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Abstract

Different people use language in different ways. Private information about language
competence can be used to reflect the idea that language is imperfectly shared. In
optimal equilibria of common interest games there will generally be some benefit from
communication with an imperfectly shared language, but the efficiency losses from
private information about language competence in excess of those from limited compe-
tence itself may be significant. In optimal equilibria of common-interest sender-receiver
games, private information about language competence distorts and drives a wedge be-
tween the indicative meanings of messages (the decision-relevant information indicated
by those messages) and their imperative meanings (the actions induced by those mes-
sages). Indicative meanings are distorted because information about decision relevant
information becomes confounded with information about the sender’s language com-
petence. Imperative meanings of messages become distorted because of the uncertain
ability of the receiver to decode them. We show that distortions of meanings persist
with higher-order failures of knowledge of language competence. In a richer class of
games, where both senders and receivers move at the action stage and where payoffs vi-
olate a self-signaling condition, these distortions may result in complete communication
failure for any finite-order knowledge of language competence.
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1 Introduction

Individuals differ in their language use, express themselves more clearly in some domains

than others and do not always agree on the meanings of utterances. The very notion of

an organizational code (Arrow [1]) presumes a privileged understanding of the code by the

members of the organization. If meanings were always clear, there would be no need for

statutory interpretation of laws by courts (Posner [31], Eskridge, Frickey and Garrett [13]),

or to create trading zones to mediate communication across subcultures in science (Galison

[15]). The following quote from a white paper on electric power transmission in the US

illustrates the problem:

One of the many difficulties with discussing who should pay for transmission

expansion is the surprising lack of a common language for conveying the critical

underlying concepts. Important words such as “benefits” and “beneficiaries,” and

phrases such as “economic upgrades” and “participant funding” are too often used

in radically different ways by different parties. At best, the meanings intended by

some speakers are not transparent, and different meanings are inferred by different

listeners. At worst, the same words have opposite meanings to different people.

(Baldick et al. [4], page 12.)

Our aim here is to present a simple, portable, formal framework for expressing the idea

that language is imperfectly shared, that some individuals are better equipped to use lan-

guage and that there can be disagreements about meaning. To this end, we introduce

privately known language competence into standard communication games. Our approach

lets us express that agents are language constrained, that their constraints differ, the dif-

ferent degrees to which agents know a language, the different degrees to which language is

shared among agents, how players reason and form beliefs about the language use of others

and how they talk about language.1

In the examples that Lewis [23] uses to illustrate conventional meaning, meaning is clear:

Each state of the world is indicated by one and only one message and each message induces

one and only one action. In that case the meaning of a message can be equivalently expressed

as the state in which that message is appropriate (its indicative meaning) or as the action

which is appropriate for that message (its imperative meaning). Unlike Lewis, Crawford

1Language constraints also appear in Crémer et al [7] and Jäger et al [19], who limit players to finite
numbers of messages, Crawford and Haller [10] and Blume [8], who impose symmetry requirements on
players’ strategies and Rubinstein [33], who deals with agents for whom some objects are nameless and who
have access to a limited set binary relations on the set of objects. None of these focusses on communication
with an imperfectly shared language.
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and Sobel [11] (henceforth CS) concentrate on the case where there is conflict between the

communicating parties. They show that when there is not too much conflict, communication

is possible but there is a necessary coarsening of meaning. The indicative meaning of a

message is now a nontrivial set of states and its imperative meaning the action that is

induced by beliefs concentrated on that set of states. The same coarsening that CS derive

by introducing conflict is generated even in the common interest case if the language is

restricted by limiting the set of available messages, as is done by Crémer et al [7] in their

work on optimal organizational codes and Jäger et al [19] on convex categories in optimal

(natural) languages.

In our model players have private information about which messages they can send and

understand — their language competence — in addition to their decision-relevant private

information.2 This information about language competence is purely instrumental in that

each player’s payoffs from any decision are completely determined by decision-relevant in-

formation. This suggests that it is sensible to continue to think of the indicative meaning of

a message as the decision-relevant information conveyed by the message and the imperative

meaning as the action induced by that message. With this interpretation, in addition to

being coarse, meaning becomes uncertain. The sets of decision-relevant states indicated by

a message — its indicative meaning — may vary with the messages available to the player

sending the message. The action induced by a message — its imperative meaning — may de-

pend on whether or not the recipient of the message understands it. The indicative meaning

and the imperative meaning of a message become imperfectly correlated random variables,

thus severing the rigid link between the two.

We are interested in how this uncertainty about message meaning affects the ability of

players to communicate and the manner of their communication. In his account of language

as a convention, Lewis [23] makes common knowledge an integral part of a convention. We

want to know whether and how language can function if it is not common knowledge. Is

it possible to communicate at all? Do players avoid messages whose meanings are uncer-

tain? Does the uncertainty about meaning persist if language competence is known but not

common knowledge?

Our main focus is on common interest games. Here we find that generally there is some

benefit from using an imperfectly shared language, while the efficiency losses from making

language competence private information can be severe. We isolate the effects of uncer-

2There are sensible ways of expressing imperfectly shared meanings other than through private information
about language competence, e.g. communication through noisy channels (Blume, Board and Kawamura [9]),
correlated equilibria (De Jaegher [12]) and local interaction (Zollman [34]). We view these as complementary.
What our approach adds is a natural way to express different degrees of knowing a language and reasoning
about other players’ knowledge of language in communication games.
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tainty about the sender’s language competence from those about the receiver’s competence

in sender-receiver games. In optimal equilibria of common-interest sender-receiver games

where only the sender’s language competence is an issue, we show that the sender will always

make effective use of all the messages available to her. In these equilibria indicative meaning

will generally be distorted in the sense that decision relevant information gets confounded

with instrumental information about language.3 Similarly, if only the receiver’s competence

is an issue, then imperative meaning will be distorted. Private information about language

competence drives a wedge between the indicative meanings of messages and their imperative

meanings. We show that these distortions of meanings persist with higher-order failures of

knowledge of language competence although they diminish with higher orders of knowledge.

In contrast, in a richer class of games, where both senders and receivers move at the action

stage and where payoffs violate a self-signaling condition, these distortions may result in

complete communication failure for any finite-order knowledge of language competence.

2 Private Knowledge of Language Competence

We begin by setting up a framework that incorporates privately known language competence

in a class of two-stage games in which players simultaneously and publicly communicate in

the first stage and simultaneously take actions in the second stage.

Players i = 1, . . . , I interact in two stages (we will use I to indicate both the player set

and its cardinality). In the communication stage each player sends a message m from a finite

set M that is observed by all other players. In the action stage each player takes an action

ai ∈ Ai. At the beginning of the game each player i ∈ I is privately informed of her decision

type ti ∈ Ti and her language type λi ⊆M. We assume that there is one message, m0, that is

always available to all players and define the set of language types as Λ := {λ ∈ 2M |m0 ∈ λ}.
Each ti is drawn from a distribution Fi on Ti and the language type profile λ is drawn

3Similar difficulties of separating different dimensions of private information from each other arise when
all of these dimensions directly impact payoffs. Morgan and Stocken [25] show in a variant of the CS model
where the sender is privately informed about her preferences in addition to the state that in equilibrium
the sender cannot fully reveal the state even if preferences are fully aligned at the interim stage. It is
impossible to completely separate the two dimensions of private sender information. Unlike in our setup,
both dimensions directly impact payoffs and the confounding of information about the state with information
about preferences is driven by ex ante conflict between sender and receiver. Morris [26] demonstrates how a
reputational dimension may prevent full revelation of the state even if interim preferences are fully aligned.
Levy and Razin [22] show that communication in one (common interest) dimension may be hindered by
conflict in another dimension because they are linked through the prior. Sometimes there is a benefit from
private information being multidimensional, either because it permits the expert to trade off incentives across
dimensions [6] or because uncertainty about the expert’s bias leads to a bias that is diminished in expectation
[21].
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from a distribution π on ΛI . The distributions F1, . . . , FI , π are independent and common

knowledge. The profile of decision decision types t ∈ T = ×i∈ITi and the profile of actions

a ∈ A = ×i∈IAi determine player i’s payoff Ui(a, t). Player i’s language type λi is the set

of messages that she can send and understand. Messages that she does not understand, she

has to treat identically. To express this formally, for any λi introduce an equivalence relation

∼λi
on the set of all profiles of messages that is defined by the property that m ∼λi

m′ if

and only if for all j ∈ I it is the case that mj 6= m′j ⇒ mj,m
′
j ∈M \λi; i.e. player i does not

distinguish message profiles that at any give component differ only in messages she does not

understand.4 Each player i’s strategy is a pair (σi, ρi) of a signaling rule σi : Ti×Λi → ∆(M)

at the communication stage and a decision rule ρi : Ti × Λi ×M I → ∆(Ai) at the action

stage. The signaling rule σi must satisfy the condition that σi(ti, λi) ∈ ∆(λi) for all ti ∈ Ti
and λi ∈ Λi and the decision rule the condition ρi(ti, λi,m) = ρi(ti, λi,m

′) for all ti ∈ Ti,
λi ∈ Λi and for all m,m′ ∈ M I with m ∼λi

m′. We refer to these two conditions as player

i’s language constraints.

3 Universal Private Language Constraints

Our initial focus is on the case where all players communicate, take actions and face privately

known language constraints. Here we make two observations: (1) There is generally a role

for communication even with privately known language competence – for language to be

useful, it does not have to be common knowledge. (2) Universal private information about

language constraints may imply a significant efficiency loss in environments where the loss

from partial private information is negligible.

4There are many natural ways enrich this framework: (1) One can allow players to make some, albeit
coarse, distinctions among messages that they do not understand by letting a language type be a pair
(λi,Pi), where λi ⊆M is the set of messages that player i can send and Pi is a partition of M that satisfies
m ∈ λi ⇒ {m} ∈ Pi and indicates which distinctions the player can make among messages. This would allow
one to capture the phenomenon that the agent does not understand the difference between “metaphysics”
and “dialectics” but places both in philosophy. (2) Instead of letting players respond to unknown messages
strategically, as we do, one could introduce a nonstrategic default interpretation of unknown messages. (3)
One could permit the sender to send some messages that she does not understand, by letting a language
type be a pair (Qi,Pi) of (possibly identical) partitions of M , where as before Pi captures the distinctions
she can make among received messages and where she has to treat messages in any element of Qi identically
by randomizing uniformly over those messages. This would capture the player being able to use the terms
“dialectics” and “metaphysics”, but without being able to differentiate their meanings.
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3.1 A Role for Communication

Assume that Ai and Ti are finite for all i and that all players have common interests, i.e.

there is a function U : A×T → R such that Ui = U for all i ∈ I. All distributions, F1, . . . , FI

and π have full support. Suppose that U has a unique maximizer a(t) for every t and that

M contains at least three messages, m0, m′ and m′′. We call such a common interest game

information responsive if it satisfies the condition

∃t′, `, t′′` such that aj(t
′) 6= aj(t

′
−`, t

′′
` ) ∀j ∈ I.

Proposition 1 In information-responsive common-interest games, there is an optimal equi-

librium with communication that is strictly superior to any equilibrium without communica-

tion.

Proof: Since we have a finite game, the problem of finding a profile of strategies αi : Ti → Ai

in the game without communication that maximize joint payoffs,

max
α1,...,αI

∑
t∈T

U(α1(t1), . . . , αI(tI), t)F (t),

has a solution, α̂. Evidently, there is no loss in restricting attention to pure strategies and

given that we have a common-interest game, the profile α̂ forms an equilibrium.

For every player i let λ̃i be a language type with m′,m′′ ∈ λ̃i and recall that by our

full-support assumption on π any such language type has positive probability. In the com-

munication game, consider the strategy profile (σ, ρ) that prescribes for all players i 6= `

the signaling rule σi(t
′
i, λ̃i) = m′ and σi(ti, λi) = m0 for all (ti, λi) 6= (t′i, λ̃i) and for player

` the signaling rule σ`(t
′
`, λ̃`) = m′, σ`(t

′′
` , λ̃`) = m′′ and σ`(t`, λ`) = m0 for all (t`, λ`) 6=

(t′`, λ̃`), (t
′′
` , λ̃`) at the communication stage. Define t′′ := (t′−`, t

′′
` ), m′ := (m′,m′, . . . ,m′)

and m′′ := (m′,m′, . . . ,m′,m′′,m′, . . . ,m′) (with m′′ in the `th component).

At the action stage, let the strategy profile prescribe the action rule ρi(ti, λ̃i,m
′) = ai(t

′),

ρi(ti, λ̃i,m
′′) = ai(t

′′) and ρi(ti, λi,m) = α̂i(ti) otherwise.

Then, for any decision type profile t 6= t′, t′′, the ex post payoff in the communication game

is the same as in the game without communication. For any decision type profile t = t′, t′′

an ex post optimal action profile is chosen whenever the language state λ̃ is realized, which

occurs with positive probability, and otherwise the ex post payoff is the same as in the game

without communication. Therefore the ex post payoff in the game with communication is

never less than the ex post payoff in the game without communication. If there is i ∈ I with

5



α̂(t′i) 6= ρi(t
′
i, λ̃i,m

′) then in state t′ the ex post payoff in the communication game strictly

exceeds the ex post payoff in the no-communication game. If, however, α̂(t′i) = ρi(t
′
i, λ̃i,m

′)

for all i ∈ I, then it must be the case that α̂i(t
′
i) 6= ρi(t

′
i, λ̃i,m

′′) for all i 6= `, in which case in

state t′′ the ex post payoff in the communication game strictly exceeds the no-communication

payoff.

Therefore the ex ante payoff from the profile (σ, ρ) in the communication game strictly

exceeds the payoff from any optimal profile α̂ in the game without communication. While

(σ, ρ) itself need not be an optimal profile in the communication game, since the game is

finite and has the common interest property an optimal profile (σ∗, ρ∗) exists. Using the fact

that we have a common-interest game once more, it follow that (σ∗, ρ∗) is an equilibrium.

Therefore the communication game has an optimal equilibrium and this equilibrium has a

strictly higher payoff than the optimal equilibrium of the game without communication. �

Note that this result tells us nothing about the form of the optimal equilibria. It simply

utilizes the fact that when the distribution of language types has full support, there will

be instances in which it is possible to accurately reveal the profile of decision types, to

signal universal comprehension of the relevant messages, and to take the corresponding

optimal profile of actions. It may, however, not be optimal to ever fully reveal the state,

and the manner in which decision types pool on messages may vary with their language

types, thus confounding message meanings. Message meaning may be further confounded

because players may be unable to signal message comprehension. These questions, which

are of central interest to us, we will investigate later in environments with more structure.

3.2 The interaction of uncertainties about language competence

Our purpose in this section is to show, via a two-player example, that universal uncertainty

about language constraints can lead to significant efficiency losses even when the constraints

themselves or one-sided uncertainty imply no substantial loss.

