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Abstract

We examine the cross section of sales of French manufacturing �rms in 113 destinations,

including France itself. Several regularities stand out: For example: (1) the number of French

�rms selling to a market, relative to French market share, increases systematically with market

size; (2) sales distributions are very similar across markets of very di¤erent size and extent of

French participation; (3) Average sales in France rise very systematically with selling to less

popular markets and to more markets. We adopt a model of �rm heterogeneity and export

participation which we estimate to match moments of the French data using the method of

simulated moments. The results imply that nearly half the variation across �rms that we

see in market entry can be attributed to a single dimension of underlying �rm heterogeneity,

e¢ ciency. Conditional on entry underlying e¢ ciency accounts for a much smaller variation

in sales in any given market. Parameter estimates imply that �xed costs eat up a little more

than half of gross pro�ts. We use our results to simulate the e¤ects of a counterfactual decline

in bilateral trade barriers on French �rms. The average �rm in the top decile experiences

signi�cant expansion in total sales while average �rms in lower deciles su¤er losses or exit

altogether.



1 Introduction

We exploit a detailed set of data on the exports of French �rms to confront a new generation

of trade theories. The data, from French customs, report the sales of over 200,000 individual

�rms to over 100 individual markets in a cross section.

We ask how well the model of the export behavior of heterogeneous �rms introduced

by Melitz (2003) and more concretely speci�ed by Helpman, Melitz, and Yeaple (2004) and

Chaney (2008) stands up to these data. Basic elements of the model are that �rms�e¢ ciencies

follow a Pareto distribution, demand is Dixit-Stiglitz, and markets are separated by iceberg

trade barriers and require a �xed cost of entry. The model is the simplest one we can think

of that can square with the facts.

With this basic model in mind, we extract �ve relationships that underlie the data: (1)

how entry varies with market size, (2) how the distribution of sales varies across markets, (3)

how �rms enter multiple markets, (4) how export participation abroad connects with sales at

home, and (5) how sales abroad relate to sales at home. Through the haze of numbers we

begin to see the outlines of the basic model, and even rough magnitudes of some parameters.

The basic model fails to come to terms with some features of the data, however: Firms don�t

enter markets according to an exact hierarchy and their sales where they do enter deviate

from the exact correlations the basic model would insist upon.

To reconcile the basic model with these failures we extend it by introducing market and

�rm-speci�c heterogeneity in demand and entry costs. We also incorporate a reduced form

version of Arkolakis�s (2008) market access cost. The extended model, while remaining very

parsimonious and transparent, is one that we can connect more formally to the data. We



describe how the model can be simulated and we estimate its parameters using the method

of simulated moments.

With the parameter estimates in hand we �nd that the forces underlying the basic model

remain powerful. Simply knowing a �rm�s e¢ ciency improves our ability to explain the prob-

ability it sells in any market by nearly �fty percent. Conditional on a �rm selling in a market,

knowing its e¢ ciency improves our ability to predict how much it sells there, but by much

less. While these results leave much to be explained by the idiosyncratic interaction between

individual �rms and markets, they tell us that any theory that ignores features of the �rm

that are universal across markets misses much.

We embed our model into a general equilibrium framework with an arbitrary number of

countries. Calibrating the framework to data on production and bilateral trade from 113

countries and the rest of the world, we can examine the implications of changes in exogenous

parameters for income, wages, and prices in each country and for bilateral trade. We can use

these counterfactual outcomes and our parameter estimates to simulate the implications for

French �rms. A striking �nding is that lower trade barriers, while raising welfare in every

country, leads to substantially more inequality in the distribution of �rm size. Even though

total output of French �rms rises by 3.3 percent, all of the growth is accounted for by �rms in

the top decile with sales and sales per �rm in every other decile falling. Import competition

leads to the net exit of 26,212 �rms, 11,323 accounted for by those in the bottom decile.

Section 2 which follows explores �ve empirical regularities. With these in mind in Section

3 we turn to a model of exporting by heterogeneous �rms. Section 4 explains how we estimate

the parameters of the model while section 5 explores the implications of a lowering of trade
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barriers.

2 Empirical Regularities

Our data, described in Appendix A, are the sales, translated into U.S. dollars, of 229,900

French manufacturing �rms to 113 markets in 1986.1 Among them only 34,035 sell elsewhere

than in France. The �rm that exports most widely sells to 110 out of the 113 destinations.

We assemble our complex data in di¤erent ways that reveal sharp regularities. (1) We

show how the number of �rms selling in a market varies with the size of the market. (2) We

look at features of the distribution of sales within individual markets. (3) We examine sets

of destinations where �rms sell. (4) We look at sales in France by �rms selling (a) to more

destinations and (b) to less popular destinations. (5) We compare what �rms sell in export

markets relative to their sales in France.

2.1 Market Entry

Figure 1a plots the number of French manufacturing �rmsNnF selling to a market against total

manufacturing absorption Xn in that market across our 113 markets.2 While the number of

�rms selling to a market tends clearly to increase with the size of the market, the relationship

is a cloudy one. Note in particular that more French �rms sell to France than its market size

1Eaton, Kortum, and Kramarz (EKK, 2004), describe the data in detail, partitioning �rms into 16 man-

ufacturing sectors. While features vary across industries, enough similarity remains to lead us to ignore the

industry dimension here.
2Manufacturing absorption is calculated as total production plus imports minus exports. Aggregate trade

data are from Feenstra (2000) while production data are from UNIDO (2000). See EKK (2004) for details.
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would suggest.

The relationship comes into focus, however, when the number of �rms is normalized by

the share of France in a market. Figure 1b continues to report market size across the 113

destinations along the x axis. The y axis replaces the number of French �rms selling to

a market with that number divided by French market share, �nF ; de�ned as total French

exports to that market, XnF ; divided by the market�s total absorption Xn, i.e.,

�nF =
XnF

Xn

:

Note that the relationship is not only very tight, but linear in logs. Correcting for market

share pulls France from the position of a large positive outlier to a slightly negative one. A

regression line has a slope of 0.65.

If we make the assumption that French �rms don�t vary systematically in size from other

(non-French) �rms selling in a market, the measure on the y axis indicates the total number

of �rms selling in a market. We can then interpret Figure 1b as telling us how the number of

sellers varies with market size.

Models of perfect and Bertrand competition and the standard model of monopolistic com-

petition without market-speci�c entry costs predict that the number of sellers in a market is

invariant to market size. Figures 1a and 1b compel us to abandon these approaches.

The number of �rms selling to a market increases with market size, but with an elasticity

less than one. A mirror relationship (not shown) is that average sales per �rm increase with

market size as well, again with an elasticity less than one. We can get a fuller picture by

asking how sales per �rm rise with market size at di¤erent points in the sales distribution

there. Figure 1c shows this relationship, reporting the 95th, 75th, 50th, and 25th percentiles
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of sales in each market (on the y axis) against market size (on the x axis). The upward drift

is apparent across the board, although more weakly for the 25th percentile.

2.2 Sales Distributions

Our second exercise is to look at the distribution of sales within individual markets. We plot

the sales of each �rm in a particular market (relative to mean sales there) against the fraction

of �rms selling in the market who sell at least that much.3 Doing so for all our 113 destinations

a remarkable similarity emerges. Figure 2 plots the results for Belgium-Luxembourg, France,

Ireland, and the United States, on common axes. Since there are many fewer �rms exporting

than selling in France the upper percentiles in the foreign destinations are empty. Nonetheless,

the shape is about the same.

To interpret these �gures as distributions, let xqn be the q�th percentile of French sales in

market n normalized by mean sales in that market. We can write:

Pr [xn � xqn] = q

where xn is sales of a �rm in market n relative to the mean. Suppose the sales distribution is

Pareto with parameter a > 1 (so that the minimum sales relative to the mean is (a � 1)=a).

We could then write:

1�
�
axqn
a� 1

��a
= q

3Following Gabaix and Ibragimov (2008) we construct the x axis as follows. Denote the rank in terms of

sales of French �rm j in market n; among the NnF French �rms selling there, as rn(j); with the �rm with the

largest sales having rank 1. For each �rm j the point on the x axis is (rn(j)� :5)=NnF :
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or:

ln (xqn) = ln

�
a� 1
a

�
� 1
a
ln(1� q);

implying a straight line with slope �1=a: At the top percentiles the slope does appear nearly

constant and below �1 but at the lower tails it is much steeper, re�ecting the presence of

suppliers selling very small amounts.4 This shape is well known in the industrial organization

literature looking at various size measures in the home market.5 What we �nd here is that

this shape is inherited across markets looking at the same set of potential sellers.

2.3 Entry Strings

We now examine entry into di¤erent markets by individual �rms. As a starting point for this

examination, suppose �rms obey a hierarchy in the sense that any �rm selling to the k + 1st

most popular destination necessarily sells to the kth most popular destination as well. Not

surprisingly �rms are less orderly in their choice of destinations. A good metric of how far

they depart from a hierarchy is elusive. We can get some sense, however, by looking simply

at exporters to the top seven foreign destinations. Table 1 reports these destinations and

the number of �rms selling to each. It also reports the total number that export to at least

one of these destinations and the total number of exporters. Note that 4,106 of the 34,035

exporters, constituting only 12 percent, don�t sell in the top 7. The last column of the table

reports, for each top 7 destination, the marginal probability of selling there conditional on

selling somewhere among the top 7.

4Considering only sales by the top 1 percent of French �rms selling in the four destinations depicted in

Figure 2, regressions yield slopes of -0.74 (Belgium), -0.87 (France), -0.69 (Ireland) and -0.82 (United States).
5See Simon and Bonini (1958) and Luttmer (2006), among many, for a discussion and explanations.
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We use these marginal probabilities to calculate the probability of selling to the markets

in the order prescribed by a hierarchy if the probabilities of selling in any market were inde-

pendent across markets. The �rst column of Table 2 lists each of the strings of destinations

that obey a hierarchical structure while column 2 reports the number of �rms exporting to

that string, irrespective of their export activity outside the string. The third column reports

the probability that a �rm would export to that string if the probabilities of exporting to each

destination were independent across markets. Independence implies that only 13.5 percent

of exporters would obey the required ordering (for example, selling to Belgium and Germany

but not the other �ve), so that 86.5 would deviate from it (e.g., by selling to Belgium, Ger-

many, and the United Kingdom but nowhere else). In fact more than twice that number, 30.9

percent, adhere to the hierarchy. Column 4 reports the implied number of �rms that would

sell to each string under independence. Note that many more sell to the short strings and

fewer to the long strings than independence would imply. We conclude that a model needs to

recognize both a tendency for �rms to export according to a hierarchy while allowing them

signi�cant latitude to depart from it.

2.4 Export Participation and Size in France

How does a �rm�s participation in export markets relate to its sales in France? We organize

our �rms in two di¤erent ways based on our examination of their entry behavior above.

First, we group �rms according to the minimum number of destinations where they sell.

All of our �rms, of course, sell to at least one market while none sell to all 113 destinations.

Figure 3a depicts average sales in France on the y axis for the group of �rms that sell to at
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least k markets with k on the x axis. Note the near monotonicity with which sales in France

rise with the number of foreign markets served.

Figure 3b reports average sales in France of �rms selling to k or more markets against the

number of �rms selling to k or more markets. The highly linear, in logs, negative relationship

between the number of �rms that export to a group of countries and their sales in France is

highly suggestive of a power law. The regression slope is -0.66.

Second, we rank countries according to their popularity as destinations for exports. The

most popular destination is of course France itself, where all of our �rms sell, followed by

Belgium-Luxembourg with 17,699 exporters. The least popular is Nepal, where only 43 French

�rms sell (followed in unpopularity by Afghanistan and Uganda, with 52 each). Figure 3c

depicts average sales in France on the y axis plotted against the number of �rms selling to

the kth most popular market on the x axis. The relationship is tight and linear in logs as in

Figure 3b, although slightly �atter, with a slope of -0.57. Selling to less popular markets has

a very similar positive association with sales in France as selling to more markets.

