, (2) and q′(·) > 0 on (θ0, θ], the local FOC (3) is

sufficient for the IC constraints to hold globally.

We can now solve the publisher’s optimization problem:

max
q(·),T (·),θ0

Π =
∫ θ̄

θ0

T (q(θ))f(θ)dθ − C

[
q0F (θ0) +

∫ θ

θ0

q(θ)f(θ)dθ

]
, (5)

subject to the IR constraint (2), the IC constraint (4) and q(·) being strictly increasing.

Following Tirole (1988, Chapter 3), we eliminate the function T (·) from the optimization
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problem. For θ ∈ (θ0, θ], we define

U(θ) ≡ U(q(θ), θ) = U0 +
∫ q(θ)

q0

v(x, θ)dx− T (q(θ)).

Taking the derivative with respect to θ gives

U ′(θ) = [v(q(θ), θ) − T ′(q(θ)] q′(θ) +
∫ q(θ)

q0

v2(x, θ)dx =
∫ q(θ)

q0

v2(x, θ)dx,

where the second equality uses (4). Let U+ ≡ limθ↓θ0 U(θ). Integrating the above equation

from θ0 to θ gives

U(θ) =
∫ θ

θ0

{∫ q(u)

q0

v2(x, u)dx

}
du+ U+.

Using the above definition of U(θ), we obtain

T (q(θ)) =
∫ q(θ)

q0

v(x, θ)dx−
∫ θ

θ0

{∫ q(u)

0
v2(x, u)dx

}
du+ U0 − U+, (6)

for θ ∈ (θ0, θ]. Thus, the maximization problem (5) can be written as

max
q(·),θ0,U(·)

Π =
∫ θ

θ0

[∫ q(θ)

q0

v(x, θ)dx

]
f(θ)dθ −

∫ θ

θ0

{∫ θ

θ0

[∫ q(u)

q0

v2(x, u)dx

]
du

}
f(θ)dθ

+(U0 − U+)[1 − F (θ0)] − C

[
q0F (θ0) +

∫ θ

θ0

q(θ)f(θ)dθ

]
.

Integrating by parts, the second term becomes

[
F (θ)

∫ θ

θ0

[∫ q(u)

q0

v2(x, u)dx

]
du

]θ

θ0

−
∫ θ

θ0

{[∫ q(θ)

q0

v2(x, θ)dx

]
F (θ)

}
dθ

=
∫ θ

θ0

[∫ q(θ)

q0

v2(x, θ)dx

]
dθ −

∫ θ

θ0

{[∫ q(θ)

q0

v2(x, θ)dx

]
F (θ)

}
dθ.

After rearranging terms and noting that U(·) appears through U+ only, the firm’s problem

becomes

max
q(·),θ0,U+

Π =
∫ θ

θ0

{[∫ q(θ)

q0

v(x, θ)dx

]
f(θ) − [1 − F (θ)]

[∫ q(θ)

q0

v2(x, θ)dx

]}
dθ

+(U0 − U+) [1 − F (θ0)] − C

[
q0F (θ0) +

∫ θ

θ0

q(θ)f(θ)dθ

]
. (7)
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Maximization of Π with respect to U+ gives trivially U+ = U0. The optimal control prob-

lem is nonstandard because θ0 appears at the boundary of the integral. The optimization

problem can be solved as a free terminal time and free-end point control problem as in

Kirk (1970, pp 188 and 192). The next proposition establishes the necessary conditions

for the solution [q(·), T (·), θ0]. We make the following assumption.

Assumption A3: For every θ ∈ [θ, θ], v(q, θ) − [(1 − F (θ))v2(q, θ)/f(θ)] is strictly

monotone or identically equal to zero in q.

Proposition 1: Under A1, A2, A3 and q′(·) > 0 on (θ0, θ], the functions q(·) and T (·),

and the cutoff type θ0 that solve the publisher’s optimization problem (5) satisfy

v(q, θ) = C ′(Q) +
1 − F (θ)

f(θ)
v2(q, θ) ∀θ ∈ (θ0, θ] (8)

lim
θ↓θ0

q(θ) = q0 (9)

T ′(q) = v(q, θ) ∀θ ∈ (θ0, θ] (10)

lim
q↓q0

T (q) = 0, (11)

where Q ≡ q0F (θ0) +
∫ θ
θ0
q(u)f(u)du in (8) and q = q(θ) in (8) and (10).

Conditions (8) and (9) characterize the optimal q(·) and the optimal cutoff type θ0. Note

that (8) becomes v(q, θ) = c+[(1−F (θ))v2(q, θ)/f(θ)] when the marginal cost is assumed

to be constant and denoted by c. The marginal utility for each type then equals the

marginal cost plus a nonnegative distortion term due to incomplete information. Hence,

all firms buy less than the efficient (first best) quantity of advertising except for the

firm with the largest type θ for which there is no distortion. When the cost function

is nonlinear, the publisher considers only the marginal cost of the last unit of the total

quantity produced Q. For the highest type, its marginal utility equals C ′(Q). Once the

optimal q(·) is known, the differential equation (10) and the boundary condition (11)

characterize the optimal price schedule T (·). Equation (10) says that the marginal price
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for each type is equal to the marginal utility for that type. Equations (9) and (11) imply

the continuity of q(·) and T (·) at θ0 and q0, respectively. These are obtained using A3.

The next lemma shows that the optimal q(·) is strictly increasing. Some assumptions

need first to be made.

Assumption A4: The marginal utility function v(·, ·) is twice continuously differentiable

on [q0,+∞) × [θ, θ] and f(·) is continuously differentiable on [θ, θ]. Moreover, ∀θ ∈ [θ, θ]

and ∀q ∈ [q0,+∞)

(i) ∂ [−qv1(q, θ)/v(q, θ)] /∂θ ≤ 0,

(ii) [1/v2(q, θ)]∂[v2(q, θ)/ρ(θ)]/∂θ < 1 where ρ(θ) = f(θ)/[1 − F (θ)],

(iii) v22(q, θ) ≤ 0,

(iv) 1 − d[1/ρ(θ)]/dθ > 0 so that θ − [(1 − F (θ))/f(θ)] is increasing in θ.

These assumptions are quite standard in the theoretical literature in nonlinear pricing.

Assumption A4-(i) says that the demand elasticity is nonincreasing in types. Maskin and

Riley (1984) show that a large classes of preferences satisfy this assumption.10 Assumption

A4-(ii) is difficult to interpret. Lemma 2 shows, however, that A4-(ii) is implied by the

two other assumptions A4-(iii) and A4-(iv). Assumption A4-(iii) says that the increase

in demand price is diminishing as θ increases. Assumption A4-(iv) states that the hazard

rate of the distribution of types does not decline too rapidly as θ increases. A large

class of distribution functions satisfy this property. These assumptions on the structure

are generally sufficient assumptions for the second-order conditions of the optimization

problem. As such, they might be weakened. In a different problem, Perrigne and Vuong

(2007) derive the sufficient and necessary conditions for the second-order conditions to

hold in terms of observables. Such an exercise which is related to test the model validity

10In particular, the family of linear demand functions of the form of v(q, θ) = θ−β(θ)q and the family

of constant elasticity demand functions of the form of v(q, θ) = α(θ)q−1/η , where η > 0, satisfy this

assumption under proper assumptions on β(θ) and α(θ).
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is left for future research.

Lemma 2: Under A1, A2, and A4-(i,ii) or under assumptions A1, A2 and A4-(i,iii,iv),

q(·) is strictly increasing and continuously differentiable on [θ0, θ] with q′(·) > 0 on [θ0, θ].

Moreover, T (·) is strictly increasing and twice continuously differentiable on [q0, q] with

T ′(·) > C ′(Q) on (q0, q] and T ′(q0) = C ′(Q).

Regarding the verification of the second-order conditions, we invite the reader to consult

Maskin and Riley (1984). Tirole (1988) indicates that T ′′(·) < 0, i.e. the price schedule

is strictly concave in q.

3 Nonparametric Identification and Estimation

3.1 Nonparametric Identification

It is first useful to define the game structure and the observables. The data provide infor-

mation on the price-advertising schedule, the minimum quantity at zero price, the pro-

portion of firms choosing this minimum quantity, the firms’ advertising purchases and the

total amount of advertising produced. Using our previous notations, the observables are

[T (·), q0, F (θ0), G
∗(·), N ], where N denotes the number of firms.11 The function G∗(·) de-

notes the truncated distribution of firms’ purchases, i.e. G∗(q∗) = Pr(q ≤ q∗)/Pr(q > q0).

The structural primitives of the model are [v(·, ·), F (·), C(·)], which are the marginal util-

ity function, the firms’ type distribution and the cost function. We adopt a structural

approach. Specifically, we assume that the observables are the outcomes of the optimal

price schedule and purchasing choices determined by the equilibrium necessary condi-

tions (8), (9), (10) and (11) while θ is the unobserved random variable in the model.

11In this subsection, the observables are assumed to be known. The estimation of T (·), q, F (θ0) and

G∗(·) is considered in the next subsection.
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Identification investigates whether the primitives can be uniquely recovered from the ob-

servables. Following results obtained in Perrigne and Vuong (2007), we consider v(q, θ)

being multiplicatively separable in θ. We show later that the general function v(q, θ) is

not identified.

