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ABSTRACT. 

We re-evaluate the theory, experimental design and econometrics behind claims that individuals
exhibit non-constant discounting behavior. Theory points to the importance of controlling for the
non-linearity of the utility function of individuals, since the discount rate is defined over time-dated
utility flows and not flows of money. It also points to a menagerie of functional forms to
characterize different types of non-constant discounting behavior. The implied experimental design
calls for individuals to undertake several tasks to allow us to identify these models, and to several
treatments such as multiple horizons and the effect of allowing for a front end delay on earlier
payments. The implied econometrics calls for structural estimation of the theoretical models,
allowing for joint estimation of utility functions and discounting functions. Using data collected
from a representative sample of 413 adult Danes in 2009, we draw striking conclusions. Assuming
an exponential discounting model we estimate discount rates to be 5.6% on average: this is
significantly lower than all previous estimates using controlled experiments. We also find no
evidence to support quasi-hyperbolic discounting or “fixed cost” discounting, and only modest
evidence to support other specifications of non-constant discounting. Furthermore, the evidence for
non-constant discounting, while statistically significant, is not economically significant in terms of
the size of the estimated discount rates. We undertake extensive robustness checks on these
findings, including a detailed review of the previous, comparable literature.
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Different assumptions about individual discounting behavior generate striking differences in

the understanding of behavior in a wide range of settings. Theorists from economics and psychology

have now offered a wide range of specifications of discounting functions that match a priori criteria,

anecdotal empirical evidence, and in some cases rigorous empirical testing. We offer a systematic

and structural evaluation of most of the major alternatives.

Our approach is structural in the sense that we design experiments that allow us to jointly

estimate the utility function and discounting function that individuals are assumed to use to make

observed choices. We also allow for decisions to be made over shorter horizons and longer

horizons, and with or without a “front end delay” on the earliest option. One of the most interesting

features of the alternative specifications is the manner in which they allow short-term discounting

behavior to vary, in a sense to be made clear, from longer-term behavior. Many of the earlier

generation of specifications, such as the Exponential, Hyperbolic and Quasi-Hyperbolic discounting

models, constrained these behaviors in ways that later specifications relax. But many of these

extensions have not been evaluated in the same setting as the traditional models, nor have they been

evaluated in a manner that allows several discounting models to characterize the population.

Our approach is systematic in the sense that we consider a wide range of discounting

functions that characterize different aspects of the decision-making process. We do not constrain

the range of discounting functions that we evaluate based on a posteriori inferences from other

experiments or hypothetical surveys. Although this methodological approach has been productive by

generating a wide range of flexible functional forms, we want to avoid it because it requires that one

accept every empirical inference that is used to characterize the discounting function. We simply do

not believe that the behavioral landscape is as settled as some would claim, or that every such

inference is well-founded in experiments that meet the usual standards of experimental economics.

Our approach is to consider a range of discounting functions that span the main alternatives, and for
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reasons that are broadly appealing on a priori grounds.

In section 1 we review the alternative theoretical models that have been proposed, and settle

on a list of major exemplars of the different types of models. We assume expected utility theory

(EUT) for this initial purpose, since nothing essential hinges on alternative models of decision

making under risk, and we consider alternatives as a robustness check later. In section 2 we use these

theoretical structures to guide the design of a series of experiments that will allow us to identify the

core parameters of the latent structural models. We also discuss our specific experiments, conducted

throughout Denmark in 2009 using a representative sample of the adult Danish population. In

section 3 we review the econometric models used to estimate the core parameters of the models. We

also explain how finite mixture models can be used to evaluate the heterogeneity of discounting

behavior in the population. Section 4 contains basic results, and section 5 explores variations in

some of the maintained assumptions of our basic results.

Our results are clear, and surprising. We find very little support for Quasi-Hyperbolic

specifications. We do find evidence in favor of flexible Hyperbolic specifications and other non-

standard specifications, but with very modest variations in discount rates compared to those often

assumed. We find that a significant portion of the Danish population uses Exponential discounting,

even if it is not the single model that best explains observed behavior.

Given the contrary nature of our findings, in terms of the received empirical wisdom, section

6 contains a systematic cataloguing of the samples, experimental procedures, and econometric

procedures of the alleged evidence for Quasi-Hyperbolic and non-constant discounting. We

conclude that the evidence needed reconsideration. The one clear pattern to emerge from the

received literature is that non-constant discounting occurs for some university student samples.

One major robustness check is therefore to see if the disappointing showing for the Quasi-

Hyperbolic model is attributable to our population being the entire adult Danish population, rather
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than university students. Although it is apparent that the wider population is typically of greater

interest, virtually all prior experimental evidence that we give credence to comes from convenience

samples of university students. We find that there is indeed a difference in the elicited discount rates

with (Danish) university students, and that they exhibit statistically significant evidence of declining

discount rates. On the other hand, the size of the discount rates for shorter time horizons is much

smaller than the received wisdom suggests.

1. Theory

There are many alternative theoretical specifications on offer. We canvass them all, and then

decide on several exemplars to examine in detail. In an appendix we examine all specifications, some

of which retain historical interest or have the attraction of parsimony.

A. The Menagerie of Discounting Functions

We define the discount factor for a given horizon J to be the scalar D that equates the utility

of the income received at time t with the income received at time t+J:

U(yt) = D U(yt+J) (0)

for some utility function U(.). This general definition permits the special case, much studied in the

experimental literature, in which U(.) is linear. There is nothing in (0) that restricts us to EUT, and

indeed non-EUT specifications are considered later.

The discount factor for the Exponential (E) specification is defined as

DE(t) = 1/(1+*)t (1)

for t$0, and where the discount rate d is simply

dE(t) = * (2)

Although these characterizations are abstract, we view the discount rate on an annualized basis



1 One generalization of the QH specification is to allow there to be a jump discontinuity in the
discount factor for some t=J>0 rather than at t=0. Another is to allow the jump discontinuity to be T$
instead of $, and for the exponential discounting term, that applies after time J, to be weighted by (1-T). The
former generalization is discussed by Jamison and Jamison [2007; §5.4], and both are employed by McClure et
al. [2007; p.5797] to fit “data” from neuro-imaging studies of individuals responding to delayed rewards (in
contrast to McClure et al. [2004; p.504], who assumed J=0 and T=1 in examining similar “data”). The
identification problems implied by the latter generalization, quite apart from the controversies over the
methodologies of neuroeconomics themselves (e.g., Harrison [2008]), are profound. The former
generalization, by itself, could be evaluated by varying the front end delay continuously instead of the discrete
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throughout. The key feature of this model, of course, is that the discount rate is a constant over

time. The percentage rate at which utility today and utility tomorrow is discounted is exactly the

same as the rate at which utility in 7 days and utility in 8 days is discounted. The debate over climate

change has reminded us all that, with this specification, even small discount rates can lead to very

low weight being placed on longer-term future consequences.

The discount factor for the Quasi-Hyperbolic (QH) specification is defined as

DQH(t) = 1 if t = 0 (3a)

DQH(t) = $/(1+*)t if t > 0 (3b)

where $<1 implies quasi-hyperbolic discounting and $=1 is exponential discounting. Although the *

in (3b) may be estimated to be a different value than the * in (1), or other specifications below, we

use the same notation to allow comparability of functional forms. The defining characteristic of the

QH specification is that the discount factor has a jump discontinuity at t=0, and that is thereafter

exactly the same as the E specification. The discount rate for the QH specification is the value of

dQH(t) that solves DQH(t) = 1/(1+dQH(t)), so it is

dQH(t) = [ $/(1+*)t ](-1/t) - 1 (4)

for t>0. Thus for $<1 we observe sharply declining discount rates in the very short run, and then

discount rates asymptoting towards * as the effect of the initial drop in the discount factor

diminishes.  The drop $ can be viewed as a fixed utility cost of discounting anything relative to the

present, since it does not vary with the horizon t once t>0.1 The QH specification was introduced by



variations we employed.
2 One would then require that utility be unique up to positive affine transformations, rather than

merely order-preserving transformations.
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Phelps and Pollak [1968] for a social planning problem, and applied to model individual behavior by

Elster [1979; p.71] and then Laibson [1997].

There are alternative ways to think of the fixed cost of discounting. Instead of thinking of

the fixed cost as a percentage of the principal, one could think of it as a fixed monetary amount. The

discount factor for the resulting Fixed Cost (FC) specification is defined as

DFC(t) = 1 if t = 0 (5a)

DFC(t) = $ [1 - (1-2)*t] (1/(1-2)) - (b/yt) if t > 0 (5b)

where $<1 indicates that there is a quasi-hyperbolic component to discounting, b>0 indicates that

there is a fixed monetary cost component to discounting, and 2 allows a wide range of discounting

functions since 2=1 (with $=1 and b=0) implies exponential discounting, 2=2 (with $=1 and b=0)

implies a form of hyperbolic discounting. The discount rate for the FC specification is

dFC(t) = [ $ (1 - (1-2)*t) (1/(1-2)) - (b/yt) ] 
(-1/t) - 1 (6)

for t > 0. An obvious variant on (5b) is to allow the fixed cost component to be defined in terms of

utility2, since we are multiplying it by the utility of income, so we would have 

DFC(t) = $ [1 - (1-2)*t] (1/(1-2)) - (b/U(yt)) if t > 0 (5c)

Of course, it is behaviorally possible that individuals behave as if they require some nominal amount

of money before they delay receipt of income, implying that (5b) may be a better representation of

behavior than (5c).  The FC specification was proposed by Benhabib, Bisin and Schotter [2010].

There have been whole families of “hyperbolic” specifications of the discounting function.

The simplest assumes a discount factor given by

DH1(t) = 1/t (7)



3 Mazur [1987; p.59] credits the idea of an exponent on the reinforcement stimuli as being due to a
much older literature in psychology. Some of that literature views the psychological process underlying the
parameter 6 as simply reflecting the complexities of classical conditioning responses, and other parts of the
literature see it as reflecting a more nuanced operant conditioning response by the subject to the stimuli. The
latter interpretation anticipates the interpretation of the Weibull discounting function below. In general,
Mazur [1987; p.72] was honestly agnostic about the psychological interpretation underlying the parameters in
(9) and (11).
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with discount rates

dH1(t) = t(1/t) - 1 (8)

The H1 specification was proposed in this manner by Ainslie [1975; p.472, Figure 3] as a direct

translation of the “matching rule” specification of Herrnstein [1961; p.270] and Chung and

Herrnstein [1967; p.70, equation (1)] for the delayed responses of animals to reward. This function

has the obvious theoretical problem for sufficiently long horizons of allowing any finite change in

utility in the near future to be offset by arbitrarily small changes of opposite sign in the future; of

course, if the objective is to only make inferences over shorter horizons then this unfortunate

property is just a curiosem. This theoretical problem is overcome by a simple generalization by Harvey

[1986] discussed below.

A slight generalization of (7) is given by 

DH2(t) = 1/(1+ K t) (9)

for some parameter K, with discount rates

dH2(t) = (1 + K t)(1/t) - 1, (10)

and a further generalization by

DH3(t) = 1/(1+ K t 6) (11)

for some additional parameter 6, and discount rates

dH3(t) = (1 + K t 6)(1/t) - 1, (12)

The H2 specification was first proposed by Mazur [1984; p.427], and the H3 specification by Mazur

[1987; p.59].3 An alternative generalization of (7) is



4 Harvey [1986; p. 1130, equation (7N)] anticipates the simple extension needed to allow for a positive
front end delay. Harvey [1991; p.34, equation (2)] proposes a “proportional discounting” model in which the
discount factor is b/(b+t) for some parameter b>0; the implied discount rates are [b/(b+t)]-1/t - 1. However,
he explicitly warns (p. 35) that this “... is a prescriptive model that is sufficiently simple to be applied in public
studies. It is not intended as a descriptive model.”
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DH4(t) = (1/t) r (13)

where r>0 is a parameter that determines the importance of the future, and with discount rates

dH4(t) = (1/t) (-r/t) - 1 (14)

The primary attraction of (13) is that it implies much slower discounting of long-run consequences

than the E specification (1), and avoids the awkward theoretical implications of (1) for longer-run

planning. The H4 specification was proposed by Harvey [1986; p.1124, equation (2)], who

differentiated it from (1) on an axiomatic basis. Essentially, (1) follows when time preferences are

defined over the proportional changes in utility in two distinct time intervals of equal length, whereas

(7) and (13) follow when time preferences are defined over the proportional changes in utility in two

distinct time intervals of proportionate length. For example, (1) posits the decision maker comparing the

percentage reduction in utility between years 5 and 6 and equating it to the percentage reduction in

utility between years t and t+J for J=1 and œt. But (7) and (13) posit the decision maker comparing

the percentage reduction in utility between years 5 and 10 and equating it to the percentage

reduction in utility between years t and t+J for (t+J)/t = (10/5) = 2 and œt. These alternatives can

be usefully viewed as different behavioral assumptions about how individuals cognitively compare

utility streams across periods. Specification (13) then extends (7) to allow for different weight to be

given to the future.4

One hyperbolic generalization of (7) is a variant of H2 and H4:

DH5(t) = [1/(1+"t) ($/")] (15)

for ", $ > 0, and with discount rates

dH5(t) = (1 + "t) ($/"t) - 1 (16)



5 Jamison and Jamison [2007; Appendix A] note that any probability density function f(t) defined on
[0, 4) can form the basis of a discounting function by taking the integral of f(t) between t and 4. Indeed,
discounting functions are formally identical to the “survivor functions” that labor and health economists
routinely estimate in duration models (Davidson and MacKinnon [2004; p.400]); they are also known as
“reliability functions” in the applied statistics literature on failure (Martz and Waller [1991; p. 78]). Hence
familiar and flexible families of probability density functions, such as the Gamma or Weibull, can be used to
directly define discounting functions. This has the attraction of allowing the analyst to rely on a large literature
in statistics on the properties of these functions for different inferential purposes.

6 The W specification is the same as the simple functional form proposed in Prelec [2004; p. 526] and
applied in Ebert and Prelec [2007; p. 1424ff.] and Andersen, Harrison, Lau and Rutström [2008a; p. 607].
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This specification nests the E specification as " 6 0. It was proposed by Loewenstein and Prelec

[1992; p. 580] as the specification that satisfies a series of axioms based on inferences from previous

hypothetical surveys. Yet another hyperbolic generalization is

DH6(t) = [1/(1 + Í(1-s)t) 1+(1/(1-s))] (17)

for Í > 0 and s < 1, with discount rates

dH6(t) = (1 + Í(1-s)t) (s-2)/(s-1)t - 1 (18)

The H6 specification was proposed by Jamison and Jamison [2007; p.23].

A flexible specification is based on the Weibull (W) distribution from statistics5, and is

defined as

DW(t) = exp(-Ët (1/Ñ)) (19)

for Ë>0 and Ñ>0. For Ñ=1 this collapses to the E specification, and hence the parameter Ñ can be

viewed as reflecting the “slowing down” or “speeding up” of time as perceived by the individual.

This specification is due to Read [2001; p.25, equation (16)], although he noted (p.25, equation (15))

that the same point about time perception was implicit in the earlier hyperbolic generalization (10).6

The discount rate at time t in this specification is then

dW(t) = exp(Ët (1-Ñ)/Ñ) -1 (20)

A further generalization of (19) is to think of a more general function of time as capturing the

individual’s perception of time, such as



7 A similar approach is employed by Bleichrodt, Rohde and Wakker [2009; p. 31] who propose the
Constant Absolute Decreasing Impatience (CADI) function DCADI(t) = exp(Ë (exp (-ct ))) for c>0; DCADI(t) =
exp(-Ët ) for c=0; and DCADI(t) = exp(-Ë (exp (-ct ))) for c<0, and some parameters Ë, c > 0. A comparable
specification known as the Constant Relative Decreasing Impatience (CRDI) is specified by Bleichrodt,
Rohde and Wakker [2009; p. 32] as DCRDI(t) = exp(Ët1-d) for d>1; DCRDI(t) = t-Ë for d=1; and DCRDI(t) = exp(-Ë
t1-d ) for d<1.

8 For example, Takahashi [2005] proposed the logarithmic function, Killeen [2009] used the power
function, and Zauberman, Kim, Malkoc and Bettman [2009] used both. Scholten and Read [2006; Table 1]
propose a “discounting by intervals” specification which generalizes (1), (11), (15) and (19).
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DW(t) = exp(-Ë c ln(t)) (21)

for some parameter c. This specification was proposed by Roelofsma [1996; p.14, equation (3)]

based on the psychometric function known as Weber’s Law that the perceived difference between

two sensory stimuli (points in time) is some constant proportion of the absolute magnitude of the

stimuli.7

More generally, the literature on the Weibull discounting function suggests a parallel to the

literature on probability weighting and decision weights in models of decision making under a-

temporal risk. In the latter case the extension has been to allow decision-makers to treat objective

probabilities as subjectively perceived, as well as to allow decision-makers to treat objective

outcomes and payoffs as subjectively perceived through a utility function. This naturally leads to

questions about how much of any observed risk aversion can be attributed to each component. In

the discounting context, the psychology literature similarly talks about explanations of discounting

behavior as being either “perceived-value-based accounts” or “perceived-time-based accounts” (Kim

and Zauberman [2009; p. 92]. The former has often been interpreted as referring only to the *

parameter in an Exponential discounting specification defined over flows of money, and not defined

over flows of utility. The latter has led to a small cottage industry of suggestions for functional

forms, akin to the cottage industry experienced for probability weighting functional forms.8
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B. The Main Contenders

For all of the formal specifications, there are some major themes that differentiate

discounting models. For our purposes we want to focus on the exemplars of each approach, to

avoid distraction with the specifics of each formulation. Obviously the E model (1) should be

included as a benchmark, and the QH model (3a)-(3b) because of its popularity in behavioral

economics. For the same reason, the FC model (5a)-(5b) should be considered. Within the family of

“smooth” non-constant discounting models, the W specification (19) is attractive and flexible.

2. Experiments

There are several critical components of experimental procedures that need to be addressed

when eliciting choices over time-dated monetary flows. Some are behavioral, and some are theory-

driven. These guide the specific experimental design we developed.

A. Essential Characteristics of the Experiments

The first consideration is the importance of the tradeoffs being presented in a transparent

manner to subjects, rather than as a jumble of different principal amounts, horizons, front end

delays, and implied interest rates. The “multiple price list” procedure for discount rate choices that

was proposed by Coller and Williams [1999] is an important advance here. In this procedure the

individual gets to choose between a list of options that provide a principal at some sooner date, and

a larger amount of money at some future date. The list is ordered in increasing order of the larger

amounts of money, to make it easy for the individual to see the tradeoffs. The intuitive aspect of this

presentation is that no subject would be expected to defer payment for the first rows, where the

implied return is negligible, but that every subject might be expected to defer in the last rows, where

the implied return is large. Of course, “negligible” and “large” are in the eyes of the decision-maker,



9 Another argument is many, if not all, choices that involve future consequences naturally have a
front end delay. Hence the front end delay is not as artefactual a procedure as one might initially think.
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but annualized interest rates of less than a percentage point or more than 100 percentage points

would be expected to generally fit the bill.