We conclude that �rms that sell to less popular markets and sell to more markets sys-

tematically sell more in France. Delving further into the French sales of exporters to markets

of varying popularity, Figure 3d reports the 95th, 75th, 50th, and 25th percentile of sales in

France (on the y axis) against the number of �rms selling to each market. Note the tendency

of sales in France to rise with the unpopularity of a destination across all percentiles (less

systematically so for the 25th percentile). A challenge for modeling is reconciling the stark

linear (in logs) relationships in Figures 3b, 3c, and 3d with the more nuanced size distributions

in Figure 2.6

6We were able to observe the relationship between market popularity and sales in France for the 1992
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2.5 Export Intensity

Having looked separately at what exporters sell abroad and what they sell in the French

market, we now examine the ratio of the two. We introduce the concept of �rm�s j�s normalized

export intensity in market n which we de�ne as:

XnF (j)=XnF

XFF (j)=XFF

:

Here XnF (j) is French �rm j�s sales in market n and XnF are average sales by French �rms

in market n (XFF (j) and XFF are the corresponding magnitudes in France). Scaling by XnF

removes any e¤ect of market n as it applies to sales of all French �rms there. Scaling by

XFF (j) removes any direct e¤ect of �rm size.

Figure 4 plots median normalized export intensity for each foreign market n (on the y

axis) against the number of �rms selling to that market (on the x axis) on log scales. Two

aspects stand out.

First, while we have excluded France from the �gure, its y coordinate would be 1. Note

that the y coordinates in the �gure are at least an order of magnitude below one. Hence, a

typical exporter�s sales are more oriented toward the domestic market.

Second, as a destination becomes more popular, normalized export intensity rises. The

slope is 0.38. Hence if the number of sellers to a market rises by 10 percent, normalized export

intensity rises by around 4 percent.

cross-section as well. The analog (not shown) of Figure 3c is nearly identical. Furthermore, the changes

between 1986 and 1992 in the number of French �rms selling in a market correlates as it should with changes

in the mean sales in France of these �rms. The only glaring discrepancy is Iraq, where the number of French

exporters plummeted between the two years, while average sales in France did not skyrocket to the extent

that the relationship would dictate.
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3 Theory

In seeking to explain these relationships we turn to a parsimonious model that delivers predic-

tions about where �rms sell and how much they sell there. We infer the parameter values of

the model from our observations on French �rms. To this end we build on Melitz (2003), Help-

man, Melitz, and Yeaple (2004), Chaney (2008), and Arkolakis (2008). The basic structure

is monopolistic competition: goods are di¤erentiated with each one corresponding to a �rm;

selling in a market requires a �xed cost while moving goods from country to country incurs

iceberg transport costs; �rms are heterogeneous in e¢ ciency as well as in other characteristics

while countries vary in size, location, and �xed cost of entry.

We begin with the determination of unit costs of di¤erent products in di¤erent countries

around the world (whether or not these products are produced or supplied in equilibrium).

Unit costs depend on input costs, trade barriers, and underlying heterogeneity in the e¢ ciency

of potential producers in di¤erent countries.

3.1 Producer Heterogeneity

A potential producer of good j in country i has e¢ ciency zi(j): A bundle of inputs there costs

wi; so that the unit cost of producing good j is wi=zi(j): Countries are separated by iceberg

trade costs, so that delivering one unit of a good to country n from country i requires shipping

dni � 1 units, where we set dii = 1 for all i: Combining these terms, the unit cost to this

producer of delivering one unit of good j to country n from country i is:

cni(j) =
widni
zi(j)

: (1)

The measure of potential producers in country i who can produce their good with e¢ ciency
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at least z is:

�zi (z) = Tiz
�� z > 0; (2)

where � > 0 is a parameter.7 Using (1), the measure of goods that can be delivered from

country i to country n at unit cost below c is �ni(c) de�ned as:

�ni(c) = �
z
i

�
widni
c

�
= Ti(widni)

��c�:

The measure of goods that can be delivered to country n from anywhere at unit cost c or less

is therefore:

�n(c) =
NX
i=1

�ni(c) = �nc
�; (3)

where �n =
PN

i=1 Ti(widni)
��.

Within this measure, the fraction originating from country i is:

�ni(c)

�n(c)
=
Ti(widni)

��

�n
= �ni: (4)

7We follow Helpman, Melitz, and Yeaple (2004) and Chaney (2007) in treating the underlying heterogeneity

in e¢ ciency as Pareto. Our observations above on patterns of sales by French �rms in di¤erent markets are

very suggestive of an underlying Pareto distribution. A Pareto distribution of e¢ ciencies can arise naturally

from a dynamic process that is a history of independent shocks, as shown by Simon (1956), Gabaix (1999), and

Luttmer (2006). The Pareto distribution is closely linked to the type II extreme value (Fréchet) distribution

used in Kortum (1997), Eaton and Kortum (1999), Eaton and Kortum (2002), and Bernard, Eaton, Kortum,

and Jensen (2003). Say that the range of goods is limited to the interval j 2 [0; J ] with the measure of

goods produced with e¢ ciency at least z given by: �Zi (z; J) = J
�
1� exp

�
�(T=J)z��

�	
(where J = 1 in

these previous papers). This generalization allows us to stretch the range of goods while compressing the

distribution of e¢ ciencies for any given good. Taking the limit as J !1 gives (2). (To take the limit rewrite

the expression as
�
1� exp

�
�(T=J)z��

�	
=J�1 and apply L�Hôpital�s rule.)

11



where �ni; which arises frequently in what follows, is invariant to c.

We now turn to demand and market structure in a typical destination.

3.2 Demand, Market Structure, and Entry

A market n contains a measure of potential buyers. In order to sell to a fraction f of them a

producer selling good j must incur a �xed cost:

En(j) = "n(j)EnM(f): (5)

Here "n(j) is a �xed-cost shock speci�c to good j in market n and En is the component of

the cost shock faced by all who sell there, regardless of where they come from. The function

M(f); the same across destinations, relates a seller�s �xed cost of entering a market to the

share of consumers it reaches there. Any given buyer in the market has a chance f of accessing

the good while f is the fraction of buyers reached.

In what follows we use the speci�cation forM(f) derived by Arkolakis (2008) from a model

of the microfoundations of marketing:

M(f) =
1� (1� f)1�1=�

1� 1=� ;

where the parameter � � 0 re�ects the increasing cost of reaching a larger fraction of potential

buyers.8 This function has the desirable properties that the cost of reaching 0 buyers in a

market is 0 and that the total cost is increasing (and the marginal cost weakly increasing) in

the fraction f of buyers reached. Taking the limit �!1 implies a constant marginal cost of

reaching an added buyer. Since buyers in a market turn out to be identical a seller would then

8At � = 1 the function becomes M(f) = ln(1� f):
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choose to reach either every potential buyer in a market or none at all, an outcome equivalent

to Melitz (2003). As shown by Arkolakis (2008), and as we replicate below, with � �nite a

seller might still stay out of a market entirely or make the e¤ort to reach only a small fraction

of buyers there. A seller with a lower unit cost in a market undertakes greater e¤ort to reach

more buyers there.

Each potential buyer in market n has the same probability f of being reached by a particu-

lar seller that is independent across sellers. Hence each buyer can purchase the same measure

of goods, although the particular goods in question vary across buyers. Buyers combine goods

according to a constant elasticity of substitution aggregator with elasticity �, where we require

� � 1 > � > 1: Hence we can write the aggregate demand for good j, if it has price p and

reaches a fraction f of the buyers in market n; as:

Xn(j) = �n(j)fXn

�
p

Pn

�1��
where Xn is total spending there. The term �n(j) re�ects an exogenous demand shock speci�c

to good j in market n: The term Pn is the CES price index, which we derive below.

Conditional on selling in a market the producer of good j with unit cost cn(j) who charges

a price p and reaches a fraction f of buyers earns a pro�t:

�n(p; f) =

�
1� cn(j)

p

�
�n(j)f

�
p

Pn

�1��
Xn � "n(j)En

1� (1� f)1�1=�
1� 1=� : (6)

Given its unit cost cn(j) and idiosyncratic sales and �xed-cost shifters �n(j) and "n(j) this

expression is the same for any seller in market n regardless of its location. We now turn to

the pro�t maximizing choices of p and f:

A producer will set the standard Dixit-Stiglitz (1977) markup over unit cost:

pn(j) = mcn(j)
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where:

m =
�

� � 1 :

and seek a fraction:

fn(j) = max

8<:1�
"
�n(j)

Xn

�En

�
mcn(j)

Pn

�1��#��
; 0

9=; (7)

of buyers in the market where:

�n(j) =
�n(j)

"n(j)
;

is the entry shock in market n given by the ratio of the demand shock to the �xed-cost shock.

Note that it won�t sell at all, hence avoiding any �xed cost there, if:

�n(j)

�
mcn(j)

Pn

�1��
Xn

�
� En:

Having now solved for the pro�t maximizing price pn(j) and entry e¤ort fn(j) we can

describe a seller�s behavior in market n in terms of its unit cost cn(j) = c; demand shock

�n(j) = �; and entry shock �n(j) = �: From the condition above, a �rm enters market n if

and only if:

c � cn(�) (8)

where:

cn(�) =

�
�
Xn

�En

�1=(��1)
Pn
m
: (9)

We can use the expression for (9) to simplify the expression for the fraction of buyers a

producer with unit cost c � cn(�) will reach:

fn(�; c) = 1�
�

c

cn(�)

��(��1)
: (10)
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Its total sales are then:

Xn(j) = �fn(�; c)

�
mc

Pn

�1��
Xn: (11)

Since it charges a markup m over unit cost its total gross pro�t is simply:

�G(j) = Xn(j)=� (12)

some of which is covering its �xed cost:

En(j) =
�

�
EnM(fn(�; c)): (13)

To summarize, the relevant characteristics of market n that apply across sellers are total

purchases Xn, the price index Pn; and the common component of the �xed cost En: The par-

ticular situation of a potential seller of product j in market n is captured by three magnitudes:

the unit cost cn(j) and the demand and entry shocks �n(j) and �n(j). We treat �n(j) and

�n(j) as the realizations of producer-speci�c shocks drawn from a joint density g(�; �) that is

the same across destinations n and independent of cn(j).

Equations (8) and (9), governing entry, and (11), governing sales conditional on entry,

link our theory to the data on French �rms�entry and sales in di¤erent markets of the world

described in Section 2. Before returning to the data, however, we need to solve for the price

index Pn in each market.

3.3 The Price Index

As described above, each buyer in market n has access to the same measure of goods (even

though they are not necessarily the same goods). Every buyer faces the same probability

fn(�; c) of purchasing a good with cost c and entry shock � for any value of �: Hence we can
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write the price index Pn faced by a representative buyer in market n as:

Pn = m

"Z Z  Z cn(�)

0

�fn(�; c)c
1��d�n(c)

!
g(�; �)d�d�

#�1=(��1)
:

To solve we use, respectively, (3), (10), and the laws of integration, to get:

Pn = m

"
�n

Z Z
�

 Z cn(�)

0

fn(�; c)�c
���dc

!
g(�; �)d�d�

#�1=(��1)

= m

"
�n

Z Z
�

 Z cn(�)

0

�c���dc� cn(�)��(��1)
Z cn(�)

0

�c���+�(��1)dc

!
g(�; �)d�d�

#�1=(��1)

= m

�
�n

�
�

� � (� � 1) �
�

� + (� � 1)(�� 1)

�Z Z
�cn(�)

��(��1)g(�; �)d�d�

��1=(��1)
:

Substituting the expression for the entry hurdle (9) into this last expression and simplifying

gives:

Pn = m (�1�n)
�1=�

�
Xn

�En

�(1=�)�1=(��1)
(14)

where:

�1 =

�
�

� � (� � 1) �
�

� + (� � 1)(�� 1)

� Z Z
��[��(��1)]=(��1)g(�; �)d�d�: (15)

Note that the price index relates to total expenditure relative to the entry cost with an

elasticity of 1=�� 1=(�� 1): Our restriction that � > �� 1 assures that the e¤ect is negative:

A larger market enjoys lower prices, a manifestation of Krugman�s (1980) �home market e¤ect�

common across models of monopolistic competition. Our parameter estimates will give us a

sense of its magnitude.