Assumption B1: The consumer’s marginal utility function is of the form

v(q, θ) = θv0(q), (12)

where v0(·) satisfies v0(q) > 0, and v′0(q) < 0 for q ≥ q0 and for all θ ∈ [θ, θ] ⊂ (0,+∞).12

Hereafter, we interpret v0(q) as the base marginal utility function. It can be easily seen

that the assumptions on the marginal utility function A1 and A4-(i,iii) are satisfied under

such a specification. The necessary conditions (8) and (10) then become

θv0(q) = C ′(Q) +
1 − F (θ)

f(θ)
v0(q) ∀q ∈ (q0, q] (13)

T ′(q) = θv0(q) ∀q ∈ (q0, q], (14)

where θ = q−1(q) and q = q(θ) since q(·) is strictly increasing following Lemma 2. The

unique monotone mapping between the unobserved type θ and the observed advertising

quantity q is the key of our identification result. Hereafter, we let S be the set of structures

[v0(·), F (·), C ′(·)] such that [v(·, ·), F (·), C(·)] satisfy B1, A2, A3 and A4-(iv).

Our first identification result concerns the cost function, which is not identified except

for the marginal cost at the total amount produced. See footnote 9, which explains

that C ′(Q) can be interpereted as the marginal cost at the total amount produced MQ.

12We could consider a multiplicative function under the form ψ(θ)v0(q). The function ψ(·) needs to

satisfy ψ(·) > 0, ψ′(·) > 0 and ψ′′(·) ≤ 0. If ψ(·) is known, our results extend trivially. On the other

hand, if ψ(·) is unknown, the model is likely to remain nonidentified even under a suitable normalization.

Note also that under this assumption of multiplicative separability, it can be shown following (say) Tirole

(1988, p156) that the price schedule is strictly concave in q when A4-(iv) is strengthened to a hazard rate

ρ(θ) increasing in θ.
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This result is not surprising since the model involves the cost function only through the

marginal cost at the total amount produced. The next lemma formalizes this result.

Lemma 3: The cost function is not identified except for the marginal cost at the total

amount produced, which satisfies

C ′(Q) = T ′(q). (15)

Evaluating (13) and (14) at θ gives the result since F (θ) = 1 and q(θ) = q following

Lemma 2. In other words, the marginal cost at the total amount produced equals the

marginal tariff paid by the highest type or equivalently for the largest advertising quantity

offered. Since we observe both the price schedule T (·) and q, we are able to recover C ′(Q),

i.e. the latter is identified. Miravete and Roller (2004) note a similar result to estimate

the marginal cost in their study. Because they do not observe individual cellular phone

usages in their data, they do not observe q and have to choose an arbitrary value for it. In

Section 5, we discuss how identification of the cost function can be improved using data

from different phone books providing different values for Q.

The structural elements left to identify are v0(·) and F (·). We first show that a scale

normalization is necessary. Intuitively, this normalization is needed because both the

firm’s type θ and the function v0(·) are unknown. We can find two observationally equiv-

alent structures by transforming the unknown firm’s type θ into a new type θ̃ = αθ and

the unknown function v0(·) into a new function 1
α
v0(·) for any positive number α. The

next lemma formalizes this result.

Lemma 4: Consider a structure S = [v0(·), F (·), C ′(·)] ∈ S. Define another struc-

ture S̃ = [ṽ0(·), F̃ (·), C ′(·)], where ṽ0(·) = 1
α
v0(·) and F̃ (·) = F (·/α) for some α >

0. Thus, S̃ ∈ S and the two structures S and S̃ lead to the same set of observables

[T (·), G∗(·), q0, Q, F (θ0)], i.e. the two structures are observationally equivalent.
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Several scale normalizations can be entertained. Three natural choices are to fix θ, θ0

or θ. Before discussing the appropriate choice of normalization, we establish Lemma 5, in

which the firm’s marginal utility v0(·) and its unobserved type θ are expressed as functions

of the quantity purchased q and other observables [T (q), G∗(q), q0, F (θ0), Q]. Based on

Lemma 5, the choice of normalization and the nonparametric identification of [v0(·), F (·)]

are readily established.

Lemma 5: Let [v0(·), F (·), C ′(·)] ∈ S. Denote γ ≡ C ′(Q) and θ(·) ≡ q−1(·). The

necessary conditions (11) and (12) are equivalent to

v0(q) =
T ′(q)

θ0
[1 −G∗(q)]

1− γ
T ′(q) exp

{
−γ

∫ q

q0

T ′′(x)

T ′(x)2
log [1 −G∗(x)] dx

}
(16)

θ(q) = θ0 [1 −G∗(q)]
γ

T ′(q)−1
exp

{
γ
∫ q

q0

T ′′(x)

T ′(x)2
log [1 −G∗(x)] dx

}
, (17)

for all q ∈ (q0, q].

The proof of Lemma 5 exploits the unique mapping between the advertising quantity

purchased q and the firm’s type θ. In particular, Lemma 2 shows that q(·) is strictly

increasing on (θ0, θ]. For each q ∈ (q0, q], we observe the truncated distribution G∗(q) =

Pr(q̃ ≤ q|q̃ > q0) = Pr(θ̃ ≤ θ(q)|θ̃ > θ(q0)) = [F (θ) − F (θ0)]/[1 − F (θ0)] with the

corresponding density g∗(q) = θ′(q)f(θ)/[1−F (θ0)], where θ = θ(q). We can then replace

[1 − F (θ)]/f(θ) in (13) by θ′(q)[1 − G ∗ (q)]/g∗(q). This expression is further used to

express the unknown base marginal utility function v0(·) and the unobserved type θ in

terms of observables, which are the corresponding quantity q, the truncated quantity

distribution G∗(·), its density g∗(·) and the price schedule T (·) as well as γ = C ′(Q),

which is identified by Lemma 3. There is a clear parallel here with auction models.

Guerre, Perrigne and Vuong (2000) use the unique mapping between the bidder’s private

value and his equilibrium bid to rewrite the FOC of the bidder’s optimization problem

and express the unobserved private value in terms of the corresponding bid, the bid

distribution and its density. In our problem, the firm’s type θ can be interpreted as the
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unknown bidder’s private value, while the firm’s chosen quantity q can be interpreted as

the observed bidder’s bid. Our problem is, however, more involved because we have one

more structural element in addition to the distribution of firms’ type F (·) to recover, i.e.

the base utility function v0(·). To this end, we also exploit the relationship between the

shape of the price schedule T (·) and the distribution of the unobserved firms’ type F (·).

The use of this relationship is made clear in the proof of Lemma 5.

In view of Lemma 5, it can be easily seen that if we normalize θ0 = 1, the base marginal

utility function v0(·) can be uniquely recovered on (q0, q] from the observables T ′(·), T ′′(·),

G∗(·) and γ = T ′(q) and hence on q0 by continuity of v0(·). Similarly, the truncated type

distribution F ∗(·) ≡ [F (· − F (θ0)]/[1 − F (θ0)] can be uniquely recovered on [θ0, θ] from

the same observables. The following assumption and proposition formalize this result.

Assumption B2: We normalize θ0 = 1.

Under such a normalization, v0(q) can be interpreted as the marginal utility function for

the cutoff type.

Proposition 2: Let [v0(·), F (·), C ′(·)] ∈ S. Under assumption B2, the marginal utility

function v0(·) and the truncated firms’ type distribution F ∗(·) are identified on [q0, q] and

[θ0, θ], respectively.

We note that F (·) can be recovered from F ∗(·) on [θ0, θ] since F (θ0) is observed as the

proportion of firms receiving q0 at zero price. On the other hand, v0(·) and F (·) are not

identified on [q, q0) and [θ, θ0), respectively. Intuitively, the price and quantity data do

not provide any variation to be able to identity these functions in these ranges of values

as the quantity and price are fixed to q0 and 0, respectively. For a similar reason, the

constant additive term U0 in (1) is not identified. Here again, we can make a parallel to

auction models, in which a binding reserve price does not allow to identify the distribution

of bidders’ private values for private values below the reserve price because of the lack of
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bid data. See Guerre, Perrigne and Vuong (2000).

As indicated previously, alternative normalizations can be entertained. For instance,

the normalization θ = 1 also allows to identify v0(·) and F ∗(·) on [q0, q] and [θ0, θ],

respectively. In this case, (16) and (17) become

v0(q) =
T ′(q)

θ
[1 −G∗(q)]

1− γ
T ′(q) exp

{
γ
∫ q

q

T ′′(x)

T ′(x)2
log [1 −G∗(x)]

}

θ(q) = θ [1 −G∗(q)]
γ

T ′(q)−1
exp

{
−γ

∫ q

q

T ′′(x)

T ′(x)2
log [1 −G∗(x)]

}
,

for all q ∈ (q0, q], which are obtained by evaluating (17) at q, solving for θ0 and substi-

tuting the solution in (16) and (17). Therefore, if θ = 1, identification is obtained as in

Proposition 2. As a matter of fact, any normalization of θ ∈ [θ0, θ] would work. On the

other hand, any normalization in [θ, θ0) would not help in identifying the model.

It remains to show that the general model with a nonseparable multiplicative marginal

utility function v(·, ·) is not identified.

3.2 Nonparametric Estimation

In view of our identification result, we adopt an indirect approach to estimate the model.

Equations (16) and (17) provide expressions for the unknown base marginal utility v0(·)

and the firm’s type θ(·) as functions of T ′(·), T ′′(·), γ = T ′(q) and the truncated quantity

distribution G∗(·). The fonctions T ′(·) and T ′′(·) come from the price schedule data. On

the other hand, G∗(·), q and hence γ need to be estimated. We proceed with a two-

step estimation procedure. In the first step, we estimate q and G∗(·) nonparametrically.

This allows us to obtain an estimate for the base marginal utility v0(·) using (16) and to

construct a sample of pseudo types. In the second step, this pseudo sample is used to

estimate nonparametrically the truncated density of the firms’ type from which we can

easily estimate the density of firms’ type using the observed proportion of firms choosing

q0. Because we use data from a single market, our estimation procedure is not performed
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conditionally upon some exogenous variables Z, which capture market heterogeneity. If

the data set contains data from several yellow pages directories, we can easily entertain this

case by estimating G∗(·|·) in the first step and F (·|·) in the second step of the estimation

procedure. The variables Z would include the median income, population size, etc.