For the next result assume that there are two players. At the action stage each player

has the choice among going to one of 2n locations, i.e. Ai = {1, 2, . . . , 2n}, where we assume

that n ≥ 2. Locations are either good or bad. If both players choose the same location and

that location is good, then both receive a payoff of 1. Otherwise their common payoff is 0.

Exactly one of the first n locations is good and exactly one of the second n locations is good.

Good locations are drawn independently from uniform distributions on the sets {1, . . . n}
and {n + 1, . . . , 2n} respectively. Player 1 privately knows which of the first n locations

is good. Thus 1’s decision type set is T1 = {1, 2, . . . , n} with t1 ∈ T1 indicating the good

location. Similarly, player 2 privately knows which of the second n locations is good. Her
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decision type set is T2 = {n+ 1, . . . , 2n} with t2 ∈ T2 indicating the good location. For each

` = 1, 2, . . . the finite message space M has at least 4× ` elements (for notational purposes

we do not explicitly index M by `). #(λi) = 2` with probability one for both individuals

and #(λ1 ∩ λ2) = ` with probability one. Pairs of language types (λ1, λ2) are drawn from a

uniform distribution on the set {(λ1, λ2) ∈ 2M × 2M |#(λ1 ∩ λ2) = `,#(λi) = 2`, i = 1, 2}.5

To accommodate all cases of players having or not having access to information about

their counterpart’s language competence, we write strategies as functions of the entire lan-

guage state and make the appropriate restrictions when part of the state is private in-

formation. Then a (behaviorally mixed) strategy for player i is a pair (σi, ρi) consisting

of a signaling rule σi : Λi × Λ−i × Ti → ∆M where σi(λi, λ−i, ti) = σi(λi, λ
′
−i, ti) ∀λi ∈

Λi, λ−i, λ
′
−i ∈ Λ−i, ti ∈ Ti if i does not know −i’s language competence, and an action rule

ρi : Λi × Λ−i × Ti × M → ∆Ai, so that ρi(λi, λ−i, ti,m−i) is player i’s action as a func-

tion of player −i’s message m−i ∈ M , where ρi(λi, λ−i, ti,m−i) = ρi(λi, λ
′
−i, ti,m−i) ∀λi ∈

Λi, λ−i, λ
′
−i ∈ Λ−i, ti ∈ Ti,m−i ∈M ∈ if i does not know −i’s language competence, with the

understanding that both message and action rules respect player i’s language constraints.

Observation 1 In the two-player location choice game: (1) If the language competence of

both players is private information, then the common efficient payoff is bounded from above

by a value v < 1 for all `. (2) If at least one player knows the language competence of the

other, the common efficient equilibrium payoff converges to one as `→∞.

Proof: For (1) observe that for any message in λi that player i may send, that message does

not belong to λ−i with probability 1/2, in which case player −i’s action does not depend on

the message sent by player i and the probability off being able to coordinate on location ti

is at most a 1/n. Since the probability that neither player sends a message that the other

player understands is 1/4, the optimal payoff when both language competences are private

information is bounded from above by 3
4

+ 1
4

1
n
< 1. To show (2), without loss of generality,

assume that it is player 1 who knows player 2’s language competence λ2. For any ` ≥ n there

are
⌊

2`
n

⌋
mutually exclusive subsets of λ2 of size n, S1(λ2), S2(λ2), . . . , Sb `

nc(λ2). For any λ2

define a function φλ2 : λ2 → T1 with the property that the restriction of φλ2 to any set Si(λ2)

is a bijection denoted φi,λ2 . At the communication stage let player 1 use the message rule

σ1 : Λ1 × Λ2 × T1 →M that is defined by

σ1(λ1, λ2, t1) =

{
φ−1
i∗,λ2

(t1) if i∗ = min{i|φ−1
i,λ2

(t1) ∈ λ1}
m(λ1,λ2) otherwise

5Note that in this example the language types are not drawn independently from each other.
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where m(λ1,λ2) is an arbitrary element of λ1∩λ2 and let player 2 use an arbitrary message rule

σ2. At the action stage let player 1 use the action rule ρ1 that is defined by ρ1(λ1, λ2, t1,m2) =

t1 for all (λ1, λ2, t1,m2) and let player 2 use the action rule ρ2 that is defined by

ρ2(λ2, λ1, t2,m1) =

{
φλ2(m1) if m1 ∈ λ2

t2 otherwise

for all (λ2, λ1, t2,m1).

Notice that whenever the set {i|φ−1
i,λ2

(t1) ∈ λ1} is nonempty, the above strategy pro-

file guarantees both players a payoff of 1. Conditional on λ2, the probability that the set

{i|φ−1
i,λ2

(t1) ∈ λ1} is empty is less than
(

1
2

)b `
nc , which converges to zero as `→∞. Therefore,

as `→∞ we have a sequence of games and corresponding strategy profiles with payoffs con-

verging to 1. The result follows from the fact that in finite common interest games, optimal

profiles are equilibrium profiles, an optimal profile exists and the payoff from an optimal

profile is bounded below by the payoff from the profile we constructed. �

4 Sender-Receiver Games

In this section we restrict attention to sender-receiver games, and separately analyze the

cases where only the language competence of the sender is the issue and where only the

language competence of the receiver is the issue.

4.1 Language Competence of the Sender

A privately informed sender, S, communicates with a receiver, R, by sending one of a finite

number of messages m ∈ M , where #(M) ≥ 2. The payoffs US(a, t) and UR(a, t) of the

sender and the receiver depend on the receiver’s action, a ∈ A = R`, and the sender’s payoff-

relevant information t ∈ T, her decision type; we assume that T is a convex and compact

subset of R` that has a nonempty interior. It is common knowledge that the sender’s decision

type is drawn from a distribution F with density f that is everywhere positive on T. The

function US is differentiable and strictly concave in a for every t ∈ T. Denote the set of

distributions over T by ∆(T ) and assume that the receiver has a unique best reply ρ̂(µ) to

any belief µ ∈ ∆(T ), and for any measurable set Θ ⊂ T , sightly abusing notation, denote by

ρ̂(Θ) his optimal response to his prior belief concentrated on Θ. Assume that for all t′ 6= t,

ρ̂(t′) 6= ρ̂(t). Note that for any set Θ ⊂ T that has positive probability and any set Θ0 that

has zero probability,

ρ̂(Θ) = ρ̂(Θ \Θ0).
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For any Θ ⊂ T and any two actions a1 ∈ A and a2 ∈ A define

Θa1%a2
:= {t ∈ Θ|US(t, a1) ≥ US(t, a2)},

the set of types in Θ who prefer action a1 to action a2, and similarly define Θa1�a2 for strict

preference, and Θa1∼a2 for indifference. Note that for any measurable set Θ ⊂ T and for any

pair a1, a2 ∈ A with a1 6= a2, the continuity of the sender’s payoff function implies that the

sets Θa1�a2 ,Θa2�a1 and Θa1∼a2 are measurable. Assume that for any two a1, a2 ∈ A with

a1 6= a2, Prob(Ta1∼a2) = 0. This implies that Prob(Θ) = Prob(Θa1�a2 ∪ Θa2�a1). For any

finite set of K actions {a1, . . . , aK} with 2 ≤ K ≤ M define Θa1%a2,...,aK
:= ∩Kn=2Θa1%an

, the

set of sender types who prefer action a1 over actions a2, . . . , aK , and use Ω to denote the

collection of all such sets.

Assumption 1 (A) For any Θ ∈ Ω and any pair of actions a1, a2 ⊂ A such that Θa1�a2

and Θa2�a1 both have positive probability, ρ̂(Θa1�a2) 6= ρ̂(Θ). (B) For any belief µ, there exists

a type t(µ) such that ρ̂(µ) = ρ̂(t(µ)).

Part (A) of Assumption 1 formalizes the idea that the optimal receiver response is sufficiently

sensitive to beliefs. This is the key assumption that ensures that the receiver responds

differently to a message, depending on knowing whether or not the sender has alternative

attractive messages available. Part (B) requires that any best response to some belief is also

the receiver’s ideal point for some state of the world. Essentially it says that there are no

gaps in the type space.

We will assume that not every message m ∈ M may be available to the sender. Instead

the sender privately learns a set λ ⊂ M of available messages, her language type.6 One

message, m0 ∈ M is assumed to be always available. Thus the sender’s language type λ

is drawn, independently from her decision type t, from a commonly known distribution π

on Λ = {λ ∈ 2M |m0 ∈ λ}, the set of all subsets of M that contain the message m0. As

usual, we assume that this entire structure is common knowledge. Having the message space

be common knowledge but not necessarily all messages available can be interpreted as the

sender having a description of the message space that is common for some messages and

6Our distinction between decision types and language types is a convenient terminological device. Of
course, one could follow Harsanyi [17] and express the inability of the sender to send a particular message
by assigning an arbitrarily large negative payoff to doing so. This would not affect our results but would, in
our view, obscure the fact that ultimately both parties are interested in communicating information about t.
Any information transmission about language competence is merely instrumental. Finally, note that we will
leave the analysis of a still more general model in which different messages are available at different privately
known costs for later work.

9



private for others; this is the situation when a speaker of one natural language knows that

another natural language is as expressive as her own but is not proficient in that language.

A sender strategy is a mapping σ : T × Λ→ ∆(M) that satisfies the condition σ(t, λ) ∈
∆(λ). A receiver strategy is a mapping ρ : M → A.7 We study perfect Bayesian Nash

equilibria (σ, ρ, β) where β is a belief system that is derived from the sender’s strategy σ

by Bayes’ rule whenever possible, the sender’s strategy σ is a best reply to the receiver’s

strategy ρ, and ρ is a best reply after every message, given the belief system β.

4.1.1 Example

The following example illustrates how the indicative meanings of messages may be compro-

mised when there is private information about language competence. The focus is on the

language competence of the sender.

The receiver is uncertain about the indicative meaning of equilibrium messages because

he is uncertain about the sender’s language competence. There will be a message for which

he is unable to determine whether the sender sent this message because no other message

was available or because she preferred to send it in lieu of another available message. His

equilibrium response to that message will be a compromise that averages over the possibility

that the sender pooled over all decision types and the alternative that the sender used the

message to indicate a strict subset of the set of decision types.

Example 1 Assume that the sender’s decision type is drawn from a uniform distribution on

the interval [0,1]. Sender and receiver have common interests and receive identical payoffs

−(t− a)2 when the sender’s decision type is t and the receiver takes action a. The message

space is M = {m0,m1} and the language type distribution π assigns positive probability to

two language types, λ0 = {m0} and λ1 = {m0,m1}, where π(λ1) = p and π(λ0) = 1 − p.

Consider an equilibrium in which the sender adopts a strategy of the following form:

• if the sender’s language type is λ0, send message m0 for all t ∈ [0, 1]

• if the sender’s language type is λ1, send message m0 for t ∈ [0, θ1) and message m1 for

t ∈ [θ1, 1]

The receiver’s best response to this strategy is to choose action a0 if he received message m0

7The restriction to pure strategies for the receiver is without loss of generality because of our assumption
that the receiver has a unique best reply given any belief.
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and a1 if m1, where a0 and a1 are given by

a0 =
(1− p)1

2
+ pθ1

θ1
2

(1− p) + pθ1

, and

a1 =
θ1 + 1

2
.

(Note that these actions are equal to the receiver’s expectation of t conditional on the message

received.) We have an equilibrium if the sender of type θ1 is indifferent between a0 and a1,

i.e.

θ1 =
a0 + a1

2

⇒ θ1 =
4p+

√
9− 8p− 3

4p

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

Figure 1: a0, θ1, and a1

Figure 3 plots the equilibrium actions a0 and a1 chosen by the receiver (dashed red), and

the cutoff type θ1 for the sender (solid blue) as functions of p, the probability that the second

message available. Notice that for low values of p, there is considerable distortion in the

choice of a0 compared with what it would be if the receiver knew that both messages were

available (θ1/2); similarly, for high values of p, there is significant distortion compared with

what the receiver would choose if he knew that only one message were available (1/2). There

is no such distortion in the choice of a1, because if m1 is observed, the receiver knows that

both message were available.

Despite the fact that in the previous example the sender is language constrained and

11



the exact nature of the constraint is private information, the sender can reliably induce all

equilibrium actions. In that sense, while the indicative meaning of messages is imprecise,

their imperative meaning remains precise. We will later (Section 4.2) see how to obtain

imprecision of imperative meaning by introducing uncertainty about the language compe-

tence of the receiver. An alternative route to imprecision of imperative meaning is through

higher-order uncertainty about the sender’s language competence. Then the sender finds

herself unable to reliably induce specific equilibrium actions because she does not know the

receiver’s belief about her language competence. This we will examine in detail in Section

5.

4.1.2 Distortion of Indicative Meaning

Inspired by Lewis [23], we refer to the indicative meaning of a message as the (decision-

relevant) information about the sender that is conveyed by the message. Distortions of

indicative meaning arise when the receiver’s strategy fails to be optimal given the sender’s

language competence.

Definition 1 There is distortion of indicative meaning in equilibrium (σ, ρ, β) if there exists

an language type λ and m ∈ λ that is used with positive probability by λ such that ρ(m) is

not optimal for the receiver conditional on the language type λ being revealed.

Distortions of indicative meaning need not arise if only a few actions are induced in

equilibrium and, given the equilibrium strategy of the receiver, the sender is never constrained

by her language ability so that for every action that can be induced she always has a message

that induces that actions. This is, trivially, the case in pooling equilibria.8 Intuitively,

however, the more information is transmitted and the more actions are induced in equilibrium

the more likely it is that there will be distortions of indicative meaning. Those language

types of the sender who have access to fewer message will sometimes find themselves language

constrained and forced to send messages that they would prefer not to send if they had access

8It is also possible to find games with equilibria in which there is positive probability that the sender
is unable to induce some of the equilibrium actions of the receiver, but there is no distortion of indicative
meaning. A simple example is this: decision types are uniformly distributed on [0, 1], sender and receiver
have identical payoffs −(t−a)2, the sender’s set of available messages is λ1 = {m0,m1,m2} with probability
p and λ0 = {m0} otherwise. Regardless of the value of p, there is an equilibrium in which language type λ1

divides the decision type space into three equal-length intervals, sends message m1 for decision types in the
interval

(
0, 1

3

)
, sends message m0 for decision types in the interval

(
1
3 ,

2
3

)
, and sends message m2 for decision

types in the interval
(

2
3 , 1
)
. This equilibrium is optimal and there is no distortion of indicative meaning:

Conditional on observing either message m1 of m2, the receiver knows the sender’s language type and after
message m0, the sender’s language type is irrelevant to him. Note that this example is non-generic because
it depends on the fact that the receiver’s pooling action coincides with one of the actions in a three-step
equilibrium.
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to a larger set of messages. Thus different language types will pool on the same message for

different sets of decision types. When receiving such messages the receiver best responds by

averaging over these sets of decision types and will generally take an action that differs from

the action he would take if he knew the sender’s language type and therefore did not have

to average. The following proposition formalizes this observation.