Having solved for the price index Pn we return to the sales and entry of an individual �rm

there.
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3.4 Firm Entry and Sales

We can now restate the conditions for entry, (8) and (9), and the expression for sales condi-

tional on entry, (11), in terms of the parameters underlying the price index. A �rm j with

unit cost c and sales and entry shocks � and � will enter market n if c and � satisfy:

c � cn(�):

where, substituting the price index (14) into (9):

cn(�) = �
1=(��1)

�
Xn

�En�1�n

�1=�
: (16)

Substituting (10) and (14) into (11), conditional on entry its sales there are:

Xn(j) = �

"
1�

�
c

cn(�)

��(��1)#
c�(��1)

�
Xn

�En�1�n

�(��1)=�
�En

= "

"
1�

�
c

cn(�)

��(��1)#�
c

cn(�)

��(��1)
�En (17)

Note that " has replaced � as the shock to sales. Firms that have overcome a higher entry

hurdle must sell more for entry to be worthwhile.

Knowing now what an individual �rm does in market n, we turn to aggregate �rm behavior

in that market.

3.5 Aggregate Entry and Sales

For �rms with a given � in market n a measure �n(cn(�)) will pass the entry hurdle. Integrating

across the marginal density g2(�); the measure of entrants into market n is:

Jn =

Z
[�n(cn(�))] g2(�)d� = �n

Z
[cn(�n)

�]g2(�)d� =
�2
�1

Xn

�En
(18)
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where:

�2 =

Z
��=(��1)g2(�)d� (19)

Note that this measure rises in proportion to Xn.9

Suppliers to market n have heterogeneous costs. But, conditional on entry, suppliers from

each source country i have the same distribution of unit costs in n. To see why, consider good

j in market n with entry shock �. For any cost c less than the entry threshold, the fraction

of suppliers from i with cni(j) � c among those with cni(j) � cn(�) is simply

�ni(c)=�ni(cn(�)) = [c=cn(�)]
�

for any c � cn(�). Hence for any � this proportion does not depend on source i. Since

we assume that the distribution of � is independent i, di¤erent sources will have di¤erent

measures of suppliers selling in market n, but all who do sell will have the same distribution

of unit costs.

Hence, given the constant markup over unit cost, suppliers from any source have the same

distribution of prices in n and, hence, of sales. An implication is that the fraction of entrants

into n coming from i, �ni; is also the fraction of spending by country n on goods originating

from country i:

�ni =
Xni

Xn

; (20)

where Xni is n�s purchases on goods originating from i. This relationship gives us a connection

between the cluster of parameters embedded in �ni in (4) above and data on trade shares.

9In describing the data we used N to indicate a number of �rms (an integer, of course). Since the theory

implies a continuum of �rms we use J to denote a measure of producers.
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Combining (18) and (20), we get that the measure of �rms from country i selling in country

n is:

Jni = �niJn =
�2
�1

�niXn

�En
: (21)

Hence the measure of �rms from source i in destination n is proportional to i�s trade share

�ni there and to market size Xn relative to En. Average sales of these �rms Xni is:

Xni =
�niXn

�niJn
=
�1
�2
�En: (22)

The distribution of sales in a particular market, and hence mean sales there, is invariant to

the location i of the supplier.

3.6 Fixed Costs and Pro�ts

Since our model is one of monopolistic competition, producers charge a markup over unit

cost. If total spending in a market is Xn then gross pro�ts earned across �rms in that market

are Xn=�: If �rms were homogeneous then �xed costs would fully dissipate pro�ts. But,

with producer heterogeneity, �rms with a unit cost below the entry cuto¤ in a market earn a

positive pro�t there. Here we solve for the share of pro�ts that are dissipated by �xed costs.

While not used in our estimation below, this derivation delivers a useful implication of the

model which we can quantify once we have estimated the model�s parameters.

We return to the expression for a �rm�s �xed cost in destination n (13), substituting (7):

En(�; �; c) =
�

�
En
1�

�
c

cn(�)

�(��1)(��1)
1� 1=� :

Integrating across the range of unit costs consistent with entry into destination n (given �)
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while using (3) and (9), gives us:

En(�; �) =
�

�
En
1� �n�

R cn(�)
0

�
c

cn(�)

�(��1)(��1)
c��1dc

1� 1=�

= ��(��(��1))=(��1)
�
Xn

��1

��
�

�=(� � 1) + �� 1

�
:

Integrating across the joint density of � and �; inserting (15), we get that total �xed costs in

a market En are:

En =

Z Z
En(�; �)g(�; �)d�d� =

Xn

��
[� � (� � 1)]: (23)

Thus total entry costs are a fraction [� � (� � 1)]=� of the gross pro�ts Xn=� earned in any

destination n. Net pro�ts earned in market n are simply Xn=(m�).

3.7 A Streamlined Representation

We now employ a change of variables that simpli�es the model in two respects. First, it allows

us to characterize unit cost heterogeneity in terms of a uniform measure. Second, it allows us

to consolidate parameters.

To isolate the heterogeneous component of unit costs we transform the e¢ ciency draw of

any potential producer in France as:

u(j) = TF zF (j)
��: (24)

We refer to u(j) as �rm j�s standardized unit cost. From (2), the measure of �rms with

standardized unit cost below u equals the measure with e¢ ciency above (TF=u)1=� which is

simply �zF ((TF=u)
1=�) = u: Hence standardized costs have a uniform measure that doesn�t

depend on any parameters.
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Substituting (24) into (1) and using (4), we can write unit cost in market n in terms of

u(j) as:

cn(j) =
wFdnF
zF (j)

=

�
u(j)

�nF

�1=�
��1=�n : (25)

Associated with the entry hurdle cn(�) is an entry hurdle un(�) satisfying:

cn(�) =

�
un(�)

�nF

�1=�
��1=�n : (26)

Firm j will enter market n if its u(j) and �n(j) satisfy:

u(j) � un(�n(j)) =
�
XnF

�1�En

�
�n(j)

e� (27)

where

e� = �

� � 1 > 1: (28)

Conditional on �rm j�s passing this hurdle we can use (25) and (26) to rewrite �rm j�s

sales in market n; expression (17), in terms of u(j) as:

XnF (j) = "n(j)

"
1�

�
u(j)

un(�n(j))

��=e�#�
u(j)

un(�n(j))

��1=e�
�En (29)

Equations (27) and (29) reformulate the entry and sales equations (16) and (17) in terms of

u(j) rather than cn(j):

Since standardized unit cost u(j) applies across all markets it gets to the core of a �rm�s

underlying e¢ ciency as it applies to its entry and sales in di¤erent markets. Notice that in

reformulating the model as (27) and (29), the two parameters � and � enter only collectively

through the parameter e�: It translates unobserved heterogeneity in u(j) into observed hetero-
geneity in sales. A higher value of � implies less heterogeneity in e¢ ciency while a higher value
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of � means that a given level of heterogeneity in e¢ ciency translates into greater heterogeneity

in sales. Since we observe sales and not underlying e¢ ciency we are able to identify only e�:
3.8 Connecting the Model to the Empirical Regularities

We now show how the model can deliver the features of the data about entry and sales

described in Section 2. In doing so we quantify total French sales XnF in each of our 113

destinations with the actual data. We quantify the measure of French �rms JnF selling in

each destination with the actual (integer) number NnF .

Aggregate Entry. From (21) we get:

NnF
�nF

=
�2
�1

Xn

�En
; (30)

a relationship between the number of French �rms selling to market n relative to French

market share and the size of market n; just like the one plotted in Figure 1b. The fact that

the relationship is tight with a slope that is positive but less than one suggests that entry cost

�En rises systematically with market size, but not proportionately so.

We don�t impose any such relationship, but rather employ (30) to calculate:

�En =
�2
�1

XnF

NnF
=
�2
�1
XnF (31)

directly from the data.

We can use equation (31) to examine how �xed costs vary with country characteristics.

Regressing XnF against our market size measure (both in logarithms) yields a slope of 0.31

(with a standard error of 0.02). This relationship relates to the slope in Figure 1b, showing

that the number of entrants rises with market size with an elasticity of 0.65. Larger markets
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attract more �rms, but not in proportion, since the cost of entry rises as well. The �rms that

do enter sell more, generating an overall elasticity of total sales with respect to market size of

0.96 (in line with the gravity literature).10

Firm Entry. Using (31) we can write (27) in terms of observables as:

u(j) � un(�n(j)) =
NnF
�2
�n(j)

e�: (32)

Without variation in the �rm and market speci�c entry shock �n(j); (32) would imply e¢ ciency

is all that would matter for entry, dictating a deterministic ranking of destinations with a less

e¢ cient �rm (with a higher u(j)) selling to a subset of the destinations served by any more

e¢ cient �rm. Hence deviations from market hierarchies identify variation in �n(j): As Table

2 illustrates, there is some tendency for �rms to enter markets according to a hierarchy, but

it is a loose one.

Sales in a Market. To get further insight into what our speci�cation implies for the

distribution of sales within a given market n note that, conditional on a �rm�s entry, the

term:

vn(j) =
u(j)

un(�n(j))
(33)

10If we add the logarithm of 1986 real GDP per capita (from the World Bank�s World Development Indi-

cators) as an additional right-hand side variable, the coe¢ cient on the logarithm of market size rises to 0.41

(standard error 0.03) while the coe¢ cient on the logarithm of real GDP per capita is -0.29 (standard error

0.06). Hence while larger markets have a higher �xed cost of entry, given size the cost is lower in richer coun-

tries.We were not able to obtain 1986 real GDP per capita for 10 of our 113 destinations (Albania, Angola,

Bulgaria, Czechoslovakia, East Germany, Libya, USSR, Vietnam, Yugoslavia, and Zaire). Hence this second

regression was performed on the remaining 103 countries. (The coe¢ cient on the logarithm of market size in

the univariate regression for this smaller group is .30, hardly di¤erent from that for the larger group.)
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is distributed uniformly on [0; 1]: Replacing u(j) with vn(j) in expression (29) and exploiting

(31) we can write sales as:

XnF (j) = "n(j)
h
1� vn(j)�=

e�i vn(j)�1=e��2
�1
XnF : (34)

Not only does vn have the same distribution in each market n, so does "n.11 Hence the

distribution of sales in any market n is identical up to a scaling factor equal to XnF (re�ecting

variation in �En). Hence we can generate the common shapes of sales distributions exhibited in

Figure 2. The variation introduced by "n explains why the sales distribution in a market might

inherit the lognormal characteristics apparent in that Figure. A further source of curvature

is the term in square brackets, representing the fraction of buyers reached. As vn(j) goes to

one, with �nite �; the fraction approaches zero, capturing the curvature of sales distributions

at the lower end, as observed in Figures 2. Finally the term vn(j)
�1=e� instills Pareto features

into the distribution. These features will be more pronounced as vn(j) approaches zero since

very e¢ cient �rms will be reaching almost all buyers. The component of vn(j) attributable

to u(j) carries across markets.

Sales in France conditional on Selling in a Foreign Market. We can also look at

the sales in France of French �rms selling to any market n. To condition on these �rms�selling

in market n we take (34) as it applies to France and use (33) and (32) to replace vF (j) with

11To see that the distribution of "n(j) is the same in any n consider the joint density of � and � conditional

on entry into market n:

un(�)R
un(�0)g2(�0)d�0

g(�; �) =
�
e�
�2
g(�; �)

which does not depend on n:
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vn(j):

XFF (j)jn =
�F (j)

�n(j)

"
1� vn(j)�=

e� �NnF
NFF

��=e� �
�n(j)

�F (j)

��#
vn(j)

�1=e� �NnF
NFF

��1=e�
�2
�1
XFF : (35)

By expressing (35) in terms of vn(j) we can exploit the fact that (given entry in n) vn(j) is

uniformly distributed on the unit interval. This expression relates to Figures 3c and 3d, which

depict features of the distribution of sales in France of �rms selling to some other market n

according to the number NnF that sell there. Note �rst that since all the other terms on

the right-hand of (35) have the same value or distribution across markets, NnF is the only

systematic source of variation across n: Interpreting Figure 3c in terms of Equation (34), the

slope of -0.57 suggests a value of e� of 1.75.
To relate the equation to Figures 3c and 3d we begin with the expression in square brackets,

representing the fraction of buyers reached in France. As in (34), a �rmwhose vn(j) approaches

one will sell to only a small fraction of buyers (with �nite �). But compared with (34), this

e¤ect is muted by the lower number of �rms selling in n relative to those selling in France.