We denote by N∗ the number of firms purchasing advertising space strictly larger than

q0, while qi, i = 1, 2, ..., N∗ denotes the quantity purchased by each of those firms. From

(15), we estimate γ by γ̂ = T ′(qmax), where qmax = maxi=1,...,N∗ qi. We estimate G∗(·) as

an empirical distribution using a counting process. We obtain

Ĝ∗(q) =
1

N∗

N∗∑

i=1

1I(qi ≤ q), (18)

where 1I(·) is an indicator function, for q ∈ [q0, q]. Using (16), (18) and B2, the estimate

for v0(·) is

v̂0(q)=





T ′(q)
[
1−Ĝ∗(q)

]1− γ̂
T ′(q) exp

{
−γ̂

∫ q
q0

log
[
1−Ĝ∗(x)

]
T ′′(x)
T ′(x)2

dx
}

if q∈(q0, qmax)

limx↑qmax v̂0(x) if q∈ [qmax, q].

(19)

As a matter of fact, for q ∈ [q0, qmax], the estimator v̂0(q) is straightforward to compute

as the integral in (19) can be decomposed as a finite sum. Specifically, because the

empirical distribution Ĝ(·) is a step function with steps at q1 < q2 < . . . < qJ in (q0, q],

we note that the integral from q0 to q can be written as the sum of integrals from qj to qj+1.

On each of these intervals, log[1 − Ĝ∗(·)] is constant, while the primitive of −T ′′(·)/T ′(·)

is 1/T ′(·). Thus, for q ∈ [q0, qmax), (19) can be rewritten as

v̂0(q) = T ′(q)
[
1 − Ĝ∗(q)

]1− γ̂
T ′(q) (20)

exp



γ̂

j−1∑

t=0

[(
1

T ′(qt+1)
− 1

T ′(qt)

)
log(1−Ĝ∗(qt))

]
+γ̂

(
1

T ′(q)
− 1

T ′(qj)

)
log(1−Ĝ∗(qj))





if q ∈ [qj, qj+1), j = 0, . . . , J−1, where q0 = q0 and qJ = qmax. In particular, if q ∈ [q0, q
1),
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v̂0(q) = T ′(q) because Ĝ∗(q) = 0. For q ∈ [qmax, q], v̂0(·) is constant and equal to

lim
q↑qmax

v̂0(q) = T ′(qmax) exp

{
γ̂

J−1∑

t=0

[(
1

T ′(qt+1)
− 1

T ′(qt)

)
log(1−Ĝ∗(qt))

]}
,

which is finite.13 Thus, v̂0(·) is a well defined strictly positive cadlag (continue à droite,

limites à gauche) function on [q0, q] with steps at q1 < q2 < . . . < qJ−1. To complete the

first step, using (14) we construct a sample of pseudo firms’ types

θ̂i = θ̂(qi) =
T ′(qi)

v̂0(qi)
(21)

for i = 1, . . . , N∗. In particular, the highest type θ is estimated by θmax = T ′(qmax)/v̂0(qmax),

where v̂0(qmax) is given by the above limit. If T ′(·) is strictly decreasing so that T (·) is

concave, then it can be seen that θmax > θ0 = 1, while v̂0(·) and θ̂(·) are strictly decreasing

and increasing on [q0, qmax], respectively.

In the second step, following Guerre, Perrigne and Vuong (2000), we estimate the

truncated density of firms’ type from the pseudo sample by using the kernel estimator

f̂ ∗(θ) =
1

N∗h

N∗∑

i=1

K

(
θ − θ̂i

h

)
, (22)

for θ ∈ [θ0, θ] = [1, θ], where K(·) is a symmetric kernel function with compact support,

h is a bandwidth and θ̂i is obtained from (21).14

The next proposition establishes the asymptotic properties of v̂0(·) as an estimator of

v0(·). We make the following assumption on the data generating process.

Assumption B2: The types θi, i = 1, . . . , N , where N (total number of firms) is the

sample size, are independent and identically distributed as F (·).
13When q ↑ qmax, then q ∈ [qJ−1, qJ ]. Thus Ĝ∗(q) = Ĝ∗(qJ−1) ≤ (N∗ − 1)/N∗ and limq↑qmax [1 −

G∗(q)]1−(γ̂/T ′(q)) = 1 as limq↑qmax T
′(q) = γ̂.

14We prefer to estimate the type density instead the truncated type distribution as the latter is not as

informative. Moreover, counterfactuals rely on the estimated density.
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Following the empirical process literature popularized in econometrics by Andrews (1994),

we view v̂0(·) as a stochastic process defined on [q0, q] and hence as a random element of the

space D[q0, q] of cadlag functions on [q0, q]. We endow the latter space with the uniform

metric ‖ψ1 − ψ2‖ = supq∈[q0,q] |ψ1(q) − ψ2(q)|. For some technical reasons, we consider

instead the space D[q0, q1] with its uniform metric ‖ψ1 −ψ2‖ = supq∈[q0,q1] |ψ1(q)−ψ2(q)|,

where q1 ∈ [q0, q).
15 Weak convergence on the space D[q0, q1] is denoted by “⇒.”

Proposition 3: Under assumptions A1–A4, B1 and B2, for any fixed q1 ∈ [q0, q), we

have as N tends to infinity

(i) ‖v̂0(·) − v0(·)‖ a.s.−→ 0 on [q0, q1],

(ii) as random functions in D[q0, q1],

√
N [v̂0(·)−v0(·)] ⇒

v0(·)√
1−F (θ0)

{[
1− γ

T ′(·)

]
BG∗(·)

1 −G∗(·)−γ
∫ ·

q0

T ′′(x)

T ′(x)2

BG∗(x)

1 −G∗(x)
dx

}
, (23)

where BG∗(·) is the G∗-Brownian bridge process on [q0, q].
16

The first part establishes the uniform almost sure convergence of v̂0(·) on any subset

[q0, q1] with q1 < q. The second part gives the asymptotic distribution of v̂0(·). It is

worthnoting that its rate of convergence is the parametric rate
√
N despite that v0(·) is a

function. This surprising result comes from that v̂0(·) is a functional of the empirical cdf

Ĝ∗(·). Let Z(·) be the Gaussian process appearing between the braces in (23). It can be

shown that Z(·) has zero mean and covariances E[Z(q)Z(q′)] = ω(q) for q0 ≤ q ≤ q′ ≤ q1

15As usual measurability issues are ignored below. This can be addressed by considering either the

projection σ-field on D[q0, q1] as in Pollard (1984) or outer probabilities as in van der Vaart (1998).

Alternatively, we may use another metric such as the Skorohod metric as in Billingsley (1968).
16The G∗-Brownian bridge process on [q0, q] is the limit of the empirical process (1/

√
N∗)

∑
i{1I(qi ≤

·) −G∗(·)} indexed by [q0, q]. See (say) van der Vaart (1998, p 266). It is a Gaussian process with mean

0 and covariance G∗(q)[1 −G∗(q′)], where q0 ≤ q ≤ q′ ≤ q.
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(see Appendix), where

ω(q) =

(
1− γ

T ′(q)

)2
G∗(q)

1−G∗(q)
+2γ

(
1− γ

T ′(q)

)
H(q)−2γ2

∫ q

q0

T ′′(x)

T ′(x)2
H(x)dx (24)

H(q) = −
∫ q

q0

T ′′(x)

T ′(x)2

G∗(x)

1−G∗(x)
dx.

Note that the covariance E[Z(q)Z(q′)] is independent of q. Thus, the covariances of the

limiting process in (23) is v0(q)v0(q
′)ω(q)/[1 − F (θ0)] for q0 ≤ q ≤ q′ ≤ q1. In particular,

Proposition 3-(ii) implies that

√
N [v̂0(q)−v0(q)]

d→ N
(

0,
v0(q)

2

1 − F (θ0)
ω(q)

)

for every q ∈ [q0, q1]. The asymptotic variance of v̂(q) vanishes at q = q0 as ω(q0) = 0,

which is expected since v̂0(q0) = T ′(q0), while ω(q) increases as q increases to q1 whenever

T ′′(·) < 0, i.e. T (·) is strictly concave.

In practice, the preceding asymptotic distribution is used to conduct large sample hy-

pothesis tests or construct approximate “pointwise” confidence intervals for v0(q) provided

the asymptotic variance is estimated consistently. A natural estimator is obtained by re-

placing v0(q), 1 − F (θ0) and ω(q) by v̂0(q), N
∗/N and ω̂(q), respectively where ω̂(q) is

obtained from (24) by replacing γ and G∗(·) by their estimates T ′(qmax) and Ĝ∗(·). Alter-

natively, the weak convergence result in Proposition 3 delivers an approximate “uniform”

confidence interval of the form

[
v̂0(·)

(
1 +

1

1 + c/
√
N∗

)
, v̂0(·)

(
1 +

1

1 − c/
√
N∗

)]

for q ∈ [q0, q1], where c is the constant defined by Pr ({|Z(q)| ≤ c, ∀q ∈ [q0, q1]}) = 1 − α

with 0 < α < 1 and Z(·) is the Gaussian process introduced above.17

17Similar results apply to the estimation of θ(·). For example, (21) and Proposition 3 imply that
√
N [θ̂(·) − θ(·)] ⇒ −θ(·)Z(·)/

√
1 − F (θ0). Thus, an approximate uniform confidence interval for θ(·) is

the same as that for vo(·) with v̂0(·) replaced by θ̂(·).
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We now turn to the second step, i.e. the estimation of the type density f(·). Fol-

lowing the two-step procedure of Guerre, Perrigne and Vuong (2000), but in contradis-

tinction with that paper, the pseudo firms’ types θ̂i obtained in the first step converge

to the firms’ types θi essentially at the parametric rate
√
N∗, more precisely at the rate

√
N∗/ log logN∗, which is the uniform rate of convergence of supq∈[q0,q1] |Ĝ

∗(q) − G∗(q)|

from e.g. van der Vaart (1998, p.268). Because this rate is larger than the maximal rate of

convergence that can be achieved for estimating the density f(·), estimation of θi does not

affect the second step. Consequently, the standard kernel estimator (22), which uses the

pseudo firms’ types, possesses the standard asymptotic properties of uniform convergence

and limiting distribution, namely

(i) supθ∈C |f̂(θ) − f(θ)| a.s.→ 0 for any compact subset C of (θ0, θ) provided h → 0 and

N∗h/ logN∗ → ∞,

(ii)
√
N∗h[f̂(θ)−f(θ)]

d→ N (0, f(θ)
∫
K(x)2dx) for every θ ∈ (θ0, θ) provided N∗h5 → 0,

as f(·) is twice continuously differentiable and bounded away from zero on [θ0, θ]. See

e.g. Silverman (1986). In particular, by choosing the bandwidth h proportional to

(logN∗/N∗)1/5, the optimal uniform convergence rate obtained by Stone (1982) for esti-

mating f(·) when the firms’ types θi are observed can be achieved by our indirect two-step

procedure when the θi are unobserved but firm’s consumption choices qi are observed.