Proposition 2 There will be distortion of indicative meaning in any equilibrium (σ, ρ, β)

for which there is a message m∗ ∈ M and a pair of language types λ∗ 6= λ̃ such that

λ∗ = λ̃ ∪ {m∗}, π(λ̃) 6= 0, π(λ∗) 6= 0, λ∗ uses all of her available messages with positive

probability and all those messages induce distinct actions.9

Proof: Since m0 is always available, the set λ̃ is not empty. The fact that λ∗ uses all of

her messages with positive probability and all of those messages induce distinct actions, and

using the fact that for any two a1, a2 ∈ A with a1 6= a2 we have Prob(Ta1∼a2) = 0, implies

that language type λ̃ also uses all her messages with positive probability. Hence, there must

be a set of decision types, that has positive probability, who use m∗ when their language

type is λ∗ and use a message m̃ 6= m∗ when their language type is λ̃. Use a∗ to denote the

action that is induced by m∗ and ã the action that is induced by m̃. Let Θ̃ denote the set

of decision types who use message m̃ when their language type is λ̃. Since λ̃ uses all of its

messages with positive probability, the set Θ̃ has positive probability. Similarly, since λ∗

uses all of its message with positive probability the set Θ̃a∗�ã of types who switch to message

m∗ and the set Θ̃ã�a∗ of types who continue to send m̃ both have positive probability. The

set Θ̃ã�a∗ differs at most by a set that has probability zero from the set of decision types

who send message m̃ when their language type is λ∗. Hence, if there is no distortion in the

equilibrium (σ, ρ, µ), then ρ(m̃) = ρ̂(Θ̃ã�a∗). Also, in the equilibrium (σ, ρ, µ) by assumption

Θ̃ is the set of decision types who send message m̃ when their language type is λ̃. Therefore,

if there is no distortion, then ρ(m̃) = ρ̂(Θ̃). By Assumption 1 however,

ρ̂(Θ̃ã�a∗) 6= ρ̂(Θ̃),

9The result is stated in terms of a one-message difference between language types in order to avoid
counterexamples like the one in footnote 8. While the one-message difference is sufficient for our purposes
and always satisfied if we impose a full support condition on the distribution of language types, it is clearly
not necessary for distortion of indicative meaning to arise in equilibrium. After all, if different language types
have access to a common message, they have different alternatives to using that message and therefore are
likely to use that message for different sets of decision types. Only rarely will the receiver’s best responses
to beliefs concentrated on these sets of decision type coincide with each other and thus satisfy a necessary
condition for absence of distortion of indicative meaning. As an illustration, in the example of footnote 8
any small positive sender bias would resurrect distortion of indicative meaning.

13



which is inconsistent with having no distortion. �

We observe next that Proposition 2 holds in the setup of Crawford and Sobel [11] (CS).

Recall that in the CS model the sender’s decision type t is drawn from a differentiable

distribution F on [0, 1] with a density f that is everywhere positive on [0, 1]. The receiver

takes an action a ∈ R. It is assumed that the functions US and UR are twice continuously

differentiable and, using subscripts to denote partial derivatives, the remaining assumptions

are that for each realization of t there exist an action a∗t such that US
1 (a∗t , t) = 0; for each t

there exists an action a′t such that UR
1 (a′t, t) = 0; US

11(a, t) < 0 < US
12(a, t) for all a, t; and,

UR
11(a, t) < 0 < UR

12(a, t) for all a and t. For the the next result we mean by ‘CS model’ the

combination of these assumptions about preferences and the decision type distribution with

our assumption about the messages space and the distribution of language types.

Corollary 1 Proposition 2 holds for the CS model.

Proof: CS preferences satisfy all the conditions we have imposed on sender and receiver

utilities. Specifically, Assumption 1 is satisfied because sender and receiver preferences satisfy

the single-crossing condition, US
12, U

R
12 > 0: Single-crossing for the sender implies that for any

positive-probability set Θ ⊂ T the set Θa1�a2 is of the form Θ ∩ Ta1�a2 where Ta1�a2 is an

interval that is either of the form (−∞, t) or of the form (t,∞). Hence, the distribution

that is the prior probability concentrated on Θ∩Ta1�a2 either stochastically dominates or is

stochastically dominated by the distribution that is the prior probability concentrated on Θ.

Therefore the single-crossing condition for the receiver implies that ρ̂(Θa1�a2) 6= ρ̂(Θ). �

Another environment in which Proposition 2 holds is one where payoffs can be expressed

in terms of convex loss functions and the sender’s decision type space T is permitted to

be multi-dimensional. Suppose the sender’s and receiver’s payoffs are given by US(a, t) =

νS(||t + b − a||) and UR(a, t) = νR(||t − a||) respectively, where || || is the Euclidean norm

and −νS and −νR are strictly increasing convex functions.10

10Jäger et al [19] have examined the optimal equilibria of this environment, without uncertainty about
language competence, for the common-interest case, where b = 0. There are well-defined indicative meanings
(“categories” in their terminology). In any optimal equilibrium categories are shown to be convex giving rise
to a Voronoi tessellation of the type space, and all messages are used with positive probability and induce
distinct actions. In the present paper the indicative meanings of messages become more fluid: While it is
still the case that in equilibrium each language type partitions the set of decision types into convex sets,
at the same time for a given message these sets will generally differ for different language types and it is
no longer the case that the set of decision types is partitioned into categories with fixed boundaries. The
receiver’s posterior distributions after different messages will generally have overlapping supports. For an
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Corollary 2 Proposition 2 holds when sender and receiver have convex loss functions.

Proof: With convex loss functions every set Θ in Ω will be convex. For any pair of distinct

actions a1 and a2, the set Ta1%a2
is a halfspace and thus if Θa1%a2

= Θ∩Ta1%a2
and Θa2%a1

=

Θ ∩ Ta2%a1
have positive probability, they are convex and have a nonempty interior. If we

denote the interior of a set X by int(X) then ρ̂(Θa1%a2
) ∈ int(Θa1%a2

) and ρ̂(Θa2%a1
) ∈

int(Θa2%a1
). To see this, let

V (a,K) =

∫
K

νR(||t− a||)f(t)dt

for a convex set K and consider a point a on the boundary of K. By the supporting

hyperplane theorem, there exists a vector c 6= 0 with c · t ≥ c · a ∀t ∈ K. Furthermore,

c · t > c · a ∀t ∈ int(K). The derivative of V (·, K) at a in the direction c satisfies

∇V (a,K) · c

||c||
=

∫
K

ν ′R(||t− a||)1

2
||t− a||−

1
2 (a− t) · c

||c||
f(t)dt > 0

because νR is increasing and (a − t) · c
||c|| > 0 for almost all t ∈ K. Use a12 to denote

ρ̂(Θa1%a2
) and a21 to denote ρ̂(Θa2%a1

). Since a12 6∈ Θa2%a1
, there exists a vector d 6= 0 with

d · t ≥ d · a12 ∀t ∈ Θa2%a1
(and > for all t ∈ int(Θa2%a1

)). Consider the derivative of V (·,Θ)

at a12 in the direction d:

∇V (a12,Θ) · d

||d||
= ∇V (a12,Θa1�a2) ·

d

||d||
+∇V (a12,Θa2�a1) ·

d

||d||

= ∇V (a12,Θa2�a1) ·
d

||d||

=

∫
Θa2�a1

ν ′R(||t− a12||)
1

2
||t− a12||−

1
2 (a12 − t) ·

d

||d||
f(t)dt > 0,

which shows that ρ̂(Θa1%a2
) 6= ρ̂(Θ). �

extreme example, if instead of always permitting silence, we required the availability distribution to have
full support on the power set of M, then trivially in any equilibrium the receiver’s posterior would have
full support on T after every message. We will show below that in our setting with common interests it
remains true that all messages (that are available to some language type) will be used and that therefore by
Proposition 2 there will be distortion of indicative meaning in optimal equilibria.
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4.1.3 Common-Interest Games

In this section we consider the case where sender and receiver have identical preferences,

US ≡ UR ≡ U . We show that an optimal equilibrium exists. Furthermore, in any optimal

equilibrium all language types use all their messages with positive probability and all avail-

able messages induce distinct actions. It is interesting that this holds despite the fact that,

as we showed above, different language types using all their messages may lead to distortion

of indicative meaning.

First-order intuition for why every language type uses all of her messages is simple:

unused messages can be introduced to refine the information that the sender transmits. A

complication arises because other language types may already use that message and may

see their payoffs reduced as the action induced by that message changes. We will show,

however, that the magnitude of such losses is of second order in comparison to the gains of

the language type who begins using that message.

We proceed by first establishing existence of an optimal strategy profile. Here we argue in

terms of the receiver’s strategy ρ which, as we will see, can be viewed as a point in the compact

set TM .11 We construct a function that assigns to each strategy of the receiver the payoff

that results from the sender using a best response to that strategy. Under our assumptions

this function is continuous. Hence, we face the problem of maximizing a continuous function

over a compact set, which has a solution. Therefore an optimal strategy profile exists and

since we have a common interest game, this profile must be part of an equilibrium profile.

For each language type and any optimal receiver strategy, one can partition the set of

decision types into subsets for whom the same message is optimal. We will show that each

language type induces every action that she can achieve with her repertoire of messages

on a set of decision types that has positive probability. Hence, if she does not use one

of her messages, it must be because one of her other messages induces the same action.

Then, if there is an language type who does not use all of her messages, we can take a

pair of messages that induce the same action a, one of which is used by the language type

under consideration and one of which is not. Split the subset of decision types who induce

action a into two positive-probability subsets and have one of these subsets continue to use

the message they used before and while the other subset switches to the formerly unused

message m. Other language types may already have been using message m, but note that

since we are considering an optimal strategy profile the receiver’s response to message m was

itself optimal. Therefore an infinitesimal change in the response to m results in a first-order

common loss that is zero when the expectation is taken over the types who used message

11This result generalizes the corresponding one of Jäger et al [19] to environments with private information
about language competence.
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m to begin with. At the same time there is a positive first-order gain for the language type

who starts using message m because she transmits useful information to the receiver. The

following results formalize this intuition.

Lemma 1 With common interests, there exists an optimal strategy profile.

Proof: Without loss of generality we can confine attention to receiver strategies for which

each action is a best response to some belief. Then, by Assumption 1 each receiver strategy

prescribes only actions that are optimal for some type. Thus receiver strategies can be

thought of as associating with each message m the type for whom the action ρ(m) is optimal,

i.e. it suffices to think of receiver strategies as elements of TM . Suppose that for any given

strategy ρ of the receiver, the sender uses a best reply; that best reply exists because given

the receiver’s strategy each sender type maximizes her payoff over a finite set of alternatives.

Then the resulting payoff for type (t, λ) equals

max
m∈λ
{U(ρ(m), t)}.

Given this behavior of the sender, we can assign the following expected payoff to the receiver’s

strategy ρ:

Q(ρ) =
∑
λ∈Λ

π(λ)

∫
T

max
m∈λ
{U(ρ(m), t)}f(t)dt.

Since U and the max operator are continuous functions, the integrand is continuous and

therefore by the Lebesgue dominated convergence theorem, Q is continuous. Therefore, by

Weierstrass’s theorem, Q achieves a maximum on the compact set TM . �

Note that in an optimal profile the receiver’s response after unsent messages is entirely

arbitrary and therefore it is without loss of generality to assume that it is the same as after

one of the sent messages; if it were not arbitrary, then for some specification the sender

would have a profitable deviation which would contradict optimality.

Lemma 2 In an optimal profile, each language type induces every action a′ for which she

has a message m′ with ρ(m′) = a′ on a set of decision types that contains an open set and

therefore has positive probability.

Proof: By Assumption 1 and common interest, ρ(m) is some type’s ideal point for all

m ∈ M . Hence, a′ is the ideal action of some type t′. Strict concavity implies that type t′
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strictly prefers a′ to any of the finitely many other actions she can induce. By continuity this

remains true for an open set of types O(t′) containing t′ and since f is everywhere positive

the set O(t′) has positive probability. �

For CS preferences, the single-crossing condition implies that the set of actions that are

optimal for some type is of the form [a, a] and that with common interest for any belief µ

of the sender we have ρ̂(µ) ∈ [a, a]. Therefore ρ(m) ∈ [a, a] for all m ∈ M , as required by

Assumption 1. The assumption also holds for convex loss functions.

Lemma 3 In an optimal profile all messages of an availability type λ with π(λ) > 0 induce

distinct actions.

Proof: In order to derive a contradiction, suppose not, i.e. there is an language type λ∗

with π(λ∗) > 0 with two or more messages that induce the same action. It is without loss of

generality to consider an optimal strategy profile in which the sender of any given language

type uses only one out of any set of available messages that induce identical actions. Thus,

suppose that m0,m1 ∈ λ∗, ρ(m1) = ρ(m0), and λ∗ uses m0, but not m1. The common ex

ante payoff from the optimal strategy profile (σ, ρ) equals

∑
m∈M

∑
λ∈Λ

π(λ)

∫
T

U(ρ(m), t)σ(m|t, λ)f(t)dt.

Since all messages that type λ∗ uses induce distinct actions, Lemma 2 implies that each of

those messages is sent by an open set of types that has positive probability. Let Θ0 be the set

of decision types for which language type λ∗ sends message m0. Recall that different types

have different best replies. Therefore we can find a type t1 that is an element of an open

subset of Θ0 and that satisfies ρ̂(t1) 6= ρ(m1). By continuity, for a sufficiently small open ball

Θ1 containing t1 and satisfying Θ1 ⊂ Θ0, we have ρ̂(Θ1) 6= ρ(m1). Now alter (only) type λ∗’s

behavior by having her split the set Θ0 on which she sends m0 into two subsets so that she

sends m1 on Θ1 and continues to send m0 on Θ0 \Θ1. Denote the resulting sender strategy

by σ̃ to distinguish it from the original strategy σ. Note that as long as we do not also modify

the receiver strategy, this change in the sender strategy has no effect on the common ex ante

payoff. If we use a1 to denote the action that is induced by message m1, we can define the
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contribution to the expected payoff from message m1 as

W (m1, a1) :=
∑
λ∈Λ

π(λ)

∫
T

U(a1, t)σ̃(m1|t, λ)f(t)dt

= π(λ∗)

∫
T

U(a1, t)σ̃(m1|t, λ∗)f(t)dt

+
∑

λ∈Λ\λ∗
π(λ)

∫
T

U(a1, t)σ(m1|t, λ)f(t)dt

= π(λ∗)

∫
T

U(a1, t)σ̃(m1|t, λ∗)f(t)dt

+
∑
λ∈Λ

π(λ)

∫
T

U(a1, t)σ(m1|t, λ)f(t)dt.