The second consideration, and related to the need to provide a cognitively transparent task,

is the provision of annualized interest rates implied by each alternative. In many countries such rates

are required to be provided as part of a regulatory requirement for most consumer loans, but one

might also provide them in order to avoid testing hypotheses about whether individuals can calculate

them concurrently with the effort to elicit their preferences. On the other hand, there are many

settings in which real decisions with real consequences in the future do not enjoy the cognitive

benefit of having implied annualized rates displayed clearly: for example, decisions to smoke, eat bad

foods, engage in unsafe sex, have children, get married or divorced, and so on. Again following

Coller and Williams [1999], we evaluate the provision of annualized interest rates as a treatment and

study its effect on decisions.

The third component is to control for the credibility of payment. This is addressed in large

part by using payment procedures that are familiar and credible, and wherever possible by adding

some formal legality to the contract between experimenter and subject to pay funds in the future.

Coller and Williams [1999] and Coller, Harrison and Rutström [2010] used promises to pay by a

permanent faculty member that had been legally notarized; Harrison, Lau and Williams [1999] and

Andersen, Harrison, Lau and Rutström [2008a] conducted experiments under the auspices, and

actual letterhead, of a recognized government agency. One device for controlling for credibility,

albeit at some cost in terms of identifying certain discounting models, is to employ a front end delay

on the sooner and later payments: one argument for this procedure is to equalize the credibility of

future payment for the two dated payments used to infer discount rates.9 On the other hand, some



Although this is true, it is not the case for all such choices.
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would argue that the credibility of payment is one component of the “passion for the present” that

generates non-constant discounting behavior, and that it should not be neutered by the use of a

front end delay. Moreover, and critical for the present design, if the non-constancy occurs primarily

within the front end delay horizon, then one might incorrectly infer constant discounting simply

because the design “skipped over it.” In our design we therefore want to consider as a treatment the

use of a front end delay or not.

The fourth component is to control for the utility of time-dated monetary flows. All

experimental designs prior to Andersen, Harrison, Lau and Rutström [2008a] assumed that utility

was linear in experimental income, and defined discount rates in terms of monetary flows instead of

utility flows. This assumption had been clearly recognized earlier, such as in Keller and Strazzera

[2002, p. 148] and Frederick, Loewenstein, and O’Donoghue [2002, p. 381ff.], but the importance

for inferred discount rates not appreciated. A direct application of Jensen’s Inequality to (0) shows

that a more concave utility function must lower inferred discount rates for given choices between

the two monetary options. The only issue for experimental design then is how to estimate or induce

the non-linear utility function. The approach of Andersen, Harrison, Lau and Rutström [2008a] was

to have one experimental task to identify the utility function, another task to identify the discount

rate conditional on knowing the utility function, and jointly estimate the structural model defined

over the parameters of the utility function and discount rate. Thus the general principle is a recursive

design, combined with joint estimation of all structural parameters so that uncertainty about the

parameters defining the utility function propagates in a “full information” sense into the uncertainty

about the parameters defining the discount function. Intuitively, if the experimenter only has a vague



10 This experimental design principle applies more broadly. For example, inferences about subjective
probabilities from scoring rules must be conditioned on some statement about utility (and probability
weighting if that is allowed for). Thus a similar design can be developed, in which one task is used to estimate
the utility function and another task is used to infer beliefs conditional on utility: see Andersen, Fountain,
Harrison and Rutström [2010]. It is possible to design experimental procedures that do not require two or
more experimental tasks, and embed the identification of the utility function into one task. We view these as
complementary approaches to the “joint estimation with multiple tasks” approach we adopt. In the case of
discount rates, examples include Andreoni and Sprenger [2010] and Laury, McInnes, Swarthout and Von
Nesson [2011], and we discuss each in detail in §6.A. Both of these alternative procedures have a maintained
assumption that decisions under risk follow expected utility theory; our approach is agnostic on that issue, and
can be just as easily applied to non-standard models of decisions under risk.

11 The statistical significance of the front end delay is actually not  clear from their results (Table 5,
p.120), in part due to 22 subjects being dropped from their sample of 199 due to missing data on one variable.
However, this result is readily demonstrated with their data. Appendix B contains our re-estimation of the
“interval regression” statistical model they use with their complete data set.
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notion of what U(.) is in (0), then one cannot make precise inferences about D in (0).10

The existing literature suggests that the front end delay and the correction for non-linear

utility are the most significant treatments in terms of their quantitative impact on elicited discount

rates. Coller and Williams [1999] were the first to demonstrate the effect of a front end delay; their

estimates show a drop in elicited discount rates over money of just over 30 percentage points from

an average 71% with no front end delay.11 Using the same experimental and econometric methods,

and with all choices having a front end delay, Harrison, Lau and Williams [2002] estimated average

discount rates over money of 28.1% for the adult Danish population. Andersen, Harrison, Lau and

Rutström [2008a] were the first to demonstrate the effect of correcting for non-linear utility; their

estimates show a drop in elicited discount rates of 15.1 percentage points from a discount rate over

money of 25.2%. These results would lead us to expect discount rates around 10% with a front end

delay, with a significantly higher rate when there is no front end delay.

B. The Experimental Design

Subjects are presented with two tasks. The first task identifies individual discount rates, and

the second task identifies a-temporal risk attitudes. We use tasks with real monetary incentives.



12 A complete list of parameter values for all choices is presented in Appendix A.
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Observed choices from both tasks are then used to jointly estimate structural models of the

discounting function defined over utility.

Individual Discount Rates

Individual discount rates will be examined by asking subjects to make a series of choices

over two certain outcomes that differ in terms of when they will be received. For example, one

option can be 1000 kroner in 30 days, and another option can be 1100 kroner in 90 days. If the

subject picks the earlier option we can infer that their discount rate is below 10% for 60 days,

starting in 30 days, and if the subject picks the later option we can infer that their discount rate is

above 10% for that horizon and start date. By varying the amount of the later option we can identify

the discount rate of the individual, conditional on knowing the utility of those amounts to this

individual. One can also vary the time horizon to identify the discount rate function, and of course

one can vary the front end delay. This method has been widely employed in the United States (e.g.,

Coller and Williams [1999]), Denmark (e.g., Harrison, Lau and Williams [2002]), and Canada (e.g.,

Eckel, Johnson and Montmarquette [2005]).

We ask subjects to evaluate choices over several time horizons.12 We consider time horizons

between 2 weeks and 1 year. Each subject is presented with choices over four time horizons, and

those horizons are drawn at random, without replacement, from a set of thirteen possible horizons

(2 weeks, and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 months). This design will allow us to obtain a

smooth characterization of the discount rate function across the sample for horizons up to one year.

We also over-sampled the first three horizons, since this very short-term is clearly of great

significance for the alternative specification. Hence each subject was twice as likely to get a horizon



13 The shorter horizons were each chosen with probability 2/16 = 0.125, compared to the 1/16 =
0.0625 probability for each of the others.
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of 2 weeks, 1 month or 2 months as any of the later horizons.13

We also varied the time delay to the early payment option on a between-subjects basis:

roughly half of the sample had no front end delay, and the other half had a 30-day front end delay. It

would be possible to consider more variations in the front end delay, but we wanted to keep the

treatment as sharp as possible before examining the tradeoff. Similarly, we varied the provision of

implied interest rates for each choice on a between-subjects basis, and independently of the front

end delay treatment. We also varied the order in which the time horizon was presented to the

subject: either in ascending order or descending order.

Another treatment, inspired by the intuitive notion from Benhabib, Bisin and Schotter

[2010] that individuals might require a fixed monetary cost in order to delay receipt of income, is to

vary the principal. The import of the “fixed cost” idea, in sharp contrast to the notion from the QH

specification that individuals require a fixed fraction of the principal in order to delay receipt of income,

is that one should observe less “hyperbolicky” discounting as the principal gets larger and larger.

Hence the non-constant discounting from a fixed monetary cost should vanish as the principal gets

larger, in contrast to the QH specification. We employ two levels of the principal on a between-

subjects basis, again to assess the significance of the hypothesized fixed monetary cost of delay.

These four treatments, the front end delay, information on implied interest rates, the level of

the principal, and the order of presentation of the horizon, result in a 2×2×2×2 design. Roughly

1/16 of the sample was assigned at random to any one particular combination.

Risk Attitudes

Risk attitudes were evaluated by asking subjects to make a series of choices over outcomes



14 A complete list of parameter values for all choices is presented in Appendix A.
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that involve some uncertainty. To be clear, risk attitudes are elicited here simply as a convenient

vehicle to estimate the non-linear utility function of the individual. The theoretical requirement,

from the definition of a discount factor in (0), is for us to know the utility function over income if

we are to correctly infer the discount rate the individual used. The discount rate choices described

above are not defined over lotteries.

Our design poses a series of binary lottery choices.14 For example, lottery A might give the

individual a 50-50 chance of receiving 1600 kroner or 2000 kroner to be paid today, and lottery B

might have a 50-50 chance of receiving 3850 kroner or 100 kroner today. The subject picks A or B. 

One series of 10 choices would offer these prize sets with probabilities on the high prize in each

lottery starting at 0.1, then increasing by 0.1 until the last choice is between two certain amounts of

money.  In fact, these illustrative parameters and design was developed by Holt and Laury

[2002][2005] to elicit risk attitudes in the United States, and has been widely employed. Their

experimental procedures provided a decision sheet with all 10 choices arrayed in an ordered manner

on the same sheet; we used the procedures of Hey and Orme [1994], and presented each choice to

the subject as a “pie chart” showing prizes and probabilities. We gave subjects 40 choices, in four

sets of 10 with the same prizes. The prize sets employed are as follows: [A1: 2000 and 1600; B1:

3850 and 100], [A2: 1125 and 750; B2: 2000 and 250], [A3: 1000 and 875; B3: 2000 and 75] and [A4:

2250 and 1000; B4: 4500 and 50]. The order of these four sets was random for each subject, but

within each set the choices were presented in an ordered manner, with increments of the high prize

probability of 0.1.

The typical findings from lottery choice experiments of this kind are that individuals are

generally averse to risk, and that there is considerable heterogeneity in risk attitudes across subjects:



15 That recruiting sample was drawn by us from a random sample of 50,000 adult Danes obtained
from Statistics Denmark, which includes information on sex, age, residential location, marital status, and
whether the individual is an immigrant. We also randomized the fixed recruitment show-up fee across
subjects. All of this information can be used to evaluate the possibility of sample selection biases in the
manner of Harrison, Lau and Rutström [2009]. At a very broad level our sample was representative on
average: the sample of 50,000 had an average age of 49.8, 50.1% of them were married, and 50.7% were
female; our final sample of 413 had an average age of 48.7, 56.5% of them were married, and 48.2% were
female.
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see Harrison and Rutström [2008a] for an extensive review. Much of that heterogeneity is correlated

with observable characteristics, such as age and education level.

This design is completely agnostic about whether behavior is better characterized by

expected utility theory or some other model.

C. The Experiments

Between September 28 and October 22, 2009, we conducted experiments with 413 Danes.

The sample was drawn to be representative of the adult population as of January 1, 2009, using

sampling procedures that are virtually identical to those documented at length in Harrison, Lau,

Rutström and Sullivan [2005]. We received a random sample of the population aged between 18 and

75, inclusive, from the Danish Registry from Statistics Denmark, stratified that by geographic area, and

sent out 1969 invitations.15

With a sample of 413, on average 25.8 subjects were assigned to each of the 16 treatments

for the discounting tasks. We did not develop this experimental design to estimate models at the

level of the individual subject or treatment condition, although obviously we will control for these

factors.

Our experiments were all conducted in hotel meeting rooms around Denmark, so that travel

logistics for the sample would be minimized. Various times of day were also offered to subjects, to

facilitate a broad mix of attendance. The largest session had 15 subjects, but most had fewer. The



16 An extra show-up fee of 200 kroner was paid to 35 subjects who had received invitations stating
300 kroner, but then received a final reminder that accidentally stated 500 kroner. In general, the additional
tasks earned subjects an average of at least 370 kroner (the exact amount depended on later decisions by other
subjects), so total earnings from choices made in the session averaged 722.9 kroner, or roughly $145.
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procedures were standard: Appendix A documents an English translation of the instructions, and

shows typical screen displays. Subjects were given written instructions, which were also read out, and

then made choices in a trainer task, which was “played out” so that the full set of consequences of

each choice were clear. In fact, subjects were paid Big Ben caramels instead of money for all trainers,

and the payments were happily consumed when delivered. All interactions were by computer. The

order of the block of discount rate tasks and the block of risk attitudes tasks was randomized for

each session. After all choices had been made the subject was asked a series of standard socio-

demographic questions.

There were 40 discounting choices and 40 risk attitude choices, and each subject had a 10%

chance of being paid for one of each set. Average payments on the first block were 201.4 kroner

(although some were for deferred receipt) and on the second block the average was 242.5 kroner, for

a combined average of 452.9 kroner. The exchange rate at the time was close to 5 kroner per U.S.

dollar, so earnings averaged $56 per 2 two-hour session for these tasks. Subjects were also paid 300

kroner or 500 kroner fixed show-up fee, and earnings from additional tasks completed after the

tasks of interest here were completed.16

For payments to be made in the future, the following language explained the procedures:

You will receive the money on the date stated in your preferred option. If you
receive some money today, then it is paid out at the end of the experiment. If you
receive some money to be paid in the future, then it is transferred to your personal
bank account on the specified date. In that case you will receive a written
confirmation from Copenhagen Business School which guarantees that the money is
reserved on an account at Danske Bank. You can send this document to Danske
Bank in a prepaid envelope, and the bank will transfer the money to your account on
the specified date.
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Payments by way of bank transfer are common in Denmark, Copenhagen Business School is well-

known in Denmark, and Danske Bank is the largest financial enterprise in Denmark as measured by

total assets.

3. Econometrics

Our objective is to evaluate alternative discounting functions reviewed in section 1. The

approach we adopt is direct estimation by maximum likelihood of some structural model of a latent

choice process in which the core parameters defining risk attitudes and discounting behavior can be

estimated. We review the basic inferential logic for estimating risk attitudes, and discuss the

extension to discounting behavior. Extensions to consider mixture specifications are considered in

section 5.

A. Estimating the Utility Function

Assume for the moment that utility of income is defined by

U(y) = M(1!r)/(1!r) (22)

where M is the lottery prize and r…1 is a parameter to be estimated. For r=1 assume U(M)=ln(M) if

needed. Thus r is the coefficient of CRRA: r=0 corresponds to risk neutrality, r<0 to risk loving,

and r>0 to risk aversion. Let there be two possible outcomes in a lottery. Under EUT the

probabilities for each outcome Mj, p(Mj), are those that are induced by the experimenter, so

expected utility is simply the probability weighted utility of each outcome in each lottery i plus some

level of background consumption T:

EUi = [ p(M1) × U(T+M1) ] + [ p(M2) × U(T+M2) ] (23)

The EU for each lottery pair is calculated for a candidate estimate of r, and the index

LEU = EUR ! EUL (24)
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calculated, where EUL is the “left” lottery and EUR is the “right” lottery as presented to subjects.

This latent index, based on latent preferences, is then linked to observed choices using the

cumulative logistic distribution function 7(LEU). This “logit” function takes any argument between

±4 and transforms it into a number between 0 and 1. Thus we have the logit link function,

prob(choose lottery R) = 7(LEU) (25)

The index defined by (24) is linked to the observed choices by specifying that the R lottery is chosen

when 7(LEU)>½, which is implied by (25).

Thus the likelihood of the observed responses, conditional on the EUT and CRRA

specifications being true, depends on the estimates of r given the above statistical specification and

the observed choices. The conditional log-likelihood is then

ln L(r; y, T, X) = 3i [ (ln 7M(LEU)×I(yi = 1)) + (ln (1-7(LEU))×I(yi = !1)) ] (26)

where I(@) is the indicator function, yi =1(!1) denotes the choice of the Option B (A) lottery in risk

aversion task i, and X is a vector of individual characteristics reflecting age, sex, race, and so on. The

parameter r is defined as a linear function of the characteristics in vector X.

Harrison and Rutström [2008a; Appendix F] review procedures and syntax from the popular

statistical package Stata that can be used to estimate structural models of this kind, as well as more

complex non-EUT models. The goal is to illustrate how experimental economists can write explicit

maximum likelihood (ML) routines that are specific to different structural choice models. It is a

simple matter to correct for stratified survey responses, multiple responses from the same subject

(“clustering”), or heteroskedasticity, as needed.

Extensions of the basic model are easy to implement, and this is the major attraction of the

structural estimation approach. For example, one can easily extend the functional forms of utility to

allow for varying degrees of relative risk aversion (RRA). Consider, as one important example, the

Expo-Power (EP) utility function proposed by Saha [1993]. Following Holt and Laury [2002], the
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EP function is defined as

U(x) = [1!exp(!"x1!Ë )]/", (22')

where " and Ë are parameters to be estimated. RRA is then Ë + "(1!Ë )y1!Ë, so RRA varies with

income if "…0. This function nests CRRA (as "60) and CARA (as Ë60).

It is also simple matter to generalize this ML analysis to allow the core parameter r to be a

linear function of observable characteristics of the individual or task. We would then extend the

model to be r = r0 + R×X, where r0 is a fixed parameter and R is a vector of effects associated with

each characteristic in the variable vector X. In effect the unconditional model assumes r = r0 and just

estimates r0. This extension significantly enhances the attraction of structural ML estimation,

particularly for responses pooled over different subjects, since one can condition estimates on

observable characteristics of the task or subject.

An important extension of the core model is to allow for subjects to make some errors. The

notion of error is one that has already been encountered in the form of the statistical assumption

that the probability of choosing a lottery is not 1 when the EU of that lottery exceeds the EU of the

other lottery. This assumption is clear in the use of a link function between the latent index LEU

and the probability of picking one or other lottery; in the case of the logistic CDF, this link function

is 7(LEU). If there were no errors from the perspective of EUT, this function would be a step

function, shown in Harrison [2008; Figure 3, p. 326]: zero for all values of LEU<0, anywhere

between 0 and 1 for LEU=0, and 1 for all values of LEU>0. 

The problem with this CDF is immediate: it predicts with probability one or zero. The

likelihood approach asks the model to state the probability of observing the actual choice,

conditional on some trial values of the parameters of the theory. Maximum likelihood then locates

those parameters that generate the highest probability of observing the data. For binary choice tasks,

and independent observations, the likelihood of the sample is just the product of the likelihood of



17 Exactly the same insight in a strategic context leads one from Nash Equilibria to Quantal Response
Equilibria, if one re-interprets the CDF in terms of best-response functions defined over expected (utility)
payoffs from two strategies. The only difference in the maximum likelihood specification is that the
equilibrium condition jointly constrains the likelihood of observing certain choices by two or more players.
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each choice conditional on the model and the parameters assumed, and that the likelihood of each

choice is just the probability of that choice. So if we have any choice that has zero probability, and it

might be literally 1-in-a-million choices, the likelihood for that observation is not defined. Even if

we set the probability of the choice to some arbitrarily small, positive value, the log-likelihood

zooms off to minus infinity. We can reject the theory without even firing up any statistical package.

Of course, this implication is true for any theory that predicts deterministically, including

Expected Utility Theory. This is why one needs some formal statement about how the deterministic

prediction of the theory translates into a probability of observing one choice or the other, and then

perhaps also some formal statement about the role that structural errors might play.17 In short, one

cannot divorce the job of the theorist from the job of the econometrician, and some assumption about the process

linking latent preferences and observed choices is needed. That assumption might be about the

mathematical form of the link, as in (3), but it cannot be avoided. Even the very definition of risk

aversion needs to be specified using stochastic terms unless we are to impose absurd economic

properties on estimates (Wilcox [2008][2010]).