4 Yellow Page Advertising Data

We collected data on yellow page advertising in 2006 for State College and Bellefonte in

Central Pennsylvania. Data have been obtained from two sources. A first source consists

in the full price schedule of the utility publisher (Verizon) provided by the Yellow Page

Association, which is an industry trading group. This data contains detailed information

on the different advertising options and their prices proposed by Verizon to businesses.
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A second source consists in the phone directory published by Verizon Information Ser-

vices. The demand for the different advertising categories is directly constructed from

the directory.18 Defining each phone number as an advertisement, we collected a total of

7,214 advertisements distributed over 1,189 different industry headings. A total of 215,414

copies of such a directory is distributed. The advertisements bought by firms generate

a revenue of nearly 6 million dollars. Table 1 presents the top 10 industry headings in

terms of generated revenue. These ten headings represent 29% of the total revenue. Not

surprisingly, we find professionals such as attorneys, dentists, veterinarians, services to

households such as plumbers, auto repairs, carpet cleaners, and restauration services such

as hotels and restaurants.

The area of State College and Bellefonte is also covered by another directory from a non-

utility publisher. This second directory covers the whole Centre County of Pennsylvania,

which includes four additional boroughs. The publisher distributes only 72,000 copies

of such a directory, and the volume of yellow pages is much smaller than the Verizon

directory. The yellow page association also provides information on their price schedule.

This second publisher proposes less options and charges a significantly lower price. As

a first approximation, it is reasonable to assume that Verizon acts as a monopoly. The

analysis of competition is left for future research.19

4.1 Description of the Price Schedule

The Verizon directory proposes a large number of different advertising options from which

firms can choosein addition to the standard listing which is free of charge. The lowest

18After a careful check with Verizon Information Services, the price schedule provided by the Yellow

Page Association is strictly enforced.
19Competition could be analyzed with a model in which Verizon would be the dominant firm on the

market and the non-utility publisher a follower as in a Stackelberg game. Following Ivaldi and Martimort

(1994), Miravete and Roller (2004) estimates a duopoly with differentiated products.
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positive price is $100.8 for an extra line in the standard listing in the normal font, while the

largest price is $60,002.4 for a double display page with multiple colors. Each advertising

option is defined by a vector of characteristics which are the size, the color and some

other special features. This subsection describes the different advertising options and

their prices.

In terms of size, the yellow page industry is using three categories, namely listing,

space listing and display. The listing refers to the name, address and phone number of

the firm under appropriate industry heading. A listing is typically a line in a column.

Four different font sizes are available. Firms can choose the normal font, which is the

smallest size offered. Such a listing with the normal font is called the regular or standard

listing. This service is proposed to firms at zero price by law as all the firms need to be

included in the yellow pages. This option is chosen by 2,347 businesses, which accounts

for 32.5% of all advertisements or firms. Firms may choose to add some extra lines to

their listing thereby increasing the advertising size. They may also choose larger font

sizes, which also increases the advertising size. These extra lines and larger fonts are paid

by the firms.

The space listing allocates a space within the column under the corresponding heading,

while display advertisement provides a listing under the heading and allocates another

space somewhere else. This additional space can cover up to two pages. There are five sizes

available within the category of space listing and nine sizes available within the category

of display. Display advertisements are usually larger than space listing advertisements.

Although one may argue that the location of the advertisement on the page may contribute

to its effectiveness, only the advertising space matters for the publisher and in its price

schedule. Firms which purchase displays are also entitled to have their name, address and

phone numbers in the listing. They can increase their listing size by having extra lines

and/or larger font sizes.
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The different size options are measured in square picas, which is the unit commonly

used in the publishing industry, namely one pica corresponds approximately to 1/6 inch.

As an illustration, a standard listing is 12 square picas, and a full page is 3,020 square

picas. Table 2 presents the advertising sizes purchased, the number of purchases and

the generated revenue for all the sizes chosen by the firms. The sizes also include the

listing size for firms purchasing display. This makes a total of 47 different advertising

sizes bought by firms ranging from 12 to 6066 square picas. As noted previously, 32.5%

of all firms choose the free advertising option and obtain 12 square picas of advertising

size. Another 33.8% choose to add some extra lines and/or larger fonts to their listing

generating 11.1% of the publisher’s revenue. Space listing is chosen by 19.8% of the firms

generating 17% of the publisher’s revenue. The largest part of the publisher’s revenue

comes from displays, which generate the remaining 71.9% of the publisher’s revenue while

being chosen by 9.9% of the firms. We note that the latter always add some extra features

to their listing. A Lorenz curve would show a striking inequality in terms of generated

revenues. We also note the heterogeneity in demand. About 89% of the firms buy a rather

small advertising size, i.e. less than 7% of a page, while 1.7% of the firms buy more than

25% of a page.

In addition to size, the different advertising options contain a color dimension. Five

color categories are available: no color, one color, white background, white background

plus one color, multiple colors including photos. These different color options are not

available for all the above sizes. For instance, the multicolor option is offered for displays

only. The colors black and yellow are the standard colors in the yellow page industry

and are not counted as additional colors.20 In our data, 99.5% of firms choosing the

listing category also choose the no color option. This number slightly decreases to 96.2%

20Busse and Rysman (2004) consider only the price schedule for no color display advertising in their

study.
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for firms choosing the space listing category. On the other hand, only 44.1% of firms

choosing the display category have opted for the no color option. Color counts for an

important difference in the advertising price for a given size. For instance, one display

page with no color costs $18,510 increasing up to $32,395 with multiple colors. Besides

color, there are two other qualitive features, namely guide and anchor listing. Guide is

offered to complement listing and space listing advertising only. Guide is placed at the

end of each industry heading. Advertisements under guide are grouped by the specialty

in which they practice and the name of the specialty is highlighted in blue color. For

example, at the end of the industry heading Dentists, there are listings that group dentists

by their specialties such as endodontics and the subheading endodontics is highlighted.

The guide option may increase the advertising price up to 30%. For instance, a 108 square

picas of space listing with no color is priced $1,134, while the same size with the guide is

priced $1,462. If we consider the option with one additional color (red), the price varies

from $1,789 to $2,306. The guide option is chosen by about 4.3% of firms for the listing

and space listing categories. Anchor listing is provided for displays only. As mentioned

above, each display is provided a listing under each heading, which is called the anchor

listing. Firms can add extra features in their anchor listings, such as a solid star to

make the reference to the display advertisement more visible. Three options are available

with a price ranging from $366 to $832. This option is chosen by 14.6% of firms in the

display category. Lastly, there are additional advertising features such as coupon pages,

trade marks and advertising on the front and back covers of the phone directory. Our

price schedule data provide incomplete information for these categories and we cannot

assign a price for these three categories. These additional features concern a total of 283

observations out of the 7,214 firms, which is rather small. This leaves us with a total of

6,931 observations as displayed in Table 2. Because it concerns a rather small number

of observations and because we have incomplete price data for these categories, we have
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chosen to exclude these 283 observations in our empirical study.

Size, color, guide and anchor listing offer a very large number of possible combinations

for firms to choose from. We observe in the data 149 chosen combinations leading to

149 different prices paid by firms. Figure 1 displays the scatter plot of the various price

schedules as a function of size measured in square picas for different categories. For a

given category, we observe that the price per square pica decreases as the advertising

size increases as predicted by the curvature of the optimal price schedule in nonlinear

pricing models. For instance, from the price schedule data, a firm buying a double page

with no color pays $5.68 per square picas, a firm buying a page with no color pays $6.13

per square picas, a firm buying a half page pays $6.80 and so on. When comparing the

price per square picas for no color display for the lowest and largest size offered, i.e.

174 and 6039, the price varies from $9.41 down to $5.68 corresponding to a reduction of

66%. The same decreasing pattern is observed for other categories.21 This corresponds

to an important discount for quantity. As shown in Section 3, this curvature is crucial to

identify nonparametrically the model. Moreover, without such a curvature, there will be

a mismatch between the model and the data. The advertisements vary through several

characteristics, while our model in Section 2 has a one dimension continuous quantity

q. The next subsection proposes a method to include the different advertising categories

while still having a single dimension continuous quantity.