Observe that when we change a1 we affect the contribution to the ex ante payoff from message

m1 only. Also, since a1 was optimal for m1 given the original sender strategy, we have

∇aW (m1, a1) = π(λ∗)

∫
T

∇aU(a1, t)σ̃(m1|t, λ∗)f(t)dt.

It follows from our choice of Θ1 that ∇aW (m1, a1) 6= 0. This implies that the original profile

(σ, ρ) was not optimal. �

The following result summarizes our findings and connects them to distortion of indicative

meaning.

Proposition 3 In any common interest game, there exists an optimal equilibrium; in any

such equilibrium all messages of an language type that has positive probability induce distinct

actions; all such language types use each of their messages with positive probability; and, if

the language type distribution π has full support on Λ, there will be distortion of indicative

meaning.12

Proof: The first three parts of the proposition summarize Lemmas 1-3. This sets the stage

for invoking Proposition 2, which proves the fourth part of the proposition: If the availability

distribution π has full support on Λ, there will be pairs of language types both of which have

12While all messages that are in the repertoire of an language type induce distinct actions in an optimal
equilibrium, it need not be the case that all message in M induce distinct actions in an optimal equilibrium.
For example, with two language types {m0,m1} and {m0,m2}, identical quadratic loss functions and a
uniform distribution of decision types, in any optimal equilibrium m1 and m2 are synonyms, while there is
a non-optimal equilibrium with ρ(m0) = 1

2 , ρ(m1) = 1
6 and ρ(m1) = 5

6 .
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positive probability and which differ only by one available message and by Lemmas 1-3 all

of these messages are used by both language types and induce distinct actions. �

Proposition 3 is our key result. It demonstrates the ubiquity of distortion of indicative

meaning that results from combining private information about language competence with

closely aligned incentives. With congruence of incentives, optimality requires that a large

variety of messages will be used; private information about language competence then implies

that the receiver cannot always be sure whether a message was sent out of necessity, because

more preferable message were not available, or out of a desire to communicate payoff-relevant

information.

Note that repeated talk by the sender alone, i.e. replacing the set of messages M by the

set MT of strings of length T that can be formed with the elements of M, is no guarantee

for absence of meaning distortions. In particular, the intuition that it may be optimal to

first talk about language and then about payoff states is frequently incorrect. This is easiest

to see if the availability distribution on the expanded message space MT that results from

letting the sender talk repeatedly is subject to the full support assumption that is used in

Proposition 3, in which case this result implies that there is distortion of indicative meaning.

Even if the perhaps more natural assumption is made that there is an availability distribution

on the set of elementary messages M and any concatenation of a given length of available

elements of M is itself available, the logic of Proposition 3 applies: It is generally optimal

that all messages in the expanded message space induce distinct receiver replies and language

types use all messages in their repertoire. Then it is impossible for any language type λ0

that is a strict subset of an language type λ1 to send a message that identifies her language

λ0 because λ1 would want to send the same message for a positive probability set of decision

types.

It should be clear that while the common-interest case is emblematic for what can go

wrong with private information about language competence, the insight that there will be

distortion of indicative meaning generally also holds when there is conflict of interest, as long

as there is not so much conflict as to rule out all communication in equilibrium. There are,

however, other more subtle interactions between conflicts of interest and private information

about language competence. These we turn to next.

4.2 Language Competence of the Receiver

The recipient of a message is as likely limited by his language competence as the sender is by

hers. In this section we propose a simple model in which the receiver’s language competence

is private information. We show that in general this gives rise to distortion of the imperative
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meanings of messages. When the receiver’s language competence is his private information,

then even if he uses a pure strategy and there is no randomness in the transmission channel,

the sender can no longer be sure how her message will be interpreted; messages typically

induce non-degenerate distributions over receiver actions; and, the sender’s strategy is gen-

erally not optimal given the receiver’s language competence.

For simplicity, in this section we focus exclusively on the receiver’s language competence

and assume that the sender’s language competence is not an issue. We model the receiver’s

language competence as a partition P of the message set M, with the interpretation that

the receiver cannot distinguish messages that belong to the same partition element P ∈
P . Formally, we require the receiver’s strategy to be measurable with respect to P . The

receiver’s partition type P is private information and is drawn from a common-knowledge

distribution πR on the set P of partitions of M. We restrict attention to CS preferences.

In this environment a sender strategy is a mapping σ : T → ∆(M) and it is convenient to

represent a receiver strategy as a mapping ρ : 2M → A. With CS preferences this is without

loss of generality because the receiver has a unique best reply to any belief and therefore

his best response to observing a partition element P, which we denote by ρ(P ), is the same

regardless of the partition (type) to which the element P belongs. The following example

illustrates how distortion of imperative meaning arises in this environment.

Example 2 Suppose sender and receiver have identical payoffs −(t−a)2 from action a when

the sender’s decision type is t, the sender’s decision types are uniformly distributed on the

interval [0, 1], there are three messages m1, m2, and m3 and the receiver has two possible par-

tition types, the type {{m1}, {m2,m3}} with probability p and the type {{m1}, {m2}, {m3}}
with probability 1 − p. Then there is a three-step equilibrium in which the lowest interval

[0, θ1] uses message m1 and the critical type θ1 increases monotonically from 1
3

to 1
2

as p in-

creases from 0 to 1. In this equilibrium, the language constrained type, with partition element

{m2,m3}, does not understand the meaning of messages m2 and m3. Generally, a non-trivial

partition element like this one can either represent a catch-all set of messages the receiver

does not understand or, if there are multiple, non-trivial partition elements as a category of

terms that he can identify as such but within which he cannot further discriminate, as when

someone can associate impressionism and expressionism with art but not distinguish between

the two.

In this equilibrium there is distortion of imperative meaning: The sender would want to

change her strategy conditional upon learning the receiver’s language type. For example, as

p, the probability of the receiver having a limited ability to discriminate among messages m2

and m3 converges to one, the action a2 that the receiver takes if he receives and identifies

m2, converges to 5
8
, whereas a1, the action he takes in response to m1, converges to 1

4
. Thus,
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)
in the limit the type who would be indifferent between sending messages m1 and m2 if she

knew the receiver’s partition type to be {{m1}, {m2}, {m3}} is 7
16
, while in equilibrium the

critical type is 1
2
. Types in the interval

(
7
16
, 1

2

)
would want to switch from their equilibrium

message m1 to sending m2 if they learned that the receiver can distinguish all messages.

There is also another equilibrium in which m1 is used on the middle interval (1
3
, 2

3
). In

this equilibrium there is no distortion of imperative meaning. Note, however, that in this

equilibrium useful information is transmitted only if the receiver can distinguish all three

messages.

For our next result we first formally define distortion of imperative meaning. Then we

introduce the notion of a varied receiver response that lets us distinguish between the two

equilibria in the above example that will allow us to give a sufficient condition for distortion

of imperative meaning.

Definition 2 There is distortion of imperative meaning in equilibrium (σ, ρ, β) if there

exists a set of decision types Θ ⊂ T that has positive probability, a message m ∈ M with

σ(m|t) > 0 for all t ∈ Θ and a partition type P of the receiver that has positive probability

such that message m fails to be optimal for decision types in Θ conditional on the receiver’s

partition type P .

For the case where the sender’s language-competence is privately known we showed that

it is sufficient for distortion of indicative meaning to occur that there is variety in the use of

messages and in the support of the language type distribution, i.e. when there are language

types that differ in just one message, who use all their messages and all of their messages
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induce distinct actions. In Definition 3 we introduce an analogous condition that requires the

existence of multiple receiver types each of which responds differently to each of its partition

elements and that suffices for distortion of imperative meaning when the receiver’s language

competence is the issue.

Definition 3 There is a varied receiver response in equilibrium E = (σ, ρ, β) if there is a

pair of partition types P∗ 6= P̃ of the receiver with a common element P0 such that πR(P̃) 6= 0,

πR(P∗) 6= 0 and for every P ∈ P∗ ∪ P̃ the set {t ∈ T |US(ρ(P ), t) > US(ρ(P ′), t),∀P ′ 6=
P, P ′ ∈ P∗ ∪ P̃} has positive probability.

With a varied receiver response it becomes important for the sender to know exactly

what the partition type of the sender is. The reason is that it guarantees that there will be

at least one pair of receiver types for which a positive probability set of sender types would

want to induce the action associated with a common partition element for one receiver type

and another action for the other receiver type.

Proposition 4 There will be distortion of imperative meaning in any equilibrium E =

(σ, ρ, β) with a varied receiver response.

Proof: Call two elements Pi and Pj of the set P∗ ∪ P̃ adjacent for equilibrium E if ρ(Pi) 6=
ρ(Pj) and there does not exist Pk ∈ P∗∪P̃ with ρ(Pk) ∈ (ρ(Pi), ρ(Pj)). Since P∗ and P̃ have

a common element and because P∗ 6= P̃ , there is (at least) one common element, PC , that is

adjacent to a non-common element, PNC . With CS preferences, the sender’s single-crossing

condition implies that there is a unique type who is indifferent between the actions ρ(PC)

and ρ(PNC). Without loss of generality, let ρ(PC) < ρ(PNC) and ρ(PNC) ∈ P̃ . Define P+ :=

arg min{ρ(P )|P ∈ P∗ and ρ(P ) > ρ(PC)} if there exists P ∈ P∗ with ρ(P ) > ρ(PC) and

define P+ := PC otherwise. Suppose that P+ = PC . Since PC is common to both partitions,

we have PC ∩ PNC = ∅. From the sender’s single-crossing condition, it follows that those

types who would want to induce ρ(PNC) when learning P̃ , would want to induce ρ(PC) when

learning P∗. Since PC ∩ PNC = ∅, they would want to send different message in both cases.

Thus in one of the cases the message they would want to send differs from their equilibrium

message, which establishes our claim. Now consider the case where P+ 6= PC . Since PC and

PNC are adjacent, it must be the case that ρ(P+) > ρ(PNC). Since ρ(PC) < ρ(PNC) < ρ(P+),

the sender’s single crossing condition implies that there is a positive probability set of types

(near the type who is indifferent between ρ(PC) and ρ(P+),) who would want to induce

ρ(PNC) when learning P̃ and would want to induce ρ(PC) when learning P∗. Thus, as before
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in one of these two cases the message these types would want to send differs from their

equilibrium message, which establishes our claim. �

At this point one might be tempted to proceed as in the case where the language compe-

tence of the sender is the issue and to try to show that with common interests all messages

will be used and that this in turn leads to having the varied-receiver-response condition

satisfied in optimal equilibria. The following example, however, demonstrates that there is

an interesting asymmetry in the effects of making the sender’s language competence private

information versus doing the same for the receiver. It shows that in the latter case optimality

sometimes requires that there are messages that will never be used.

Example 3 Suppose the sender’s type is drawn from a uniform distribution on [0, 1] and

both players receive identical payoffs −(t − a)2 when the receiver takes action a in state t.

Let M = {m1,m2,m3,m4}. For any ε ∈ [0, 1), define a game Γε by the property that each

of the receiver types {{m1,m4}, {m2}, {m3}}, {{m1}, {m2,m4}, {m3}} and {{m1}, {m2},
{m3,m4}} has probability 1−ε

3
and the remaining receiver types are equally likely. Note that

if ε ∈ (0, 1), the partition-type distribution πR has full support.

If ε = 0, then in any optimal equilibrium, the type space is partitioned into three equal-

length intervals and the actions that are induced in equilibrium are 1
6
, 1

2
and 5

6
. To see this,

observe first that this holds if for the moment we make the receiver type common knowledge.

This provides an upper bound. Then note that the same outcome that is optimal when the re-

ceiver type is common knowledge can be realized when the receiver type is private information.

Denote the corresponding ex ante payoff by v0
max.

With positive small ε, the messages m1, m2 and m3 must approximately induce the same

set of actions in an optimal equilibrium as they do in an optimal equilibrium for ε = 0.

Otherwise, the ex ante payoff from optimal equilibria, vεmax, would remain bounded away

from v0
max, and we know that cannot be the case because the strategy profile that results in

v0
max when ε = 0 yields approximately v0

max when ε > 0 and since we have a common-interest

game the optimal equilibrium strategy must do even better.

For any ε, let E(ε) be an optimal equilibrium for the game Γε. We will argue that for

sufficiently small ε > 0 no type t ∈ [0, 1] of the sender sends message m4 in the equilibrium

E(ε). For any δ > 0, there exists ε(δ) > 0 such that for all ε ∈ (0, ε(δ)) type t’s payoff from

sending message m4 is bounded from above by

vε(t) =

(
1− ε

3

)(
−
(
t− 1

6

)2

−
(
t− 1

2

)2

−
(
t− 5

6

)2
)

+ ε · 0 + δ

24



while at the same time the payoff to t from sending the optimal message from the set

{m1,m2,m3} is bounded from below by

vε(t) = (1− ε)

(
−min

{(
t− 1

6

)2

,

(
t− 1

2

)2

,

(
t− 5

6

)2
})
− ε · 1− δ.

For sufficiently small ε and δ, we have vε(t) > vε(t) for all t ∈ [0, 1], which shows that there

is no type of the sender who would be willing to send message m4 in any optimal equilibrium

of the game Γε for sufficiently small ε ∈ (0, 1).

The example shows that unlike in the case where only sender competence is the issue,

when there is uncertainty about receiver competence, there may be instances when the sender

may not want to use all messages in an optimal equilibrium. This will be the case when there

are messages for which the probability is high that the receiver does not understand them.

Therefore only a few of the receiver’s partition types may be relevant. This undermines

the varied-response condition from the previous proposition. On the other hand, in an

optimal equilibrium of a common interest game, the sender will want to communicate some

information. Thus, an optimal equilibrium will not be a pooling equilibrium and for the

communicated information to have an impact, there will be receiver messages that induce

distinct actions.

For the following result we adopt a slightly different perspective. Denote by Pf the finest

partition of M, i.e. the type of the receiver who understands all messages. We will show that

in any optimal equilibrium of a game that is near an optimal equilibrium of the game in

which Pf has probability one but where πR has full support there is distortion of imperative

meaning.

Proposition 5 With common interests, an optimal equilibrium exists. For any class of

games that differ only in the distributions πR, if there are finitely many optimal equilibria in

the game with πR(Pf ) = 1 (e.g. if CS’s condition M holds), then there exists an ε0 > 0 such

that for all ε ∈ (0, ε0) and for every πR that has full support and satisfies πR(Pf ) = 1 − ε,
there will be distortion of imperative meaning in any optimal equilibrium.