We employ the error specification originally due to Fechner and popularized by Hey and

Orme [1994]. This error specification posits the latent index

LEU = (EUR ! EUL)/: (24N)

instead of (24), where : is a structural “noise parameter” used to allow some errors from the

perspective of the deterministic EUT model. This is just one of several different types of error story

that could be used, and Wilcox [2008] provides a masterful review of the implications of the



18 Some specifications place the error at the final choice between one lottery or after the subject has
decided which one has the higher expected utility; some place the error earlier, on the comparison of
preferences leading to the choice; and some place the error even earlier, on the determination of the expected
utility of each lottery.
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alternatives.18 As :60 this specification collapses to the deterministic choice EUT model, where the

choice is strictly determined by the EU of the two lotteries; but as : gets larger and larger the choice

essentially becomes random. When :=1 this specification collapses to (24), where the probability of

picking one lottery is given by the ratio of the EU of one lottery to the sum of the EU of both

lotteries. Thus : can be viewed as a parameter that flattens out the link functions as it gets larger.

An important contribution to the characterization of behavioral errors is the “contextual

error” specification proposed by Wilcox [2010]. It is designed to allow robust inferences about the

primitive “more stochastically risk averse than.” It posits the latent index

LEU = ((EUR ! EUL)<)/: (24O)

instead of (24N), where < is a new, normalizing term for each lottery pair L and R. The normalizing

term < is defined as the maximum utility over all prizes in this lottery pair minus the minimum utility

over all prizes in this lottery pair. The value of < varies, in principle, from lottery choice to lottery

choice: hence it is said to be “contextual.” For the Fechner specification, dividing by < ensures that

the normalized EU difference [(EUR ! EUL)/<] remains in the unit interval.

B. Estimating the Discounting Function

Assume EUT holds for choices over risky alternatives and that discounting is exponential. A

subject is indifferent between two income options Mt and Mt+J if and only if

(1/(1+*)t) U(T+Mt) + (1/(1+*)t+J) U(T) = (1/(1+*)t) U(T) + (1/(1+*)J) U(T+Mt+J) (27)

where U(T+Mt) is the utility of monetary outcome Mt for delivery at time t plus some measure of

background consumption T, * is the discount rate, J is the horizon for delivery of the later



19 We do not need to apply the contextual utility correction < for these choices since they are over
deterministic monetary amounts.

20 It is not obvious that :=0, since these are cognitively different tasks. Our own priors are that the
risk aversion tasks are harder, since they involve four outcomes compared to two outcomes in the discount
rate tasks, so we would expect :>0. Error structures are things one should always be agnostic about since
they capture one’s modeling ignorance, and we allow the error terms to differ between the risk and discount
rate tasks.
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monetary outcome at time t+J, and the utility function U is separable and stationary over time. The

left hand side of equation (27) is the sum of the discounted utilities of receiving the monetary

outcome Mt at time t (in addition to background consumption) and receiving nothing extra at time

t+J, and the right hand side is the sum of the discounted utilities of receiving nothing over

background consumption at time t and the outcome Mt+J (plus background consumption) at time

t+J. Thus (27) is an indifference condition and * is the discount rate that equalizes the present value

of the utility of the two monetary outcomes Mt and Mt+J, after integration with an appropriate level

of background consumption T.

We can write out the likelihood function for the choices that our subjects made and jointly

estimate the risk parameter r in equation (22) and the discount rate parameter * in (27). We use the

same stochastic error specification as in (24N), albeit with a different Fechner error term L for the

discount choices.19 Instead of (24N) we have

LPV = (PVA ! PVB)/0, (28)

where the discounted utility of Option A is given by

PVA = (1/(1+*)t)(T+MA)(1!r) + (1/(1+*)t+J) T(1!r) (29)

and the discounted utility of Option B is

PVB = (1/(1+*)t) T(1!r) + (1/(1+*)t+J) (T+MB)(1!r), (30)

and MA and MB are the monetary amounts in the choice tasks presented to subjects. The parameter

0 captures noise for the discount rate choices, just as : was a noise parameter for the risk aversion

choices.20 We assume here that the utility function is stable over time and is perceived ex ante to be



21 Direct evidence for the former proposition is provided by Andersen, Harrison, Lau and Rutström
[2008b], who examine the temporal stability of risk attitudes in the Danish population. The second
proposition is a more delicate matter: even if utility functions are stable over time, they may not be
subjectively perceived to be, and that is what matters for use to assume that the same r that appears in (1)
appears in (9) and (10). When there is no front end delay, this assumption is immediate for (9), but not
otherwise. But whether or not individuals suffer from a “projection bias” is a deep matter, demanding more
research: see Ainslie [1992; p. 144-179, §6.3], Kirby and Guastello [2001] and Loewenstein, O’Donoghue and
Rabin [2003].

22 Andersen, Harrison, Lau and Rutström [2008a; p.602] show that estimates are robust to variations
of T between 50 and 200 kroner.
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stable over time.21 We also assume that the parameter r < 1, to ensure that * > 0; this assumption is

empirically innocuous, but the alternative is so shocking to the senses that we lash ourselves to the

mast and aver.

Thus the likelihood of the discount rate responses, conditional on the EUT, CRRA and

exponential discounting specifications being true, depends on the estimates of r, *, : and 0, given

the assumed value of T and the observed choices. The conditional log-likelihood is

ln L (r, *, :, 0; y, T, X) = 3i [ (ln 7(LPV)×I(yi=1)) + (ln (1-7(LPV))×I(yi=!1)) ] (31)

where yi =1(!1) again denotes the choice of Option B (A) in discount rate task i, and X is a vector

of individual characteristics.

The joint likelihood of the risk aversion and discount rate responses can then be written as

ln L (r, *, :, 0; y, T, X) = ln LRA + ln LDR (32)

where LRA is defined by (26) and LDR is defined by (31). This expression can then be maximized

using standard numerical methods. The parameter T is set exogenously: using data from the

household expenditure survey at Statistics Denmark, Andersen, Harrison, Lau and Rutström [2008a;

p.600, Appendix D] calculate per capita consumption of private nondurable goods on an average

daily basis as being equal to 118 kroner in 2003.22 We adjust that amount for inflation to the time of

our experiments, and assume T = 130 kroner.

Nothing in this inferential procedure relied on the use of EUT, or the CRRA functional



23 Detailed estimates for all parameters of several of the main models are presented in Appendix B,
and all results are available on request.

24 Appendix B presents the estimates of the EP function.
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form. Nor did anything rely on the use of the E discounting function. These methods generalize

immediately to alternative models of decision making under risk, and especially to alternative

discounting functions.

4. Results

We first examine the core estimates assuming that the treatments had no effect, and then

consider what conclusions change when we consider the treatments. Numerous variants are

considered in section 5.

A. Initial Estimates

Table 1 reports maximum likelihood estimates of the main discounting functions. 

Underlying each of  these sets of estimates are models of the non-linear utility function (22), as well

as the behavioral error parameters. Apart from establishing the non-linearity of the utility function,

these parameter estimates are not of immediate interest.23 Although the estimates for r in (22) vary

slightly with the discounting model, since they are jointly estimated, the point estimate is robustly

estimated to be 0.65 with a standard error of 0.038, and a 95% confidence interval between 0.58 and

0.73. This is completely consistent with previous findings, and of course implies a concave utility

function. To check the validity of the CRRA specification, we followed Harrison, Lau and Rutström

[2006] and estimated the more general EP specification (22'). We could not reject the assumption of

CRRA over the domain of prizes, although there was some evidence for very slightly decreasing

RRA over that domain.24



25 Apart from the change in year, there are changes in the experimental procedures and the formal
statistical model that could account for this difference.
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The estimates in Table 1 show robust evidence of almost-constant discounting. There will be

statistically significant evidence of non-constant discounting, in some specifications, but nothing that

is as dramatic in terms of economic significance as the conventional wisdom might suggest.

The Exponential discounting model indicates a discount rate of only 5.6%, where all

discount rates will be presented on an annualized basis. The 95% confidence interval for this

estimate is between 4.1% and 7.0%, so this indicates even lower discount rates than the 10.1%

reported by Andersen, Harrison, Lau and Rutström [2008a] for the same population in 2003.25 For

comparison, the Exponential discounting model assuming a linear utility function implies an 18.3%

discount rate, with a 95% confidence interval between 15.5% and 21.2%, so this is also lower than

the estimate for 2003 (25.2%, with a 95% confidence interval between 22.8% and 27.6%). We again

conclude that correcting for the non-linearity of the utility function makes a significant quantitative

difference to estimated discount rates.

The most striking finding from Table 1, for us, is that there is no Quasi-Hyperbolic

discounting. The key parameter, $, is not statistically or economically significantly different from 1,

and the parameter * is virtually identical to the estimate from the Exponential discounting model.

The p-value on a test of the hypothesis that $=1 has value 0.55, although the 95% confidence

interval for $ is enough to see that it is not significantly different from 1.

We also see from panel C of Table 1 that the rejection of the QH specification is not due to

there being a different kind of fixed cost to discounting. We reject the hypothesis from the Fixed

Cost discounting model (5a) and (5b) that $<1, as one might expect from panel B, but we also reject

the hypothesis that b>0. Furthermore, we cannot reject the joint hypothesis that $=1 and b=0, with

a p-value of 0.36. Because 2>1 there is some evidence for hyperbolic discounting, but the economic
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significance is very slight. Assuming $=1 and b=0, we estimate 2 to be 8.79 with a standard error of

8.61, and one cannot reject the hypothesis with such a standard error that 2=1 (p-value of 0.36). In

effect, with $=1 and b=0 this model has collapsed to a Simple Hyperbolic model, and one may as

well then estimate Generalized Hyperbolic models.

Panels D and E do just that. The coefficient estimates by themselves are somewhat cryptic,

except for those trained in the dark art of interpreting such specifications. But the Simple

Hyperbolic translates into discount rates that are 5.7% for a 1 day horizon, and only decline to 5.5%

for a one year horizon; in each case the 95% confidence interval for the discount rate is roughly

between 4% and 7%, so there is no evidence of significantly declining discount rates. The

Generalized Hyperbolic does not improve on the fit of the Simple Hyperbolic, with identical log-

likelihoods.

The Weibull discounting model in panel F allows a very different pattern of non-constant

discounting. Indeed, these parameter estimates do imply discount rates that vary slightly, from 6.7%

for a 1 day horizon, to 6.0% for a 2 week horizon, and then down to 5.1% for a one year horizon.

But the 95% confidence intervals on all of these is at least between 3% and 7%, and one cannot

reject the Exponential discounting model hypothesis that s=1 (p-value of 0.73).

B. Controlling for the Treatments

To what extent is the success of the Exponential discounting model due to the front end

delay, the provision of information on implied interest rates, and other procedural conditions of the

experiment?  Table 2 reports estimates from the Exponential and Quasi-Hyperbolic discounting

models, allowing for binary dummy covariates to reflect these treatments. Variable FED indicates if

a 30-day front end delay was employed for the “sooner” option; INFO indicates if information on

implied interest rates was provided; H_ORDER indicates if the subject was presented the horizons
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in increasing order (rather than decreasing order); P_HIGH indicates if the higher principal of 3000

kroner was used (rather than 1500 kroner); RA_FIRST indicates if the risk aversion task was

presented before the discounting task; and FEE_HIGH indicates if the higher show-up fee of 500

kroner was used to recruit the subject (rather than 300 kroner). We note in passing that the last two

treatments had no statistically or economically significant effect on elicited risk attitudes.

Focusing on the Exponential discounting model, we see that INFO and H_ORDER have a

statistically significant effect on the elicited discount rate. The size of the effect in each case is large

in relation to our baseline estimates of discount rates, but is not large in relation to the astronomic

discount rates often reported in the literature. Providing information on implied interest rates leads

to an increase in the elicited discount rate of 2.3%, and using increasing horizons leads to an

decrease of 2.3% (again, unless noted all effects on discount rates are expressed as percentage point

changes). The front end delay does not affect elicited discount rates in any significant manner:

although the estimated effect is positive and small (1.7%), the 95% confidence interval spans zero.

Turning to the Quasi-Hyperbolic model, we observe an effect from the front end delay only

on the estimated *, implying an increase of the discount rate of only 2.8% if we momentarily assume

$=1 to interpret the effect on * as the effect on the discount rate. There is no effect of the font end

delay on $, and it is indeed crushingly insignificant with a p-value of 0.90. The only treatment to

have an effect on $ is whether the risk aversion task was held first: if it was, and the discounting task

came second, $ is estimated to be 0.015 lower.

These results suggest that our main conclusion thus far, the lack of support for the Quasi-

Hyperbolic specification in favor of the Exponential model, appears to be robust to controls for the

prime suspects in terms of our elicitation procedures. Essentially the same is true for the other

specifications.

One of our “treatments,” in a sense, is the elicitation of discount rates over horizons
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extending from 2 weeks up to one year. To what extent is the lack of evidence for hyperbolicky

discounting due to constant-discounting responses to longer horizons swamping non-constant

responses to shorter horizons? One could simply re-weight the data to focus more on the shorter

horizons, but a simpler method is simply to estimate the models with shorter horizons. Focusing on

the two shortest horizons, which is roughly 25% of the data due to our deliberate over-sampling

design, we do start to see some deviations from constant discounting. There is no statistically

significant effect on either parameter of the QH specification, but with the Weibull discounting

model the implied discount rates are now declining. The precision of the estimates varies with the

horizon, so we list the point estimate and the standard error in brackets: 12.6% (10.5%) for 1 day,

10.5% (6.1%) for 2 days, 9.5% (4.2%) for 3 days, 7.6% (1.9%) for 1 week, 5.2% (3.0%) for 1 month,

and 5.2% (3.0%) for 1 year. The 95% confidence intervals of each of these spans the point estimates

for every other horizon, so one should not read too much into these point estimates, but they do

suggest that there might be some hyperbolicky behavior in some of the responses. We therefore turn

to a more systematic examination of the robustness of our results.

5. Robustness Checks

A. Probability Weighting

One popular alternative to EUT is to allow the decision-maker to transform the objective

probabilities presented in lotteries and to use these weighted probabilities as decision weights when

evaluating lotteries. If w(p) is the probability weighting function assumed, and one only has lotteries

with two prizes, as here, then 

EUi = [ p(M1) × U(T+M1) ] + [ p(M2) × U(T+M2) ] (2)

becomes

RDEUi = [ w(p(M1)) × U(T+M1) ] + [ (1-w(p(M1))) × U(T+M2) ], (2N)



26 The numerical problems are easy to see. To ensure that 0<N<1, we estimate the parameter n and
then define N by 1/(1+exp(n) within the maximum likelihood evaluator. Hence the algorithm searching for
maximum likelihood parameter values can vary n between ±4 and ensure that the constraint on N is always
satisfied. However, if the maximum likelihood value of N is 1, then arbitrarily large negative values of n will
generate numerical values of N close to 1. Thus large swings in n can occur with the same likelihood value,
disrupting the gradient methods used to locate a maximum.

27 The other numerical solution is to generate “profile likelihoods” in which N is set parametrically to
1, 0.99, 0.98... 0.9, and evaluate the likelihood conditional on that assumed value and the maximum likelihood
values of other parameters. Inspection of these likelihoods can then verify that the maximum likelihood value
of N is indeed 1; this is the case with our data. The estimate of 0 is then 1.105, with a standard error of 0.045
and a 95% confidence interval between 1.02 and 1.19.
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where RDEU refers to the Rank-Dependent Expected Utility model of Quiggin [1982], and the

remaining econometric specification remains the same. Of course, one then has to specify the

functional form for w(p) and estimate additional parameters, but the logic extends naturally.

Prelec [1998] offers a two-parameter probability weighting function that exhibits

considerable flexibility. This function is

w(p) = exp{-0(-ln pN}, (33)

and is defined for 0<p<1, 0>0 and 0<N<1. This function is not well-behaved numerically, in the

sense of having reliable numerical derivatives, when N 6 1, as is the case with our data.26 Indeed,

when N=1 this function collapses to the venerable power function

w(p) = p0 (34)

There are several solutions to this problem of numerical instability, and the simplest is to estimate a

generalization that nests (33) inside a power function with parameter (:

w(p) = exp{-0(-ln pN}(, (35)

so that we get the numerical stability of (34) when (33) collapses because when N 6 1, and yet we

due not rule out the flexibility of (33) when appropriate.27 We call this the Power-Prelec probability

weighting function. The implied probability weighting function is shown in Figure 1, and is close to

being linear. The implied discount rate, with the Exponential discounting specification, is 6.8% with

a 95% confidence interval between 5.1% and 8.7%. Although this is not a statistically significant



28 The dimension of risk preferences that is captured through the probability weighting function does
not affect the choices across the discount rate tasks since no probabilities are present. The dimension of risk
preferences that is modeled through the utility function implies less concavity of the utility function, so a
slightly higher discount rate is required in order to explain the observed discounting choices.
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increase compared to the comparable EUT specification (Table 1, Panel A), it directly reflects the

fact that with probability weighting the utility function is slightly closer to being risk neutral: the

estimate of r with probability weighting is 0.57 instead of 0.65 under EUT. As noted earlier, a direct

application of Jensen’s Inequality to (0) shows that a less concave utility function must increase

inferred discount rates for given choices between the two monetary options.28

B. Mixture Models

Mixture specifications allow two or more data-generating processes to explain observed

behavior. Applications of this idea show clear evidence that behavior is not wholly explained by any

one of the popular models of discounting behavior or decision making under risk. Andersen,

Harrison, Lau and Rutström [2008a; §3.D] consider a mixture specification of exponential and

hyperbolic discounting, and find that 72% of the choices are better characterized as exponential.

This estimate of the mixing probability is statistically significantly different from 0 or 50%. Similarly,

Harrison and Rutström [2009] find roughly equal support for EUT and Prospect Theory in a lab

setting; Harrison, Humphrey and Verschoor [2009] find roughly equal support for EUT and Rank-

Dependent Utility models in artefactual field experiments in India, Ethiopia and Uganda; and Coller,

Harrison and Rutström [2010] find roughly equal support for exponential and quasi-hyperbolic

discounting in the laboratory.

The key insight from mixture specifications is to simply change the question that is posed to

the data. Previous econometric analyses have posed a proper question: if one and only one data-

generating process is to account for these data, what are the estimated parameter values and do they



29 For example, does one constrain individuals or task types to be associated with just one data-
generating process, or allow each choice to come from either? Does one consider more than two types of
processes, using some specification rule to decide if there are 2, or 3, or more? Does one specify general
models for each data-generating process and see if one of them collapses to a special case, or just specify the
competing alternatives explicitly from the outset? How does one check for global maximum likelihood
estimates in an environment that might generate multi-modal likelihood functions “naturally”? Harrison and
Rutström [2009] discuss these issues, and point to the older literature.
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support a non-standard specification? The simplest, finite mixture specification changes this to: if

two data-generating processes are allowed to account for the data, what fraction is attributable to

each, and what are the estimated parameter values? So stated, one can imagine someone still wanting

to ask the former question, if they just wanted one “best” model. But that question is also seen to

constrain evidence of heterogeneity of decision-making processes, and we prefer to avoid that when

we can. There are fascinating issues with the specific implementation and interpretation of mixture

models, but those are not germane to the main insight they provide.29

The results are presented in Table 3 for two sets of mixture models. The first, in panel A, is a

mixture of the Exponential and Quasi-Hyperbolic discounting model. The mixing probability, BE, is

estimated to be 0.276, so the complementary probability, BQH, is 0.724. Thus it would appear that

there is considerably more support for the QH specification, until one examines the estimated

parameter values for each model. In the case of the Exponential model the discount rate is 15.3%,

and for the Quasi-Hyperbolic model it is effectively a second Exponential specification with a

discount rate of 3.3% because the estimate of $ is essentially 1. Thus we see a bimodal distribution

in the sample, with just over a quarter of the choices being characterized by a discount rate of 15.3%

and the rest by a discount rate of 3.3%.