4.2 Quality-Adjusted Quantity

From the previous subsection, advertisements differ in size and other aspects. Information

such as color is difficult to aggregate through standard methods as it seems heroic to attach

an index or value to it. In this respect, it is interesting to review how quality has been

21A similar pattern can be seen in Table 2. As Table 2 mixes various categories for a given size, the

results might be misleading.
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integrated in theoretical models of nonlinear pricing. Maskin and Riley (1984) consider

a situation where the monopolist can discriminate consumers by an optimal bundling of

the quantity and quality levels of the product, both taking continuous values. They show

that the optimal bundle of quantity and quality should line on a unique curve in the

quantity-quality space. Moreover, quantity should increase with quality along this curve.

We can reasonably expect that this result extends to a situation in which quality takes

discrete values though some pooling will naturally arise. Nonetheless, if both quantity

and quality are used to discriminate firms, the same quantity cannot be associated with

two different qualities because of the increasing relationship between the two variables.

First, we observe in our price schedule data that the publisher offers various qualities for

each size. Second, we do not observe a perfect correlation between the number of colors

and the advertising size chosen by firms. As a matter of fact, except for the 2 pages size,

firms choose different color options for a given advertising size contradicting the prediction

of the model that larger advertising sizes should pair with more colors. Another solution

would be to consider a nonlinear pricing model in which every firm is characterized by

several types dictating its taste for quantity and the various colors. This will give rise to

a complex model with multidimensional screening, which is known to require restrictive

assumptions to be solved including particular functional forms for the model structure.

We argue instead that the publisher does not provide different qualities to discriminate

among firms. Technological constraints impose a limited number of advertising sizes that

can be offered as displayed in Table 2 with 47 different sizes. As a result, the size cannot

be offered on a continuous scale leaving some room for additional discrimination as it

is reasonable to assume that firms’ willingness to pay for advertising takes a continuous

value. Thus, a good strategy for the publisher is to offer additional options for each

available size to fill up the holes in the size scale.22 As a result, the publisher offers a large

22Table 2 shows that the range 12-108 is relatively well covered with 22 different size options. This
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number of different options to choose from such that each firm can find an advertising

option corresponding to its willingness to pay. Without these additional options, there will

be some pooling. Offering various qualities then improves the discriminatory process as it

increases the number of options for firms. The price schedule data favor such an argument.

Figure 1 shows some curvature in size suggesting that size is used as a discriminatory

variable in the sense that an important discount is offered per unit of advertising to large

buyers. If quality would have been used as a second discriminatory variable per se, we

would have observed some variations in the price schedule for quality as well. For instance,

the publisher could have taken advantage of the willingness to pay of some firms for the

pair (large quality, large size) relative to other options. Figure 1 suggests the contrary

as the publisher seems just to report the additional cost due to different qualities in the

prices. Specifically, we observe that the ratio of prices for two different qualities remains

the same across sizes. For instance, considering the no color and one color display price

schedules, the price ratio is almost constant and equal to 1.5 across the 9 possible sizes.

Similarly, when considering the no color and multicolor display price schedules, the ratio

is almost constant and equal to 1.75 across sizes. In view of economic theory, this strategy

might be not optimal as both quality and quantity could have been used to discriminate

firms optimally. The data suggest that the publishing company has proposed various

qualities to increase the number of options without using the quality as a discriminaotry

variable per se.

Following this empirical evidence, we construct a quality-adjusted quantity index. To

do so, we consider the price schedule for multi colors as the continuous price schedule

offered by the publisher and we adjust the advertising sizes for other color options in

view of the price schedule for the multi colors. Thus q will be the multi colors adjusted

number dramatically decreases for sizes above 108. Many range values such as 590-730, 790-1100 or

1150-1480 do not offer any size option.
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size. The sizes for all other colors will be assigned lower values by using a fitted nonlinear

function for the multi colors price schedule. As a result, a one page in one color will

correspond to a lower quality-adjusted size. Some examples will be used later to illustrate

our method. Our choice of the price schedule for multi colors is made without loss of

generality. We could have chosen the price schedule for the no color as well though the

fitted function would not have been estimated on the same range of values for the other

price schedules. The multi colors price schedule avoids this problem. In particular, all

quantities measured with less colors can readily correspond to quantities on that curve.

We use a nonlinear function to fit the multi colors price schedule. The fitted nonlinear

function is

̂log(T ) = 4.1602 + 0.7317 × log(q) + 0.0062 × (log(q))2, (25)

where T is the price in dollars and q is the advertising size measured in square picas.

The coefficients are estimated using an ordinary least squares estimator. The R2 of

such a regression is 0.999, which is almost a perfect fit.23 This function gives the price

schedule T (·) in the theoretical model of Section 2. We note that without the technological

constraint limiting the number of q offered, the price schedule would have provided a

continuous function T (·) with (say) 1,000 different values of q. We need to fit T (·) because

of the limited number of quantities offered. The fit we obtain is quite remarkable and

can be considered as a reasonable approximation of the price schedule T (·). As such, we

consider that the measurement error it may introduce in the econometric model cen be

ignored.

The quality-adjusted quantities are constructed as follows. We plug on this curve all

the observed prices for other qualities to solve for the quality-adjusted quantities. As an

illustration, a one-page advertising display measuring 3,020 square picas with no color and

23A least squares estimator is appropriate since there is no endogeneity problem in this equation. The

variable q is not endogenous because T (q) is a deterministic function.
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no additional feature now corresponds to a multi colors adjusted quantity of 1,470 picas.

Similarly, a half-page advertising display of 1,485 square picas with one color corresponds

now to a multi colors adjusted quantity of 1,153 square picas.24

This method has the main advantage of avoiding the difficulty if not the impossibility of

aggregating multiple quantitative and qualitative characteristics. For instance, standard

dimension reducing methods such as principal component analysis work poorly here since

there is no obvious way to evaluate the relative importance of the characteristics and

there is no strong pattern of correlation between the various characteristics.

5 Empirical Results

Using the quality-adjusted quantities, the price schedule and the firm’s purchases, we

apply the estimators (18) to (21). The values for T ′(·) and γ̂ = T ′(qmax) are obtained

using (25). From Table 2, qmax is equal to 6066 and we obtain T ′(6066) = 8.3159 = γ̂.

This value, which is the marginal cost in dollars for an additional quality-adjusted square

pica at the total production, seems to be reasonable for the publishing industry. This

means that an additonal line of listing or 1.85 quality-adjusted square picas costs at the

margin for the publisher $15.38, which can be compared to $100.8 charged to the firm.

Data from a single phone book do not allow us to recover more of the cost function. If data

from several phone books published by the same company would be collected satisfying

some criteria of homogeneity such as population size, we could recover the cost function

at several values of Q. We can then hope to identify C(·) partially.

The estimated marginal utility v̂0(·) and the firm’s type θ̂(·) functions are displayed in

Figures 2 and 3, which are obtained after standard smoothing for readability. Figure 2

24For T = 0 corresponding to the standard listing, we consider a 10−2 precision corresponding to 1

cent. It gives a quality-adjusted q0 of 1.329× 10−6.
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shows that v̂0(·) is strictly decreasing as assumed by the theoretical model, while Figure

3 shows that θ̂(·) is strictly increasing as predicted by the model.25 The estimated (un-

truncated) density of types f̂(·) obtained from the pseudo values (21) and using (22) is

displayed in Figure 4. The estimated density indicates the existence of substantial het-

erogeneity among firms in terms of their taste for advertising. We note that the density

displays two modes, a first one around 1.3 and a second one around 2.4. The first mode

corresponds to firms which choose an advertising listing while adding a few lines and/or a

larger font. The second mode corresponds to firms which choose the two smallest sizes of

space listing. We also note the concentration of observations to the left of 3. The shape of

the type density shows other irregularities such as a little bump at 6, which correspond to

firms choosing between the third (around one fifth of a page) and fifth (around a quarter

of a page) smallest display sizes.

With the estimates of v0(·) and θ(·), we can estimate the utility surplus for each firm

using U(q, θ) = U0 + θ[
∫ q
q0
v0(x)dx] − T (q). The utility U0 of being advertized is not

identified. Given that U0 is an additive constant to all firms’ utilities, we can still make

a comparison of utility across firms. Some estimated values of Û − U0 for no color are

given in Table 3. The firm’s utility has been obtained while using the unsmoothed v̂0(·).

Thus, it can be viewed as a lower bound for the firm’s utility. We remark that the firm’s

utility increases with the advertising size purchased. Figure 5 displays the estimated

firm’s utility Û − U0 as a function of the quality-adjusted quantity. We note that the

firm’s utility strictly increases with the quality-adjusted advertising size purchased. The

firm’s utility Û − U0 takes values between $-25.74 and $27, 123.80 and the mean value is

equal to $502.28. We note that these values are quite large relative to what firms pay

for their advertisements. The economic interpretation of the firm’s utility is the rent that

the publisher leaves to the firm to reveal its type. In particular, in a world of complete

25The unsmoothed graphical representations of v̂0(·) and θ̂(·) are available upon request to the authors.
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information, the publisher knows each firm’s type and the price that the publisher charges

to each firm should be equal to each firm’s utility, i.e. θ
∫ q
0 v0(x)dx leaving zero rent to the

firm. Thus, by summing up the estimated informational rents across firms, we empirically

assess the magnitude of the information rent or the cost of asymmetric information to the

publisher. Such an estimate is equal to $3,476,780.2 representing 37.71% of the publisher’s

revenue under complete information, which would be $9,219,089 ($3,476,780+$5,742,309).

With structural estimates, we can perform some counterfactuals. For instance, we

can simulate the publisher’s revenue and firms’ utility under alternative pricing rules.