Proof: We begin by proving existence. Without loss of generality we can confine attention

to receiver strategies for which each action is a best response to some belief. Then, by

Assumption 1 each receiver strategy prescribes only actions that are optimal for some type

of the sender. Thus receiver strategies can be thought of as associating with each receiver

message P the type for whom the action ρ(P ) is optimal, i.e. it suffices to think of receiver
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strategies as elements of T 2M
, the set of functions from the powerset of M into the sender’s

type space. Suppose that for any given strategy ρ of the receiver, the sender uses a best reply;

that best reply exists because given the receiver’s strategy each sender type maximizes her

payoff over a finite set of alternatives, the set of distributions over actions that are induced

by each message. Then the resulting payoff for a sender of type t equals

max
m∈M

∑
P∈P

πR(P)
∑
P∈P

U (ρ(P ), t) 1{m∈P}.

Given this behavior of the sender, we can assign the following expected payoff to the receiver’s

strategy ρ:

Q(ρ) =

∫
T

max
m∈M

{∑
P∈P

πR(P)
∑
P∈P

U (ρ(P ), t) 1{m∈P}

}
f(t)dt.

Since U and the max operator are continuous functions, the integrand is continuous and

therefore by the Lebesgue dominated convergence theorem, Q is continuous. Therefore, by

Weierstrass’s theorem, Q achieves a maximum on the compact set T 2M
.

It remains to show that there is distortion of imperative meaning for sufficiently small

positive ε. If the receiver’s language competence is not an issue, which corresponds to ε = 0,

then any optimal equilibrium partitions T into M nonempty intervals Im, m ∈M , with types

belonging to the same interval sending the same message and the receiver’s optimal actions

following any two messages m 6= m′ satisfying am 6= am′ . For sufficiently small positive ε any

optimal equilibrium E ε of a game in which πR has full support must approximately induce

the same set of actions in the event that messages are understood as in one of the optimal

equilibria E0of the game where message are always understood. Without loss of generality,

we can name the messages in ascending order of the actions they induce in E0. Now consider

two receiver types, Pf and Pp who only differ in that the latter type cannot distinguish

messages m1 and m2. With ε sufficiently small, the sets of type who send messages m1 and

m2 respectively are approximately the same in E0 and E ε and the receiver responds in E ε to

{m1}, {m1,m2} and {m2} with actions a1 < a12 < a2. Hence, the varied-response condition

is satisfied. The result then follows from Proposition 4. �

4.3 Conflict of Interest

According to Propositions 2 and 4 in equilibria of sender-receiver games with private infor-

mation about language constraints where a large number of messages are sent and induce

distinct actions, there will be distortion of meaning. This observation applies equally to

games with and without conflict of interest. However, while such distortions indicate an effi-
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ciency loss with common interests, with conflict of interest the additional vagueness afforded

by privately known language constraints may be efficiency enhancing.

The potential benefit from privately known language constraints in divergent-interest

sender-receiver games closely mirrors that from communication through faulty channels (e.g.

Myerson [30], Blume, Board and Kawamura (BBK) [9]), repeated simultaneous message

exchange that implements jointly controlled lotteries (e.g. Aumann and Hart [3], Krishna

and Morgan [20]) and from communication through strategic biased mediators (Ivanov [18]).

Consider the leading example of CS where t is drawn from a uniform distribution on [0, 1]

and sender and receiver preferences are given by quadratic loss functions, i.e.

US(a, t, b) = −(t+ b− a)2,

UR(a, t) = −(t− a)2,

with b > 0 a positive parameter that measures the sender’s bias relative to the receiver.

For this environment Goltsman, Hörner, Pavlov and Squintani (GHPS) [16] identified an

efficiency bound for communication equilibria, i.e. for equilibria from games in which players

communicate through an incentiveless mediator (as considered by Forges [14] and Myerson

[29]). BBK showed how to implement the GHPS bound for any value of the bias b in games

in which players communicate through a noisy channel that passes the sender’s message on

with probability 1− ε and otherwise replaces it with a draw from a full support distribution

on the message space. The methods of BBK can be used to show (both for the case of sender

uncertainty and receiver uncertainty) that there exists a language-type distribution such that

for any bias b > 0 there exists an equilibrium that attains the GHPS bound. The intuition is

simple: Take an optimal equilibrium from BBK for the game with communication through a

noisy channel and construct an analogous equilibrium for the game with private information

about language competence where the noise is simulated through uncertainty about language

competence.13

5 Higher-order knowledge failures

David Lewis [23] places common knowledge at center stage in his account of language as

a convention. Our framework permits us to study the effect of a failure of higher-order

knowledge on language use.

In this section we specifically address the three questions of whether we continue to see

distortions of meaning when players’ knowledge only begins to fail at a level higher than

13The details are available in the appendix.
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first-order knowledge, whether there is a sense in which these distortions diminish with

increasing knowledge order, and, leaving the realm of sender-receiver games, whether there

are circumstances where lack of higher-order knowledge of language competence leads to

complete communication failure.

5.1 Higher-order knowledge failures in sender-receiver games

To represent players’ higher-order knowledge about the sender’s language competence, we

use an information structure I = 〈Ω, λ,OS,OR, q〉.

• Ω = {ω1, ω2, . . . , ωN} is a countable state space;

• L : Ω → 2M specifies the set of messages available to the sender at each state (her

language type).;

• OS is a partition of Ω, the sender’s information partition;

• OR is the receiver’s information partition;

• q is the (common) prior on Ω.

To streamline the notation, let L(ω) = λω and let q(ω) = qω. The information partitions

describe the knowledge of the players: at state ω, the sender knows that the true state is

in OS(ω) but no more (where OS(ω) is the element of OS containing ω); and similarly for

the receiver. We assume that the sender knows her own language type: if ω′ ∈ OS(ω), then

λω = λω′ .

Information structures encode uncertainty only about the sender’s language type, not

about the decision-relevant information t (the sender’s decision type). We assume that the

distribution from which t is drawn is independent of q. Given that the sender is fully informed

about t, and the receiver knows nothing about t, it would be straightforward to extend the

partitions and common prior over the full space of uncertainty, T × Ω, but to do so would

unnecessarily complicate the notation.

In the resulting game a sender strategy is a function σ : T × Ω → ∆(M) that satisfies

σ(t, ω) ∈ λω for all t ∈ T and all ω ∈ Ω and is measurable with respect to OS. A receiver

strategy is a function ρ : M × Ω → R that is measurable with respect to OR. Thus for any

strategy strategy pair (σ, ρ), ρ(m,ω) denotes the receiver’s response to the message m at

state ω and σ(t, ω) the distribution over messages if the sender’s decision type is t at state

ω.

At any state ω a sender strategy σ induces a mapping σω : T → ∆(λω), where σω(t) =

σ(t, ω) for all t ∈ T and all ω ∈ Ω. We will refer to this mapping as the sender’s language at
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ω. Similar, we can define the receiver’s language at state ω, ρω : M → R, via the property

that ρω(m) = ρ(m,ω). A language σ̂ω of the sender is optimal at ω if together with a best

response ρ̂ω by the receiver it maximizes the sender’s payoff at ω over all sender languages

that are feasible at ω. The receiver’s language at ω is optimal if it is a best response to an

optimal language of sender at ω.

Note that typically in informative equilibria in this setting both sender and receiver will

be uncertain about each other’s language. The receiver cannot associate a given message

with a fixed set of types and the sender will be uncertain about which action will be induced

by a message. Players cannot agree on either sender or receiver meanings of messages, despite

the fact that useful information is transmitted in equilibrium.

We begin our investigation of distortion of meaning that arise with higher-order knowl-

edge failure with a simple example.

Example 4 Consider a sender-receiver game in which both players have identical quadratic

payoff functions −(a − t)2 and the sender’s decision type, t, is uniformly distributed on the

interval [0, 1]. Suppose that Ω = {ω1, ω2, ω3, ω4, ω5} and that the information partitions are

given by

Sender : OS = {{ω1}, {ω2, ω3}, {ω4, ω5}}
Receiver : OR = {{ω1, ω2}, {ω3, ω4}, {ω5}}.

In addition, assume that at ω1 the sender’s language type is λω1 = {m1}, (i.e. the sender has

only message m1 available), and that at every other state ω ∈ Ω the sender’s language type

is λω = {m1,m2}, (i.e. the sender has both messages m1 and m2 available). The common

prior, q, is uniform on Ω.

Notice that {ω2, ω3, ω4, ω5} is the set of information states at which the sender has all

messages available; {ω3, ω4, ω5} is the set of states at which the receiver knows that the sender

has all messages available; {ω4, ω5} is the set of states at which the sender knows that the

receiver knows that the sender has all messages available; and {ω5} is the set of states in

which the receiver knows that the sender knows that the receiver knows that the sender has

all messages available. At no state does any player have higher than third-order knowledge

of the sender having all messages available and in particular at no state is there common

knowledge of this fact.

We look for an equilibrium (σ, ρ) in which at element {ωi, ωi+1}, with i ∈ {2, 4}, of

the sender’s information partition there is a critical type θi such that decision types t < θi

send message m1 and decision types t > θi send message m2. Let aj1 denote the receiver’s

equilibrium response at ωj (j ∈ {1, 3, 5}) to message m1, and let aj1 denote the response
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to message m2. In equilibrium θi, i = 2, 4, and ajk, k = 1, 2, j = 1, 3, 5 must satisfy the

conditions:

a1
1 =

1
2

+ θ2
θ2
2

1 + θ2

; a1
2 =

1 + θ2

2
; a3

1 =
θ2

θ2
2

+ θ4
θ4
2

θ2 + θ4

;

a3
2 =

(1− θ2)1+θ2
2

+ (1− θ4)1+θ4
2

(1− θ2) + (1− θ4)
; a5

1 =
θ4

2
; a5

2 =
1 + θ4

2
;

(θ2 − a1
1)2 + (θ2 − a3

1)2 = (θ2 − a1
2)2 + (θ2 − a3

2)2; and,

(θ4 − a3
1)2 + (θ4 − a5

1)2 = (θ4 − a3
2)2 + (θ4 − a5

2)2.

This system of equations has a unique solution satisfying the constraints that 0 < θ2 <

1 and 0 < θ4 < 1: θ2 = 0.54896, θ4 = 0.509768, a1
1 = 0.420074, a2

1 = 0.77448, a3
1 =

0.265045, a3
2 = 0.764274, a5

1 = 0.254884 and a5
2 = 0.754884. Thus, at every state where

the sender has a choice of which message to send, each message induces a non-degenerate

lottery over receiver actions. Hence, not only is the receiver uncertain about the sender’s

use of messages, but the sender is also uncertain about the receiver’s interpretation of mes-

sages. There is no state in which either sender-meaning or receiver-meaning is known by

both players.

Importantly, even though at state ω5 players both have at least second-order knowledge

of the fact that the sender has both messages available, they are not making optimal use of

the available messages, which would require that θ4 = 1
2
. Notice also that at ω3, where the

receiver has only first-order knowledge of the fact that the sender has both messages, there is

a larger distortion in the sender’s strategy, i.e θ2 − 1
2
> θ4 − 1

2
and therefore players appear

to make better use of the available messages with a higher order of knowledge of message

availability.

In the example the distortions that arise from failures of higher-order knowledge of lan-

guage competence diminish with increasing knowledge order. Consider then a variant of

Example 4 where we increase the number of states, states remain equally likely and infor-

mation sets are (primarily) intersecting pairs as in

Sender : OS = {{ω1}, {ω2, ω3}, {ω4, ω5}, . . . . . . . . . . . . . . . , {ω2K , ω2K+1}}
Receiver : OR = {{ω1, ω2}, {ω3, ω4}, {ω5, ω6}, . . . , {ω2K−1, ω2K}, {ω2K+1}}.

It is easy to check that at ω3 regardless of the value ofK there must be a substantial distortion

in any equilibrium; i.e. it cannot be the case that the sender’s and the receiver’s language
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at ω3 are close to optimal languages. Is it the case though that at states with higher-order

knowledge of the sender’s language competence this distortion is reduced? The next result

examines this question in a general class of common-interest sender-receiver games.

For this purpose consider the CS model with common payoff function U. For N = 1, 2, . . .,

let IN denote the set of information structures satisfying the following conditions:

• Ω = {ω1, ω2, . . . , ωN};

• λω1 = λ̃ and λωn = λ for all n 6= 1, where λ and λ̃ are finite sets of messages with

λ̃ ⊂ λ;

• OS(ω1) = {ω1}

• q is the uniform distribution on Ω.

Let UI denote the (ex ante) payoff from an optimal equilibrium in the game with infor-

mation structure I. Define UN := minI∈IN
UI . Let Uλ denote the payoff from an optimal

equilibrium given an information structure where λ is common knowledge at every state (i.e.

where λω = λ for all ω ∈ Ω. Then:

Proposition 6 limN→∞ UN = Uλ.

In particular this means that in the variant of Example 4 where we increase the number of

states, the invariable distortion must be largely limited to lower-order knowledge states.

Proof: For any decision type t use at to denote the ideal action for that type. The single

crossing condition implies that it is never optimal for the receiver to take an action outside

of the set [a0, a1]. Define U := mint∈[0,1],a∈[a0,a1] U(a, t). At every state ωn with n 6= 1 let

the sender use a strategy that would be optimal if her language competence were common

knowledge. Such an optimum exists by standard compactness arguments. Have the receiver

best respond. The payoff from this profile is greater than or equal to N−1
N
Uλ + 1

N
U. Hence

the payoff from an optimal profile is greater than or equal to N−1
N
Uλ + 1

N
U. Since we have

a common interest game, the optimal profile is an equilibrium profile. Hence the optimal

equilibrium profile has a payoff no less than N−1
N
Uλ + 1

N
U. The claim follows. �

It is also instructive to examine the change in behavior from increasing the order of

knowledge of language competence of the sender in a given equilibrium of a fixed game.

Unfortunately, finding interesting informative equilibria in a game with a large information

state space is generally not straightforward. For that reason, in the following example we

depart from the usual practice of deriving player’s interim beliefs about the probability of

31



information states from a common knowledge distribution over the state space and instead

take these beliefs as primitives.

Example 5 Consider a uniform-quadratic sender-receiver environment. Suppose that Ω is

the infinite set {ω1, ω2, . . .} and that the information structure is given by

Sender : OS = {{ω1}, {ω2, ω3} . . . {ωk−1, ωk}, {ωk+1, ωk+2} . . .}
Receiver : OR = {{ω1, ω2}, {ω3, ω4} . . . . . . {ωk, ωk+1} . . . . . . . . .}.