This pattern also arises when we consider a mixture of Exponential and Weibull discounting

models, in panel B of Table 3. In this case the sample divides into one mode with 29% of choices at

a discount rate of 14.7%, and the other mode with Weibull discounting that is not statistically

significantly different from Exponential (p-value = 0.21). The discount rates implied by the Weibull



30 Comparable results are obtained if we extend the mixture of Exponential and Quasi-Hyperbolic,
but the log-likelihood of that specification is inferior to the log-likelihood of the Exponential and Weibull
mixture.
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parameter estimates range from 7.6% for a 1 day horizon, to 5.2% for a one week horizon, to 3.9%

for a one month horizon, down to 2.5% for a one year horizon. But it is important to recognize the

relative statistical imprecision of the implied discount rates in this Weibull specification for the

shorter horizons. Figure 2 illustrates this, showing the point estimates for horizons up to 3 months

along with the 95% confidence intervals. It is easy to see why one cannot formally reject the

assumption of constant discounting with this Weibull specification, and yet there is “movement” in

discount rates as the horizon gets larger. Of course, the quantitative size of these discount rates pale

in comparison to the hundreds of percent reported in some literature, but there is nonetheless the

suggestion of a non-constant discounting agent struggling to be identified.

Table 4 allows us to see more clearly what factors affect the use of the Exponential and

Weibull discounting models.30 The mixing probability is allowed to vary with the treatment

dummies, and we see significant effects from three of the treatments. The use of a front end delay

reduces the probability of the Exponential model being used by 14.7 percentage points. Thus the

weight on the Exponential * of 13.8% drops from 0.353 to 0.206 (= 0.353 - 0.147), and shifts to the

Weibull specification. Similarly, the provision of information on implied interest rates reduces the

weight on the Exponential model by 14.0 percentage points, and the use of an increasing horizon in

the presentation of the discounting task reduces weight on the Exponential model by 12.4

percentage points. The implied Weibull discount rates are virtually identical to those displayed in

Figure 2. But the Weibull parameter s is estimated more precisely, and one can reject the assumption

that the Weibull discounting function collapses to an Exponential discounting function with a p-

value of 0.056. Again, these non-constant discount rates are modest in size compared to the



31 Specifically, if the individual has completed vocational education and training or “short-cycle”
higher education. Danes commonly refer to the cycle of education in this manner: most short-cycle higher
education programs last for less than 2 years; medium-cycle higher education lasts for 3 to 4 years, and
includes training for occupations such as a journalist, primary or lower secondary school teacher, nursery and
kindergarten teacher, and ordinary nurse; long-cycle higher education typically lasts 5 years and is offered at
Denmark’s five ordinary universities, at the business schools and various other advanced institutions.

32 Specifically, the completion of medium-cycle or longer-cycle higher education.
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conventional wisdom, but now they are approaching statistical significance.

In fact, a mixture model of two Exponential distributions provides a parsimonious

characterization of the data. This model places a mixing probability of 0.28 on a discount rate of

15.1% and a mixing probability of 0.72 on a discount rate of 3.3%. The log-likelihood for this

specification is -18511.1, only slightly worse than the two specifications in Table 3.

C. Observed Individual Heterogeneity

It is possible to condition our core parameters on individual demographic covariates, just as

we considered covariates for treatment earlier. Table 4 contains the maximum likelihood estimates

with the Exponential model. Unless otherwise noted, all variables are binary. Variable FEMALE

indicates a female; YOUNG is someone aged less than 30; MIDDLE is someone aged between 40

and 50; OLD is someone aged over 50 (so the omitted age category are those aged between 30 and

39); OWNER is someone who owns their apartment or house; RETIRED is someone who is

retired; SKILLED is someone with some post-secondary education31; EDUCATION is someone

who has substantial higher education32; KIDS is someone that has children; LOW INCOME is

someone with household income in 2009 below 300,000 kroner; and HIGH INCOME is someone

with household income in 2009 of 500,000 kroner or more.

The only demographic covariate to have any statistically significant impact on elicited

discount rates is whether the individual is a female. Women have discount rates that are 6.6

percentage points lower than men, and the p-value on this estimated effect of 0.092. In turn, this



33 In fact we allow for a non-zero correlation between these two random coefficients, so their
covariance is a third hyper-parameter to be estimated.
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derives from women being more risk averse: their RRA is 0.294 higher than men, with a p-value on

this estimated effect of 0.026. Hence they have a more concave utility function and, by Jensen’s

inequality applied to (0), have a lower implied discount rate. Looking at total effects instead of

marginal effects, men on average have discount rates of 7.4% and women have discount rates of

3.6%, and the difference is statistically significant (p-value = 0.004).

The mixture specification of Exponential and Weibull models of the previous sub-section

can be extended to include demographic covariates as well as treatment covariates. There are no

significant differences in the estimates for the mixing probabilities without demographics (Table 4),

although the log-likelihood improves to -18299.6.

D. Unobserved Individual Heterogeneity

We account for unobserved individual heterogeneity through the possibility that errors are

clustered by the subject that the choices are associated with, but one can also allow unobserved

individual heterogeneity in the population to be characterized by random coefficients following some

parametric distribution. In other words, in the Exponential discounting model, one can allow the

coefficients r and * to be distributed in a random manner across the population: each subject

behaves as if they have a specific r and *, but there is variation across subjects and that variation is

assumed to be characterized by some parametric distribution. If * is assumed to vary according to a

Normal distribution, then one would estimate two “hyper-parameters” to characterize that

distribution: a population mean of * and a population standard deviation of *.33 Each of these hyper-

parameters would have a point estimate and a standard error, where the latter derives from familiar

sampling variability. As the sample size increases, and assuming consistent estimators, the sampling



34 There is one technical issue of importance here, however. As flexible as the Logit-Normal is, it
only allows bimodality at the end-points of the finite interval allowed. In this case we constrained the domain to
be between 0 and 0.6, and hence the mode close to 0 might  be an artefacts of that assumption. Although we
know a priori that *$0, we do not know the upper bound. One can loop through alternative parametric
assumptions of the upper bound and evaluate the maximum likelihood at each: these are known as profile
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error on the point estimate of the population mean and the point estimate of the population

standard deviation would converge to 0, but there is no presumption that the point estimate for the

population standard deviation converge to 0, since it is a characteristic of the population and not

sample variability.

One extension which is required here is to allow for the latent index to be a non-linear

function of core parameters, but we use methods developed by Andersen, Harrison, Hole, Lau and

Rutström [2010], and reviewed in Appendix C, to estimate such specifications. In fact, we also allow

the distribution for r and * to be a Logit-Normal distribution, which is a logistic transform of a

normally distributed variable. Due originally to Johnson [1949], and familiar in bio-statistics, this

transformation allows the resulting distribution to closely approximate a flexible Beta distribution: it

allows skewness and bimodality. The domain is restricted to the unit interval, but it is a simple

matter to expand that to any finite interval.

Figure 3 illustrates these estimates, for the base case specification (CRRA and Exponential

discounting). In each case the parameters of the underlying Normal distribution are shown, and the

logistic transform 7 then applied to them. For the risk aversion parameter r we estimate a mean for

the Normal distribution of -0.23 and a standard deviation of 0.79: these are not  the estimates for the

parameter r itself, but the parameters defining the argument of the logistic transform, so we end up

with the population distribution 7(N(-0.23, 0.79)) shown in Figure 3. The population distribution is

generally risk averse, with a mean of 0.56, a median of 0.55, a standard deviation of 0.18, and a

skewness of -0.17 (where a symmetric distribution has a skewness of 0). The population distribution

for the discount rate is sharply, positively skewed.34 The average discount rate in the population is



likelihoods. In our case the qualitative results are invariant to assuming upper bounds lower than 0.6. A better
solution, and common in the statistical literature to allow “internal modes,” is to allow mixtures.
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0.14, the median is 0.078, the standard deviation is 0.15, and the skewness is 1.19. Since this is a

skewed distribution, one should not infer statistical insignificance from the standard deviation

exceeding the mean. For the same reason, the appropriate measure of central tendency of the

population distribution is the median rather than the mean. The covariance between the two random

coefficients is -0.21, with a 95% confidence interval between -0.26 and -0.16; so we reject the

hypothesis that the two coefficients are independent. This covariance implies a correlation of -0.13,

which of course is consistent with the application of Jensen’s Inequality to (0), which shows that a

more concave utility function must decrease inferred discount rates for given choices between the two

monetary options.

Figure 4 displays comparable estimates of the two Quasi-Hyperbolic parameters. Consistent

with the earlier estimates, there is no evidence for the instantaneous discounting premium that

occurs when $<1. The population distribution for $ is estimated to lie tightly around 1: the mean of

the distribution is 0.999 and the median is 1.000. The estimated population distribution for * in

Figure 4 is similar to the estimates for the Exponential model in Figure 3, which is not surprising

given that $ is so close to 1.

6. Connection to Previous Literature

Our results were a surprise to us, and the robustness checks reported above did not lead us

to qualify that reaction. We fully expected to see much more “hyperbolicky” behavior when we

removed the front end delay, and particularly when that was interacted with not providing the

implied interest rates of each choice. We were not wedded to one hyperbolicky specification or the

other, and did not expect the exponential model to be completely overwhelmed by the alternatives,



35 Like prisoners doing a long sentence, and knowing the jokes and arguments of cellmates by heart,
we would rather just point to surveys and evaluations of the evidence in Harrison [2006] and Harrison and
Rutström [2008b]. We use the literature reviews of Coller and Williams [1999] and Frederick, Loewenstein
and O’Donoghue [2002] as an initial guide; it should be noted that the latter incorrectly list Holden, Shiferaw
and Wik [1998] as using real incentives, although they did not (see p. 110).

36 For example, Harrison [2005; §4.2] discusses at length the difficulties making robust inferences
from the natural experiment studied by Warner and Pleeter [2001]. Appendix D reviews the results from one
additional study of interest using naturally-occurring data.

37 For example, experiment 3 of Read, Frederick, Orsel and Rahman [2005] was designed to test if
one obtained the same results when the later horizon was presented as a real date or as a time delay. 
Although one might infer discounting functions from their data, the design does not lend itself to that type of
inference.

38 For example, Experiment 1 of Kirby and Marakoviƒ [1995] had both problems. They used a first-
price sealed-offer auction between 3 subjects to elicit the present value of a future amount, and acknowledge
that an optimal (risk-neutral) bid would be above the true valuation (just as an optimal bid for a risk-neutral
agent in a first-price sealed-bid auction is below true valuation). They also conducted auctions with only 3
bidders, which makes the optimal overstatement more severe than if the auction were for many more bidders:
as the number of bidders increase the mis-statement decreases quite rapidly. Furthermore, they deceived
subjects and actually had them bid against simulated opponents.
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but we did expect to see much more non-constant discounting. We therefore examined the

literature, and tried to draw some inferences about what might explain the apparent differences in

results.

A. Reconsideration of Previous Literature

We undertook a re-examination of the previous, comparable literature that has led to the

conventional wisdom of significant non-constant discounting. We ignored all hypothetical survey

studies, on the grounds that the evidence is overwhelming that there can be huge and systematic

hypothetical biases, and it is simply inefficient to repeat those arguments and waste time taking such

evidence seriously.35 We also focused on experiments, rather than econometric inferences from

naturally occurring data, because those data are easier to interpret and have generated the

conventional wisdom.36 We excluded studies that did not lend themselves to inferring a discount

function.37 Finally, we excluded any study that used procedures that were patently not incentive-

compatible or that involved deception.38



39 Sessions were announced at two large lectures at Economics classes at the University of
Copenhagen for 1st and 2nd year students. In addition, posters were put up at most of the major student
dormitories. The students then had to send an email to get listed for one of the sessions. We recruited some
11 to 12 subjects for each session, and easily filled the available sessions. Our sample consists of a broad array
of types of students, not just Economics students.

40 The coefficient r in the CRRA utility function is estimated to be 0.52, with a 95% confidence
interval between 0.41 and 0.63. There is no evidence of varying relative risk aversion over this domain: the
coefficient " in the Expo-Power utility function is estimated to be -0.35, but has a p-value of 0.385 for the
hypothesis that "=0. The risk-neutral discount rate * in the exponential model is estimated to be 17.1%, with
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Table 6 summarizes the studies we examine, and Appendix D contains more details on

several of the more important studies. Our objective is not to dismiss or “discount” all evidence for

non-constant discounting, but just to weigh it carefully to see if it is as monolothic as has been

claimed. One conclusion that we draw is that virtually all previous evidence of non-constant

discounting comes from studies undertaken with students. We therefore conducted a conventional

laboratory experiment, described below, using the same procedures as in our (artefactual) field

experiment but with students recruited in Copenhagen.

Two additional conclusions from the review of the literature are the potential roles of “small

stakes” and open-ended, “fill in the blank” elicitation procedures. Evaluating these characteristics of

the previous literature is beyond the scope of our study.

B. Experiments with Students

In order to determine if the evidence for non-constant discounting, such as it is, derives

from the general focus on students samples, we replicated our field experiments with a student

sample in Copenhagen recruited using standard methods.39 The experimental tasks were identical, to

ensure comparability.

Table 7 lists estimates from the student responses of the basic models in Table 1. The

background risk attitudes of this sample were virtually identical to those of the adult Danish

population.40 The results are clear: we obtain no evidence of quasi-hyperbolic discounting, no



a 95% confidence interval between 12.5% and 21.7%.
41 The Weibull estimates in Table 7 imply discount rates of 19.0% for a 1 week horizon, with a 95%

confidence interval between 2.6% and 35.4% (the estimated rates for shorter horizons are higher, but even
less precisely estimated). After 2 weeks the estimated rate is 14.7% (5.1% : 24.3%), after 1 month it is 11.0%
(6.1% : 15.9%), after 3 months it is 7.3% (4.9% : 9.8%), and after 1 year it is 4.4% (1.6% : 7.2%). So the
discount rates for a 1 week horizon are significantly higher than those for horizons of 1 month or more, and
these pairwise differences are quantitatively significant. For the adult population, recall, the rates for a 1 week
horizon were 6.2% (1.4% : 10.9%), for a 2 week horizon they were 6.0% (2.3% : 9.6%), for a 3 month
horizon they were 5.5% (4.0% : 6.9%), and for a one year horizon they were 5.1% (3.3% : 7.0%). 

42 In the economics literature, Halevy [2008] emphasizes this effect, but does not present new
experimental evidence for (or against) it. Epper, Fehr-Duda and Bruhin [2010] also conducted discounting
experiments with every subject being certain of one of their choices being rewarded, since their core
hypotheses have to do with the effect of uncertain payoffs in conjunction with sub-additive probability
weighting. They did not conduct a control experiment with some probability of the subject being paid that
would allow this treatment to be studied, nor was it needed for their design purposes.
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evidence of fixed-cost discounting, and no evidence of simple hyperbolic discounting. We do

observe some non-constancy of some discount rates with the Weibull discounting specification,

although the overall effect of the student sample is not statistically significant, as shown by the p-

value of 0.18 on the null hypothesis that the specification is actually Exponential.41

C. The Probability of Discounting

Our literature review deliberately ignored studies that do not consider decisions with real

monetary consequences, but there is one treatment that we do want to recognize even if it has only

been addressed in studies using hypothetical survey questions: the effect of the discounting tasks

being rewarded probabilistically.42 In our experiments each subject had a 10% chance that one of

their discounting tasks would be rewarded.

Keren and Roelofsma [1995] demonstrated, with hypothetical tasks, a behavioral effect of

this treatment on discounting behavior, specifically a reduction in the extent of hyperbolicky

behavior for shorter horizons. Their first experiment illustrates their findings. Subjects were offered

100 Dutch Guilders now or 110 in 4 weeks. When the payment were not probabilistic, 82% of 60

subjects chose the sooner option. But when the payment would occur with a probability of 0.9, only



43 Halevy [2008; p. 1148] notes that “Weber and Chapman [2005] replicated Keren and Roelofsma’s
[1995] findings.” This is not completely correct. Experiment 1 of Weber and Chapman [2005] was their only
direct replication of the design reported by Keren and Roelofsma [1995], and reproduced by Halevy [2008; p.
1148], and decisively failed to replicate the original findings. In a footnote, Halevy [2008; p. 1148, fn. 10] adds
that “The reader is referred to Experiment 2 (summarized in Tables 5 and 6) in their study.” But this
Experiment 2 had some significant and problematic differences in design from the original, involving the use
of dubious indifference-point elicitation procedures. So although it changed the design from the original, it did
replicate the finding from the original.

44 Recruited from the field, but only in the greater Copenhagen area.
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54% of 70 subjects chose the sooner option, and that declined to only 39% of 100 subjects with a

probability of 0.5. With a front end delay of 26 weeks, the same subjects chose the sooner option in

37%, 25% and 33% of the choices, respectively, suggesting that reducing the probability of payment

to 0.5 generated results consistent with having a front end delay.

Weber and Chapman [2005] were unable to replicate these findings.43 They used 446

students in an introductory psychology class in a between-subjects replication of the experiment

described above, but with U.S. Dollar amounts instead of Dutch Guilders. With no front end delay

the fraction choosing the sooner option was 61% (of 113) with a probability of 1 of payment, and

70% (of 111) with a probability of 0.5. Adding a front end delay generated comparable choices of

46% (of 109) and 51% (of 113), implying no significant effects of having probabilistic payments.

Although one hesitates to pursue design differences with non-salient tasks, it is worth noting that the

Keren and Roelefsma [1995] subjects were compensated for attending the session.

We consider the effect of probabilistic discounting by undertaking experiments in which we

vary the exogenous probability of payment. Specifically, we conduct experiments with 28 subjects44

in which we vary the probability of payment for the discounting task from 10% to 100%, and see if

there is a difference in behavior. Of course, increasing the probability means that we need to

account for the scale effects on expected rewards. In Keren and Roelefsma [1995] the stakes were

kept the same, so there may be a confound of a scale effect. For example, their subjects might have

been close to risk-neutral for lower stakes (hence implying higher discount rates when the stakes



45 The Fixed Cost Hyperbolic shows the same effect when constrained to the Quasi-Hyperbolic, of
course, but not when it is estimated in unconstrained form.
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were to paid with some probability less than 1) and risk averse for higher stakes (hence implying

lower stakes when the probability of payment was closer to 1). This pattern of risk aversion is found

in many laboratory settings: for example, see Holt and Laury [2002][2005] and Harrison, Johnson,

McInnes and Rutström [2005]. We therefore maintain the stakes at their original levels, despite the

cost of the experiments, and allow for varying risk aversion with stakes.

The change in instructions in the IDR task was simple. The original text was
You will have a 1-in-10 chance of being paid for one of these decisions. The
selection is made with a 10-sided die. If the roll of the die gives the number 1 you
will be paid for one of the 40 decisions, but if the roll gives any other number you
will not be paid. If you are paid for one of these 40 decisions, then we will further
select one of these decisions by rolling a 4-sided and a 10-sided die.