A standard pricing rule would be to apply linear prices, i.e. any size will be charged

the same amount at the margin. We can rewrite the publisher’s problem by considering

T (q) = pq. Thus, v0(q) = p/θ. Since we do not have an estimate of the cost function

except for the marginal cost at the total production, hereafter we assume that we have a

constant marginal cost, which is equal to γ̂. Because f(·) is not identified bewlo θ0, we

make abstraction of the problem of optimal exclusion and still consider the value of θ0

as the threshold type to purchase any advertising. A grid search allows us to obtain an

estimate for the linear price p that maximizes the publisher’s revenue. We obtain $20.20

per quality-adjusted square picas. We then need to simulate for each firm its demand

when facing a linear price, i.e. q = v−1
0 (p/θ), where θ and v0(·) are replaced by their

estimated counterparts.26 As expected, the firms purchasing small quantities under the

current price schedule tend to buy larger ones. On the other hand, the firms purchasing

large advertisements under the current price schedule tend to buy smaller ones. For

instance, the maximum of the size purchased becomes 740 square picas instead of 6066

square picas unde the current price schedule. These correspond to a half a page with

no color and a double page multi colors, respectively. In terms of publisher’s revenue, a

26We consider that the quality-adjusted quantity q is continuous. We could have considered some rule

such as assigning to the firm the lowest closest quantity observed in the data.
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linear price would generate $4,161,682, which represents a loss of 27.5%. For the firms,

the mean value for utility Û − U0 becomes $672.02, which is larger than under nonlinear

pricing. This result is due to the right skewness of firms’ type density. In particular,

linear pricing tends to favor the small buyers.

Another interesting policy evaluation would be to consider that the publisher is not

required to include all businesses phone numbers. Thus, the publisher can choose opti-

mally the minimal advertsing size it will propose, which is likely to be larger than q0.

The problem has the flavor of optimal exclusion but the minimum quantity is determined

endogenously. to be completed.

6 Concluding Remarks

This paper extends the standard model of nonlinear pricing incorporating some features

of the yellow page advertising industry such as the requirement to incorporate all the

businesses’ phone numbers at zero price. Nonparametric identification is established under

a multiplicative decomposition of the firm’s marginal utility function. The shape of the

price schedule is crucial to identify the marginal base utility function and the firm’s

unknown type. Nonparametric identification is achieved by exploiting the first-order

conditions of the publisher’s profit maximization and the unique mapping between the

firm’s type and its purchased quantity. This result is in the spirit of the recent literature

on the nonparametric identification of incomplete information models such as first-price

auctions though our identification result is more involved as an additional function needs

to be identified. Following the nonparametric identification, a nonparametric two-step

estimation procedure is developed to estimate the marginal utility function and the type

distribution. Asymptotic properties of our estimator are establshed. In particular, it is

shown that the estimator of the marginal utility function is uniformly consistent while its
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asymptotic distribution converges at the parametric rate.

Data on advertising in yellow pages from a utility publisher in Central Pennsylvania

are analyzed. Because the options offered to firms also integrate a quality dimension, we

construct a quality-adjusted advertising size to incorporate the various qualities offered to

firms. Empirical results show a decreasing marginal utility and an increasing type in the

purchased quantity as expected from the model thereby suggesting that the model is not

rejected by the data. Some counterfactuals provide an estimate for the cost of asymmetric

information for the publisher and assess the loss in terms of publisher’s revenue and firms’

utility surplus or rents when a linear price is adopted and when the publisher does not

have the obligation to include everyone in the phone book.

As mentioned earlier, the quality-adjusted quantity may introduce some measurement

error problem. An error term of zero mean could be added to the quantity purchased.

Because this error term would enter nonlinearly in the model and at some bounds of

integrals, the problem becomes complex and nonstandard. Though the large number

of observed prices allows us to consider a continuous price schedule as a reasonable ap-

proximation, an alternative model would be to consider a discrete price schedule given

an exogenous number of price options. Another extension of interest is to test adverse

selection in this market. To perform a structural test of adverse selection, we would need

to derive the restrictions imposed by the nonlinear pricing model under both incomplete

and complete information environments. We then can test which set of restrictions are

validated by the data. From a theoretical perspective, we have avoided the problem of

countervailing incentives by considering an opportunity value independent of the firm’s

type in the firm’s individual rationality constraint. Our identification and estimation re-

sults could be extended to incorportate this case. Another extension could study the role

of competition by incorporating a second publisher in the model. In the county where we

collected the data, a non-utility publisher distributes a second phone book though of less
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importance and distributed at a significantly lower number. We can collect data on the

price schedule and demand data for this non-utility directory. The utility publisher seems

to play the role of a leader in this market. A Stackelberg model could shed some light on

the competition. Lastly, the methodology developed in this paper could be extended to

other models with adverse selection in contract theory.
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Appendix

Proof of Lemma 1: As discussed in the text, under A1 and (2), all the IC constraints hold

globally except (4), which is defined only locally. To show that (4) also holds globally, we first

show that the local second-order condition U11(θ, θ) ≤ 0 is satisfied. By differentiating the first-

order condition (3) with respect to θ, we obtain U12(θ, θ) + U11(θ, θ) = 0. Hence, U11(θ, θ) ≤ 0

is equivalent to U12(θ, θ) ≥ 0. Since

U12(θ, θ) = U21(θ, θ) = v2(q(θ), θ)q′(θ) > 0,

the local second-order condition is satisfied under assumption A1-(iii) and q′(·) > 0.

To show that the second-order condition also holds globally, we use a contradiction argument.

Let θ1 and θ2 satisfy θ0 < θ1 < θ2 ≤ θ. If U(θ2, θ1) > U(θ1, θ1), we have

∫ θ2

θ1

U1(x, θ1)dx > 0. (A.1)

We show that U1(x, θ1) ≤ 0 for x ∈ [θ1, θ2] hence leading to a contradiction. By definition,

U(θ̃, θ) =
∫ q(θ̃)
0 v(x, θ)dx − T (q(θ̃)). Thus we have

U12(θ̃, θ) = U21(θ̃, θ) = v2(q(θ̃), θ)q′(θ̃) > 0.

Hence, U1(x, θ1) ≤ U1(x, x) = 0 for x ≥ θ1, where the second equality results from the first-

order condition of the IC constraint (3). This contradicts (A.1). Thus, U(θ2, θ1) ≤ U(θ1, θ1) for

θ0 < θ1 < θ2 ≤ θ.

Similarly, let θ1 and θ2 satisfy θ0 < θ2 < θ1 ≤ θ. If U(θ2, θ1) > U(θ1, θ1), we have

∫ θ1

θ2

U1(x, θ1)dx < 0.

But U1(x, θ1) ≥ U1(x, x) = 0 for x ≤ θ1 by a similar argument, leading to a contradiction.

Thus the local second-order condition holds globally. 2

Proof of Proposition 1: We make a change of variable in the publisher’s problem (7) such

that the choice variable θ0 becomes the terminal time. We define t = θ− θ and t0 = θ− θ0. The
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publisher’s profit function (7) becomes

Π = −
∫ 0

t0

{[∫ q(θ−t)

q0

v(x, θ − t)dx

]
f(θ − t) −

[
1 − F (θ − t)

] [∫ q(θ−t)

q0

v2(x, θ − t)dx

]}
dt

−C

[
q0F (θ − t0) −

∫ q0

t0
q(θ̄ − s)f(θ̄ − s)ds

]
.

We further define q(t) ≡ q(θ − t), v(x, t) ≡ v(x, θ − t), f(t) ≡ f(θ − t), F (t) ≡ 1 − F (θ − t) and

v2(x, t) = −v2(x, θ − t) ∀t ∈
[
0, θ − θ

]
. The publisher’s problem becomes

max
q(·),t0∈[0,θ−θ]

Π =
∫ t0

0

{[∫ q(t)

q0

v(x, t)dx

]
f(t) + F (t)

[∫ q(t)

q0

v2(x, t)dx

]}
dt

−C

{
q0

[
1 − F (t0)

]
+
∫ t0

0
q(s)f(s)ds

}
. (A.2)

We treat q(t) as the control variable and
∫ t
0 q(s)f(s)ds as the state variable. The maximization

problem (A.2) can be written as a standard free terminal time and free-end point control problem.

To simplify the expression, we define

X(t) =
∫ t

0
q(s)f(s)ds ∀t ∈

[
0, θ − θ

]

Ψ [q(t), t] =

[∫ q(t)

q0

v(x, t)dx

]
f(t) + F (t)

[∫ q(t)

0
v2(x, t)dx

]
∀t ∈

[
0, θ − θ

]

K [X(t0), t0] = −C
{
q0

[
1 − F (t0)

]
+ X(t0)

}
.

The maximization problem (A.2) can be written as

max
q(·),t0∈[0,θ−θ]

Π =
∫ t0

0
Ψ [q(t), t] dt + K [X(t0), t0] . (A.3)

The Hamiltonian function for the above maximization problem is

H [X(t), q(t), λ(t), t] = Ψ [q(t), t] + λ(t)q(t)f(t), (A.4)

where λ(t) is the multiplier function. According to the maximization principle in Kirk (1970, pp.