In addition, assume that at ω1 the sender’s language type is λω1 = {m1}, i.e. the sender has

only message m1 available, and that at any other state ω ∈ Ω the sender’s language type is

λω = {m1,m2}, i.e. the sender has both messages available. Finally, assume that the sender

conditional on learning that the state is in {ωi, ωi+1} assigns interim probability one to state

ωi for all i ≥ 2 and similarly for the receiver for all i ≥ 3 and that conditional on {ω1, ω2}
the receiver assigns probability 1− ξ to state ω1 and probability ξ ∈ (0, 1) to state ω2.

14

We will consider the class of equilibria (σ, ρ) in which at every element {ωi, ωi+1} of the

sender’s information partition there is a critical type θi such that decision types t < θi send

message m1 and decision types t > θi send message m2. Denote the receiver’s equilibrium

response at {ω1, ω2} to message m1 by a1
1 = ρ(m1, {ω1, ω2}) and the response to message m2

by a1
2. In equilibrium θ2, a1

1 and a1
2 have to satisfy the following conditions:

θ2 =
a1

1 + a1
2

2

a1
1 = (1− ξ)1

2
+ ξ

θ2

2

a1
2 =

1 + θ2

2
,

which implies that θ2 = 2−ξ
3−ξ , i.e. θ2 >

1
2

for all θ ∈ (0, 1) so that the sender is not using the

messages that are available to her optimally at {ω2, ω3} If we let θk denote the critical type

at {ω2k, ω2k+1} and (ak1, a
k
2) the equilibrium actions at {ω2k−1, ω2k} we can iterate from these

initial values of θ2, a
1
1 and a1

2 according to the rule:

14The reason for adopting this somewhat nonstandard specification of each type’s belief regarding the
information state is that it helps us avoid a great deal of simultaneity that would otherwise make the
derivation of an equilibrium intractable. Later, when we consider general results, we will have beliefs derived
from a common knowledge distribution on the state space. For now, note that one can think of these beliefs
as the limits as η → 0 of posteriors derived from common knowledge distributions that assigns probability
1− ξ to state ω1 and probability ξ(1− η)ηi−2 to all other states, where η ∈ (0, 1).
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ak1 =
θk
2

ak2 =
1 + θk

2

θk+1 =
ak1 + ak2

2

or

θk+1 =
1

4
+

1

2
θk.

Notice that although θk converges to 1
2
, for any given k we have θk >

1
2
, i.e. for any finite

n despite having nth order knowledge of the messages available to the sender, players are not

making optimal use of those messages.

In Example 5 while distortions disappear in the limit as the order of knowledge increases,

they are pervasive; there is distortion for any finite order of knowledge of the sender’s lan-

guage competence. In the remainder of our discussion of sender receiver games we will show

that at least in terms of the information structure this is a general observation.

In both of our examples we focused on equilibria that satisfied a plausible monotonicity

property. We will continue to do so and begin by formalizing this condition. Let Θ(mi, ωk) :=

{t ∈ T | σ(t, ωk)(mi) > 0} denote the set of all decision types who send message mi with

strictly positive probability at state ωk. For any two sets T1 ⊂ T and T2 ⊂ T that have

positive probability we say that T1 > T2 if inf T1 ≥ supT2.

Definition 4 An equilibrium is order preserving if it is interval-partitional and Θ(m′, ωk) >

Θ(m,ωk) at some state ωk implies that Θ(m′, ωk′) > Θ(m,ωk′) at all states ωk′ at which m′

and m are used with positive probability.

Since our intent is to identify a characteristic of informative order-preserving equilibria,

it is useful to know that they always exist. The following result establishes existence of in-

formative order-preserving equilibria for the uniform-quadratic CS model with two messages

and for arbitrary information structures. From now on assume that M = {m1,m2}, that

there is at least one information state ω with λω = {m1,m2}, and that the distribution of

decision types is uniform on [0, 1] and that for every action a and decision type t sender and

receiver have identical payoffs −(a− t)2.

Lemma 4 In the uniform-quadratic CS game with two messages and an arbitrary informa-

tion structure an informative order-preserving equilibrium exists.
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Lemma 4 establishes not only that communication is possible in this environment (com-

pare Proposition 1), but that there is some degree of common meaning, in the the sense

that the sender and the receiver commonly agree on which message means “low” and which

means “high.”

Proof: Let σ1 be an arbitrary informative order-preserving strategy of the sender. Assume

without loss of generality that at every ω where m2 is available and sent, Θ(m2, ωk) >

Θ(m1, ωk). Let ΩS
1 , . . . ,Ω

S
L be an enumeration of the elements of OS, and ΩR

1 , . . . ,Ω
R
M an

enumeration of the elements of OR. Since σ1(t, ω) is constant across ΩS
` for each t ∈ T , for

` = 1, . . . , L, we can write Θ(m,ΩS
` ) and denote the sup Θ(m1,Ω

S
` ) = inf Θ(m2,Ω

S
` ) by θ`.

For all ω ∈ ΩR
j , let qj` denote the receiver’s posterior belief that ω ∈ ΩR

` . Then the receiver’s

best reply to message m1 is

a1
j =

∑L
`=1 qj`θ`

θ`

2∑L
`=1 qj`θ`

and his best reply to message m2 is

a2
j =

∑L
`=1 qj`(1− θ`)

1+θ`

2∑L
`=1 qj`(1− θ`)

as long as the denominators are well defined.

Notice that for all `, θ`

2
≤ 1

2
and 1+θ`

2
≥ 1

2
, and since σ1 is informative, there is at least

one `′ for which
θ′`
2
< 1

2
and

1+θ′`
2

> 1
2
. Therefore at every ΩR

j at which the receiver expects

to receive both messages with positive probability any best reply by the receiver satisfies

a1
j < a2

j . For every other ΩR
j′ one of the actions is equal to 1

2
and we are free to choose the

other action so that the a′1j < a′2j holds.

Hence there exists be a best reply ρ1 of the receiver to σ1 that satisfies the property that

a1
j < a2

j all j = 1, . . . ,M. Call any receiver strategy with this property order preserving.

Note that the payoff from (σ1, ρ1) exceeds the payoff from pooling.

At any element ΩS
` of her information partition the sender has a posterior belief φ`j that

the receiver’s information is given by ΩR
j . Therefore, for a sender with decision type t and

information ΩS
` , the payoff difference between sending message m2 and m1 is given by

−
J∑
j=1

(a2
j − t)2φ`j +

J∑
j=1

(a1
j − t)2φ`j

= E[a2|m1]− E[a2|m2] + 2t(E[a|m2]− E[a|m1]),
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Since the receiver strategy ρ1 is order-preserving, it follows that E[a|m2] > E[a|m1] and

therefore the sender’s best reply σ2 to ρ1 is order-preserving.

Continuing in this manner we can construct a sequence of order-preserving strategy pairs

{(σn, ρn)}. Note that each strategy pair (σn, ρn) can be viewed as an element of a compact

Euclidean space. Therefore the sequence {(σn, ρn)} has a convergent subsequence. Reindex,

so that now {(σn, ρn)} stands for that subsequence. Denote the limit of that subsequence by

(σ, ρ). Since payoffs are continuous, the limit is an equilibrium. Since the payoff from (σ1, ρ1)

exceeds the payoff from pooling and since payoffs are nondecreasing along the sequence

{(σn, ρn)}, the payoff from (σ, ρ) exceeds the payoff from pooling. Hence the equilibrium

(σ, ρ) is informative. �

Having established the existence of informative order-preserving equilibria for general

information structures, we now show that, regardless of the information structure in infor-

mative order-preserving equilibria, distortions of meaning are pervasive.

Proposition 7 Suppose that at any state ω either λω = {m1} or λω = {m1,m2}. Then for

any information structure and for any state ω∗ with λω∗ = {m1,m2} unless the language type

is common knowledge at ω∗, in any order-preserving equilibrium the sender does not use an

optimal language at ω∗.

Proof: Given that attention is restricted to order-preserving equilibria, it is without loss of

generality to focus on equilibria in which for every sender with information ΩS
` there exists

θ` ∈ [0, 1] such that every decision type t < θ` sends message m1 and every decision type

t > θ` sends message m2.

Since Ω is finite, we can define θ := min{θ`|θ` > 0}. Note that the set {θ`|θ` > 0} is

nonempty because there is at least one state at which it is not common knowledge that

message m2 is available (hence there must be a state at which only m1 is available).15

At every information state ωi at which message m1 is sent with positive probability all

decision types t < θ (and possibly others) send message m1 with probability one. Hence,

for every receiver type ΩR
j who expects to receive both messages with positive probability

the response a1
j to receiving message m1 satisfies a1

j ≥ a1 = θ
2
. Since m1 is always available,

for every receiver type ΩS
j who expects to receive both messages with positive probability

a message m2 indicates that the sender’s decision type is in a set of the form (θj, 1] with

15The reason for restricting attention to this set is that for example there may be an isolated information
state at which both messages are available and only message m2 is used with positive probability.
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θj ≥ θ. Hence, for every receiver type ΩR
j who expects to receive both messages with positive

probability a2
j satisfies a2

j ≥ a2 = 1+θ
2
.

For every information type ΩS
` of the sender who sends message m1 with positive proba-

bility, θ` > 0. Thus, θ either equals one, or is realized at an information state of the sender

where she sends both messages with positive probability. Assume that ΩS
` is such an infor-

mation state, i.e. the sender of type (θ,ΩS
` ) is indifferent between the lottery over actions

induced by message m1, with payoff −
∑J

j=1(a1
j−θ)2φ`j, and the lottery over actions induced

by m2, with payoff −
∑J

j=1(a2
j − θ)2φ`j. Note that for any j with φ`j > 0 it is the case that

a2
j > a1

j and a2
j > θ. Consider two cases: If a1

j ≥ θ, then −(a1
j − θ)2 > −(a2

j − θ)2. If a1
j < θ

and θ < 1
2

, then −(a1
j − θ)2 ≥ −( θ

2
− θ)2 > −(1+θ

2
− θ)2 ≥ −(a2

j − θ)2. Therefore, if we had

θ < 1
2
, type θ would strictly prefer to send message m2, which contradicts our assumption

that type (θ,ΩS
` ) is indifferent. Therefore, we conclude that θ ≥ 1

2
.

Suppose there is an information state ωi with θi = 1
2

(i.e. the sender is using an optimal

language at ωi) where it is not common knowledge that λωi
= {m1,m2}. Then from above

θi = θ = 1
2
. Observe that in order for θi = θ = 1

2
the receiver’s response a1

j′ at ΩR(ωi) to m1

must be θ
2

and the response a2
j′ to m2 must be 1+θ

2
. Otherwise, since for all j, a1

j ∈ [ θ
2
, 1

2
] and

a2
j ∈ [1+θ

2
, 1] we would have −(a1

j − θ)2 ≥ −( θ
2
− θ)2 = −(1+θ

2
− θ)2 ≥ −(a2

j − θ)2 for all j and

at least one of the two inequalities strict for j′ and therefore sender type (ΩS(ωi), θ) would

strictly prefer to send message m1.

Call an information state ωj adjacent to ωi if there exists ωl ∈ ΩR(ωi) such that ωj ∈
ΩS(ωl.) At every state ωj that is adjacent to ωi, it must be the case that θj = 1

2
. Otherwise

the receiver with type ΩR(ωi) will take actions a1
j′ >

θ
2

and a1
j′ >

1+θ
2

, which would be

inconsistent with θi = θ = 1
2
. If it is not common knowledge at ωi that λωi

= {m1,m2}, then

there exists a chain of states (ω1, . . . , ωi) with the property that any two consecutive elements

in the chain are adjacent, λωl
= {m1,m2} for all l 6= 1 and λω1 = {m1}. By induction, at

every information state in the chain we must have decision types t > 1
2

sending message m1

and decision types t < 1
2

sending message 2. But this contradicts λω1 = {m1}. �

The following example shows that the restriction to order-preserving equilibria is needed

for Proposition 7.

Example 6 Consider the information structure with partitions

Sender: OS = {{ω1, ω2}, {ω3}, {ω4, ω5}}
Receiver: OR = {{ω1}, {ω2, ω3, ω4}, {ω5}}

Assume that all states are equally likely and that the set of available messages is {m1} at
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ω3 and {m1,m2} otherwise. One easily checks that the following strategy pair, (σ, ρ), is an

equilibrium: At {ω1, ω2} the sender sends m1 for t ∈
[
0, 1

2

)
and m2 otherwise. At {ω4, ω5}

the sender sends m2 for t ∈
[
0, 1

2

)
and m1 otherwise. At both {ω1} and {ω5} the receiver

knows that the sender is using an optimal language, despite the fact that the set of available

messages is not common knowledge.

It is worth noting that there is a better equilibrium in which the sender never uses an

optimal language when she has two messages available. To see this, modify the above strategy

profile so that at {ω4, ω5} the sender sends m1 for t ∈
[
0, 1

2

)
and m2 otherwise and the receiver

uses a best reply at {ω5}. The resulting strategy profile, (σ̃, ρ̃) has a strictly higher ex ante

payoff than (σ, ρ). Therefore, an optimal strategy profile for this game also must have a

higher payoff than (σ, ρ) and since this is a common-interest game any optimal equilibrium

must have a higher payoff than (σ, ρ).

It is an open question whether order-preservation is a necessary condition for optimality

in the general case.

5.2 Communication collapse with higher-order knowledge failures

Our analysis thus far has shown that in sender-receiver games lack of common knowledge

of the sender’s language competence leads to a pervasive distortion of meaning, while in-

creasing knowledge order tends to be associated with a diminishing distortion. We finish

this section with showing that once we allow the informed player also to take actions follow-

ing the communication stage, lack of common knowledge of language competence can entail

complete communication breakdown regardless of finite knowledge order, in situations where

communication could be put to good use with common knowledge of language competence.

The following example constructs such a scenario by building on insights of Rubinstein

[32], Baliga and Morris [5] and Aumann [2].

Example 7 Two players play a two-stage game with one-sided private information repre-

sented by two equally likely payoff states t1 and t2 (so the decision type space for the sender

is T = {t1, t2}). In the communication stage the privately-informed sender sends a mes-

sage to the receiver. In the action stage both players simultaneously take their actions which

determine payoffs according to the tables in Figure 3.

It is easily verified that if it is common knowledge that the sender has two messages, mα

and mβ, available, then there is an equilibrium in which the sender sends message mα in

payoff state t1, message mβ in payoff state t2 and each player i takes action αi if and only

if message mα has been sent.
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αS

βS

αR βR

3, 3 −10, 2

2,−10 1, 1

t1

αS

βS

αR βR

−10,−10 −10,−9

−9,−10 1, 1

t2

Figure 3: Payoff States

Suppose instead that it is not common knowledge which messages are available to the

sender. Consider an information structure with state space Ω = {ω1, ω2, . . .} and some

common prior q with the property that qk > qk+1 for all k = 1, 2 . . .. The players’ information

partitions are given by

Sender : OS = {{ω1}, {ω2}, {ω3, ω4}, {ω5, ω6}, {ω7, ω8} . . .}
Receiver : OR = {{ω1, ω2, ω3}, {ω4, ω5}, {ω6, ω7}, {ω8, ω9}, . . .}.