With numbers like those in the data, French exporters are very far from the margin of entry

into France so will reach nearly all buyers there. Since the term in square brackets is close to

one for most exporting �rms, the component N�1=e�
nF to its right dominates the relationship.

This relationship implies that the entire distribution of sales in France should shift with NnF

on a log scale. Hence together (34) and (35) reconcile the near loglinearity of sales in France

with NnF and the extreme curvature at the lower end of the sales distribution in any given

market. The gap between the percentiles in Figure 3d is governed by the variation in the

demand shock �F in France together with variation in the entry shock �n(j) in country n.

The entry shock in n produces variation across �rms in how much entry into n says about the
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resulting distribution of a �rm�s normalized cost.

Normalized Export Intensity. Finally, we can calculate �rm j�s normalized export

intensity in market n:

XnF (j)

XFF (j)
=

�
XnF

XFF

�
=
�n(j)

�F (j)

2664 1� vn(j)�=e�
1� vn(j)�=e�

�
NnF
NFF

��=e� �
�n(j)
�F (j)

��
3775�NnFNFF

�1=e�
: (36)

Figure 4 plots the median of this statistic for French �rms across export markets. Note �rst

how the presence of the sales shock �n(j) accommodates random variation in sales in di¤erent

markets conditional upon entry.

As in (35), the only systematic source of cross-country variation on the right-hand side

is in the number of French �rms. In contrast to (34) and (35), however, the �rm�s overall

e¢ ciency vn(j) has no direct e¤ect on normalized export intensity since it cancels (having

the same e¤ect in n as it has in France). For n = F the relationship collapses to an identity

1 = 1. For n 6= F NnF � NFF implying that the term in square brackets is much less than

one. The reason is that an exporter selling in France is likely to be very far from the entry

cuto¤ so reaches most buyers while it can be quite marginal in its export destination. Hence

our model explains the low numbers on the y axis of Figure 4.

Aside from this general collapse of sales to any export market n relative to sales in France,

the last term in Equation (36) predicts that normalized export intensity will increase with

the number of French �rms selling there, the relationship portrayed in Figure 4. The reason

is that the harder the market is to enter (i.e., the lower NnF=NFF ); the lower is unit cost

in France, but the distribution in foreign destination n is the same. According to (36) the

elasticity of normalized export intensity with respect to NnF=NFF is 1=e�: The slope coe¢ cient
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of 0.38 reported in Section 2.5 suggests a value of e� of 2.63.12
To say more about the connection between the model and the data we need to go to the

computer.

4 Estimation

We estimate the parameters of the model by the method of simulated moments. We begin by

parameterizing the joint density of the market-speci�c shocks � and �: We then explain how

we simulate a set of arti�cial French exporters given a particular set of parameter values, with

each �rm assigned a cost draw u and an � and � in each market. From this arti�cial data

set we calculate a set of moments and compare them with moments from the actual data on

French exporters. We search for parameter values that bring the arti�cial moments close to

the actual ones. We report our results and examine the model�s �t.

4.1 Parameterization

To complete the speci�cation, we assume that g(�; �) is joint lognormal. Speci�cally, ln� and

ln � are normally distributed with zero means and variances �2a; �
2
h; and correlation �: Under

12In relating equation (35) to Figures 3c and 3d and equation (36) to Figure 4 a slight discrepancy arises.

All the �rms in our data sell in France. The theory admits the possibility that a �rm might not sell in France

but could still sell elsewhere. Hence XFF (j) in these equations actually applies to what �rm j�s sales in France

would be if it did enter. But because the French share in France is so much larger than the French share

elsewhere, a French �rm selling in another market but not in France is very unlikely. Hence the discrepancy

is minor.
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these assumptions we may write (15) and (19) as:

�1 =

" e�e� � 1 � e�e� + �� 1
#
exp

(
�2a + 2��a�h(

e� � 1) + �2h(e� � 1)2)
2

)
(37)

and:

�2 = exp

8><>:
�e��h�2
2

9>=>; : (38)

Since the entry cost shock is given by ln " = ln�� ln �; the implied variance of the �xed-cost

shock is

�2e = �
2
a + �

2
h � 2��a�h;

which is decreasing in �.

Our estimation conditions on the actual data for: (i) French sales in each of our 113 desti-

nations, XnF , and (ii) the number of French �rms selling there, NnF : With this conditioning

our model has only �ve parameters

� = fe�; �; �a; �h; �g:
We use (31) to back out the cluster of parameters �En using our data on XnF = XnF=NnF

and the �1 and �2 implied by (37) and (38). Similarly, we use (32) to back out a �rm�s entry

hurdle in each market un(�n) given its �n and the �2 implied by (38).

4.2 Simulation

For given values of � we create an arti�cial set of French exporters that operate as the model

tells them. We truncate the distribution of the cost draw u to ensure that each arti�cial �rm

sells in France and exports to at least one foreign destination (weighting the �rm appropriately,

as described below).
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We refer to an arti�cial French exporter by s and the number of such exporters by S: The

number S does not bear any relationship to the number of actual French exporters. A larger

S implies less sampling variation in our simulations.

Our simulation proceeds in 3 stages:

1. As we search for parameters we want to hold �xed the realizations of the stochastic

components of the model. Hence Stage 1 does not require any parameter values. It

involves two steps:

(a) We draw realizations of v(s)�s independently from the uniform distribution U [0; 1],

for s = 1; : : : ; S; putting them aside to construct standardized unit cost u(s) in

Stage 3.

(b) We draw S � 113 realizations of an(s) and hn(s) independently from:�
an(s)
hn(s)

�
� N

��
0
0

�
;

�
1 0
0 1

��
putting them aside to construct the �n(s) and �n(s) in Stage 3.

2. Stage 2 requires a set of parameters � and data for each destination n on total sales

XnF by French exporters and the number NnF of French �rms selling there. It involves

two steps:

(a) Using (37) and (38) we calculate �1 and �2.

(b) Using (31) we calculate �En for each destination n.

3. Stage 3 combines the simulation draws from Stage 1 and the parameter values and

destination variables from Stage 2. It involves seven steps:
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(a) We use the draws from 1b and the parameter values from 2a to construct S � 113

realizations for each of ln�n(s) and ln �n(s) as:�
ln�n(s)
ln �n(s)

�
=

�
�a
p
1� �2 �a�
0 �h

� �
an(s)
hn(s)

�

(b) We construct the S � 113 entry hurdles:

un(s) =
NnF
�2
�n(s)

e�: (39)

where un(s) stands for un(�n(s)):

(c) The simulation algorithm has the �exibility to simulate either exporting �rms that

sell in France (as we do in estimating parameters) or all �rms selling in France (as

we do when we explore broader implications of the model) Thus we calculate:

uX(s) = max
n6=F

fun(s)g;

the maximum u consistent with exporting somewhere, and:

u(s) =

�
minfuF (s); uX(s)g to simulate exporters selling in France

uF (s) to simulate all �rms selling in France

In either case, we want u(s) � u(s) for each arti�cial exporter s. In other words,

u(s) should be a realization from the uniform distribution over the interval [0; u(s)].

Therefore we construct:

u(s) = v(s)u(s):

using the v(s) from Stage 1.

(d) In the model a measure u of �rms have standardized unit cost below u. Our arti�-

cial French exporter s therefore gets an importance weight u(s). This importance
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weight will be used in constructing statistics on arti�cial French exporters that

relate to statistics on actual French exporters.13

(e) We calculate �nF (s), which indicates whether arti�cial exporter s enters market n,

as determined by the entry hurdles:

�nF (s) =

�
1 if u(s) � un(s)
0 otherwise.

where of course �FF (s) and a least one other �nF (s) necessarily equal 1.

(f) Wherever �nF (s) = 1 we calculate sales as:

XnF (s) =
�n(s)

�n(s)

"
1�

�
u(s)

un(s)

��=e�#�
u(s)

un(s)

��1=e�
�En:

This procedure gives us the behavior of S arti�cial French exporters. We know three things

about each one: where it sells, �nF (s); how much it sells there, XnF (s), and its importance

weight, u(s). From these we can compute any moment that could have been constructed from

the actual French data.

Our moments are all constructed from the number of �rms eNk predicted to achieve some

outcome k. Let �k(s) be an indicator for when arti�cial �rm s achieves outcome k. We

simulate the number of �rms achieving that outcome as:

eNk =
1

S

SX
s=1

u(s)�k(s): (40)

We now explain the moments that we actually seek to match.

13See Gouriéroux and Monfort (1995, Chapter 5) for a discussion of the use of importance weights in

simulation.
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4.3 Moments

In our estimation, we simulate �rms that make it into at least one foreign market and into

France as well. The reason for the �rst requirement is that �rms that sell only in France are

very numerous, and hence capturing them would consume a large portion of simulation draws.

But since their activity is so limited they add little to parameter identi�cation.14 The reason

for the second requirement is that key moments in our estimation procedure are based on sales

in France by exporters, which we can compute only for �rms that sell in the home market.15

Given parameter estimates, we later explore the implications of the model for nonexporters

as well.

For a candidate value � we use the algorithm above to simulate the sales of 500; 000

arti�cial French exporting �rms in 113 markets. From these arti�cial data we compute a

vector of moments bm(�) analogous to particular moments m in the actual data.

Our moments are all proportions of �rms that fall into sets of exhaustive and mutually

exclusive bins, where the number of �rms in each bin is counted in the data and is simulated

from the model using (40). Our bins capture four features of French �rms�behavior: (1) their

sales in export destination n, (2) their sales in France conditional on selling to n, (3) their

sales in n relative to their sales in France conditional on selling to n, and (4) their entry into

particular subsets of export markets:

1. The �rst set of moments relates to the sales distributions presented in Section 2.2. For

14Hence we set u(s) = minfuF (s); uX(s)g in Stage 3, step c of the simulation algorithm. We also estimated

the model matching moments of nonexporting �rms as well. Coe¢ cient estimates were similar to those we

report below but the estimation algorithm, given estimation time, was much less precise.
15There are very few �rms (500) apparently not selling in France.
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�rms selling in each of the 112 export destinations n we compute the qth percentile of

sales sqn(1) in that market (i.e., the level of sales such that a fraction q of �rms selling

in n sells less than sqn(1)) for q = 50; 75; 95. Using these sqn(1) we assign �rms that

sell in n into four mutually exclusive and exhaustive bins determined by these three

sales levels. We compute the proportions bmn(1;�) of arti�cial �rms falling into each

bin analogous to the actual proportion mn(1) = (0:5; 0:25; 0:2; 0:05)0. Stacking across

the 112 countries gives us bm(1;�) and m(1), each with 448 elements (subject to 112
adding-up constraints).

2. The second set of moments relates to the sales in France of exporting �rms discussed in

Section 2.4. For �rms selling in each of the 112 export destinations n we compute the

qth percentile of sales sqn(2) in France for q = 50; 75; 95. Proceeding as above we get

bm(2;�) and m(2); each with 448 elements (subject to 112 adding-up constraints).
3. The third set of moments relates to normalized export intensity by market discussed in

Section 2.5. For �rms selling in each of the 112 export destinations n we compute the

qth percentile of the ratio sqn(3) of sales in n to sales in France for q = 50; 75. Proceeding

as above we get bm(3;�) and m(3); each with 336 elements (subject to 112 adding-up
constraints).