The new text was simply this:

You will be paid for one of the 40 decisions. We will select one of these 40 decisions
by rolling a 4-sided and a 10-sided die.

The experiments with this 100% treatment were conducted in September 2010, and used the lower

principal in our baseline experiments. All other conditions were the same.

Reviewing the set of discounting models in Table 1, we find very little effect from this

treatment. We first re-estimate each model with a dummy added to capture the effect of the new

experiments for each discounting parameter, and we then estimate using only the new sample.

For example, for the Exponential model we first estimate *0 and *1 in * = *0 + *1 × C,

where C is a binary indicator variable for the 100% certain responses. There is no statistically

significant effect on the discounting parameter(s) for the Exponential, Simple Hyperbolic, Fixed

Cost Hyperbolic, Generalized Hyperbolic, and Weibull models.

For the Quasi-Hyperbolic discounting model there is an effect on the all-important $

parameter.45 It is 0.025 lower with the 100% payment treatment, and this effect has a p-value of



46 We strongly encourage systematic studies of the effects of using choice and open-ended
“matching” procedures, along the lines of Ahlbrecht and Weber [1997] and Read and Roelofsma [2003], but
for discounting tasks in which subjects are making salient, non-hypothetical choices.
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0.074. Estimating the Quasi-Hyperbolic model with the new sample we estimate $ to be 0.983 with a

standard error of 0.013,  and * to be 0.041 with a standard error of 0.024. The hypothesis that $=1

has a p-value of 0.185, so this is not statistically significant evidence in favor of the Quasi-Hyperbolic

model..

We conclude that the effect of probabilistic discounting is non-existent or negligible in our

sample, and for the specifications considered here.

7. Conclusions

We do not see significantly hyperbolicky discounting behavior in adult Danes making

choices of deferred monetary payments. If there is any statistically significant evidence for non-

constant discounting, and there is in a fraction of the population, it entails discount rates that are for

many practical purposes constant. 

How do we reconcile this striking finding with the received wisdom? We see nothing in our

experimental procedures which might bias behavior, and that deviates in any novel manner from the

types of procedures used in the past. We avoid eliciting present values in an open-ended manner,

because we are suspicious of the behavioral accuracy of those responses.46 We test for the effect of

providing information on the implied interest rates we offered. We use displays of the tasks that

make them relatively transparent in terms of the choice alternatives, rather than rely entirely on the

ability of subjects to read numbers and words. And, obviously, we pay the subjects in a salient

manner.

Our basic econometric procedures are familiar from the binary choice literature, and have a
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long tradition in experimental economics (e.g., Camerer and Ho [1994] and Hey and Orme [1994]).

Our application of them uses parametric methods, but we are clearly flexible in terms of the

discounting functions we examine. The notion of joint estimation of utility functions and

discounting functions is driven by theory, and implies nothing fundamental from an econometric

perspective. The application of mixture specifications to explore the robustness of our basic results

is, similarly, not fundamentally novel in terms of method.

Our sample is different, and this is where we believe there is an understandable point of

departure. With some exceptions, noted in our literature review, all evidence of hyperbolicky

behavior that meets certain minimal standards of salience and design occurs in samples of college-

age students. We do not dismiss that sample as irrelevant, or the exceptions as flawed studies: our

point is just that they constitute a thin empirical base for a conventional wisdom about behavior in

general. We provide some evidence of hyperbolicky behavior in a sample of college-age students in

Denmark, but the quantitative extent is relative modest in relation to the literature, even if we do

view it as nonetheless economically significant.

Theorists use illustrative examples of hyperbolicky behavior towards things like the “eating

of potato chips” as metaphor. If it is a poor metaphor when applied to monetary choices of adult

Danes over horizons of weeks and months, that means that there is an important empirical bridge to

be built. What are the tasks, domains, and samples for which hyperbolicky behavior might be

expected to apply for significant sub-samples? The metaphor may have been stretched too far, but it

refers to impulsive choices over foods and alcohol, over drugs, over sexual habits, over driving

behavior, over gambling, perhaps to individuals and families close to the poverty level, and perhaps

to younger people: a myriad of real behaviors and contexts with real welfare consequences. We now

have to systematically apply rigorous methods to those settings.
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Table 1: Maximum Likelihood Estimates of Discounting Models

Parameter
Point

Estimate
Standard

Error p-value 95% Confidence Interval

A. Exponential Discounting (LL = -18604.1; equation (1))

* 0.056 0.007 <0.001 0.041 0.07

B. Quasi-Hyperbolic Discounting (LL = -18600.8; equations (3a) & (3b))

$ 1.002 0.004 <0.001 0.995 1.009

* 0.057 0.008 <0.001 0.042 0.073

H0: $ = 1, p-value = 0.55

C. Fixed Cost Hyperbolic Discounting (LL = -18580.6; equations (5a) & (5b))

2 22.322 11.619 0.055 -0.451 45.096

$ 1 0.011 <0.001 0.978 1.022

* 0.104 0.047 0.025 0.013 0.196

b -0.016 0.023 0.483 -0.061 0.029

H0: $ = 1, p-value = 0.99; H0: $ = 1 & b=0, p-value = 0.36 

D. Simple Hyperbolic Discounting (LL = -18603.5; equation (9))

K 0.055 0.007 <0.001 0.041 0.07

E. General Hyperbolic Discounting (LL = -18603.5; equation (17))

Í 0.019 0.003 <0.001 0.013 0.023

s 0.999 0.003 <0.001 0.993 1.005

F. Weibull Discounting (LL = -18603.5; equation (19))

Ë 0.054 0.007 <0.001 0.04 0.067

Ñ 1.049 0.14 <0.001 0.773 1.324

H0: Ñ = 1, p-value = 0.73
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Table 2: Estimates of the Effects of Treatments

Parameter
Point

Estimate
Standard

Error p-value 95% Confidence Interval

A. Exponential Discounting (LL = -18465.3; equation (1))

*  Constant 0.076 0.019 <0.001 0.039 0.114

FED 0.017 0.013 0.168 -0.007 0.042

INFO -0.023 0.011 0.032 -0.043 -0.002

H_ORDER -0.023 0.012 0.056 -0.047 0.001

P_HIGH 0.01 0.012 0.407 -0.014 0.034

RA_FIRST -0.002 0.018 0.912 -0.038 0.034

FEE_HIGH -0.018 0.016 0.27 -0.05 0.014

B. Quasi-Hyperbolic Discounting (LL = -18388.6; equations (3a) & (3b))

$ Constant 1.003 0.009 <0.001 0.985 1.021

FED -0.018 0.143 0.9 -0.298 0.262

INFO 0.008 0.006 0.163 -0.003 0.02

H_ORDER 0.002 0.007 0.715 -0.011 0.016

P_HIGH -0.0005 0.007 0.945 -0.015 0.014

RA_FIRST -0.016 0.007 0.031 -0.03 -0.001

FEE_HIGH -0.004 0.007 0.555 -0.017 0.009

*  Constant 0.072 0.02 <0.001 0.033 0.111

FED 0.028 0.015 0.068 -0.002 0.058

INFO -0.016 0.011 0.132 -0.038 0.005

H_ORDER -0.022 0.015 0.133 -0.05 0.007

P_HIGH 0.008 0.015 0.593 -0.22 0.038

RA_FIRST -0.009 0.02 0.635 -0.049 0.03

FEE_HIGH -0.021 0.017 0.212 -0.055 0.012
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Table 3: Estimates of Mixture Models

Parameter
Point

Estimate
Standard

Error p-value 95% Confidence Interval

A. Exponential and Quasi-Hyperbolic Discounting (LL = -18510.7)

Exponential Model

BE 0.276 0.073 <0.001 0.133 0.419

* 0.153 0.031 <0.001 0.092 0.213

Quasi-Hyperbolic Model

BQH 0.724 0.073 <0.001 0.581 0.87

$ 1.001 0.003 <0.001 0.995 1.001

* 0.033 0.007 <0.001 0.019 0.048

H0: $ = 1, p-value = 0.83

B. Exponential and Weibull Discounting (LL = -18504.3)

Exponential Model

BE 0.29 0.039 <0.001 0.214 0.366

* 0.147 0.019 <0.001 0.109 0.184

Weibull Model

BW 0.71 0.039 <0.001 0.633 0.786

Ë 0.03 0.004 <0.001 0.022 0.039

Ñ 1.233 0.188 <0.001 0.864 1.602

H0: Ñ = 1, p-value = 0.21
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Table 4: Estimates of Exponential and Weibull Mixture Model

LL = -18358.9

Parameter
Point

Estimate
Standard

Error p-value 95% Confidence Interval

Mixing Probability for Exponential Model

BE   Constant 0.353 0.074 <0.001 0.209 0.498

FED 0.147 0.064 0.023 0.021 0.273

INFO -0.14 0.055 0.012 -0.248 -0.031

H_ORDER -0.124 0.059 0.035 -0.239 -0.009

P_HIGH 0.034 0.063 0.587 -0.089 0.159

RA_FIRST 0.052 0.067 0.435 -0.079 0.184

FEE_HIGH 0.002 0.062 0.978 -0.119 0.122

Exponential Model

* 0.138 0.017 <0.001 0.105 0.171

Weibull Model

Ë 0.027 0.004 <0.001 0.019 0.035

Ñ 1.427 0.223 <0.001 0.989 1.864

H0: Ñ = 1, p-value = 0.056
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Table 5: Estimates of the Effects of Treatments and Demographics

LL = -18325.6

Parameter
Point

Estimate
Standard

Error p-value 95% Confidence Interval

*  Constant 0.104 0.056 0.063 -0.006 0.213

FED 0.013 0.019 0.504 -0.024 0.05

INFO -0.031 0.02 0.116 -0.069 0.008

H_ORDER -0.028 0.019 0.136 -0.066 0.009

P_HIGH 0.012 0.019 0.53 -0.025 0.048

RA_FIRST -0.002 0.033 0.956 -0.067 0.063

FEE_HIGH -0.03 0.03 0.325 -0.089 0.029

FEMALE -0.066 0.039 0.092 -0.143 0.011

YOUNG 0.086 0.067 0.203 -0.046 0.218

MIDDLE 0.027 0.053 0.605 -0.076 0.131

OLD -0.024 0.048 0.609 -0.118 0.069

OWNER -0.03 0.03 0.321 -0.089 0.029

RETIRED 0.05 0.076 0.512 -0.099 0.199

SKILLED 0.005 0.041 0.899 -0.075 0.085

EDUCATION -0.026 0.053 0.627 -0.131 0.079

KIDS 0.05 0.056 0.369 -0.059 0.16

LOW INCOME -0.015 0.048 0.756 -0.109 0.079

HIGH INCOME 0.041 0.036 0.261 -0.03 0.111
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Table 6: Review of Experimental Literature with Real Incentives

Study
Sample
(Size)

Elicitation
Method Horizon(s)

Front End
Delay(s)

Correct for
Non-Linear

Utility

Models
(estimated rates)

Statistical
Method

Hyperbolicky
Discounting?

Ainslie & Haendel [1983] Patients
(N=18, 66 choices)

Choice 3 days 0 or 7 days No None
(n/a)

Counting Yes

Horowitz [1991] Students
(N=70)

Bidding 64 and 34
days

None Yes None
(830%, 271%)

Summary
statistic

Yes

Kirby & Marakovic [1996] Students
(N=621)

Choice 10 - 70 days None No E, H2
(128% to 1.2E+13)

Non-linear
least squares

Yes

Kirby [1997] Students & Others
(N=24, 28, 20)

Bidding 1 - 29 days None No E, H2
(1.6E+04 to 4.3E+10)

Non-linear
least squares

Yes

Coller & Williams [1999] Students
(N=199)

Choice 2 months 0 or 1 month No E  (72.5% with no FED;
30.2% with FED)

Interval
regression

Yes (see our
Appendix B)

Kirby, Petry & Bickel [1999] Choice No

Anderhub, Güth, Gneezy &
Sonsino [2001]

Students Pricing 4, 8 weeks None No E and H 
(128% up to 1,084%)

Non-
parametric tests

No (see our
Appendix B)

Harrison, Lau & Williams
[2002]

Danish adults
(N=268)

Choice 6, 12, 24 and
36 months

1 month No E
(28.1%)

No

Kirby & Santiesteban [2003] Students Bidding 1-43 days 0 (Experiment 1);
1 day (Experiment 2)

“Not really” E, H2 (11.3% to 2,877%;
18% to 71,231%)

Eckel, Johnson &
Montmarquette [2005]

Canadian adults Choice 2 to 28 days 0, 1 day, 2 days, or 2
weeks

No E

Harrison, Lau, Rutström &
Sullivan [2005]

Danish adults
(N=243)

Choice 1, 4, 6, 12,
18, 24

months

1 month No E
(23.8%)

Interval
regression

No

Andersen, Harrison, Lau &
Rutström [2008]

Danish adults
(N=243)

Choice 1, 4, 6, 12,
18, 24

months

1 month Yes E, H3, W
(10.1%)

ML structural
estimates

No

Engle-Warnick, Héroux and
Montmarquette [2009]

Students
(N=151)

Bidding 0, 8, 25
weeks

None Yes QH
(38% and 33%)

Non-linear
least squares

No

Andersen, Harrison, Lau &
Rutström [2010]

Students
(N=90)

Choice 1, 4 and 6
months

1 month No E
(27.9%)

Interval
regression

No
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Takeuchi [2010] Students
(N=56)

Bidding Elicited None “Not really” E
(726%)

Non-linear
least squares

Yes

Coller, Harrison & Rutström
[2010]

Students
(N=87)

Choice 1-60 days None Yes E and QH (mixture)
(o1000% to 33%)

ML structural
estimates

Yes

Benhabib, Bisin & Schotter
[2010]

Students
(N=27)

Matching 3 days, 1 & 2
weeks, 1,3 &

6 months

None No E and FC
(. 472%)

Non-linear
lest squares

Yes

Andreoni and Sprenger
[2010]

Students
(N=97)

Portfolio
allocation

35, 70 and
98days

0, 7 and 35 days Yes E (30% overall;
28% with no FED)

Non-linear
least squares

No

Laury, McInnes, Swarthout
& Von Nessen [2011]

Students
(N=103)

Choice 9 weeks 3 weeks Yes E
(12.2% and 14.1%)

ML structural
estimates

No
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Table 7: Estimates of Discounting Models with Student Sample

N=88 students. Generalized Hyperbolic model does not solve reliably.

Parameter
Point

Estimate
Standard

Error p-value 95% Confidence Interval

A. Exponential Discounting (LL = -3445.1; equation (1))

* 0.076 0.013 <0.001 0.05 0.101

B. Quasi-Hyperbolic Discounting (LL = -3432.2; equations (3a) & (3b))

$ 0.989 0.008 <0.001 0.974 1.005

* 0.066 0.013 <0.001 0.041 0.092

H0: $ = 1, p-value = 0.20

C. Fixed Cost Hyperbolic Discounting (LL = -3418.5.6; equations (5a) & (5b))

2 13.37 37.26 0.72 -59.6 86.4

$ 0.969 0.024 <0.001 0.922 1.016

* 0.094 0.128 0.463 -0.157 0.345

b -0.056 0.047 0.228 -0.148 0.035

H0: $ = 1, p-value = 0.20; H0: $ = 1 & b=0, p-value = 0.41

D. Simple Hyperbolic Discounting (LL = -3444.2; equation (9))

K 0.075 0.013 <0.001 0.05 0.101

F. Weibull Discounting (LL = -3430.1; equation (19))

r 0.07 0.011 <0.001 0.047 0.092

s 1.59 0.438 <0.001 0.732 2.449

H0: s = 1, p-value = 0.18
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Appendix A: Instructions (NOT FOR PUBLICATION)

We document the instructions by first listing the “manuscript” that shows what was given to
subjects and read to them, and then we document some of the screen displays. The original Danish
manuscript is available on request. The originals were in 14-point font, printed on A4 paper for nice
page breaks (a horizontal line below indicates a page break), and given to subjects in laminated form.
Any experimenter that would like to buy a used laminating machine should contact Steffen
Andersen. The manuscript below was for the sessions in which the discount rate task was presented
first. After these experimental tasks were completed there were additional tasks in the session that
are not relevant here.

A. Experimental Manuscript

Welcome announcement
[Give informed consent form to subjects.]

Thank you for agreeing to participate in this survey. The survey is financed by the Social
Science Research Council and the Carlsberg Foundation and concerns the economics of decision
making. 

Before we begin the survey, let me read out the informed consent form that is handed out to
you. This form explains your rights as a participant in the survey, what the survey is about and how
we make payments to you.

[Read the informed consent form.]

Is everyone able to stay for the full two hours of the meeting? Before we begin, I will ask
each of you to pick an envelope from me. The envelope contains a card with an ID number that we
will use to keep track of who answered which questions. All records and published results will be
linked to anonymous ID numbers only, and not to your name. Please keep your ID numbers private
and do not share the information with anyone else. 

[Each subject picks an envelope.]

You will be given written instructions during the survey, but make all decisions on the
computer in front of you. Please enter your ID number on the computer in front of you, but keep
the card for later use.

You will now continue with the first task. The problem is not designed to test you. The only
right answer is what you really would choose. That is why the task gives you the chance of winning
money. I will now distribute the instructions and then read it out loud. 

[Give IDR instructions to subjects.]
[Read the IDR instructions.]
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Task D

In this task you will make a number of choices between two options labeled “A” and “B”.
An example of your task is shown on the right. You will make all decisions on a computer.

All decisions have the same format. In the example on the right Option A pays 100 kroner
today and Option B pays 105 kroner twelve months from now. By choosing option B you would get
an annual return of 5% on the 100 kroner.

We will present you with 40 of these decisions. The only difference between them is that the
amounts and payment dates in Option A and B will differ. 

You will have a 1-in-10 chance of being paid for one of these decisions. The selection is
made with a 10-sided die. If the roll of the die gives the number 1 you will be paid for one of the 40
decisions, but if the roll gives any other number you will not be paid. If you are paid for one of these
40 decisions, then we will further select one of these decisions by rolling a 4-sided and a 10-sided
die. When you make your choices you will not know which decision is selected for payment. You
should therefore treat each decision as if it might actually count for payment.

You will receive the money on the date stated in your preferred option. If you receive some
money today, then it is paid out at the end of the experiment. If you receive some money to be paid
in the future, then it is transferred to your personal bank account on the specified date. In that case
you will receive a written confirmation from Copenhagen Business School which guarantees that the
money is reserved on an account at Danske Bank. You can send this document to Danske Bank in a
prepaid envelope, and the bank will transfer the money to your account on the specified date. 

Before making your choices you will have a chance to practice so that you better understand
the consequences of your choices. Please proceed on the computer to the practice task. You will be
paid in caramels for this practice task, and they are being paid on the time stated in your preferred
option.

[Subjects make decisions in the practice IDR task.]

I will now come around and pay you in caramels for your choice of A or B. Please proceed
to the actual task after your earnings are recorded. You will have a 1-in-10 chance of being paid for
one of the 40 decisions in the actual task. 

Password 1:____

[Subjects make decisions in the actual IDR task.]