Finally, assume that λω1 = {mα}, λω2 = {mβ}, and λωk
= {mα,mβ} for all k = 3, 4, . . .

(i.e. the sender has only mα available at ω1, she has only mβ available at ω2, and she has

both messages available at every other state).

Then it follows from Proposition 8 below that in any equilibrium of the game only actions

βS and βR are taken, regardless of payoff state and the information state. In particular for

any finite order of knowledge of the fact that both messages are available to the sender, they

remain ineffective in equilibrium.

The following is a sketch of the argument for the game under consideration:

1. At ω1 the receiver believes it is more likely that the sender’s message is uninformative

than informative, and hence the relatively safe action βR is uniquely optimal for the

receiver.

2. At ω3 and ω4, the sender considers ω3 more likely than ω4, and therefore she believes

that the receiver takes action βR with at least probability one half; it follows that action

βS is uniquely optimal for the sender.

3. If at ω4 the sender had a message that would induce the receiver to take action αR with

positive probability, she would send such a message in payoff state t1 despite (as we
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showed) taking action βS herself. This is a consequence of a violation of Aumann’s [2]

self-signaling condition at state t1: at state t1 the sender wants to persuade the receiver

to take action αR regardless of her own intended action.16

4. At ω4 and ω5, the receiver considers ω4 more likely than ω5; thus (3) implies that,

regardless of the message, he believes that the sender uses action βS with probability

greater than one half.

5. Given (4), it is uniquely optimal for the receiver to take action βR at ω4 and at ω5.

6. Steps (2)-(5) can be turned into an induction argument that shows that for all ωk the

sender uses action βS regardless of the payoff state and the receiver uses action βR

regardless of the message.

The following result identifies characteristics of communication games with one-sided

private information that lead to communication breakdown for any finite order of knowledge

of language competence (it also verifies the details of the example). For this purpose we

consider a class of games with two players, a sender (S) and a receiver (R). The sender

privately observes her decision type t from a finite set T and sends a message m from a

finite set M to the receiver. Each t ∈ T has strictly positive prior probability π(t). The

sender’s message has to satisfy the constraint that m ∈ λ where λ ⊂ M is her privately

known language type. Each player i = S,R has a finite set of actions Ai. Following the

communication stage, both players simultaneously take actions aS ∈ AS and aR ∈ AR. Given

these actions and the sender’s decision type, each player i receives a payoff Ui(aS, aR, t). As

before, the players’ knowledge about the sender’s language competence is represented by an

information structure I = 〈Ω, λ,OS,OR, q〉. Call any game of this form a sender-receiver

game with sender actions.

We are interested in a subclass of such games in which (i) the receiver has a preferred

“safe” action that is uniquely optimal if there is sufficient uncertainty about either the

sender’s action or her payoff type; (ii) the sender has a unique “safe” best reply for sufficiently

strong beliefs that the receiver will use his safe action, and (iii) where it is difficult for the

sender credibly to communicate an intent to take an action other than her safe best reply.

An action a0
R for the receiver is “safe” if is uniquely optimal regardless of the sender’s

(rational) action rule for any belief that does not assign more than probability 2π(t)
1+π(t)

to any

16Baliga and Morris [5] demonstrated how failure of the self-signaling condition can render communica-
tion ineffective in games with one-sided private information. Morris [27] connects this to Rubinstein’s [32]
electronic mail game.
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type t, i.e. ∑
t∈T

UR(αS(t), a0
R, t)µ(t) >

∑
t∈T

UR(αS(t), aR, t)µ(t)

for all aR 6= a0
R, for all αs : T → AS that are best responses to some (mixed) receiver action

and for all µ ∈ ∆(T ) with µ(t) < 2π(t)
1+π(t)

∀t. We say that the game satisfies the safe-action

condition if the receiver has a safe action.

For a game that satisfies the safe-action condition, we call a sender action a0
S “safe” if

independent of the payoff type, it is a unique best reply against beliefs that assign at least

probability one half to the receiver taking action a0
R, i.e.

US(a0
S, pa

0
R + (1− p)αR, t) > US(aS, pa

0
R + (1− p)αR, t)

∀αR ∈ ∆(AR),∀aS 6= a0
S,∀p ≥ 1/2,∀t 6= T. We say that the game satisfies the sender

safe-response condition if the sender has a safe action.

A game that satisfies the sender-safe response condition satisfies the receiver safe-

response condition if at every payoff state t, provided the sender uses her safe response

a0
S with at least probability one half, the receiver’s safe action a0

R is a unique best reply, i.e.,

UR(pa0
S + (1− p)αS, a0

R, t) > UR(pa0
S + (1− p)αS, aR, t)

∀αS ∈ ∆(AS),∀aR 6= a0
R,∀p ≥ 1/2,∀t 6= T.

A game that satisfies the sender- and receiver-best response conditions satisfies the no-

self-signaling condition if in every state t in which a0
S is not dominant for the sender,

conditional on taking action a0
S herself, the sender prefers that the receiver does not take

action a0
R, i.e. for all t such that there exist aS 6= a0

S and aR with US(aS, aR, t) ≥ US(a0
S, aR, t)

it is the case that

US(a0
S, a

0
R, t) < US(a0

S, aR, t) ∀aR 6= a0
R.

Proposition 8 In any sender-receiver game with sender actions that satisfies the safe-

action, sender-safe-response, receiver-safe-response and no-self-signaling conditions, with in-

formation partitions

OS = {{ω1}, . . . , {ων}, {ων+1, ων+2}, {ων+3, ων+4}, {ων+5, ων+6}, . . . . . . .}
OR = {{ω1, . . . , ων , ων+1}, {ων+2, ων+3}, {ων+4, ων+5}, {ων+6, ων+7}, . . .},

where ν = #(M), λωi
= {mi} for i = 1, . . . , ν, λωi

= M for i > ν and qi ≥ qi+1, only the

safe actions a0
S and a0

R are taken in equilibrium.
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Proof: Given an equilibrium strategy pair (σ, ρ), and somewhat economizing on notation,

use P(t|m) to denote the receiver’s posterior probability of type t conditional on having

observed message m at information set ΩR(ω1). For any two events E and F , use E ∧ F to

denote the joint event that both E and F occurred. Sightly abusing notation write ωm for

the event that λω = {m}, i.e. the sender only has message m available. Then

P(t|m) =
P(m|t ∧ ων+1)P(t ∧ ων+1) + P(m|t ∧ ωm)P(t ∧ ωm)∑

τ P(m|τ ∧ ων+1)P(τ ∧ ων+1) +
∑

τ P(m|τ ∧ ωm)P(τ ∧ ωm)

=
P(m|t ∧ ων+1)π(t)qν+1 + P(m|t ∧ ωm)π(t)qm∑

τ P(m|τ ∧ ων+1)π(τ)qν+1 +
∑

τ P(m|τ ∧ ωm)π(τ)qm

=
P(m|t ∧ ων+1)π(t)qν+1 + π(t)qm∑
τ P(m|τ ∧ ων+1)π(τ)qν+1 + qm

≤ π(t)qν+1 + π(t)qm
π(t)qν+1 + qm

≤ π(t)qm + π(t)qm
π(t)qm + qm

=
2π(t)

1 + π(t)

Hence the safe-action condition implies that for all ω ∈ OR(ω1), regardless of the message

observed, the receiver’s unique optimal reply is the safe action aR0 .

At ων+1 and ων+2 the sender assigns posterior probability at least 1/2 to state ων+1.

Therefore, and since we just showed that at ων+1 the receiver uses action aR0 exclusively, by

the sender-safe-response condition, at ων+1 and ων+2 the sender will use action a0
S regardless

of her decision type t.

Suppose there exists a message m′ such that following m′ at ω ∈ OR(ων+2) the receiver

takes an action other than a0
R with positive probability, i.e. ρ(a0

R | m′, ων+2)) < 1. Let TD ⊂ T

denote the sent of decision types for whom a0
S is dominant and TN = T \TD. Let M̃ ⊂M be

the set of messages that induce receiver actions other than a0
R with positive probability at

ω ∈ OR(ων+2). Then the no-self-signaling condition implies that at ω ∈ OS(ων+1) all types

in TN send messages that induce actions other than a0
R with positive probability, i.e.∑

m∈M̃

Prob(m|TN ∧ OS(ων+1)) = 1.
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Thus, since ∑
m∈M̃

Prob(m|TN ∧ OS(ων+3)) ≤ 1,

there exists m̃ ∈ M̃ such that

Prob(m̃|TN ∧ OS(ων+1)) ≥ Prob(m̃|TN ∧ OS(ων+3)).

Together with qi ≥ qi+1 for all i this implies that

Prob(m̃ ∧ TN ∧ OS(ων+1)) = Prob(m̃|TN ∧ OS(ων+1))Prob(TN ∧ OS(ων+1))

≥ Prob(m̃|TN ∧ OS(ων+3))Prob(TN ∧ OS(ων+3))

= Prob(m̃ ∧ TN ∧ OS(ων+3))

Therefore, again economizing on notation, if we let Prob(a0
S|m̃) denote the receiver’s

posterior probability of the sender taking action a0
S conditional on having observed message

m̃ at ω ∈ OR(ων+1), then

Prob(a0
S|m̃) = Prob(a0

S|m̃ ∧ TD)
Prob(m̃ ∧ TD)

Prob(m̃)

+ Prob(a0
S|m̃ ∧ TN ∧ OS(ων+1))

Prob(m̃ ∧ TN ∧ OS(ων+1))

Prob(m̃)

+ Prob(a0
S|m̃ ∧ TN ∧ OS(ων+3))

Prob(m̃ ∧ TN ∧ OS(ων+3))

Prob(m̃)

= Prob(a0
S|m̃ ∧ TD)

Prob(m̃ ∧ TD)

Prob(m̃)

+

(
1− Prob(m̃ ∧ TD)

Prob(m̃)

)
×{

Prob(a0
S|m̃ ∧ TN ∧ OS(ων+1))

Prob(m̃ ∧ TN ∧ OS(ων+1))

Prob(m̃)− Prob(m̃ ∧ TD)

+ Prob(a0
S|m̃ ∧ TN ∧ OS(ων+3))

Prob(m̃ ∧ TN ∧ OS(ων+3))

Prob(m̃)− Prob(m̃ ∧ TD)

}
≥ 1

2

This, however, implies by the receiver-safe-response condition that following message m̃ at

ω ∈ OR(ων+2) the receiver takes action a0
R with probability one, contradicting the fact that

ρ(a0
R|m̃,OR(ων+2)) < 1.

Suppose that for k ≥ 1 we have ρR(a0
R|m,OR(ων+2k)) = 1 for all m ∈ M . Then, using
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the same logic as above, ρS(a0
S|OS(ων+2k+1)) = 1 by the sender-safe-response condition, from

which we get ρR(a0
R|m,OR(ων+2k+2)) = 1 for all m ∈M by the no-self-signaling and receiver-

safe-response conditions. Therefore, by induction, ρR(a0
R|m,OR(ωi)) = 1 for all m ∈M and

all i and ρS(a0
S|OS(ωi)) = 1 for all i. �

6 Conclusion and Discussion

We have proposed and explored a simple portable framework for expressing the idea that

language is imperfectly shared. We have found that common knowledge of language is not

necessary for language to be useful but that lack of common knowledge of language distorts

message meaning and renders it uncertain. The distortions are preserved when knowledge of

language fails at high finite orders, and in a class of games where both senders and receivers

move at the action stage may result in complete communication failure for any finite-order

knowledge of language competence.

In a very stimulating paper, Lipman [24] has asked “Why is Language Vague?” Perhaps

privately known language competence is part of the answer. If we interpret the indicative

meaning of a message as the decision-relevant information conveyed by that message, then we

showed that in optimal equilibria of common-interest games meaning will generally be con-

founded by auxiliary information about the speaker’s language competence.17 It is unlikely

that standard game theory can do more. After all, it is inherent in the notion of equilibrium

that players know each others’ strategies, which implies that in a communication game the

receiver of a message always precisely knows the rule by which a message is generated. Our

interest is in exploring the boundaries of what can be said about imprecise languages with

the precise tools of game theory.

One noteworthy feature of our model with privately known language competence of either

sender or receiver is that there is a sense in which there can be misunderstandings. It is

tempting to speculate about the consequences of the ensuing disagreements regarding the

meaning of verbal agreements and contracts. Generally, one would expect that if language is

imperfectly shared in our sense, there will be different perceptions of which obligations are

entailed by agreements or contracts and it may be advantageous to have a dispute resolution

mechanism in place to resolve conflicts once these differences become apparent.

17We are grateful to Benny Moldovanu for reminding us that this vagueness is a result of projecting two-
dimensional private information into one dimension. The language dimension however is purely a nuisance
in common-interest games.
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[20] Krishna, V. and J. Morgan [2004], “The Art of Conversation: Eliciting Information

from Experts Through Multi-Stage Communication,” Journal of Economic Theory, 117,

147-179.
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A Sender-Receiver Games with Conflict of Interest

A.1 Uncertainty about Sender Competence

It is well-known that when there is conflict of interest, access to a noisy channel or, more

generally, a nonstrategic mediator can improve communication outcomes in sender-receiver

games. In this section we show that private information about message availability can

substitute for communication through a nonstrategic mediator. Specifically, in the leading

example of the CS model, with a uniform payoff-type distribution and quadratic payoff

functions, the efficiency gains from mediated communication can be fully replicated through

direct communication when there is private information about message availability.

Myerson [30] gives an example in which there is no communicative equilibrium when the

communication technology is perfect, but there is one when agents have to rely on sending

a carrier pigeon that gets lost with positive probability. Blume, Board and Kawamura [9]

(henceforth BBK) consider communication through a noisy channel that lets the sender’s

message pass through with probability ε and otherwise transmits a random draw from a

distribution G on the interval [0, 1]. They show that with quadratic preferences, i.e.

US(a, t, b) = −(t+ b− a)2,

UR(a, t) = −(t− a)2,

and a uniform type distribution on the interval [0, 1] (the “uniform quadratic model”) for

almost all values of the sender’s bias b ∈ (0, 1
2
) there exists a value of the error probability

ε and an equilibrium with higher ex ante payoffs than from the most efficient equilibrium

in the model without noise. Goltsman, Hörner, Pavlov and Squintani (GHPS) [16], also in

the uniform quadratic model, investigate the limits from mediated communication; that is,

they permit agents to send messages to a correlation device and to receive instructions from

the device. This amounts to finding the payoffs from optimal communication equilibria, as

defined by Forges [14] and Myerson [29]. Using the revelation principle (Myerson [28]) one

can characterize the set of communication equilibria in the CS model as corresponding to a

family of conditional distributions on R, {p(·|t)}t∈T , that satisfies:

t = arg max
t′∈T

[
−
∫

R
(t+ b− a)2dp(a|t′)

]
, ∀t ∈ T

a = Et[t|a] ∀a ∈ A.