4. The fourth set of moments relates to the entry strings discussed in Section 2.3. We com-

pute the proportion bmk(4;�) of simulated exporters selling to each possible combination

k of the seven most popular export destinations (listed in Table 1). One possibility is

exporting yet selling to none of the top seven, giving us 27 possible combinations (so

that k = 1; :::; 128). The corresponding moments from the actual data are simply the
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proportion mk(4) of exporters selling to combination k: Stacking these proportions gives

us bm(4;�) and m(4); each with 128 elements (now subject to 1 adding up constraint).
Stacking the four sets of moments gives us a 1360-element vector of deviations between

the moments of the actual and arti�cial data:

y(�) = m� bm(�) =
2664
m(1)� bm(1;�)
m(2)� bm(2;�)
m(3)� bm(3;�)
m(4)� bm(4;�)

3775 :
We base our estimation procedure on the moment condition:

E[y(�0)] = 0

where �0 is the true value of �:

4.4 Estimation Procedure

We seek a value of � that achieves:

b� = argmin
�
fy(�)0Wy(�)g ;

whereW is a 1360� 1360 weighting matrix. We search for � using the simulated annealing

algorithm described in Appendix B. The weighting matrix is the generalized inverse of the

estimated variance-covariance matrix 
 of the 1360 moments calculated from the data m. We

calculate 
 using the following bootstrap procedure:

1. We resample, with replacement, 229,900 �rms from our initial dataset 2000 times.

2. For each resampling b we calculate mb, the proportion of �rms that fall into each of

the 1360 bins, holding the sqn(�) �xed to calculate m
b(�) for � = 1; 2; 3 and holding the

destination strings k �xed for mb(4).
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3. We calculate:


 =
1

2000

2000X
b=1

�
mb �m

� �
mb �m

�0
:

Because of the adding up constraints this matrix has rank 1023, forcing us to take its

generalized inverse to computeW.

We calculate standard errors using a bootstrap technique, taking into account both sam-

pling error and simulation error. To account for sampling error each bootstrap b replaces m

with a di¤erent mb. To account for simulation error each bootstrap b samples a new set of

500,000 vb�s, abn�s, and h
b
n�s from stage 1 of our simulation algorithm, thus generating a new

bmb(�).16 De�ning yb(�) = mb � bmb(�) for each b we estimate:

b�b = argmin
�

�
yb(�)0Wyb(�)

	
using the same simulated annealing procedure. Doing this exercise 25 times we calculate:

V (�) =
1

25

25X
b=1

�b�b � b���b�b � b��0
and take the square roots of the diagonal elements as the standard errors.

4.5 Results

The best �t is achieved at the following parameter values (with bootstrapped standard errors

in parentheses): e� � �a �h �
2:46 0:91 1:69 0:34 �0:65
(0:10) (0:12) (0:03) (0:01) (0:03)

Our discussion in Section 3.7 foreshadowed our estimate of e�; which lies between the slopes
in Figures 3c and Figure 4. From equations (34), (32), and (33), the characteristic of a �rm

16Just like mb; bmb is calculated according to the bins de�ned from the actual data.
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determining both entry and sales conditional on entry, is v�1=e�, where v~U [0; 1]. Our estimate
of e� implies that the ratio of the 75th to the 25th percentile of this term is 1:56. Another

way to assess the magnitude of e� is by its implication for aggregate �xed costs of entry. Using
expression (23), our estimate of 2.463 implies that �xed costs dissipate about 59 percent of

gross pro�t in any destination.

Our estimate of �a implies enormous idiosyncratic variation in sales across destinations. In

particular, the ratio of the 75th to the 25th percentile of the sales shock � is 9:78: In contrast,

our estimate of �h means much less idiosyncratic variation in the entry shock �, with a ratio of

the 75th to 25th percentile equal to 1:58: As we show more systematically below, the feature

of a �rm that is common across countries explains relatively little of the variation in sales

conditional on entry, but about half of the variation in entry.

A feature of the data is the entry of �rms into markets where they sell very little, as seen in

Figure 1c. Two features of our estimates reconcile these small sales with a �xed cost of entry.

First, our estimate of �, which is close to one, means that a �rm that is close to the entry

cuto¤ incurs a very small entry cost.17 Second, the negative covariance between the sales and

entry shocks explains why a �rm with a given u might enter a market and sell relatively little.

The �rst applies to �rms that di¤er systematically in their e¢ ciency while the second applies

to the luck of the draw in individual markets.18

17Arkolakis (2008) �nds a value around one consistent with various observations from several countries.
18We perform a Monte Carlo test of the ability of our estimation procedure to recover parameter values. We

simulate 230,000 arti�cial French �rms with the estimated parameter values reported above. We then apply

the estimation procedure, exactly as described, to the simulated data to estimate � (using the same weighting

matrixW as in the original estimation). The table below reports the values of used to create the simulated
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4.6 Model Fit

We can evaluate the model by seeing how well it replicates features of the data described

in Section 2. To glean a set of predictions of our model we use our parameter estimates to

simulate 230; 000 arti�cial �rms including nonexporters.19 We then compare four features of

these simulated �rms with corresponding features of the actual ones. For the �rst three we

plot the simulated data (x�s) and actual data (circles) against market-level characteristics.

Equation (34) in Section 3.7 motivates Figure 5a, which plots the simulated and actual

median and 95th percentile of sales to each market against actual mean French sales in that

market. The model captures very well both the distance between the two percentiles in any

given market and how each percentile varies across markets. The model also nearly matches

the amount of noise in these percentiles, especially in markets where mean sales are small.

Equation (35) in Section 3.7 motivates Figure 5b, which plots the median and 95th per-

centile of sales in France of �rms selling to each market against the actual number of �rms

selling there. Again, the model picks up the spread in the distribution as well as the slope. It

also captures the fact that the data point for France is below the line, re�ecting the marketing

data (the �truth�) and the parameter estimates the estimation procedure delivers:

e� � �a �h �
�truth� 2:46 0:91 1:69 0:34 �0:65
estimates 2:54 0:67 1:69 0:32 �0:56

Our estimates land in the same ballpark as the true parameters, with deviations in line with the standard

errors reported above.:
19To reduce sampling error our estimation procedure simulates 500,000 �rms, restricting attention to ex-

porters. Here we simulate the behavior of 230,000 �rms, both non-exporters and exporters, to mimic more

closely features of the raw data behind our analysis. In step c of stage 3 in the simulation algorithm we set

u(s) = uF (s).
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technology parameterized by �. The model understates noise in these percentiles in markets

served by a small number of French �rms.

Equation (36) in Section 3.7 motivates Figure 5c, which plots the median of normalized

export intensity in each market against the actual number of French �rms selling there. The

model picks up the low magnitude of normalized export intensity and how it varies with the

number of �rms selling in a market. Despite our high estimate of �a; however, the model

understates the noisiness of the relationship.

Aside from these Figures we report the number of �rms selling to the 7 most popular

export destinations in order of their popularity (that is, obeying a hierarchy), both in the

actual and simulated data. That is, we report the number of �rms selling to Belgium and no

other top 7, to Belgium and Germany and no other top 7, etc. with the following results:

Country Actual Number Simulated Number
B 3988 4417
B-DE 863 912
B-DE-CH 579 402
B-DE-CH-I 330 275
B-DE-CH-I-UK 313 297
B-DE-CH-I-UK-NL 781 505
B-DE-CH-I-UK-NL-USA 2406 2840
Total 9260 9648

:

In the actual data 27.2 percent of exporters adhere to hierarchies compared with 30.3 percent

in the simulated data, 13.5 percent implied by simply predicting on the basis of the marginal

probabilities, and 100 percent had there been no entry shock (�h = 0).

4.7 Sources of Variation

In our model variation across �rms in entry and sales re�ects both di¤erences in their under-

lying e¢ ciency, which applies across all markets, and idiosyncratic entry and sales shocks in
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individual markets. We ask how much of the variation in entry and in sales can be explained

by the universal rather than the idiosyncratic components.

4.7.1 Variation in Entry

We �rst calculate the fraction of the variance of entry in each market that can be explained

by the cost draw u alone. By the law of large numbers, the fraction of French �rms selling in

n is a close approximation to the probability that a French �rm will sell in n. Thus we write

this probability as:

qn =
NnF
NFF

:

The unconditional variance of entry for a randomly chosen French �rm is therefore:

V Un = qn (1� qn) : (41)

Conditional on its standardized unit cost u a �rm enters market n if its entry shock �n

satis�es:

�n � (u�2=NnF )1=
e�:

Since �n is lognormally distributed with mean 0 and variance �h the probability that this

condition is satis�ed is:

qn(u) = 1� �
�
ln(u�2=NnF )e��h

�
where � is the standard normal cumulative density. The variance conditional on u is therefore:

V Cn (u) = qn(u)[1� qn(u)]:

A natural measure (similar to R2 in a regression) of the explanatory power of the �rm�s cost

39



draw for market entry is

REn = 1�
E
�
V Cn (u)

�
V Un

:

We simulated the term E
�
V Cn (u)

�
using the same techniques employed in our estimation

routine, with 230,000 simulated �rms, obtaining a value of REn for each of our 112 export

markets. The average value across markets is 0:57 (with a standard deviation across markets

of only 0:01). Hence we can attribute 57 percent of the variation in entry in a market to the

core e¢ ciency of the �rm rather than its draw of � in that market.20

4.7.2 Variation in Sales

Looking at the �rms that enter a particular market, how much does the variation in u explain

the variation in their sales there. Consider �rm j selling in market n: Inserting (32) into (29),

the log of its sales there is:

lnXnF (j) = ln�n(j)| {z }
1

+ ln

241� u(j)�2

NnF [�n(j)]
e�
!�=e�35

| {z }
2

� 1e� lnu(j)| {z }
3

+ ln
�
(NnF=�2)

1=e��En
�

| {z }
4

:

where we have divided sales into four components. Component 4 is common to all �rms selling

in market n so does not contribute to variation in sales there. The �rst component involves

�rm j�s idiosyncratic sales shock in market n while component 3 involves its e¢ ciency shock

that applies across all markets. Complicating matters is component 2, which involves both

�rm j�s idiosyncratic entry shock in market j; �n(j); and its overall e¢ ciency shock, u(j):We

20Not conditioning on u the probability qn that a �rm sells in any market n other than France is small.

It is straightforward to show that taking the limit as qn ! 0 the term REn is independent of n: Hence the

systematic variation in REn across markets is small.
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deal with this issue by �rst asking how much of the variation in lnXn(j) is due to variation

in component 3 and then in the variation in components 2 and 3 together.

We simulate sales of 230,000 �rms across our 113 markets, and divide the contribution of

each component to its sales in each market where it sells. We �nd that component 3 contributes

a 0.048 share to the variation in lnXnF (j); averaging across markets (with a standard error

of 0.0003). Again averaging across markets, the share of components 2 and 3 together in the

variation of lnXnF (j) is 0.39 (with a standard deviation of 0.0025).21

Together these results indicate that the general e¢ ciency of a �rm is very important in

explaining its entry into di¤erent markets, but makes a much smaller contribution to the

variation in the sales of �rms actually selling in a market. An explanation is that in order to

enter a market a �rm has already to have a low value of u: Hence the various sellers present

in a market already have low values of u, so that di¤erences among them in their sales are

dominated by their market-speci�c sales shock �n(j):

This �nding does, of course, depend on our parameter estimates. A lower value of e�
(implying more sales heterogeneity attributable to e¢ ciency) or lower values of �a or �h would

lead us to attribute more to the �rm�s underlying e¢ ciency rather that destination-speci�c

shocks.

4.8 Productivity

Our methodology so far has allowed us to estimate e�, which incorporates both underlying
heterogeneity in e¢ ciency, as re�ected in �, and how this heterogeneity in e¢ ciency gets

21The presence of NnF in component 2 means that the contribution of each component varies across markets,

but our simulation indicates that the di¤erences are very small.
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translated into sales, through �. In order to break down e� into these components we turn to
data on �rm productivity, as measured by value added per worker, and how it di¤ers among

�rms selling to di¤erent numbers of markets.22

A common observation is that exporters are more productive (according to various mea-

sures) than the average �rm.23 The same is true of our exporters here: The average value

added per worker of exporters is 1:22 times the average for all �rms. Moreover, value added

per worker, like sales in France, tends to rise with the number of markets served, but not with

nearly as much regularity.

A reason for this relationship in our model is that a more e¢ cient �rm, with a lower

normalized unit cost u(j); will typically both enter more markets and sell more widely in any

given market. As its �xed costs are not proportionately higher, larger sales get translated

into higher value added relative to inputs used, including those used in �xed costs. An

o¤setting factor is that iceberg transport costs make serving foreign markets a less productive

endeavor than supplying the home market. Determining the net e¤ect requires a quantitative

assessment.