I will now come around and ask you to roll a 10-sided die to determine if you are being paid
for one of the decisions. If the roll of the die gives the number 1 you will be paid for one of the 40
decisions, but if the roll gives any other number you will not be paid. If you are paid for one of the
40 decisions, then I will ask you to roll a 4-sided and a 10-sided die to select one of the decisions for
payment. 
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Password 2:____

[Roll 10-sided die to determine if they are being paid.]
[Roll 4-sided and 10-sided dice to determine the decision for payment.]

You will now continue with the second task. I will distribute the instructions and then read it
out loud. 

[Give RA instructions to subjects.]
[Read the RA instructions.]

Task L

In this task you will make a number of choices between two options labeled “A” and “B”.
An example of your task is shown on the right. You will make all decisions on a computer.

All decisions have the same format. In the example on the right Option A pays 60 kroner if
the outcome of a roll of a ten-sided die is 1, and it pays 40 kroner if the outcome is 2-10. Option B
pays 90 kroner if the outcome of the roll of the die is 1 and 10 kroner if the outcome is 2-10. All
payments in this task are made today at the end of the experiment.

We will present you with 40 such decisions. The only difference between them is that the
probabilities and amounts in Option A and B will differ.

You have a 1-in-10 chance of being paid for one of these decisions. The selection is made
with a 10-sided die. If the roll of the die gives the number 1 you will be paid for one of the 40
decisions, but if the roll gives any other number you will not be paid. If you are paid for one of these
40 decisions, then we will further select one of these decisions by rolling a 4-sided and a 10-sided
die. A third die roll with a 10-sided die determines the payment for your choice of Option A or B.
When you make your choices you will not know which decision is selected for payment. You should
therefore treat each decision as if it might actually count for payment.

If you are being paid for one of the decisions, we will pay you according to your choice in
the selected decision. You will then receive the money at the end of the experiment. 

Before making your choices you will have a chance to practice so that you better understand
the consequences of your choices. Please proceed on the computer to the practice task. You will be
paid in caramels for this practice task. 

[Subjects make decisions in the practice RA task.]

I will now come around and pay you in caramels for your choice of A or B. I will ask you to
roll a 10-sided die to determine the payment for your choice of A or B. Please proceed to the actual
task after your earnings are recorded. You will have a 1-in-10 chance of being paid for one of the 40
decisions in the actual task.

Password 3:____
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[Subjects make decisions in the actual RA task.]

I will now come around and ask you to roll a 10-sided die to determine if you are being paid
for one of the decisions. If the roll of the die gives the number 1 you will be paid for one of the 40
decisions, but if the roll gives any other number you will not be paid. If you are paid for one of the
40 decisions, then I will ask you to roll a 4-sided and a 10-sided die to select one of the decisions for
payment. A third die roll with a 10-sided die determines the payment for your choice of Option A or
B. 

Password 4:____

[Roll 10-sided die to determine if they are being paid.]
[Roll 4-sided and 10-sided dice to determine the decision for payment.]
[Roll 10-sided die to determine payment in Option A and B.]

You will now continue with the third task. I will distribute the instructions and then read it
out loud. 

[ADDITIONAL INSTRUCTIONS WERE PROVIDED HERE]

B. Typical Screen Shots for Lottery Choices

The first screen shot on the next page shows the full screen within which the text box is
contained, so that one gets an impression of what the subject encountered in all screen shots. Then
we display more detailed screen shots of the practice example and the first few lottery choices. Prior
to each block of 10 lottery choices the subject was told that the lottery prizes for the next 10 choices
would stay the same and the only thing that would vary would be the probabilities. We then show
the sequence of the first two lotteries, and then lottery 11 which uses new prizes.
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C. Typical Screen Shots for Discounting Choices

The next page shows the practice example provided at the beginning of these tasks. The top
panel shows the initial screen shot, and then the next two panels show how the selected option is
highlighted to make it clear to the subject which option is being selected.

The following page shows the information that was given to each subject prior to each block
of 10 choices. This information was that the principal and horizon would remain constant for the
next 10 choices, but that the only thing that would change would be the amount in the “later”
option. In these displays the implied interest rate is displayed.

Finally, after the first 10 choices a new horizon was selected for the next 10 choices.
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D. Parameter Values

Table A1 shows the parameters of the lottery choice tasks, and Table B2 shows the
parameters of the discounting choice tasks.

In Table A1 the parameters are (1) the decision number, (2) the probability of the high prize
in each lottery, (3) the high prize of lottery A, in kroner, (4) the low prize of lottery A, in kroner, (5)
the high prize of lottery B, in kroner, (6) the low prize of lottery B, in kroner, (7) the expected value
of lottery A, and (8) the expected value of lottery B. The information in columns (7) and (8) was not
presented to subjects.

Table A1: Parameters for Lottery Choices

Decision Probability
of High Prize

Lottery A
High Prize 

Lottery A
Low Prize

Lottery B
High Prize

Lottery B
Low Prize

EV of
Lottery A

EV of
Lottery B

(1) (2) (3) (4) (5) (6) (7) (8)

1 0.1 1125 750 2000 250 787.5 425
2 0.2 1125 750 2000 250 825 600
3 0.3 1125 750 2000 250 862.5 775
4 0.4 1125 750 2000 250 900 950
5 0.5 1125 750 2000 250 937.5 1125
6 0.6 1125 750 2000 250 975 1300
7 0.7 1125 750 2000 250 1012.5 1475
8 0.8 1125 750 2000 250 1050 1650
9 0.9 1125 750 2000 250 1087.5 1825
10 1 1125 750 2000 250 1125 2000
11 0.1 1000 875 2000 75 887.5 267.5
12 0.2 1000 875 2000 75 900 460
13 0.3 1000 875 2000 75 912.5 652.5
14 0.4 1000 875 2000 75 925 845
15 0.5 1000 875 2000 75 937.5 1037.5
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16 0.6 1000 875 2000 75 950 1230
17 0.7 1000 875 2000 75 962.5 1422.5
18 0.8 1000 875 2000 75 975 1615
19 0.9 1000 875 2000 75 987.5 1807.5
20 1 1000 875 2000 75 1000 2000
21 0.1 2000 1600 3850 100 1640 475
22 0.2 2000 1600 3850 100 1680 850
23 0.3 2000 1600 3850 100 1720 1225
24 0.4 2000 1600 3850 100 1760 1600
25 0.5 2000 1600 3850 100 1800 1975
26 0.6 2000 1600 3850 100 1840 2350
27 0.7 2000 1600 3850 100 1880 2725
28 0.8 2000 1600 3850 100 1920 3100
29 0.9 2000 1600 3850 100 1960 3475
30 1 2000 1600 3850 100 2000 3850
31 0.1 2250 1000 4500 50 1125 495
32 0.2 2250 1000 4500 50 1250 940
33 0.3 2250 1000 4500 50 1375 1385
34 0.4 2250 1000 4500 50 1500 1830
35 0.5 2250 1000 4500 50 1625 2275
36 0.6 2250 1000 4500 50 1750 2720
37 0.7 2250 1000 4500 50 1875 3165
38 0.8 2250 1000 4500 50 2000 3610
39 0.9 2250 1000 4500 50 2125 4055
40 1 2250 1000 4500 50 2250 4500

In Table B2 the parameters are (1) the horizon in months, (2) the task number in sequence if
this horizon was selected for the subject to make choices over, (3) the principal of 3000 kroner if the
subject had the “higher stakes” condition, (4) the principal of 1500 kroner if the subject had the
“lower stakes” condition, (5) the annual interest rate presented to the subject if that treatment was
applied (this is also the annual effective rate with annual compounding), (6) the delayed payment if
the subject had the “higher stakes” condition, (7) the delayed payment if the subject had the “lower
stakes” condition, (8) the implied annual effective rate with quarterly compounding, and (9) the
implied annual effective rate with daily compounding. The values in columns (8) and (9) were not
presented to subjects.

Table A2: Parameters for Discounting Choices
 
Horizon

in
months Task

Principal
in high
stakes

Principal
if low
stakes

Annual
Interest

Rate

Delayed
Payment

if low stakes

Delayed
Payment

if high stakes

AER
Quarterly

AER
Daily

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.5 1 3000 1500 5% 3006.10 1503.05 5.1% 5.1%
0.5 2 3000 1500 10% 3011.94 1505.97 10.4% 10.5%
0.5 3 3000 1500 15% 3017.52 1508.76 15.9% 16.2%
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0.5 4 3000 1500 20% 3022.88 1511.44 21.6% 22.1%
0.5 5 3000 1500 25% 3028.02 1514.01 27.4% 28.4%
0.5 6 3000 1500 30% 3032.98 1516.49 33.5% 35.0%
0.5 7 3000 1500 35% 3037.75 1518.87 39.9% 41.9%
0.5 8 3000 1500 40% 3042.36 1521.18 46.4% 49.1%
0.5 9 3000 1500 45% 3046.81 1523.40 53.2% 56.8%
0.5 10 3000 1500 50% 3051.11 1525.56 60.2% 64.8%
1 1 3000 1500 5% 3012.22 1506.11 5.1% 5.1%
1 2 3000 1500 10% 3023.92 1511.96 10.4% 10.5%
1 3 3000 1500 15% 3035.14 1517.57 15.9% 16.2%
1 4 3000 1500 20% 3045.93 1522.96 21.6% 22.1%
1 5 3000 1500 25% 3056.31 1528.15 27.4% 28.4%
1 6 3000 1500 30% 3066.31 1533.16 33.5% 35.0%
1 7 3000 1500 35% 3075.97 1537.99 39.9% 41.9%
1 8 3000 1500 40% 3085.31 1542.65 46.4% 49.1%
1 9 3000 1500 45% 3094.34 1547.17 53.2% 56.8%
1 10 3000 1500 50% 3103.10 1551.55 60.2% 64.8%
2 1 3000 1500 5% 3024.49 1512.25 5.1% 5.1%
2 2 3000 1500 10% 3048.04 1524.02 10.4% 10.5%
2 3 3000 1500 15% 3070.70 1535.35 15.9% 16.2%
2 4 3000 1500 20% 3092.56 1546.28 21.6% 22.1%
2 5 3000 1500 25% 3113.67 1556.84 27.4% 28.4%
2 6 3000 1500 30% 3134.09 1567.05 33.5% 35.0%
2 7 3000 1500 35% 3153.87 1576.93 39.9% 41.9%
2 8 3000 1500 40% 3173.04 1586.52 46.4% 49.1%
2 9 3000 1500 45% 3191.65 1595.83 53.2% 56.8%
2 10 3000 1500 50% 3209.74 1604.87 60.2% 64.8%
3 1 3000 1500 5% 3036.82 1518.41 5.1% 5.1%
3 2 3000 1500 10% 3072.34 1536.17 10.4% 10.5%
3 3 3000 1500 15% 3106.67 1553.34 15.9% 16.2%
3 4 3000 1500 20% 3139.91 1569.95 21.6% 22.1%
3 5 3000 1500 25% 3172.11 1586.06 27.4% 28.4%
3 6 3000 1500 30% 3203.37 1601.68 33.5% 35.0%
3 7 3000 1500 35% 3233.74 1616.87 39.9% 41.9%
3 8 3000 1500 40% 3263.27 1631.64 46.4% 49.1%
3 9 3000 1500 45% 3292.03 1646.01 53.2% 56.8%
3 10 3000 1500 50% 3320.05 1660.02 60.2% 64.8%
4 1 3000 1500 5% 3049.19 1524.59 5.1% 5.1%
4 2 3000 1500 10% 3096.84 1548.42 10.4% 10.5%
4 3 3000 1500 15% 3143.07 1571.53 15.9% 16.2%
4 4 3000 1500 20% 3187.98 1593.99 21.6% 22.1%
4 5 3000 1500 25% 3231.65 1615.83 27.4% 28.4%
4 6 3000 1500 30% 3274.18 1637.09 33.5% 35.0%
4 7 3000 1500 35% 3315.63 1657.81 39.9% 41.9%
4 8 3000 1500 40% 3356.07 1678.03 46.4% 49.1%
4 9 3000 1500 45% 3395.55 1697.78 53.2% 56.8%
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4 10 3000 1500 50% 3434.14 1717.07 60.2% 64.8%
5 1 3000 1500 5% 3061.61 1530.81 5.1% 5.1%
5 2 3000 1500 10% 3121.53 1560.77 10.4% 10.5%
5 3 3000 1500 15% 3179.89 1589.94 15.9% 16.2%
5 4 3000 1500 20% 3236.78 1618.39 21.6% 22.1%
5 5 3000 1500 25% 3292.31 1646.15 27.4% 28.4%
5 6 3000 1500 30% 3346.55 1673.28 33.5% 35.0%
5 7 3000 1500 35% 3399.59 1699.80 39.9% 41.9%
5 8 3000 1500 40% 3451.50 1725.75 46.4% 49.1%
5 9 3000 1500 45% 3502.34 1751.17 53.2% 56.8%
5 10 3000 1500 50% 3552.16 1776.08 60.2% 64.8%
6 1 3000 1500 5% 3074.09 1537.04 5.1% 5.1%
6 2 3000 1500 10% 3146.43 1573.21 10.4% 10.5%
6 3 3000 1500 15% 3217.14 1608.57 15.9% 16.2%
6 4 3000 1500 20% 3286.34 1643.17 21.6% 22.1%
6 5 3000 1500 25% 3354.10 1677.05 27.4% 28.4%
6 6 3000 1500 30% 3420.53 1710.26 33.5% 35.0%
6 7 3000 1500 35% 3485.69 1742.84 39.9% 41.9%
6 8 3000 1500 40% 3549.65 1774.82 46.4% 49.1%
6 9 3000 1500 45% 3612.48 1806.24 53.2% 56.8%
6 10 3000 1500 50% 3674.23 1837.12 60.2% 64.8%
7 1 3000 1500 5% 3086.61 1543.30 5.1% 5.1%
7 2 3000 1500 10% 3171.52 1585.76 10.4% 10.5%
7 3 3000 1500 15% 3254.83 1627.42 15.9% 16.2%
7 4 3000 1500 20% 3336.65 1668.32 21.6% 22.1%
7 5 3000 1500 25% 3417.06 1708.53 27.4% 28.4%
7 6 3000 1500 30% 3496.14 1748.07 33.5% 35.0%
7 7 3000 1500 35% 3573.96 1786.98 39.9% 41.9%
7 8 3000 1500 40% 3650.59 1825.29 46.4% 49.1%
7 9 3000 1500 45% 3726.08 1863.04 53.2% 56.8%
7 10 3000 1500 50% 3800.50 1900.25 60.2% 64.8%
8 1 3000 1500 5% 3099.18 1549.59 5.1% 5.1%
8 2 3000 1500 10% 3196.81 1598.40 10.4% 10.5%
8 3 3000 1500 15% 3292.96 1646.48 15.9% 16.2%
8 4 3000 1500 20% 3387.73 1693.86 21.6% 22.1%
8 5 3000 1500 25% 3481.19 1740.60 27.4% 28.4%
8 6 3000 1500 30% 3573.42 1786.71 33.5% 35.0%
8 7 3000 1500 35% 3664.46 1832.23 39.9% 41.9%
8 8 3000 1500 40% 3754.39 1877.20 46.4% 49.1%
8 9 3000 1500 45% 3843.26 1921.63 53.2% 56.8%
8 10 3000 1500 50% 3931.11 1965.56 60.2% 64.8%
9 1 3000 1500 5% 3111.81 1555.91 5.1% 5.1%
9 2 3000 1500 10% 3222.30 1611.15 10.4% 10.5%
9 3 3000 1500 15% 3331.54 1665.77 15.9% 16.2%
9 4 3000 1500 20% 3439.59 1719.80 21.6% 22.1%
9 5 3000 1500 25% 3546.53 1773.27 27.4% 28.4%
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9 6 3000 1500 30% 3652.40 1826.20 33.5% 35.0%
9 7 3000 1500 35% 3757.26 1878.63 39.9% 41.9%
9 8 3000 1500 40% 3861.16 1930.58 46.4% 49.1%
9 9 3000 1500 45% 3964.12 1982.06 53.2% 56.8%
9 10 3000 1500 50% 4066.21 2033.10 60.2% 64.8%
11 1 3000 1500 5% 3137.22 1568.61 5.1% 5.1%
11 2 3000 1500 10% 3273.89 1636.95 10.4% 10.5%
11 3 3000 1500 15% 3410.05 1705.03 15.9% 16.2%
11 4 3000 1500 20% 3545.72 1772.86 21.6% 22.1%
11 5 3000 1500 25% 3680.91 1840.46 27.4% 28.4%
11 6 3000 1500 30% 3815.66 1907.83 33.5% 35.0%
11 7 3000 1500 35% 3949.97 1974.99 39.9% 41.9%
11 8 3000 1500 40% 4083.87 2041.94 46.4% 49.1%
11 9 3000 1500 45% 4217.37 2108.69 53.2% 56.8%
11 10 3000 1500 50% 4350.49 2175.25 60.2% 64.8%
12 1 3000 1500 5% 3150 1575 5.1% 5.1%
12 2 3000 1500 10% 3300 1650 10.4% 10.5%
12 3 3000 1500 15% 3450 1725 15.9% 16.2%
12 4 3000 1500 20% 3600 1800 21.6% 22.1%
12 5 3000 1500 25% 3750 1875 27.4% 28.4%
12 6 3000 1500 30% 3900 1950 33.5% 35.0%
12 7 3000 1500 35% 4050 2025 39.9% 41.9%
12 8 3000 1500 40% 4200 2100 46.4% 49.1%
12 9 3000 1500 45% 4350 2175 53.2% 56.8%
12 10 3000 1500 50% 4500 2250 60.2% 64.8%
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Appendix B: Additional Data Analyses (NOT FOR PUBLICATION)

B.1 Re-Estimation of Coller and Williams [1999]

Coller and Williams [1999] is a classic study, in the sense that it implemented many of
the procedures that have become standard in the later literature. For that reason, it is useful to
re-estimate their model, using their data. The reason is that we want to be clear what their
data shows, and it is easy to draw ambiguous inferences from their statement of results. This
is because many of the samples in specific treatments were small and involved significant
differences in the demographic composition of the sample. For this reason one wants to
control for demographics, simply to ensure that the marginal effects of treatments is clear.

Another reason for undertaking a re-estimation is that the econometric methods they
employed, “interval regression” in which the dependent variable is recognized as only coming
from an interval, were relatively new at the time. The econometric specification they used was
“hand written” in LIMDEP, and is now standard in many econometric packages such as
Stata. The popularity of this procedure means that newer statistical packages will likely
generate better estimates (in large part from the extra work, “under the numerical hood,”
involved in finding good “starting values.”) Related to this point, their econometric model
used a multiplicative heteroskedasticity specification, to allow the residual variance to depend
on covariates. As valuable as this extension is, it is known to generally lead to relatively flat
likelihood functions, also demanding attention to numerical accuracy.

All variables are defined as in Coller and Williams [1999; p.119], apart from our
variable infomkt which is the same as their cryptic armkt. Apologies for all output being in
Stata-format, but this is an appendix marked “not for publication.”

The first set of results use the interval regression model to conveniently summarize
the data and then show total effects of each treatment. So we see from the first two sets of
estimates, for example, that the overall discount rate, in annualized terms, is 36.5%, but that is
it 72.5% when there is no front end delay and 42.3% lower when there is a front end delay (all
percentages stated in this text should be understood to be percentage points).

. * total effects
Interval regression                               Number of obs   =        199
                                                  LR chi2(0)      =       0.00
Log likelihood = -789.33316                       Prob > chi2     =          .