Goltsman, Hörner, Pavlov and Squintani (GHPS) [16] use this characterization to show that
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the receiver’s ex ante payoff in any communication equilibrium of the CS model is bounded

above by −1
3
b(1 − b). Since the ex ante payoffs of the receiver, VR and the sender, VS, are

related through VR = VS + b2, this is also the efficiency bound for communication equilibria

in the CS model.

BBK provide a mechanism that attains this efficiency bound.18 For any b there exists

a noise level ε(b) and an equilibrium of the corresponding ε(b)-noise game, Γ(ε(b)), that

achieves the GHPS bound. We will show that this bound can also be attained with private

information about message availability. In that case, all communication between the players

is direct and misunderstandings arise exclusively because of receiver uncertainty about the

sender’s repertoire of messages: When receiving a message, the receiver does not know to

what degree the sender was forced to use that message rather than some other message

that she would have preferred had it been in her repertoire. Our proof strategy is to show

that for any so-called “front-loading equilibrium” of BBK that achieves the efficiency bound

there exists an outcome-equivalent equilibrium in the model with private information about

message availability.

As background it is useful briefly to recall the key elements of the construction of the

front-loading equilibria in BBK. In such an equilibrium the type set, [0, 1], is partitioned into

a finite number K of intervals Θk (with left endpoint θk−1 and right endpoint θk) that are

indexed from left to right; for any partition element Θk with k > 1 there is a single message

mk that is sent by types in that partition element; and, types in the leftmost partition

element, Θ1, uniformly randomize over all the remaining messages. As a result, when the

receiver observes one of the messages mk he believes with probability one that there was no

transmission error, that the sender’s type belongs to the interval Θk and takes action

ak =
θk−1 + θk

2
.

When the receiver observes any of other messages, his posterior probability of an error having

occurred is
ε

ε+ θ1(1− ε)
and he takes action

a1 =
θ1(1− ε) θ1

2
+ ε1

2

ε+ θ1(1− ε)
,

which is the average of the actions he would have taken with and without error weighted by

the posterior probabilities of error and no error respectively.

Proposition A1 below is proven by translating this BBK front-loading construction into

18Ivanov [18] has recently demonstrated how to attain this bound through a strategic mediator.

48



the present environment through substituting private information for transmission errors.

For example, in the BBK equilibrium, when the receiver observes a message that is volun-

tarily sent by the lowest interval of decision types, he must average over the two possibilities

that the message was sent in error and that it was sent intentionally. In the present environ-

ment, analogously, we have the receiver be uncertain between the possibility that a type from

the lowest interval deliberately sent the message that is always available and the possibility

that another decision type sent the message because no other message was available to her.

Proposition A1 With a uniform type distribution, quadratic preferences and sender bias

b > 0, there exists a message space M , an availability distribution π on Λ = {λ ∈ 2M |m0 ∈ λ}
and an equilibrium in the corresponding game that attains the efficiency bound for commu-

nication equilibria.

Proof: Suppose that the optimal BBK-front-loading equilibrium E(b) has K steps, Θ1, . . . ,

ΘK . Pick any message space that satisfies #(M) ≥ K. Let there be an language type

λ̃ ⊂M with #(λ̃) ≥ K and choose an availability distribution π that satisfies the conditions

π(λ̃) = 1 − ε(b) and π(λ) > 0 ⇒ λ ∩ λ̃ = {m0} ∀λ 6= λ̃. Then we can induce the outcome

of the optimal BBK-front-loading equilibrium E(b) in our environment by prescribing the

following sender strategy. Whenever the realized language type is λ̃, decision types in the

interval Θ1 pool on the message m0 (which is always available) and for each interval Θk,

k = 2, . . . , K, there is a message in λ̃ that is sent by decision types in that interval, and only

by those decision types. All decision types send the message m0 whenever their language

type λ is not equal to λ̃. The receiver chooses his best response given this sender strategy for

any of the messages that are sent with positive probability. Following any of the messages

that are sent with probability zero by the sender the receiver’s posterior is assumed to be

the same as following m0, and he takes the corresponding optimal action. �

A.1.1 A Universal Availability Structure

To establish our last result we chose Λ and π as a function of the sender’s bias b. Tying Λ

and π to the sender’s bias is not necessary, if we allow infinite message spaces. Specifically,

it is possible to find Λ and π that are universal in the sense that for any b > 0 there is an

equilibrium that achieves the efficiency bound for communication equilibria.

For our next result, we will assume M to be infinite. We consider an availability structure,

which is a 4-tuple (M ; (Λ,F , π)) that consists of a set of potential messages, M , a set of

language types Λ ⊂ 2M , a sigma-algebra F of subsets of Λ, and a probability measure π on
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(Λ,F). We are interested in a class of availability structures where language types λ can be

ordered in such a way that all messages available to a given type are also available to all

lower types and the probability distribution µ can be described in terms of this ordering; in

this availability structure there is a natural sense of the degree to which the sender knows

the language.

Definition A1 An availability structure (M ; (Λ,F , µ)) is nested if for each α ∈ [0, 1] there

exists an infinite set Mα ⊂M such that Mα∩Mα′ = ∅, ∪α∈[0,1]Mα = M , Λ = {λα ⊂M |λα =

∪α′≤αMα′}, F = {F ⊂ 2Λ|F = ∪α∈BλαandB ∈ B} (where B denotes the set of Borel subsets

of the interval [0, 1]) and there exists an atomless distribution G on [0, 1] with density g such

that g(α) > 0 for all α ∈ [0, 1] and

µ({λα′|α′ ≤ α}) = G(α) ∀α ∈ [0, 1].

Example A1 Let M be the unit square, Mα = {(x, y) ∈ M |x = α} and G the uniform

distribution. Then, given a draw α from G, the set of available messages is the rectangle

[0, α] × [0, 1]. The probability that the messages in Mα∗ are available equals the probability

that α ≥ α∗, i.e. 1− α∗.

Proposition A2 With quadratic preferences, uniform type distribution and a nested avail-

ability structure there exists an equilibrium that achieves the efficiency bound for communi-

cation equilibria.

Proof: For any ε ∈ [0, 1], define α(ε) as the (unique) solution of the equation G(α(ε)) = ε.

Thus, the probability that the messages in Mα(ε) are not available is ε. Define ε(b) as the

noise level for the BBK front-loading equilibrium that attains the GHPS efficiency bound

when the sender’s bias is b. Suppose that the optimal BBK-front-loading equilibrium has K

steps, Θ1, . . . ,ΘK . Then we can replicate this outcome in our environment with a nested

availability structure by prescribing the following sender strategy. Whenever the messages in

Mα(ε(b)) are available, types in interval Θ1 pool on one of the messages m0 ∈ M0 (which are

always available) and for each interval Θk, k = 2, . . . , K, there is a message in Mα(ε(b)) that

is sent by types in that interval. All types send a message m0 when the messages in Mα(ε(b))

are not available. The receiver chooses his best response given this sender strategy for any of

the messages that are sent with positive probability. Following any of the messages that are

sent with probability zero by the sender the receiver’s posterior is assumed to be the same

as following m0, and he takes the corresponding optimal action. �
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A.2 Uncertainty About Receiver Competence

We will conclude by showing that as in the case where the language competence of the

sender is private information, private information about the language competence of the

receiver can substitute for mediated communication. A particularly simple way of utilizing

private information about the receiver’s language competence replicates an equilibrium out-

come from Krishna and Morgan’s (KM) [20] study of multi-stage communication in the CS

environment. This is the subject of the following observation.

Observation. With a uniform type distribution, quadratic preferences and sender bias b ∈(
0, 1

8

)
, there exists a finite message space M , an availability distribution πR of the receiver on

the set P of partitions of M that assigns positive probability to exactly two elements of P and

an equilibrium in the corresponding game that attains the efficiency bound for communication

equilibria.

Proof: To verify the observation, first recall that KM showed that for b ∈
(
0, 1

8

)
there

is a class of equilibria that achieve an ex ante payoff of −1
3
b(1 − b) for the receiver and

that GHPS’s showed that this is the efficiency bound for communication equilibria in this

environment. It remains to show how to replicate KM’s construction with private information

about the receiver’s language competence. For this we briefly summarize the key aspects

of their construction: Communication proceeds in two stages. In the first stage the sender

reveals whether her type t is less than some quantity x, or not. In the second stage, if t < x

then a partition equilibrium is played on the interval [0, x]; otherwise with probability p (that

is generated by a jointly controlled lottery) the sender sends a message to indicate whether

t ∈ (x, z) or t ∈ [z, 1], and with probability 1− p no further message is sent.

The outcome of any such equilibrium can be induced with private information about the

receiver’s language as follows: If the partition equilibrium on the interval [0, x] has K − 2

steps, let M contain K messages. The receiver’s partition type is either the finest partition of

M, denoted Pf , or it is the finest partition that contains the element {mK−1,mK}, denoted

Pc. The receiver’s type distribution πR is given by πR(Pf ) = p and πR(Pc) = 1− p. Sender

types in the kth interval of the partition equilibrium on [0, x] send message mk, sender types

in (x, z) send message mK−1, and sender types in the interval [z, 1] send message mK . The

key observation is that the distinction between the messages mK−1 and mK is activated only

if the receiver’s type is Pf , which happens with probability p. Otherwise, the receiver uses an

action in response to these message that is optimal against prior beliefs concentrated on the

interval [z, 1]. It is now easy to see that sender and receiver face the exact same incentives
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as in the KM construction. �

It is also possible, as in the case of private information about language competence of

the sender, to translate the BBK construction into an outcome equivalent equilibrium when

there is private information about language competence of the receiver. The construction

works for all biases b > 0 and is universal in the sense that the message space and language

type distribution are independent of the bias, but comes at the cost of requiring an infinite

message space. Before proving this result, we will show by way of examples how one can use

the BBK construction in simple settings.

We begin by constructing the analog to a two-step front-loading equilibrium of BBK.

Suppose that M = {m0,m1,m2} and that the receiver’s partition types are either P1 =

{{m1}, {M \ {m1}}} or P2 = {{m2}, {M \ {m2}}}, with equal probability. Types in the low

step always send m0. Types in the high step randomize uniformly over m1 and m2. Thus

when a Pi type observes {M \{mi}} he does not know whether this is the result of a low-step

sender having sent m0 or a high-step sender’s randomization having failed to result in mi.

This scheme is analogous to having an error probability of 1
2

in BBK. The role of the sender’s

randomization in implementing the BBK equilibrium in the present framework is to ensure

that the receiver responds identically to m0 regardless of his partition type. We will use the

same type of construction when proving Proposition A3 below.

Higher error probabilities can be simulated as follows: Let M = {m0,m1,m2,m3}. There

are three equally likely receiver types Pi = {{mi}, {M \ {mi}}} i = 1, 2, 3. Types in the low

step always send m0. Types in the high step randomize uniformly over m1,m2 and m3.

This scheme is analogous to having an error probability of 2
3

in BBK. Finally, lower error

probabilities can be simulated as follows: Let M = {m0,m1,m2,m3}. There are three

equally likely receiver types Pi = {{mi,mi+1}, {M \ {mi,mi+1}}} i = 1, 2, 3, where addition

is mod3. If the high-step sender randomizes uniformly over m1,m2 and m3, this scheme is

analogous to having an error probability of 1
3

BBK. It should be clear now how all two-step

equilibria with rational error probabilities in BBK can be simulated with private information

about the receiver’s language ability.

The following result extends these ideas to all error probabilities and all BBK front-

loading equilibria.

Proposition A3 With a uniform type distribution and quadratic preferences, there exists

a message space M and an availability distribution πR on the set of partition types of the

receiver such that for every b > 0 there is an equilibrium in the corresponding game that

attains the efficiency bound for communication equilibria.
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Proof: We will first show that there exists a message space M such that for every b there

is a πR and corresponding equilibrium with the desired property.

Suppose that the optimal BBK front-loading equilibrium has K steps, Θ1, . . . ,ΘK and

that the associated error rate is ε(b). Denote the finest partition of a set S by F(S). Let M̃

be the unit square, and for any α ∈ [0, 1] define

M̃α :=

{
(x, y) ∈ M̃

∣∣∣∣x ∈ ((α− ε(b)

2

)
(mod1),

(
α +

ε(b)

2

)
(mod1)

)}
,

M = M̃ ∪ {m0}, Mα = M̃α ∪ {m0}, Pα = F(M \Mα) ∪ {Mα}, and let α be drawn from a

uniform distribution on [0, 1]. The realization of α determines the receiver’s partition type

Pα.

To replicate the outcome from the optimal BBK front-loading equilibrium, consider the

following sender strategy: Select K − 1 distinct values y2, . . . , yk ∈ [0, 1]. Before sending a

message let the sender randomize uniformly over the interval [0, 1] and denote the realization

of this randomization by x. Let types in the lowest step send message m0 and types in step

k > 1 send message (x, yk). Sender types in the lowest step, Θ1, send message m0 and types

in step Θk with k > 1 send message (x, yk). Since all α are equally likely, the sender cannot

foresee or control which pairs of messages (x, y) the receiver can distinguish from m0, because

they belong to M̃ \ M̃α, and which ones he cannot distinguish from m0, because they belong

to M̃α. Observe that given this strategy of the sender regardless of the value α, a receiver

with partition type Pα will receive a message {Mα} with probability ε(b) when a message

other than m0 is sent. Messages sent by any step Θk with k > 1 are observed unchanged

by the receiver with probability 1− ε(b) and otherwise the receiver cannot distinguish these

messages from m0. Thus, exactly as in the optimal BBK front-loading equilibrium, messages

sent by types in the lowest step induce the intended action with probability one, and for

any k > 1 the message sent by types in step k is correctly identified as coming from that set

of types with probability 1 − ε(b) and otherwise pooled with the message sent by the step

Θ1. Therefore, for all messages sent and received in the candidate equilibrium, both sender

and receiver face the exact same incentives as in the optimal BBK front-loading equilibrium.

Finally, assume that the receiver believes that any other (off-equilibrium) message was sent

by type t = 0. Then no type will want to send this message because in any equilibrium

that implements the efficiency bound for communication equilibrium (including the BBK

equilibrium) type t = 0 induces her ideal action. Therefore, we have an equilibrium that

induces the same outcome as the optimal front-loading BBK equilibrium.

Finally, we can make both the messages space M and the receiver’s availability distri-
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bution πR independent of b by replicating the above construction for every b, thus adding

a dimension to the message space, making it the union of the unit cube and the always

available message m0. �
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