How do we calculate productivity among our simulated �rms? Because it provides a

simple analytic expression we �rst look at the productivity of a �rm�s operations in selling to

a particular market n. (Because it connects better with our model we calculate value added

per unit of spending on factors rather than per worker.) We de�ne its value added Vn(j) in

22Because value added per worker is a crude productivity measure, we didn�t incorporate these numbers into

our method of simulated moments estimation above, as we didn�t need them to estimate the other parameters

of the model.
23See, for example, Bernard and Jensen (1999), Lach, Roberts, and Tybout (1997), and BEJK (2003).
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market n as:

Vn(j) = Xn(j)� In(j)

where In(j) is �rm j�s spending on intermediates to supply that market. We calculate this

intermediate spending as:

In(j) = (1� �)m�1Xn(j) + (1� �F )En(j);

where � is the share of factor costs in variable costs and �F is the share of factor costs in �xed

costs.

Value added per unit of factor cost qn(j) is then:

qn(j) =
Vn(j)

�m�1Xn(j) + �
FEn(j)

(42)

=
[1� (1� �)m�1]Xn(j)� (1� �F )En(j)

�m�1Xn(j) + �
FEn(j)

=
[m� (1� �)]�m(1� �F ) [En(j)=Xn(j)]

� +m�F [En(j)=Xn(j)]
:

The only source of cross-�rm heterogeneity in productivity arises through the ratioEn(j)=Xn(j):

Firms having more sales Xn(j) relative to entry costs En(j) are more productive.

Using (5) and (10) for the numerator and (29) for the denominator, exploiting (33), we

can write this ratio in terms of vn(j) as:

En(j)

Xn(j)
=

�

�(�� 1)
vn(j)

(1��)=e� � 1
vn(j)��=

e� � 1 :

Since vn(j) is distributed uniformly on [0; 1];in any market n the distribution of the ratio of

�xed costs to sales revenue, and hence the distribution of productivity, is invariant to any

market-speci�c feature such as size or location. In particular, the distribution of productivity

is not a¤ected by trade openness.
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What we have said so far applies to the productivity of units selling in a market, which

are not the same thing as the �rms producing there. To measure the overall productivity of

a �rm we need to sum its sales, value added, and factor costs across its activities in di¤erent

markets. De�ning total sales X(j) =
P

nXn(j) and total entry costs E(j) =
P

nEn(j); �rm

j�s productivity is:

q(j) =
[m� (1� �)]�m(1� �F ) [E(j)=X(j)]

� +m�F [E(j)=X(j)]
: (43)

To simplify we assume �F = 0 so that all �xed costs are purchased services. We then calibrate

� from the average share of manufacturing value added in gross production across UNIDO,

0:36:24

Note that the expression for �rm productivity (43) depends on the elasticity of substitution

� (through m = �=(��1)) but not on �: Following BEJK (2003) we �nd an m that makes the

productivity advantage of exporters in our simulated data match their productivity advantage

in the actual data (1:22): This exercise delivers m = 1:51 or � = 2:98; implying � = 0:34: We

use these values in the counterfactual exercises described in the next section.

Figure 6 reports average value added per worker against the logarithm of the minimum

number of markets where the �rms sell, with nonexporters included in the �rst datapoint.

Circles represent the actual data and asterisks our simulation, based on (43) with m = 1:51.

Note that, among the actual �rms, value added per worker more than doubles as we move

from all of our �rms (selling in at least one market) to those selling to at least 74 markets,

24Because of pro�ts and �xed costs this measured value added share, denoted V; di¤ers from �V : The two

are connected by the relationship:

�V = mV � 1=�;

so that �V is determined from V simultaneously with our estimates of m and �:
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and then plummets as we look at �rms that sell more widely (although we are looking at

fewer than one hundred �rms in this upper tail). The model picks up the rise in measured

productivity corresponding to wider entry at the low end (representing the vast majority of

�rms) but fails to reproduce the spike at the high end.

5 General Equilibrium and Counterfactuals

We now consider how changes in policy and the environment would a¤ect individual �rms.

To do so we need to consider how such changes would a¤ect wages and prices. So far we have

conditioned on a given equilibrium outcome. We now have to ask how the world reequilibrates.

5.1 Embedding the Model in a General Equilibrium Framework

Embedding our analysis in general equilibrium requires additional assumptions:

1. We introduce factors as in Ricardo (1821). Each country is endowed with an amount Li

of labor (or a composite factor), which is freely mobile across activities within a country

but does not migrate. Its wage in country i is Wi.

2. We introduce intermediates as in Eaton and Kortum (2002). Manufacturing inputs

are a Cobb-Douglas combination of intermediates, which are a representative bundle of

manufactures with price index Pi given in (14), and labor, with labor having a share �.

Hence we can write the cost of an input bundle:

wi = �3W
�
i P

1��
i ;

where �3 = �
��(1� �)�(1��):
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3. We introduce nonmanufacturing as in Alvarez and Lucas (2007). Final output, which

is nontraded, is a Cobb-Douglas combination of manufactures and labor, with manufac-

tures having a share 
: Labor is the only input into nonmanufactures. Hence the price

of �nal output in country i is proportional to P 
i W
1�

i :

4. Fixed costs go to labor in the local market. Hence the demand for labor in manufacturing

overhead is En=Wn; with En as derived in (23).

Equilibrium in the world market for manufactures requires that the sum across countries

of absorption of manufactures from country i equal its gross output Yi; or:

Yi =
NX
n=1

�niXn (44)

for each country i. To determine equilibrium wages around the world requires that we turn

these expressions into conditions for equilibrium in world labor markets.

Country i�s total absorption of manufactures is the sum of �nal demand and use as inter-

mediates:

Xi = 
(Y
A
i +D

A
i ) + [(1� �)(� � 1)=�]Yi (45)

where Y Ai is GDP and DA
i the trade de�cit.

To relate Y Ai to labor income we write:

Y Ai = Y Li +�i; (46)

where Y Li = WiLi is labor income and �i are total net pro�ts earned by country i�s manu-

facturing producers from their sales at home and abroad. Since our model is static we treat

de�cits as exogenous.
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Net pro�ts earned in destination n both by domestic �rms and by exporters selling there,

which we denote �Dn are gross pro�ts Xn=� less �xed costs incurred there, En. Using (23) for

En:

�Dn =
(� � 1)
��

Xn:

Producers from country i earn a share �ni of these pro�ts. Hence:

�i =

NX
n=1

�ni�
D
n =

(� � 1)
��

Yi; (47)

where the second equality comes from applying the conditions (44) for equilibrium in the

market for manufactures.

Substituting (46) into (45) and using the fact that gross manufacturing production Yi is

gross manufacturing absorption Xi less the manufacturing trade de�cit Di:25

Yi +Di = 


�
Y Li +

(� � 1)
��

Yi +D
A
i

�
+
(1� �)(� � 1)

�
Yi:

Solving for Yi:

Yi =

�
�
Y Li +D

A
i

�
� �Di

1 + (� � 1) (� � 
=�) : (48)

Our conditions for equilibrium in the world market for manufactures (given de�cits) thus

translate into the following conditions for labor market equilibrium:


�
�
Y Li +D

A
i

�
� �Di

1 + (� � 1) (� � 
=�) =
NX
n=1

�ni

�
�
Y Ln +D

A
n

�
� (� � 1) (1� � + 
=�)Dn

1 + (� � 1) (� � 
=�) : (49)

25For simplicity we reconcile the di¤erences between manufacturing and overall trade de�cits by thinking

of them as transfers of the �nal good, which is otherwise not traded. For large economies, the manufacturing

de�cit is the largest component of the overall trade de�cit. See Dekle, Eaton, and Kortum (2008) for a fuller

treatment of de�cits in a similar model of bilateral trade.
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From expression (4), we can write:

�ni =
Ti

�
W �
i P

1��
i dni

���
PN

k=1 Tk

�
W �
k P

1��
k dnk

��� : (50)

From expression (14):

Pn = m�
�1=�
1 �3

"
NX
i=1

Ti(W
�
i P

1��
i dni)

��

#�1=� �
Xn

�En

�(1=�)�1=(��1)
: (51)

where:

Xn =

�
�
Y Ln +D

A
n

�
� (� � 1) (1� � + 
=�)Dn

1 + (� � 1) (� � 
=�) (52)

and:

En = WnFn; (53)

where Fn is a parameter re�ecting the e¢ ciency of labor in country n in providing overhead

services.

Incorporating (50), (52), and (53) equations (49) and (51) determine wages Wi and man-

ufacturing price indices Pi around the world as functions of each country�s Ti; Li; Fi; Di; and

DA
i ; each country pair�s dni;and the parameters 
; �; �; �; and �1.

5.2 Perturbing the Equilibrium

We apply the method explained in Dekle, Eaton, and Kortum (2008) to calculate counterfac-

tuals. Denote the counterfactual value of any variable x as x0 and de�ne bx = x0=x: Equilibrium
in world manufactures in the counterfactual requires:

Y 0i =
NX
n=1

�0niX
0
n: (54)
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We can write each of the components in terms of each country�s baseline labor income, Y Li ;

baseline trade shares �ni; and the parameters �; 
; �; and � and the change in wages cWi and

bPi using (48), (52), (51), and (50) as follows:
Y 0i =


�
�
Y Li bLicWi +D

A0
i

�
� �D0

i

1 + (� � 1) (� � 
=�)

X 0
n =


�
�
Y Ln
bLncWn +D

A0
n

�
� (� � 1) (1� � + 
=�)D0

n

1 + (� � 1) (� � 
=�)

�0ni =
�nicW���

i
bP�(1��)�i

bTi bd��niPN
k=1 �nk

cW���
k

bP�(1��)�k
bTk bd��nk

where sticking these three equations into (54) yields a set of equations involving cWi for given

bPi�s. From (51) we can get an involving bPi for given cWi�s:

bPn = " NX
i=1

�nicW���
i

bP�(1��)�i
bTi bd��ni

#�1=� bXncWn
bFn
!(1=�)�1=(��1)

(55)

where, from above:

bXn =

�
�
Y Ln
bLncWn +D

A0
n

�
� (� � 1) (1� � + 
=�)D0

n


� (Y Ln +D
A
n )� (� � 1) (1� � + 
=�)Dn

:

We can use the system of equations ((54)) and (55) to solve for the changes in wages and

prices that would result from exogenous changes in trade barriers bdni; entry costs bFi; labor
forces bLi; technology parameters bTi; or de�cits D0

i or D
A0
i :

5.3 A Counterfactual Calculation

We implement counterfactual simulations for our 113 countries in 1986, aggregating the rest

of the world into a 114th country (ROW). We calibrate the �ni with data on trade shares. We

exploit (46), (47), and (48) to express labor income in terms of data on GDP and de�cits:

Y Li =
[1 + (� � 1)(� � 
=�)]Y Ai � [(� � 1)
=�]DA

i � [(� � 1)=�]Di]

1 + (� � 1)� :
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We calibrate � (common across countries) and 
 (country speci�c) from data on manufacturing

production and trade. Appendix C describes our sources of data and our procedures for

assembling them to execute the counterfactual.

We consider a ten percent drop in trade barriers, i.e., bdni = 1=1:1 for n 6= i; with bdii = 1:
This change roughly replicates the increase in French import and export shares over the decade

following 1986. Lower trade barriers raise the real wage in every country, ranging from a nearly

imperceptible rise in remote nonmanufacturing countries to increases of 8 percent in Belgium

and nearly 25 percent in Singapore.

We then calculate the implications of this change for individual �rms, holding �xed all

of the �rm-speci�c shocks that underlie �rm heterogeneity. The idea is to hold all else �xed

while considering the microeconomic changes brought about by general-equilibrium forces.

Using our results for cWn; b�ni; and bXn from our general equilibrium analysis, we produce a

dataset, recording both baseline and counterfactual �rm-level behavior, as follows:

1. We calculate the implied percentage change in French exports in each market n as bXnF =

b�ni bXn and, using (30), the number of French �rms selling there as bNnF = b�ni bXn=Wn

(since we assume that �xed costs involve local labor).