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [90% Conf. Interval]
-------------+----------------------------------------------------------------
       _cons |   36.51779     3.5657    10.24   0.000     30.65274    42.38285
-------------+----------------------------------------------------------------
    /lnsigma |   3.913105   .0539376    72.55   0.000     3.824385    4.001824
-------------+----------------------------------------------------------------
       sigma |   50.05412   2.699798                      45.80464    54.69785
------------------------------------------------------------------------------

Interval regression                               Number of obs   =        199
                                                  Wald chi2(1)    =       9.04
Log likelihood = -771.75144                       Prob > chi2     =     0.0026

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [90% Conf. Interval]
-------------+----------------------------------------------------------------
model        |
         fed |  -42.29732   14.06864    -3.01   0.003    -65.43818   -19.15645
       _cons |   72.52874   13.68678     5.30   0.000     50.01599     95.0415
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-------------+----------------------------------------------------------------
lnsigma      |
         fed |  -.5814246   .1481421    -3.92   0.000    -.8250966   -.3377525
       _cons |   4.320643   .1364622    31.66   0.000     4.096183    4.545103
------------------------------------------------------------------------------

Interval regression                               Number of obs   =        199
                                                  Wald chi2(1)    =       8.08
Log likelihood = -777.60117                       Prob > chi2     =     0.0045

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [90% Conf. Interval]
-------------+----------------------------------------------------------------
model        |
       araer |  -20.54823   7.228204    -2.84   0.004    -32.43757   -8.658893
       _cons |   47.44993   6.145224     7.72   0.000     37.34194    57.55793
-------------+----------------------------------------------------------------
lnsigma      |
       araer |  -.4286368   .1074892    -3.99   0.000    -.6054409   -.2518327
       _cons |   4.084631   .0792418    51.55   0.000      3.95429    4.214972
------------------------------------------------------------------------------

Interval regression                               Number of obs   =        199
                                                  Wald chi2(1)    =       2.96
Log likelihood = -787.36913                       Prob > chi2     =     0.0853

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [90% Conf. Interval]
-------------+----------------------------------------------------------------
model        |
        real |    14.1634    8.23214     1.72   0.085      .622739    27.70407
       _cons |   24.85965   7.181675     3.46   0.001     13.04685    36.67246
-------------+----------------------------------------------------------------
lnsigma      |
        real |   .1904092   .1397528     1.36   0.173    -.0394638    .4202821
       _cons |   3.746409   .1264302    29.63   0.000      3.53845    3.954369
------------------------------------------------------------------------------

The next set of estimates includes dummies for each of the treatments, but still pools
across all subjects. We see that the front end delay has a significant effect of lowering elicited
discount rates by 31 percentage points, and that this estimate has a p-value of 0.066. None of
the other treatments have a statistically significant effect here, which is mildly disturbing until
one corrects for demographics.

Interval regression                               Number of obs   =        199
                                                  Wald chi2(5)    =      12.41
Log likelihood = -762.28984                       Prob > chi2     =     0.0296

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [90% Conf. Interval]
-------------+----------------------------------------------------------------
model        |
       araer |  -12.05499   11.73735    -1.03   0.304    -31.36122     7.25124
         mkt |  -12.99401   11.35876    -1.14   0.253     -31.6775    5.689485
        real |   .8000898   8.848733     0.09   0.928    -13.75478    15.35496
     infomkt |   8.916011   14.20957     0.63   0.530    -14.45666    32.28868
         fed |  -30.73606    16.7011    -1.84   0.066    -58.20692   -3.265201
       _cons |    71.7287   16.29811     4.40   0.000      44.9207     98.5367
-------------+----------------------------------------------------------------
lnsigma      |
       araer |  -.2849961   .1770697    -1.61   0.108    -.5762499    .0062576
         mkt |  -.5377438   .1889276    -2.85   0.004    -.8485021   -.2269856
        real |  -.4061529   .1848594    -2.20   0.028    -.7102195   -.1020864
     infomkt |   .1332218   .2611174     0.51   0.610    -.2962781    .5627218
         fed |  -.2908686   .1888792    -1.54   0.124    -.6015472    .0198099
       _cons |   4.726796   .2297714    20.57   0.000     4.348856    5.104737
------------------------------------------------------------------------------

The final estimation includes dummies and controls for individual demographic
characteristics of the sample. The reason that this makes such a big difference here is that
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there were large differences in the sample composition of many of the sessions conducted
here. In part this is due to some of the sessions have a relatively small sample size, and in part
it is just due to the vagaries of recruitment. Of course, one might pursue these demographic
differences further using a sample selection model, but that is beyond the scope (and data
availability) for this re-estimation. At the very least one should simply correct for the
differences in demographics, so that the marginal effect of the treatment is clearer.

These results, then, do lift a cloud of imprecision from two of the treatments that one
might have expected to be significant. One is the provision of information on the implied
annualized interest rates from each choice (variable araer), which now is shown to result in
discount rates that are 12.9 percentage points lower (p-value of 0.050). The other is the use of
real rewards rather than hypothetical survey questions (variable real), which lowers elicited
discount rates by 7.7 percentage points (p-value of 0.037). And, of course, the effect of the
front end delay remains significant and large.

It is also worth noting that almost all of the treatments have a statistically significant
effect on the residual variance of the dependant variable.

The demographics included here are the ones documented by Coller and Williams
[1999; p.119], with one slight exception. There were 22 subjects that did not complete the
question on “parental income” for one reason or another: hence the estimates in Coller and
Williams [1999; Table 5, p. 120] only use 177 = 199 - 22 observations. We imputed parental
income for these subjects at the median response from the 177 that did respond, and then
formed a categorical variable so that the precise value of parental income was not assumed.
One could use more elaborate methods, such as multiple imputation, for this step, but that
seems overkill for this purpose. 

Interval regression                               Number of obs   =        199
                                                  Wald chi2(19)   =     109.16
Log likelihood = -679.95948                       Prob > chi2     =     0.0000

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [90% Conf. Interval]
-------------+----------------------------------------------------------------
model        |
         age |   1.239518   .7854096     1.58   0.115    -.0523658    2.531402
        Male |   7.104897   2.819766     2.52   0.012     2.466796      11.743
        Race |   6.497151   3.891669     1.67   0.095     .0959247    12.89838
       CWhhy |    .189742   .1369622     1.39   0.166    -.0355408    .4150247
       PARy2 |   1.298354   11.39606     0.11   0.909     -17.4465    20.04321
       PARy3 |  -3.394432   9.591225    -0.35   0.723    -19.17059    12.38173
       PARy4 |  -9.085107   9.417319    -0.96   0.335    -24.57522    6.405003
       PARy5 |  -3.332124   9.320018    -0.36   0.721    -18.66219    11.99794
       PARy6 |  -3.094702   10.78107    -0.29   0.774    -20.82799    14.63859
       PARy7 |  -5.670802   9.822198    -0.58   0.564    -21.82688    10.48528
       PARy8 |   5.848071   10.26003     0.57   0.569    -11.02817    22.72432
       PARy9 |   6.212761   12.18999     0.51   0.610    -13.83799    26.26351
          hh |   12.87018   7.668459     1.68   0.093     .2566849    25.48367
         hh2 |  -2.686812   1.397189    -1.92   0.054    -4.984983   -.3886403
       araer |  -12.91904   6.577922    -1.96   0.050    -23.73876   -2.099323
         mkt |  -9.324936    6.63819    -1.40   0.160    -20.24379    1.593916
        real |   7.771713   3.730379     2.08   0.037     1.635785    13.90764
     infomkt |    9.23046   7.750076     1.19   0.234    -3.517281     21.9782
         fed |  -30.49949   14.66329    -2.08   0.038    -54.61845   -6.380528
       _cons |   14.00403   22.95289     0.61   0.542    -23.75012    51.75818
-------------+----------------------------------------------------------------
lnsigma      |
         age |   .0375082   .0198518     1.89   0.059     .0048548    .0701616
        Male |    .537626    .145972     3.68   0.000     .2975234    .7777285
        Race |   .7497739   .1780457     4.21   0.000     .4569148    1.042633
       CWhhy |   .0113375   .0041345     2.74   0.006     .0045369    .0181381
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       PARy2 |  -.2863221   .3613417    -0.79   0.428    -.8806763    .3080321
       PARy3 |  -.7024058    .311774    -2.25   0.024    -1.215228   -.1895832
       PARy4 |  -1.498469   .2983019    -5.02   0.000    -1.989132   -1.007806
       PARy5 |  -1.197474   .2923123    -4.10   0.000    -1.678285   -.7166636
       PARy6 |  -.6610539   .3271795    -2.02   0.043    -1.199216   -.1228916
       PARy7 |  -.6085153   .3217474    -1.89   0.059    -1.137743   -.0792879
       PARy8 |  -.1699196   .3015514    -0.56   0.573    -.6659276    .3260883
       PARy9 |  -.0362514   .3067126    -0.12   0.906    -.5407488    .4682459
          hh |   1.557991   .5041435     3.09   0.002     .7287483    2.387233
         hh2 |  -.3579855   .1083859    -3.30   0.001    -.5362644   -.1797066
       araer |  -.8166207   .2502693    -3.26   0.001    -1.228277   -.4049643
         mkt |  -1.066501   .2466513    -4.32   0.000    -1.472206    -.660796
        real |   .4802592   .2987445     1.61   0.108    -.0111317    .9716502
     infomkt |   .9138699   .3894284     2.35   0.019     .2733171    1.554423
         fed |  -.5885626   .2408822    -2.44   0.015    -.9847785   -.1923466
       _cons |   1.912509   .8147032     2.35   0.019     .5724418    3.252577
------------------------------------------------------------------------------

B.2 Expo-Power Utility Function

As explained in the text, an attractive generalization of the CRRA utility function, is
the Expo-Power (EP) utility function proposed by Saha [1993]. Following Holt and Laury
[2002], the EP function is defined as

U(x) = [1!exp(!"x1!r)]/", (22')
where " and r are parameters to be estimated. RRA is then r + "(1!r)y1!r, so RRA varies with
income if "…0. This function nests CRRA (as "60) and CARA (as r60). Although we cannot
formally reject the hypothesis of decreasing RRA, since "<0, the variation in RRA over the
domain of prizes presented to our subjects was minor. Here are the ML estimates, just using
the responses to the lottery choice task:

                               (Std. Err. adjusted for 413 clusters in userid)
------------------------------------------------------------------------------
             |               Robust
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
mu           |
       _cons |   .1786807   .0109985    16.25   0.000      .157124    .2002374
-------------+----------------------------------------------------------------
r            |
       _cons |    .824448    .015911    51.82   0.000      .793263    .8556331
-------------+----------------------------------------------------------------
alpha        |
       _cons |  -.2927343   .0290346   -10.08   0.000     -.349641   -.2358276
------------------------------------------------------------------------------

The range of RRA is then calculated for different prize levels, along with the 95% confidence
interval. Figure B1 plots more detailed estimates of RRA. We therefore conclude that it is a
reasonable approximation to assume CRRA in our analysis.

       y     Point        95% Confidence    
           Estimate          Interval  
   --------------------------------------- 
     100   .7901455   .7611384   .8191525  
     200   .7857068   .7561253   .8152882  
     300   .7828487   .7528473   .8128501  
     400   .7806938   .7503519   .8110357  
     500   .7789458   .7483134   .8095782  
   --------------------------------------- 
    1000    .773058   .7413594   .8047565  
    2000   .7664083   .7333585    .799458  
    3000   .7621264   .7281325   .7961203  
    4000   .7588981   .7241571   .7936392  
    5000   .7562794   .7209112   .7916476  
   ---------------------------------------
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B.3 Analysis of Anderhub, Güth, Gneezy and Sonsino [2001]

Anderhub, Güth, Gneezy and Sonsino [2001] is a simple experiment in which
discount rates can be inferred from the certainty equivalents of time-dated lotteries that are
elicited from subjects. Assume that the Becker, DeGroot and Marschak [1964] procedure
works reliably to elicit the certainty equivalent of a lottery; we do not believe this to be the
case, but that is not the issue here.

In their P treatment they endowed each subject with 75 currency units (New Israeli
Shekels), and asked them to state a buying price for a 50:50 lottery of 125 and 25 payable now,
in 4 weeks, or in 8 weeks. These buying prices are certainty-equivalents for the lottery. Refer
to the elicited certainty-equivalents for these time-dated lotteries as L0, L4 and L8. If these
selling prices were below some randomly generated buying price, the subject kept the 75 now
and did not get to play out the lottery. The ratio of L4 to L0 is a discount factor for a horizon
of 4 weeks starting now, and the ratio of L8 to L4 is a discount factor for a horizon of 4
weeks starting in 4 weeks. From these revealed discount factors one can infer discount rates
on an annualized basis, using the standard formulae. Then one can see if the discount rate
between now and the 4 week horizon is different from the discount rate between 4 weeks and
8 weeks: in particular, given the one-sided prior that the literature has generated, one can test
if these discount rates are declining. After making three valuation decisions, one of the 3
horizons was played out at random.
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Figure B1: Is Relative Risk Aversion Constant?
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In their A treatment the subject was instead endowed with the lottery and asked to
state a selling price for it. A computer-generated buying price was generated, and if the selling
price was above that buying price the subject kept the lottery. Again, one of the three
horizons was selected at random to be played out. And, again, the stated selling prices are the
certainty-equivalents of the lottery.

The data for the P treatment is displayed below. Anderhub, Güth, Gneezy and
Sonsino [2001; p.251-252] list the values of L0, L4 and L8, the ratio of L4 to L0, and the ratio
of L8 to L4. In our notation p_L0 is the reported value of L0 in the P treatment, p_d1 is the
reported ratio of L4 to L0 in the P treatment, and p_d2 is the reported ratio of L8 to L4.
Hence, for subject #1, the value of L0 in the P treatment is 26, so the inferred values of L4
and L8 are also 26, since the ratio in each case is equal to 1. For subject #2, L4 is inferred to
be 40 × 0.875 = 35, and L8 is inferred to be 35 × 0.857 = 30. We take the values of p_L0,
p_d1 and p_d2 directly from the published data (hence there may be some trivial rounding
errors in recovering integer-valued certainty equivalents).

We then infer the monthly discount rates as p_dr1 and p_dr2, and then the
annualized discount rates, assuming monthly compounding, as P_DR1 and P_DR2. Finally,
we define the difference in implied annual discount rates as P_DR_DIFF = P_DR2 -
P_DR1. The null hypothesis from the Exponential discounting model is that P_DR_DIFF is
zero, and the null hypothesis from the Hyperbolic discounting model is that P_DR_DIFF <
0.

    id   p_L0    p_d1    p_d2   p_dr1   p_dr2   P_DR1   P_DR2   P_DR_DIFF  
   ---------------------------------------------------------------------- 
     1     26   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
     2     40   0.875   0.857   0.143   0.167    3.96    5.37       1.41  
     3     45   0.778   0.857   0.285   0.167   19.34    5.37     -13.96  
     4     45   0.888   0.857   0.126   0.167    3.16    5.37       2.21  
     5     45   0.888   1.000   0.126   0.000    3.16    0.00      -3.16  
   ---------------------------------------------------------------------- 
     6     45   0.888   1.000   0.126   0.000    3.16    0.00      -3.16  
     7     50   0.800   0.857   0.250   0.167   13.55    5.37      -8.18  
     8     50   0.800   1.000   0.250   0.000   13.55    0.00     -13.55  
     9     50   0.900   0.889   0.111   0.125    2.54    3.10       0.56  
    10     50   0.900   0.889   0.111   0.125    2.54    3.10       0.56  
   ---------------------------------------------------------------------- 
    11     50   0.900   0.889   0.111   0.125    2.54    3.10       0.56  
    12     50   0.900   0.889   0.111   0.125    2.54    3.10       0.56  
    13     50   0.940   0.957   0.064   0.045    1.10    0.69      -0.41  
    14     50   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
    15     50   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
   ---------------------------------------------------------------------- 
    16     50   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
    17     50   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
    18     50   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
    19     50   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
    20     50   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
   ---------------------------------------------------------------------- 
    21     50   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
    22     50   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
    23     50   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
    24     60   0.833   1.000   0.200   0.000    7.96    0.00      -7.96  
    25     65   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
   ---------------------------------------------------------------------- 
    26     70   1.000   1.000   0.000   0.000    0.00    0.00       0.00  
    27     75   1.000   1.000   0.000   0.000    0.00    0.00       0.00  

There were 27 subjects in treatment P. The obvious thing to see from these data is that a large
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number of subjects exhibited no discount rate at all, and stated the same certainty-equivalent
(e.g., #27). Whatever the procedural interpretation of these responses, and there could be
many, we should evaluate the data with and without their responses.

The corresponding data from the 34 subjects in the A treatment is listed below, and is
defined identically.

  | id   a_L0    a_d1    a_d2    a_dr1    a_dr2    A_DR1    A_DR2   A_DR_D~F |
  |--------------------------------------------------------------------------|
  |  1     50   0.800   0.750    0.250    0.333    13.55    30.57      17.02 |
  |  2     50   0.900   0.888    0.111    0.126     2.54     3.16       0.62 |
  |  3     50   0.940   0.957    0.064    0.045     1.10     0.69      -0.41 |
  |  4     60   0.666   0.875    0.502    0.143   130.31     3.96    -126.35 |
  |  5     60   0.833   0.800    0.200    0.250     7.96    13.55       5.59 |
  |--------------------------------------------------------------------------|
  |  6     60   0.833   0.800    0.200    0.250     7.96    13.55       5.59 |
  |  7     60   0.916   0.909    0.092    0.100     1.87     2.14       0.28 |
  |  8     60   0.916   0.909    0.092    0.100     1.87     2.14       0.28 |
  |  9     65   0.846   0.727    0.182    0.376     6.44    44.88      38.44 |
  | 10     65   0.846   0.818    0.182    0.222     6.44    10.14       3.70 |
  |--------------------------------------------------------------------------|
  | 11     70   0.857   1.000    0.167    0.000     5.37     0.00      -5.37 |
  | 12     70   0.957   0.970    0.045    0.031     0.69     0.44      -0.25 |
  | 13     72   0.972   1.000    0.029    0.000     0.41     0.00      -0.41 |
  | 14     75   0.933   0.971    0.072    0.030     1.30     0.42      -0.87 |
  | 15     75   0.667   1.000    0.499    0.000   127.97     0.00    -127.97 |
  |--------------------------------------------------------------------------|
  | 16     75   0.800   0.667    0.250    0.499    13.55   127.97     114.42 |
  | 17     75   0.800   0.833    0.250    0.200    13.55     7.96      -5.59 |
  | 18     75   0.867   0.769    0.153    0.300     4.54    22.38      17.84 |
  | 19     75   0.900   0.889    0.111    0.125     2.54     3.10       0.56 |
  | 20     75   0.906   0.882    0.104    0.134     2.27     3.51       1.24 |
  |--------------------------------------------------------------------------|
  | 21     75   0.933   0.928    0.072    0.078     1.30     1.45       0.15 |
  | 22     75   0.933   1.000    0.072    0.000     1.30     0.00      -1.30 |
  | 23     75   1.000   1.000    0.000    0.000     0.00     0.00       0.00 |
  | 24     75   1.000   1.000    0.000    0.000     0.00     0.00       0.00 |
  | 25     75   1.000   1.000    0.000    0.000     0.00     0.00       0.00 |
  |--------------------------------------------------------------------------|
  | 26     75   1.000   1.000    0.000    0.000     0.00     0.00       0.00 |
  | 27     75   1.000   1.000    0.000    0.000     0.00     0.00       0.00 |
  | 28     75   1.000   1.000    0.000    0.000     0.00     0.00       0.00 |
  | 29     75   1.000   1.000    0.000    0.000     0.00     0.00       0.00 |
  | 30     75   1.000   1.000    0.000    0.000     0.00     0.00       0.00 |
  |--------------------------------------------------------------------------|
  | 31     75   1.000   1.000    0.000    0.000     0.00     0.00       0.00 |
  | 32     75   1.066   1.062   -0.062   -0.058    -0.54    -0.51       0.02 |
  | 33    100   0.800   0.875    0.250    0.143    13.55     3.96      -9.59 |
  | 34    100   0.950   0.947    0.053    0.056     0.85     0.92       0.07 |

Again, we see a significant number of subjects that did not display any discount rate (e.g.,
#23), and indeed one subject (#32) that displayed a negative discount rate.