188 and 192), the necessary conditions for the functions X(t), q(t) and λ(t) to be the solutions

of (A.3) are

H2 [X(t), q(t), λ(t), t] = 0 ∀t ∈ [0, θ − θ0)
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λ′(t) = −H1 [X(t), q(t), λ(t), t] ∀t ∈ [0, θ − θ0)

lim
t↑t0

λ(t) = lim
t↑t0

K1 [X(t), t]

lim
t↑t0

H [X(t), q(t), λ(t), t] = − lim
t↑t0

K2 [X(t), t] . (A.5)

By definition of the Hamiltonian function (A.4) and the function K [X(t), t], the first three

necessary conditions give

v(q(t), t)f(t) + F (t)v2(q(t), t) + λ(t)f(t) = 0 ∀t ∈ [0, θ − θ0) (A.6)

λ′(t) = 0 ∀t ∈ [0, θ − θ0) (A.7)

lim
t↑t0

λ(t) = −C ′
{
q0

[
1 − F (t0)

]
+ X(t0)

}
. (A.8)

Equations (A.7) and (A.8) give the optimal λ(·)

λ(t) = −C ′
{
q0

[
1 − F (t0)

]
+ X(t0)

}
∀t ∈ [0, θ − θ0). (A.9)

Plugging (A.9) into (A.6) gives the optimal q(·)

v(q(t), t) = C ′
{

q0

[
1 − F (t0)

]
+
∫ t0

0
q(s)f(s)ds

}
− F (t)

f(t)
v2(q(t), t) ∀t ∈ [0, θ − θ0). (A.10)

Plugging the optimal λ(·) into the Hamiltonian function (A.4) and letting limt↑t0 q(t) = q− gives

the following expression for the left-hand side of (A.5)
[∫ q−

q0

v(x, t0)dx

]
f(t0)+F (t0)

[∫ q−

q0

v2(x, t0)dx

]
−C ′

{
q0

[
1 − F (t0)

]
+
∫ t0

0
q(s)f(s)ds

}
q−f(t0).

By definition of K[X(t0), t0], the right-hand side of (A.5) is −C ′
{
q0

[
1 − F (t0)

]
+ X(t0)

}
q0f(t0).

After equating the two terms and rearranging, we obtain

∫ q−

q0

[
v(x, t0) +

F (t0)
f(t0)

v2(x, t0)

]
dx =

[
q−−q0

]
C ′
{

q0

[
1 − F (t0)

]
+
∫ t0

0
q(s)f(s)ds

}
. (A.11)

Plugging (A.10) evaluated at t0 into (A.11) gives

∫ q−

q0

[
v(x, t0) +

F (t0)
f(t0)

v2(x, t0)

]
dx =

[
q− − q0

]
[
v(q−, t0) +

F (t0)
f(t0)

v2(q−, t0)

]
.
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Letting Γ(x, t0) ≡ v(x, t0) + [F (t0)/f (t0)]v2(x, t0) = v(x, θ0) − [(1 − F (θ0))/f(θ0)]v2(x, θ0), the

previous expression can be written as

∫ q−

q0

[
Γ(x, t0) − Γ(q−, t0)

]
dx = 0. (A.12)

We now invoke A3. If Γ(x, t0) is monotone in x, the integrand is strictly monotone. Thus,

(A.12) implies q− = q0. Alternatively, if Γ(·, t0) = 0, then the left-hand side of (A.11) is zero

implying that q− = q0 because C ′(·) > 0 by A2.

It suffices now to rewrite (A.10) and (A.13) in terms of q(·), v(·, ·) and F (·) to establish (8)

and (9). Equation (10) is nothing else than the IC constraint (4). Equation (11) is obtained by

using U+ = U0, which is equivalent to limθ↓θ0

∫ q(θ)
q0

v(x, θ)dx = limθ↓θ0 T (q(θ)). The left-hand

side is equal to zero using (9) thereby establishing (11) since q(·) is strictly increasing on (θ, θ]

and (9) holds. 2

Proof of Lemma 2: To simplify the exposition, we suppress the arguments of functions in the

following proof. Taking the total derivative of (8) with respect to θ gives

v1q
′ + v2 =

∂(v2/ρ)
∂θ

+
v21

ρ
q′,

where ∂(v2/ρ)/∂θ = (v22/ρ) + v2(∂(1/ρ)/∂θ). Rearranging terms gives

q′ =
v2 [(1/v2) × (∂(v2/ρ)/∂θ) − 1]

v1 − (v21/ρ)
. (A.13)

The numerator is negative by A1-(iii) and A4-(ii). We want to show that the denominator is

also negative. Consider now the denominator.

Suppose v21 < 0. From (8), A2 and A1-(iii), we have (v/v2) > (1/ρ) > 0 implying v1 −

(v21/ρ) < v1 − [(v21v)/v2]. Moreover, v1 − [(v21v)/v2] = (v2/qv2) × (∂(−qv1/v)/∂θ) since

∂(−qv1/v)
∂θ

= q
v1v2 − v12v

v2
=

qv2

v2

(
v1 −

v12v

v2

)
.

By A1-(iii) and A4-(i), [v2/(qv2)] × [∂(−qv1/v)/∂θ] ≤ 0. Thus, v1 − (v21/ρ) < 0. Hence under

A1-(iii), A2 and A4-(i,ii), q′ > 0 on (θ0, θ]. Suppose v21 ≥ 0. It is straightforward to see

that the denominator of (A.14) is strictly negative by A1-(ii). Hence, under A1-(ii,iii), A2 and
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A4-(ii), q′ > 0 on (θ0, θ]. That q(·) is strictly increasing and continuous on [θ0, θ] is obvious.

We now show that q(·) is continuously differentiable at θ0, i.e. q′(θ0) = limθ↓θ0 q′(θ) < ∞

and strictly positive, and that q′(θ0) > 0. By the Mean Value Theorem, we have q′(θ0) ≡

limθ↓θ0 [q(θ) − q(θ0)]/(θ − θ0) = q′(θ̃), where θ0 < θ̃ < θ. Hence, limθ↓θ0 q′(θ) is equal to the

right-hand side of (A.13) evaluated at θ0, which is finite and strictly positive under A4-(i,ii). It

remains to show that under A1-(iii), A4-(iii) and A4-(iv) imply A4-(ii). Assumption A4-(ii) is

equivalent to

1
v2

∂(v2/ρ)
∂θ

− 1 =
v22

v2ρ
−
(

1 +
ρ′

ρ2

)
< 0.

Since 1+(ρ′/ρ2) > 0 by A4-(iv) and v22/(v2ρ) ≤ 0 by A1-(iii) and A4-(iii), the above expression

is negative as desired.

Regarding the second statement, because q(·) is strictly increasing on (θ0, θ] by Lemma 2,

it follows that the IC constraint (4) can be written as T ′(q) = v(q, θ(q)) ∀q ∈ (q0, q]. Recall

that v(·, ·) is continuously differentiable on [q0,+∞) × [θ, θ] by A1 while θ(·) is continuously

differentiable on [q0, q] as θ′(q) = 1/q′(θ) with q′(·) strictly positive and continuous on [θ0, θ] as

noted above. Thus, T ′(·) is continuously differentiable on (q0, q], i.e. T (·) is twice continuously

differentiable on (q0, q]. We now show that T (·) is twice continuously differentiable at q0 with

T ′(q0) > 0. We note that T ′(·) exists and is continuous at q0. This follows by the same

Mean Value Theorem argument used above replacing q(·) by T (·) and using (4) since T (·) is

continuous at q0 by (11) and continuously differentiable on (q0, q]. Thus, T ′(·) is continuously

differentiable on [q0, q] as v(·, ·) and θ(·) are continuously differentiable on [q0,+∞) × [θ, θ] and

[q0, q], respectively. Hence, T (·) is twice continuously differentiable on [q0, q]. It remains to show

that the assertions on T ′(·). Combining (8) and (10) gives

T ′(q) = C ′(Q) +
1 − F (θ)

f(θ)
v2(q, θ) ∀θ ∈ (θ0, θ].

This establishes T ′(·) > C ′(Q) on (q0, q] by A1-(iii), while taking the limit as q ↓ q0 gives

T ′(q0) = C ′(Q). 2

Proof of Lemma 4: Let θ̃ = αθ, which is distributed as F̃ (·) on [θ̃, θ̃] = [αθ, αθ]. Let

T̃ (·) ≡ T (·), q̃(·) ≡ q(·/α), θ̃0 = αθ0 and Q̃ ≡ q0F̃ (θ̃0) +
∫ ˜

θ
θ̃0

q̃(u)f̃(u)du. First we show that
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T̃ (·), q̃(·) and θ̃0 satisfy the necessary conditions (8), (9) (10) and (11). We then show that

G̃∗(·) = G∗(·), where G̃∗(·) is the truncated distribution of q̃, Q̃ = Q, and F̃ (θ̃0) = F (θ0).

Hence, the observables
[
T̃ (·), G̃∗(·), q0, Q̃, F̃ (θ̃∗)

]
generated by the structure S̃ are the same

observables [T (·), G∗(·), q0, Q, F (θ0)] generated by the structure S. To complete the proof, we

show S̃ ∈ S.

To show T̃ ′(q̃(θ̃)) = θ̃ṽ0(q̃(θ̃)) for all θ̃ ∈ (θ̃0, θ̃], we rewrite this equation using the definition

of T̃ (·), ṽ0(·) and q̃(·). This gives T ′(q(θ̃/α)) = (θ̃/α)v0(q(θ̃/α)) for all θ̃ ∈ (θ̃0, θ̃], which is true

because of (14) with θ = (θ̃/α) ∈ [θ0, θ]. To show θ̃ṽ0(q̃(θ̃)) = C ′(Q̃) + [(1 − F̃ (θ̃)/f̃(θ̃)]ṽ0(q̃(θ̃)

for all θ̃ ∈ (θ̃0, θ̃], we rewrite this equation using the definition of ṽ0(·), q̃(·) and F̃ (·):

θ̃

α
v0(q(θ̃/α)) = C ′(Q̃) +

1 − F (θ̃/α)
f(θ̃/α)

v0(q(θ̃/α))

for all θ̃ ∈ (θ̃0, θ̃]. If Q̃ = Q, the above equation holds for all θ = θ̃/α ∈ (θ0, θ] in view of (13).

Conditions (9) and (11) can be derived trivially.