2. We apply these percentage changes to our original data set to get counterfactual values

of total French sales in each market XC
nF and the number of French sellers there N

C
nF :

26

26Recall that, for reasons such as manufacturing exports by nonmanufacturing �rms, the aggregate exports

described in Appendix C exceed total exports by our French �rms. Having used the aggregate data to calculate

the counterfactual equilibrium as described in the previous section, we applied the percentage changes from

that exercise to the XnF and NnF in our �rm dataset.
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3. We run the simulation described in Section 4 Part B with S = 500; 000.

(a) Stage 1 is carried out just once, so that the same stochastic draws apply both to

the baseline and the counterfactual.

(b) In Stage 2 we set � to the parameter estimates reported in Section 4, Part E.

(c) We use our baseline values XnF and NnF to calculate baseline �En�s for each

destination and baseline un(s)�s for each destination and �rm, using (31) and (39).

(d) We use our counterfactual values XC
nF and N

C
nF to calculate counterfactual �E

C
n �s

for each destination and counterfactual uCn (s)�s for each destination and �rm, again

using (31) and (39).

(e) To avoid wasting time simulating a �rm that doesn�t sell anywhere in either the

baseline or the counterfactual we de�ne:

u(s) = max
n
fun(s); uCn (s)g

and set:

u(s) = v(s)u(s):

where v(s) was drawn from U [0; 1] in Stage 1. We consequently assign �rm s an

importance weight u(s). A �rm for which u(s) � un(s) sells in market n in the

baseline while a �rm for which u(s) � uCn (s) sells there in the counterfactual. Hence

our simulation allows for entry, exit, and survival.

(f) We calculate entry and sales in each of the 113 markets in the baseline and coun-

terfactual, de�ating counterfactual values to baseline prices.
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5.4 Firm Level Implications of Globalization

Table 3 summarizes the results, which are dramatic. Total sales by French �rms rise by

$14,528 million, the net e¤ect of a $32,738 million increase in exports and a $14,528 million

decline in domestic sales. Despite this rise in total sales, competition from imports drives

26,212 �rms out of business, although 10,702 �rms start exporting.

Tables 4 and 5 decompose these changes into the contributions of �rms of di¤erent baseline

size, with Table 4 considering the counts of �rms. Most of the losses are at the bottom end:

Nearly half the �rms in the bottom decile are wiped out while only the top percentile avoids

any attrition. Because so many �rms in the top decile already export, the greatest number

of new exporters emerge from the second highest decile. The biggest percentage increase in

number of exporters is for �rms in the third from the bottom decile.

Table 5 decomposes sales revenues. All of the increase is in the top decile, and most of that

in the top percentile. For every other decile sales decline. Almost two-thirds of the increase

in export revenue is from the top percentile, although lower deciles experience much higher

percentage increases in their export revenues.

Comparing the numbers in Tables 4 and 5 reveals that, even among survivors, revenue per

�rm falls in every decile except the top. In summary, the decline in trade barriers improves

the performance of the very top �rms at the expense of the rest.27

Table 6 looks at an alternative decomposition of �rms according to the number of markets

where they initially sold. Most of the increase in export revenues is among the �rms that were

already exporting most widely. But the percentage increase falls with the initial number of

27The �rst row of the tables pertains to �rms that entered only to export. There are only 1108 of them

selling a total of $4 million.
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markets served. For �rms that initially export to few markets, a substantial share of export

growth comes from entering new markets.

Finally, Table 7 looks at what happens in each foreign market. The percentage change

in exports and in number of exporters is what is delivered by our counterfactual equilibrium.

Applying these changes to our baseline gives the absolute change in exports and in number

of exporters. How much of the increase in exports to each market is due to entry (the

extensive margin)? This fraction tends to be small (although, because of sampling error in

small markets, it can vary a lot). In the last two columns we look at growth in sales by

incumbent �rms. As Arkolakis (2008) would predict, sales by �rms with an initially smaller

presence grow substantially more than those at the top.

6 Conclusion

We examine some key features of the sales of French �rms across 113 di¤erent markets,

including France itself. Much of what we see can be interpreted in terms of a standard model

of heterogeneous producers. We think that the model provides a useful tool for linking what

goes on at the aggregate level with the situation of individual �rms.
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A Appendix A: Constructing the Firm Level Data

Up to 1992 all shipments of goods entering or leaving France were declared to French customs

either by their owners or by authorized customs commissioners. These declarations constitute

the basis of all French trade statistics. Each shipment generates a record. Each record contains

the �rm identi�er, the SIREN, the country of origin (for imports) or destination (for exports),

a product identi�er (a 6-digit classi�cation), and a date. All records are aggregated �rst at

the monthly level. In the analysis �les accessible to researchers, these records are further

aggregated by year and by 3-digit product (NAP 100 classi�cation, the equivalent of the 3-

digit SIC code). Therefore, each observation is identi�ed by a SIREN, a NAP code, a country
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code, an import or export code, and a year. In our analysis, we restrict attention to exporting

�rms in the manufacturing sector in year 1986 and in year 1992. Hence, we aggregate across

manufacturing products exported. We can thus measure each �rm�s amount of total exports

in years 1986 and 1992 by country of destination. Transactions are recorded in French Francs

and re�ect the amount received by the �rm (i.e., including discounts, rebates, etc.). Even

though our �le is exhaustive, i.e., all exported goods are present, direct aggregation of all

movements may di¤er from published trade statistics, the second being based on list prices

and thus exclude rebates.

We match this �le with the Base d�Analyse Longitudinale, Système Uni�é de Statistiques

d�Entreprises (BAL-SUSE) database, which provides �rm-level information. The BAL-SUSE

database is constructed from the mandatory reports of French �rms to the �scal administra-

tion. These reports are then transmitted to INSEE where the data are validated. It includes

all �rms subject to the �Béné�ces Industriels et Commerciaux�regime, a �scal regime manda-

tory for all manufacturing �rms with a turnover above 3,000,000FF in 1990 (1,000,000FF in

the service sector). In 1990, these �rms comprised more than 60% of the total number of �rms

in France while their turnover comprised more than 94% of total turnover of �rms in France.

Hence, the BAL-SUSE is representative of French enterprises in all sectors except the public

sector.

From this source, we gather balance sheet information (total sales, total labor costs, total

wage-bill, sales, value-added, total employment). Matching the Customs database and the

BAL-SUSE database leaves us 229,900 �rms in manufacturing (excluding construction, mining

and oil industries) in 1986 with valid information on sales and exports. In 1992, the equivalent
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number is 217,346. In 1986, 34,035 �rms export to at least one country Among them 17,699

export to Belgium, the most popular destination. To match our data with aggregate trade

and production data, we restrict attention to 113 countries (including France).

A Appendix B: Estimation Algorithm

The algorithm we use to �t theoretical moments to their empirical counterparts is simulated

annealing. We rely on a version speci�cally developed for Gauss and available on the web

from William Go¤e (Simann). Go¤e, Ferrier, and Rogers (1994) describe the algorithm.

Simulated annealing, in contrast with other optimization algorithms (Newton-Raphson, for

instance), explores the entire surface and moves both uphill and downhill to optimize the

function. It is therefore largely independent of starting values. Because it goes both downhill

and uphill, it escapes local maxima. Finally, the function to optimize does not need to have

stringent properties; di¤erentiability and continuity, for instance, are not needed. The version

developed by these authors, and implemented in Simann, possesses some features that make it

more e¢ cient (in particular, less time-consuming) than previous implementations of simulated

annealing. The program includes a precise explanation of the various parameters that must

be set in advance. It also suggests reasonable starting values. The program, as well as the

starting values, is available from the authors. Optimizing our admittedly complex function,

with 5 parameters, on a standard personal computer takes around one week.

We use bootstrap to compute standard errors for our parameters. We follow the bootstrap

procedure suggested by Horowitz (2001) closely. More precisely, we use the bootstrap with

recentering as suggested when using a method of moments estimation strategy (Horowitz,
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2001, subsection 3.7, pages 3186-3187). Because each bootstrap repetition requires one week

for estimation, we used only 10 repetitions. The small number is unlikely to have any e¤ect

given the concentration of the bootstrap estimates around the estimated values.

A Appendix C: The Data for Counterfactuals

Our quantitative methodology for performing general-equilibrium counterfactuals largely fol-

lows Dekle, Eaton, and Kortum (2008). While our analysis in that paper was based on 44

countries, here we consider 113 plus a rest-of-world aggregate, making the total 114. All data

are for 1986, translated into millions of U.S. dollars at the 1986 exchange rate.

For each country n, data on GDP Y An and the trade de�cit in goods and services DA
n are

from the United Nations Statistics Division (2007).28 We took total absorption of manufac-

tures Xn from our earlier work, EKK (2004). Bilateral trade in manufactures is from Feenstra,

Lipsey and Bowen (1997). Starting with the �le WBEA86.ASC, we aggregate across all man-

ufacturing industries. Given these trade �ows �niXn we calculate the share of exporter i in

n�s purchases �ni and manufacturing trade de�cits Dn. The home shares �ii are residuals.

The shares of manufactures in �nal output 
n are calibrated to achieve consistency between

our observations for the aggregate economy and the manufacturing sector. In particular:


n =
Xn � (1� �)(1� 1=�)(Xn �Dn)

Y An +D
A
n

:

28A couple of observations were missing from the data available on line. To separate GDP between East

and West Germany, we went to the 1992 hardcopy. For the USSR and Czechoslovakia, we set the trade de�cit

in goods and services equal to the trade de�cit in manufactures.
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Country

Belgium-Luxembourg 17,699 0.59
Germany 14,579 0.49
Switzerland 14,173 0.47
Italy 10,643 0.36
United Kingdom 9,752 0.33
Netherlands 8,294 0.28
United States 7,608 0.25
Total firms exporting to at least one of the top 7 29,929 1.00
Total firms exporting 34,035  

Number of French 
Exporters Marginal Probability

Table 1: Exports to the Seven Most Popular Destinations

Source: Customs data, year 1986. Marginal probability is the ratio of the number exporting to 
the destination relative to the number exporting to at least one of these seven countries 



 
Exporting to:

Predicted Probability Number of Firms
1000000 3988 0.037 1119
1100000 863 0.036 1063
1110000 579 0.032 956
1111000 330 0.018 528
1111100 313 0.009 255
1111110 781 0.003 98
1111111 2406 0.001 33
Total 9260 0.135 4052
Source: Customs data, year 1986. All firms export at least to one of these 7 countries: 
Belgium, Germany, Switzerland, Italy, United Kingdom, Netherlands, United States, in this 
order. The string of 0s and 1s in column labelled "Exporting to" refer to this order: 
1000000 means that these firms only export to Belgium; 1111111 means that these firms 
export to all seven countries. We ignore in this table export behavior outside these 7 
countries

Under IndependenceObserved Number of 
Firms

Table 2: Do Firms Obey Country Hierarchies ?



 Baseline

Change 
from 

Baseline
Percentage 

Change
Number:
  All Firms 230,260 -26,212 -11.4
  Selling in France 229,357 -27,840 -12.1
  Exporting 32,796 10,702 32.6

Values ($ millions):
  Total Sales 433,768 14,528 3.3
  Domestic Sales 364,892 -18,210 -5.0
  Exports 68,877 32,738 47.5
  Counterfactual simulation of a 10% decline in trade costs.

Table 3 - Counterfactuals: Aggregate Outcomes

Counterfactual



  
 

   
Initial Size 

Interval 
(percentile)

Baseline # 
of Firms

Change 
from 

Baseline
Change 

in %
Baseline # 
of Firms

Change 
from 

Baseline
Change 

in %
not active 0 1,108 ---  0 1,108 ---
0 to 10 22,974 -11,323 -49.3  746 17 2.3
10 to 20 23,036 -5,743 -24.9  137 93 67.8
20 to 30 23,038 -3,626 -15.7  182 192 105.6
30 to 40 23,030 -2,413 -10.5  412 393 95.5
40 to 50 23,034 -1,749 -7.6  749 591 78.8
50 to 60 23,024 -1,098 -4.8  1,433 891 62.2
60 to 70 23,031 -711 -3.1  2,530 1,313 51.9
70 to 80 23,027 -438 -1.9  4,242 1,781 42.0
80 to 90 23,028 -178 -0.8  7,504 2,322 30.9
90 to 99 20,729 -41 -0.2  12,700 1,936 15.2
99 to 100 2,310 0 0.0  2,161 64 3.0
Totals 230,260 -26,212 32,796 10,702

Table 4 - Counterfactuals: Firm Entry and Exit by Initial Size

All Firms Exporters
Counterfactual Counterfactual



 
 

   
Initial Size 

Interval 
(percentile)

Baseline in 
$millions

Change 
from 

Baseline
Change 

in %
Baseline in 
$millions

Change 
from 

Baseline
Change 

in %
not active 0 4 --- 0 4 ---
0 to 10 41 -24 -58.0 1 2 367.7
10 to 20 193 -92 -47.8 1 2 251.8
20 to 30 475 -184 -38.8 1 3 306.8
30 to 40 967 -306 -31.6 2 9 377.9
40 to 50 1,822 -487 -26.7 5 20 368.2
50 to 60 3,347 -711 -21.2 18 51 276.2
60 to 70 6,267 -1,050 -16.8 60 139 230.5
70 to 80 12,661 -1,544 -12.2 202 382 189.3
80 to 90 31,322 -2,028 -6.5 1,023 1,409 137.8
90 to 99 148,502 3,685 2.5 15,663 11,587 74.0
99 to 100 228,170 17,265 7.6 51,901 19,131 36.9
Totals 433,768 14,528 68,877 32,738

Table 5 - Counterfactuals: Firm Growth by Initial Size

Total Sales Exports
Counterfactual Counterfactual



Initial # of 
Export 

Destinations
Number of 

Firms
Exports in 
$millions

Change in 
Exports

Percentage 
Change in 

Exports

% Contribution 
of New 

Destinations
0 197,464 0 114 --- 100.0
1 13,739 133 317 238.8 41.8
2 5,010 204 400 196.1 34.1
3 2,863 259 430 165.9 28.8
4 1,834 291 472 162.6 27.1
5 to 10 4,343 1,996 2,461 123.3 19.6
10 to 25 3,262 8,237 6,744 81.9 11.0
Over 25 1,745 57,757 21,799 37.7 2.6
Totals 230,260 68,877 32,738

Table 6 - Counterfactuals: Firms Growth by Initial Export Penetration

CounterfactualBaseline



Country

Baseline 
Exports in 
$millions

Change in 
Exports

Percentage 
Change in 

Exports

Percentage 
Change in # 

Exporters

Contribution 
of New 

Exporters, %
Below 
Median

Above 95th 
Percentile

AFGHAN 9 2 22.2 18.2 16.8 74.6 13.8
ALBANIA 3 1 37.0 31.8 6.8 97.8 31.3
ALGERIA 1,411 95 6.7 11.3 4.1 42.4 4.1
ANGOLA 63 5 8.2 10.3 2.8 52.4 6.4
ARGENTIN 230 132 57.4 53.6 12.4 212.7 41.7
AUSTRALI 342 128 37.4 30.7 7.0 109.0 28.9
AUSTRIA 688 357 51.9 33.3 7.0 163.6 41.1
BANGLADE 19 8 40.3 35.3 7.8 116.9 29.6
BELGIUML 6,039 2,661 44.1 19.3 2.5 129.0 38.4
BENIN 57 7 11.9 9.1 2.1 37.9 9.8
BOLIVIA 6 1 21.2 19.0 6.9 61.7 17.8
BRAZIL 505 317 62.8 54.7 8.8 297.4 44.8
BULGARIA 117 37 31.7 34.9 4.9 130.2 24.0
BURKINAF 39 6 16.3 17.8 4.0 55.0 11.8
BURUNDI 15 3 17.1 21.4 4.1 59.5 12.7
CAMEROON 400 68 17.0 20.1 4.0 71.1 12.9
CANADA 685 297 43.3 25.3 5.1 131.6 34.4
CENAFREP 23 8 33.9 19.6 3.2 93.4 26.8
CHAD 14 1 7.0 11.8 3.1 30.8 5.0

Growth of Incumbant 
Exporters, by Initial 

Size in Market

Counterfactual

Table 7 - Firm Export Behavior by Country and Firm Size in Country



CHILE 58 31 53.8 39.9 7.0 153.2 39.1
CHINA 406 132 32.4 38.6 6.1 167.2 23.4
COLOMBIA 89 20 22.6 24.9 6.6 99.9 16.7
COSTAR 13 3 21.6 14.7 1.4 63.3 17.7
COTEDI 253 96 38.0 30.1 5.9 110.9 29.1
CUBA 30 7 22.9 24.4 7.5 81.7 16.5
CZECH 94 50 53.4 42.3 8.9 132.1 38.6
DENMARK 641 308 48.0 28.3 4.6 137.8 38.5
DOMREP 16 5 34.0 29.5 10.0 88.3 25.6
ECUADOR 13 7 54.4 30.0 37.7 93.0 27.5
EGYPT 422 53 12.6 12.4 4.6 52.7 8.5
ELSALV 9 1 9.2 15.3 2.2 28.5 7.2
ETHIOPIA 10 1 7.7 8.6 2.7 27.4 5.7
FINLAND 400 232 58.0 39.4 8.1 179.2 43.8
GERMANYE 137 83 60.7 49.6 14.8 201.1 38.9
GERMANYW 12,330 7,370 59.8 45.6 8.2 302.2 45.6
GHANA 22 8 36.1 30.0 4.9 120.7 28.8
GREECE 440 163 37.1 29.7 8.8 120.9 27.7
GUATEM 17 3 20.4 15.3 2.2 52.0 19.5
HONDURAS 17 3 18.5 16.3 0.9 57.9 17.2
HONGKONG 291 96 33.1 2.3 0.0 43.1 32.4
HUNGARY 130 52 39.9 23.5 5.4 111.1 30.1
INDIA 681 279 41.0 36.6 7.5 221.4 30.2
INDONES 157 65 41.5 40.3 9.4 203.0 28.3
IRAN 84 14 16.5 17.6 3.5 77.7 13.6
IRAQ 224 20 8.8 5.9 2.4 29.4 6.4
IRELAND 301 128 42.4 21.6 3.0 111.9 35.4
ISRAEL 201 94 47.0 33.6 7.7 142.9 35.9
ITALY 8,204 4,748 57.9 46.6 10.1 296.9 43.1



JAMAICA 6 2 37.4 20.9 7.7 88.8 29.4
JAPAN 947 761 80.3 67.8 13.3 307.8 56.4
JORDAN 52 9 16.6 14.0 1.6 42.0 13.6
KENYA 166 30 18.3 19.4 4.6 89.2 15.9
KOREAS 644 335 52.1 40.3 6.9 245.7 42.2
KUWAIT 175 24 13.8 12.5 3.0 48.4 10.6
LIBERIA 51 16 30.8 14.3 1.2 190.6 29.0
LIBYA 89 9 10.5 8.0 1.9 25.3 9.0
MADAGASC 50 10 20.3 20.8 3.9 62.6 14.9
MALAWI 12 3 23.0 18.5 1.6 66.1 22.5
MALAYSIA 71 34 47.1 24.9 3.6 116.4 39.2
MALI 33 5 15.7 11.1 2.7 43.0 11.9
MAURITAN 48 17 36.1 5.1 0.9 60.6 34.6
MAURITIU 59 25 42.5 31.2 4.3 117.4 35.6
MEXICO 216 64 29.6 31.5 4.9 135.5 22.8
MOROCCO 571 222 38.8 30.9 7.0 124.3 29.6
MOZAMBIQ 11 4 33.3 26.5 17.0 77.5 18.8
NEPAL 2 1 37.8 16.5 5.1 85.0 32.0
NETHERL 3,255 1,350 41.5 14.1 1.5 110.4 37.5
NEWZEAL 65 28 43.3 34.9 6.2 122.9 32.6
NICARAG 16 1 5.9 8.8 3.7 19.7 2.3
NIGER 60 25 41.9 28.0 4.1 105.2 36.3
NIGERIA 256 19 7.2 12.8 4.8 58.6 5.0
NORWAY 665 251 37.7 23.0 3.4 115.2 32.1
OMAN 60 6 10.3 2.6 0.6 20.4 9.5
PAKISTAN 166 61 36.7 31.9 5.2 135.6 28.0
PANAMA 61 8 13.7 10.4 2.0 45.1 11.9
PAPNEWGU 3 1 32.3 11.2 0.6 63.8 29.4
PARAGUAY 20 4 19.2 20.9 2.9 67.0 15.6



PERU 77 30 39.1 34.3 7.7 134.2 31.1
PHILIPP 62 31 50.5 43.4 6.5 176.2 39.3
PORTUGAL 607 306 50.4 32.4 6.1 151.1 40.6
ROMANIA 139 80 57.8 66.3 7.8 236.0 46.1
RWANDA 15 2 13.2 16.9 2.5 55.6 11.2
SAUDI 572 88 15.4 11.4 2.0 52.1 12.4
SENEGAL 146 53 36.5 24.9 4.4 100.1 29.0
SIERRAL 3 1 37.2 7.3 2.5 64.2 34.4
SINGAPO 276 101 36.6 11.5 0.9 77.2 33.7
SOMALIA 4 0 7.3 4.0 0.1 17.6 6.6
SOUTHAFR 265 160 60.1 45.3 10.9 180.5 44.3
SPAIN 3,211 1,711 53.3 41.7 9.0 221.4 41.1
SRILANKA 12 4 35.5 24.9 9.1 95.8 25.7
SUDAN 18 2 10.8 18.5 3.0 48.0 8.6
SWEDEN 1,082 570 52.7 33.4 7.4 202.5 40.8
SWITZER 2,637 1,296 49.1 31.1 5.7 153.6 39.4
SYRIA 79 16 20.8 17.8 3.1 62.5 15.3
TAIWAN 197 127 64.1 46.1 8.8 193.3 48.5
TANZANIA 5 1 14.8 11.4 4.7 35.0 12.0
THAILAND 386 178 46.1 36.7 5.7 296.2 38.0
TOGO 54 6 11.2 7.3 0.9 28.1 9.4
TRINTOB 5 1 22.2 11.9 0.7 44.3 18.6
TUNISIA 438 145 33.1 25.2 4.3 101.0 26.2
TURKEY 461 171 37.1 36.3 6.8 150.3 29.2
UGANDA 3 0 7.6 3.3 0.7 33.8 6.5
UK 6,404 3,007 47.0 34.6 7.0 213.1 36.0
US 6,379 2,716 42.6 41.4 9.0 247.4 31.6
URUGUAY 27 17 64.2 54.5 8.5 182.0 51.0
USSR 523 149 28.5 29.1 7.0 142.0 19.8



VENEZUEL 173 34 19.6 18.9 5.2 79.7 14.4
VIETNAM 14 6 41.2 32.3 4.3 117.7 37.2
YUGOSLAV 298 153 51.3 42.3 9.8 189.1 33.9
ZAIRE 94 35 36.7 3.3 0.1 52.4 35.7
ZAMBIA 9 5 52.1 17.5 2.6 122.8 42.8
ZIMBABWE 10 5 48.5 35.5 7.0 120.3 38.5
Totals 68,877 32,738
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Figure 1a:
Entry of French Firms and Market Size
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Figure 1b:
Entry Relative to French Market Share and Market Size
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Figure 1c:
Percentiles of French Firm Sales, by Market
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Figure 3a:
Size in France and Number of Markets Penetrated
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Figure 3b:
Size in France and Number Entering Multiple Markets
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Figure 3c:
Size in France and Number Entering the Market
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Figure 3d:
Distribution of Sales in France, by Market Penetrated
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Figure 4:
Distribution of Export Intensity, by Market
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Figure 5a:
Sales Distribution by Market (Data and Simulation)
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Figure 5b:
Sales in France by Market Penetrated (Data and Simulation)
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Figure 5c:
Export Intensity by Market (Data and Simulation)
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Figure 6:
Productivity and Market Penetration (Data and Simulation)