Next, we show that the observables coincide. First, we show Q̃ = Q. Using the definitions of

F̃ (·), q̃(·), θ̃0, θ̃ and f̃(·), we have

Q̃ = q0F (αθ0/α) +
∫ αθ

αθ0

q(u/α)
1
α

f(u/α)du = q0F (θ0) +
∫ θ

θ0

q(θ)f(θ)dθ = Q.

Second, we show G̃∗(·) = G∗(·). Namely,

G̃∗(y) = Pr(q̃(θ̃) ≤ y|q̃(θ̃) > q0) = Pr(θ̃ ≤ q̃−1(y)|θ̃ > q̃−1(q0))

= Pr(αθ ≤ αq−1(y)|αθ > αq−1(q0))

= Pr(θ ≤ q−1(y)|θ > q−1(q0))

= Pr(q(θ) ≤ y|q(θ) > q0) = G∗(y),

using the monotonicity of q̃(·) and q(·). Third, F̃ (θ̃∗) = F (αθ0/α) = F (θ0).

Lastly, we verify that the structure S̃ belongs to S. Assumptions B1 and A2 are trivially

satisfied. Regarding A3, we have

θ̃ṽ0(q̃) −
1 − F̃ (θ̃)

f̃(θ̃)
ṽ0(q̃) = θv0(q̃) −

1 − F (θ)
f(θ)

v0(q̃),
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which is strictly monotone in q̃ or identically equal to zero for all θ ∈ (θ0, θ]. Regarding A4-(iv),

we have

θ̃ − 1 − F̃ (θ̃)
f̃(θ̃)

= θ̃ − 1 − F (θ̃/α)
(1/α)f(θ̃/α)

= α

[
θ̃

α
− 1 − F (θ̃/α)

f(θ̃/α)

]
,

which is strictly increasing in θ̃/α and hence in θ̃. 2

Proof of Lemma 5: We first prove necessity. As explained in the text, because q(·) is strictly

increasing in θ, we have G∗(q) = [F (θ)−F (θ0)]/[1−F (θ0)] with a density g∗(q) = θ′(q)f(θ)/[1−

F (θ0)], where θ = θ(q). Elementary algebra gives [1 − F (θ)]/f(θ) = θ′(q)[1 − G∗(q)]/g∗(q).

Equations (13) and (14) give

T ′(q) = γ +
1 − G∗(q)

g∗(q)
θ′(q)v0(q). (A.14)

Differentiating (14) with respect to q gives T ′′(q) = θ(q)v′0(q) + θ′(q)v0(q), i.e. θ′(q)v0(q) =

T ′′(q) − θ(q) − v′0(q). Substituting the latter in (A.14) gives after some algebra

θ(q)v′0(q) = T ′′(q) − g∗(q)
1 − G∗(q)

[
T ′(q) − γ

]
.

Dividing the left-hand side by θ(q)v0(q) and the right hand side by T ′(q) since T ′(q) = θv0(q)

by (14) gives

v′0(q)
v0(q)

=
T ′′(q)
T ′(q)

− g∗(q)
1 − G∗(q)

[
1 − γ

T ′(q)

]
.

Integrating both sides of the above equation from q0 to q gives

log
(

v0(q)
v0(q0)

)
= log

(
T ′(q)
T ′(q0)

)
−
∫ q

q0

g∗(x)
1 − G∗(x)

(
1 − γ

T ′(x)

)
dx. (A.15)

Taking the exponential gives

v0(q)
v0(q0)

=
T ′(q)
T ′(q0)

exp
[
−
∫ q

q0

g∗(x)
1 − G∗(x)

(
1 − γ

T ′(x)

)
dx

]
. (A.16)

Condition (14) evaluated at q0 gives T ′(q0) = θ0v0(q0). Multiplying the right-hand side of (A.16)

by T ′(q0) and the left-hand side by θ0v0(q0) gives

v0(q) =
T ′(q)
θ0

exp
[
−
∫ q

q0

g∗(x)
1 − G∗(x)

(
1 − γ

T ′(x)

)
dx

]
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=
T ′(q)
θ0

exp
[
−
∫ q

q0

g∗(x)
1 − G∗(x)

dx

]
exp

[
−γ

∫ q

q0

−g∗(x)
1 − G∗(x)

1
T ′(x)

dx

]

=
T ′(q)
θ0

[1 − G∗(q)] exp

[
−γ

{
log(1 − G∗(x))

T ′(x)

∣∣∣∣
q

q0

+
∫ q0

q
log(1 − G∗(x))

T ′′(x)
T ′(x)

dx

}]

=
T ′(q)
θ0

[1 − G∗(q)]1−
γ

T ′(q) exp
{
−γ

∫ q

q0

log [1 − G∗(x)]
T ′′(x)
T ′(x)2

dx

}
,

where the third equality is obtained using integration by parts. Equation (17) follows from

θ(q) = T ′(q)/v0(q) by (14). All the derivations in the above proof are reversible, so the proof of

sufficiency is omitted. 2

Proof of Proposition 2: We consider two different structures S = [v0(·), F (·), C ′(·)] and

S̃ = [ṽ0(·), F̃ (·), C̃ ′(·)], where F (·) is defined on [θ, θ] with θ0 = 1 and F̃ (·) is defined on [θ̃, θ̃]

and θ̃0 = 1. Both structures are assumed to be in S and to generate the same observables

[T (·), q0, F (θ0), G∗(·), Q]. By Lemma 3, we note C ′(Q) = C̃ ′(Q) = γ. In view of Lemma 5, the

structure S̃ has to satisfy

ṽ0(q) =
T ′(q)
θ̃0

[1 − G∗(q)]1−
−γ

T ′(q) exp
{
−γ

∫ q

q0

log [1 − G∗(x)]
T ′′(x)
T ′(x)2

dx

}
∀q ∈ (q0, q]

θ̃(q) = θ̃0 [1 − G∗(q)]
−γ

T ′(q)−1 exp
{

γ

∫ q

q0

log [1 − G∗(x)]
T ′′(x)
T ′(x)2

dx

}
∀q ∈ (q0, q].

By B2, θ0 = θ̃0 showing ṽ0(·) = v0(·) and θ(·) = θ̃(·) on (q0, q] and hence on [q0, q] by continuity

at q0. Thus, F̃ ∗(·) = G∗(q̃(·)) = G∗(q(·)) = F ∗(·) on [θ0, θ]. Thus, v0(·) and F ∗(·) are uniquely

determined on [q0, q] and [θ0, θ], respectively.2

Proof of Proposition 3: to be completed.
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Table 1. Revenue Ranking by Industry Headings

Industry heading Revenue Percentage

Attorneys $500,347 8.71%

Dentists $190,667 3.32%

Insurance $187,496 3.27%

Storage household & commercial $139,425 2.43%

Hotels $131,108 2.28%

Restaurants $127,777 2.23%

Veterinarians $102,077 1.78%

Plumbing contractors $101,749 1.77%

Carpet & rug cleaners $100,086 1.74%

Automobile repair & service $84,327 1.47%
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Table 2: Number of Purchases and Revenue by Sizes

Picas2 Percent of a page # Purchases Revenue Percent

Listing

12 0.4% 2,347 $0 0.0%

18 0.6% 820 $126,050 2.2%

24 0.8% 109 $10,987 0.2%

27 0.9% 672 $200,416 3.5%

30 1.0% 273 $69,623 1.2%

36 1.2% 50 $15,557 0.3%

39 1.3% 287 $112,340 2.0%

42 1.4% 52 $18,652 0.3%

48 1.6% 8 $2,609 0.0%

51 1.7% 131 $60,899 1.1%

54 1.8% 7 $3,175 0.0%

60 2.0% 3 $1,740 0.0%

63 2.1% 20 $10,596 0.2%

66 2.2% 2 $1,109 0.0%

72 2.4% 1 $492 0.0%

75 2.5% 3 $1,804 0.0%

87 2.9% 1 $794 0.0%

96 3.2% 1 $706 0.0%

108 3.6% 1 $806 0.0%

Space Listing

54 1.8% 979 $500,069 8.7%

72 2.4% 277 $218,005 3.8%

108 3.6% 137 $184,732 3.2%

144 4.8% 26 $47,513 0.8%

216 6.9% 10 $27,686 0.5%
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Table 2: Number of Purchases and Revenue by Sizes

(continued)

Picas2 Percent of a page # Purchases Revenue Percent

Display

201 6.7% 143 $294,474 5.1%

213 7.1% 16 $34,048 0.6%

225 7.5% 12 $26,146 0.5%

235 7.8% 132 $335,261 5.8%

247 8.2% 12 $35,748 0.6%

259 8.6% 16 $44,860 0.8%

382 12.7% 123 $551,136 9.6%

394 13.1% 45 $207,640 3.6%

406 13.5% 2 $8,858 0.2%

418 13.9% 1 $6,175 0.1%

564 18.8% 57 $365,947 6.4%

575 19.1% 24 $174,767 3.0%

587 19.6% 7 $54,094 0.9%

762 25.4% 35 $323,424 5.6%

774 25.8% 4 $33,025 0.6%

786 25.2% 1 $10,950 0.2%

1137 37.9% 3 $44,102 0.8%

1149 38.3% 5 $68,750 1.2%

1512 50.4% 59 $947,088 16.5%

1524 50.8% 1 $10,194 0.2%

1536 51.2% 1 $18,208 0.3%

3047 101.6% 13 $410,318 7.1%

6066 202.2% 2 $120,737 2.1%

Total 6,931 $5,742,309

53



Table 3: Some Examples of Estimated Firms’ Utility for No Color

q Adjusted q # Obs. Û − U0

18 3.20 738 $-18.057

54 15.71 935 $352.643

201 71.85 87 $866.143

236 87.67 66 $1,139.743

382 159.47 39 $1,780.943

564 255.26 23 $2,542.743

1512 699.10 8 $6,518.143

3047 1469.60 1 $18,177.340
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