Overall discount rates are very, very high. Including the complete sample, we have the
following statistics

    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
       P_DR1 |        27    2.929826    4.982409          0   19.33503
       P_DR2 |        27    1.281289     2.05776          0   5.371331

       A_DR1 |        34    10.84406    30.34475  -.5355771   130.3135
       A_DR2 |        34     8.71797    23.25862  -.5141462   127.9704
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where these are rates, not percentage points. So the average annualized discount rate for the 4
weeks from now is 293% in the P treatment, and 1,084% in the A treatment. If we drop out
the subjects that displayed no positive discount rate at all, things are even worse:

    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
       P_DR1 |        13    6.085023    5.743413   1.101192   19.33503
       P_DR2 |         9    3.843867    1.637144   .6945588   5.371331

       A_DR1 |        24    15.38473    35.32696   .4060631   130.3135
       A_DR2 |        20    14.84626    29.04389   .4235383   127.9704

We report the full-sample discount rates in Table 5 in the text.

Simple one-sample t-tests can be used to evaluate these data, focusing now on the
differences in implied discount rates. For the P treatment we have, using the entire sample:

. ttest A_DR_DIFF=0

One-sample t test
------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
A_DR_DIFF       34    -2.12609    6.513188    37.97809   -15.37727    11.12509
------------------------------------------------------------------------------
    mean = mean(A_DR_DIFF)                                        t =  -0.3264
Ho: mean = 0                                     degrees of freedom =       33

    Ha: mean < 0                 Ha: mean != 0                 Ha: mean > 0
 Pr(T < t) = 0.3731         Pr(|T| > |t|) = 0.7462          Pr(T > t) = 0.6269

From the perspective of the Exponential model the two-sided alternative hypothesis in the
middle is the appropriate one, and the p-value of 0.74 clearly shows that one cannot reject the
null that the Exponential discounting model is correct. Of course, this may be biased because
of the large number of subjects that “flat-lined” with their certainty-equivalents and had 0
discount rates; we evaluate this possibility in a moment. From the perspective of the
Hyperbolic model the one-sided alternative hypothesis on the left is the appropriate one, and
the p-value of 0.37 clearly shows again that one cannot reject the null that the Exponential
discounting model is correct. If we drop the observations with no discount rate, the sample
size drops significantly, but we obtain these test results:

. ttest P_DR_DIFF=0 if p_dr1>0 & p_dr2>0

One-sample t test
------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
P_DR_DIFF        9    -1.85339    1.823059    5.469176   -6.057371     2.35059
------------------------------------------------------------------------------
    mean = mean(P_DR_DIFF)                                        t =  -1.0166
Ho: mean = 0                                     degrees of freedom =        8

    Ha: mean < 0                 Ha: mean != 0                 Ha: mean > 0
 Pr(T < t) = 0.1695         Pr(|T| > |t|) = 0.3391          Pr(T > t) = 0.8305

So we arrive at the same qualitative conclusions as when we use the complete sample.

Turning to the A treatment, the two comparable sets of tests are as follows:
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. ttest A_DR_DIFF=0

One-sample t test
------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
A_DR_DIFF       34    -2.12609    6.513188    37.97809   -15.37727    11.12509
------------------------------------------------------------------------------
    mean = mean(A_DR_DIFF)                                        t =  -0.3264
Ho: mean = 0                                     degrees of freedom =       33

    Ha: mean < 0                 Ha: mean != 0                 Ha: mean > 0
 Pr(T < t) = 0.3731         Pr(|T| > |t|) = 0.7462          Pr(T > t) = 0.6269

. ttest A_DR_DIFF=0 if a_dr1>0 & a_dr2>0

One-sample t test
------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
A_DR_DIFF       20    3.136883     9.05347    40.48835   -15.81225    22.08601
------------------------------------------------------------------------------
    mean = mean(A_DR_DIFF)                                        t =   0.3465
Ho: mean = 0                                     degrees of freedom =       19

    Ha: mean < 0                 Ha: mean != 0                 Ha: mean > 0
 Pr(T < t) = 0.6336         Pr(|T| > |t|) = 0.7328          Pr(T > t) = 0.3664

Hence there is no evidence from the A treatment that contradicts the Exponential
discounting model.

We therefore conclude that the evidence in Anderhub, Güth, Gneezy and Sonsino
[2001] is consistent with the Exponential discounting model, in keeping with their own non-
parametric analysis (Table 1, p.245).

B.4 Re-Analysis of Andersen, Harrison, Lau and Rutström [2008a]

There are many changes between the experiments conducted in 2003 and those
reported here and conducted in 2009, apart from the dates of the experiments.

First, in 2003 a “multiple price list” interface was employed, following Coller and
Williams [1999] and Harrison, Lau and Williams [2002]. The present design shows each
binary choice one at a time, rather than several on one page. On the other hand, the subject in
the present design is told explicitly that the next few choices are connected to each other by a
simple change in provability or the delayed payment amount.

Second, in 2003 the multiple price list was “iterated” to offer follow-up choices to
generate more refined estimates of risk attitudes and discount rates. This feature was
extensively evaluated in Andersen, Harrison, Lau and Rutström [2006], and there is no
evidence that it led to systematic changes in behavior. For the analysis presented here and in
Andersen, Harrison, Lau and Rutström [2008a] only the “first level” responses from the 2003
experiments are used. But the knowledge of the later iterations might have affected behavior
in some sense.

Third, in 2003 there was no check for order effects between the lottery choice task
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and the discounting tasks. The lottery choice tasks always came before the discounting tasks,
and that order was a treatment in the present design, so we can restrict the sample in the
present design to match the 2003 design.

Fourth, in 2003 the discounting tasks all employed a front end delay for the sooner
option, every choice was presented with the implied annual effective interest rate shown, and
every horizon presented was longer than the previous one. In the present design these are all
treatments, so we can again restrict the sample in the present design to match the 2003
design.

Fifth, the subjects in 2003 were given incentivized trainers using Tom’s caramel candy,
and the subjects in 2009 were given incentivized trainers using Big Ben caramel candy. 

Apart from these design differences, the structural models differ. Andersen, Harrison,
Lau and Rutström [2008a] employed a “dual-self” specification of the utility function
underlying all choices, and we employ a simpler specification. In each case the models are
restricted so that negative discount rates are ruled out a priori. For comparability with the
present results, we therefore re-estimate the 2003 sample responses using the present
structural model. We also restrict the sample to best reflect the treatments employed in 2003.

When our 2009 sample of 413 is restricted in this manner we end up with 61 subjects.
The maximum likelihood estimates, comparable to Panel A of Table 1 for the full sample, are 
0.66 for r with a standard error of 0.099 and 95% confidence interval 0.47 : 0.092, and
0.0525 for * with a standard error of 0.020 and 95% confidence interval 0.052 : 0.056. So
these are very close to the full sample estimates we report.

Our 2003 sample of 253 subjects generates comparable maximum likelihood
estimates that exhibit more risk aversion and, consequently, lower discount rates. We estimate
r to be 0.86 with a 95% confidence interval of 0.82 : 0.90, and * to be 0.031 with a 95%
confidence interval 0.022 : 0.040.

A re-analysis of the 2003 sample using random coefficients methods is contained in
Andersen, Harrison, Lau and Rutström [2010; §4].
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47 It is trivial to allow J and T to vary with the individual, but for ease of notation we omit that
generality.

48 The choice of the power function is purely for pedagogical reasons and to keep the exposition
simple. 

-88-

Appendix C: Random Coefficients (NOT FOR PUBLICATION)

Our random coefficients specification directly estimates the structural parameters of
the utility functions and discounting functions reviewed in the text. The conventional random
coefficients specification, also referred to as a “mixed specification,” assumes a linear latent
index. We need to generalize that specification to allow non-linear latent indices. Following
Andersen, Harrison, Hole, Lau and Rutström [2010], we focus on the basic logic assuming we
are just trying to estimate one coefficient in a simple set of risk aversion tasks. The logic
extends immediately to the joint estimation setting that our analysis requires when we include
the choices from the discounting tasks. Moreover, it extends immediately to allow mixture
specifications.

C.1 Basic Random Coefficients Specification

Assume a sample of N subjects making choices over J lotteries in T experimental
tasks.47 In all of the applications we consider, J=2 since the subjects are making choices over
two lotteries or time-dated payments, but there are many designs in which the subject is asked
to make choices over J>2 lotteries (e.g., Binswanger [1981]). In the traditional mixed logit
literature one can view the individual n as deriving random utility ) from alternative j in task
t, given by

)njt = $n xnjt + gnjt (1)

where $n is a vector of coefficients specific to subject n, xnjt is a vector of observed attributes
of individual j and/or alternative j in task t, and gnjt is a random term that is assumed to be
identically and independently distributed extreme value.  We use the symbol ) for utility in
(1), since we will need to generalize to allow for non-linear utility and discounting functions,
and prefer to think of (1) as defining a latent index rather than as utility. In our experience,
this purely semantic difference avoids some confusions about interpretation.

Specifically, for our purposes we need to extend (1) to allow for non-linear functions
G defined over $ and the values of x, such as

)njt = G($n, xnjt) + gnjt (2)

For example, x might consist of the vector of monetary prizes mk and probabilities pk, for
outcome k of K in a given lottery, and we might assume a Constant Relative Risk Aversion
(CRRA) utility function

U(mk) = mk
r (3)

where r is a parameter to be estimated.48 Under expected utility theory (EUT) the probabilities
for each outcome are those that are induced by the experimenter, so expected utility is simply
the probability weighted utility of each outcome in each lottery j:



49 This approach generalizes immediately to non-EUT models in which there are more parameters,
say to account for probability weighting and loss aversion. It also generalizes to non-CRRA specifications
within EUT models that allow for more flexible specifications of risk attitudes that might vary with the level
of the prizes. Each of these extensions involves more non-linearities than our EUT example, taking us even
further from the domain of linear mixed logit.
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EUj = 'k [ pk × U(mk) ] (4)

If we let $=r here, we will want to let G($n, xnjt) be defined as

G(rn, mnjt, pnjt) = EUj (5)

using (3) and (4), and hence let the latent index ) in (2) be evaluated.49

The population density for $ is denoted f ($|2), where 2 is a vector defining what we
refer to as the hyper-parameters of the distribution of $. Thus individual realizations of $,
such as $n, are distributed according to some density function f. For example, if f  is a Normal
density then 21 would be the mean of that density and 22 the standard deviation of that
density, and we would estimate the hyper-parameters 21 and 22. Or f could be a Uniform
density and 21 would be the lower bound and 22 would be the upper bound. If $ consisted of
more than two parameters, then 2 might also include terms representing the covariance of
those parameters.

Conditional on $n, the probability that the subject n chooses alternative i in task t is
then given by the conditional logit formula, modestly extended to allow our non-linear index

Lnit($n) = exp{G($n, xnit)} / 'j exp{G($n, xnjt)} (6)

The probability of the observed choices by subject n, over all tasks T, again conditional on
knowing $n, is given by

Pn($n) = (t  Lni(n,t)t($n) (7)

where i(n,t) denotes the lottery chosen by subject n in task t, following the notation of Revelt
and Train [1998]. The unconditional probability involves integrating over the distribution of
$:

Pn(2) = I Pn($n) f ($|2) d $ (8)

and is therefore the weighted average of a product of logit formulas evaluated at different
values of $, with the weights given by the density f. 

We can then define the log-likelihood by

LL(2) = 'n ln Pn(2) (9)

and approximate it numerically using simulation methods, since it cannot be solved
analytically. Using the methods of Maximum Simulated Likelihood (MSL) reviewed in Train



50 An important practical consideration with MSL is the manner in which replicates are drawn, and
the size of H that is practically needed. We employ Halton draws to provide better coverage of the density
than typical uniform number generators: see Train [2003; ch.9] for an exposition, and Drukker and Gates
[2006] for the numerical implementation we employ. All results use H=250, which is generally large in relation
to the literature. Our computational implementation generalizes the linear mixed logit program developed for
Stata by Hole [2007].

51 There are reasons to be suspicious of these theorems, although that is not critical for the point
being made here. Specifically, two critical assumptions seem to connect observables and unobservables in a
highly restrictive way. In one case, the correct claim is made (p.449) that a “primitive postulate of preference
theory is that tastes are established prior to assignment of resource allocations.” But this does not justify the
assumption that “consumers with similar observed characteristics will have similar distributions of
unobserved characteristics.” Then a related, second assumption is made about attributes. Here the correct
claim is that another “primitive postulate of consumer theory is that the description of a resource allocation
does not depend on consumer characteristics. Thus, consumers’ tastes and perceptions do not enter the
‘objective’ description of a resource allocation, although they will obviously enter the consumer’s evaluation
of the allocation.” But it does not follow from this observation that “discrete alternatives that are similar in
their observed attributes will have similar distributions of unobserved attributes.” These assumptions are akin
to the identifying assumptions of “random effects” specifications, that the random effect is orthogonal to the
observed characteristics used as regressors. One other concern with these theorems is that they rest on
polynomial approximations to random utility (McFadden and Train [2000; p. 466]), and these are known to
have unreliable properties in statistical applications (e.g., White [1980; §2]). Referring to the class of
approximations, including the polynomial, that are generated by applications of Taylor’s Theorem, Gallant
[1981; p. 212] notes that this “... theorem fails rather miserably as a means of understanding the statistical
behavior of parameter estimates and test statistics.”
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[2003; §6.6, ch.10] and Cameron and Trivedi [2005; ch.12], we define the simulated log-
likelihood by taking h=1,...,H replications $h from the density f ($|2):

SLL(2) = 'n ln 6 'h Pn($h)/H > (10)

The core insight of MSL is to evaluate the likelihood conditional on a randomly drawn $h, do
that H times, and then simply take the unweighted average over all H likelihoods so
evaluated. The average is unweighted since each replication h is equally likely, by design. If H
is “large enough,” then MSL converges, under modest assumptions, to the Maximum
Likelihood (ML) estimator.50

The value of this extension to non-linear mixed logit might not be obvious, because
of widespread reliance on theorems showing that the linear mixed logit specification can
approximate arbitrarily well any random-utility model (McFadden and Train [2000]; Train
[2003; §6.5]).51 So, why does one need a non-linear mixed logit specification? The reason is
that these results only go in one direction: for any specification of a latent structure, defined
over “deep parameters” such as risk preferences, they show that there exists an equivalent
linear mixed logit. But they do not allow the direct recovery of those deep parameters in the
estimates from the linear mixed logit. The deep parameters, which may be the things of
interest, are buried in the estimates from the mixed logit, but can only be identified with
restrictive assumptions about functional form. For example, risk attitudes can be considered
using a linear specification if one assumes that utility is quadratic or that the distribution of
returns are Normal (e.g., Luenberger [1998; §9.5]); neither are palatable assumptions in
general.



52 Obviously some constraints can be accommodated by well-known transformations, such as non-
negativity and the Log-normal. This alternative is often standard in linear mixed logit specifications (e.g., Hole
[2007; p.390] and the “ln” option). Our approach is more general, particularly for estimates constrained a priori
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Our specification has been couched in the language of estimating the structural
parameters of a model of risk attitudes, but is perfectly general. Another obvious example
would be the use of technology or transportation choices to recover the structural parameters
of production functions, or the use of stated or revealed choices to recover the structural
parameters of utility functions defined over consumption goods. The analyst needs to fill in
their own equations for our (3) and (4), but only need in the end to define G($n, xnjt) in (5)
and hence in (2).

C.2 Flexible Population Distributions “For Free”

“But there is more,” as they say on those kitchy television commercials for the latest
set of super-knives!  In principle the mixed logit specification, whether linear or non-linear,
allows a wide range of shapes for the probability distribution used to characterize the
population. In practice, one typically sees a relatively simple set of distributions used:
univariate or multivariate Normal distributions, log-Normal distributions for coefficients
known to be non-negative, uniform distributions, or triangular distributions.

One attractive option, since we are already allowing non-linear transformations of the
population parameters, is to employ a transformation of the Normal distribution known as
the Logit-Normal (L-N) distribution. Originally proposed by Aitchison and Begg [1976; p.3]
as an excellent, tractable approximation to the Beta distribution, it has been resurrected by
Lesaffre, Rizopoulos and Tsonaka [2007]. One nice property of the L-N distribution is that
MSL algorithms developed for univariate or multivariate Normal distributions can be applied
directly, providing one allows non-linear transformations of the structural parameters, and
that is exactly what we are doing already to estimate structural parameters.

Figures C1 and C2 illustrate the wide array of distributional forms that are
accommodated by the L-N distribution. The bi-modal and skewed distributions that are
possible are particularly attractive. Note that these alternatives are all generated by different
values of the two parameters of the (univariate) Normal distribution, so there is no “extra
cost” of this flexibility in terms of additional parameters.

One limitation, of course, is that the Beta distribution and the L-N approximation of
it, are defined over the unit interval. For some important inferential purposes, such as
estimating a subjective probability, this is not a concern, but in general we would like
something that is more general. In many other cases though, one would want the estimated
distribution to be constrained to lie within specific boundaries dictated by theory. Examples
include non-negativity constraints to ensure monotonicity and non-satiation in utility, or
restrictions to the unit interval for probabilities or shares. In fact, the power utility function
(3) that we employ here for illustration requires that r>0 to ensure monotonicity. It is a
simple matter to define the so-called “Beta4 distribution” with two additional parameters: one
to stretch out the distribution or squeeze it up, and another parameter to shift it left or right.
This flexibility makes it possible to theoretically constrain the distribution of the structural
parameter to be estimated.52



to some finite interval.
53 Anyone wanting the Stata code for three or more models should send a check for $9.99E+6

payable to CEAR, to CEAR, Georgia State University, P.O. BOX 4036, Atlanta, GA 30302-4036, USA.
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C.3 Extensions for Discounting and Mixture Models

It is an immediate extension of the previous specification to extend the set of binary
choices to include discounting choices, and allow for joint estimation of parameters. A
particularly attractive feature of the random coefficients approach is that one can allow for
correlation between population characteristics, and estimate it.

One extension which is conceptually immediate, but requires extended programming,
is to allow for mixture specifications. The Stata programs developed by Andersen, Harrison,
Hole, Lau and Rutström [2010] allow the user to specify a “utility function” using any
specification in terms of the economics that is desired. This allows specification of a wide
range of utility functions (e.g., CRRA, CARA, HARA, Expo-power), and indeed alternative
decision-making models (e.g., RDU or PT). They also provided templates for users wanting
to see how to code alternatives like these. But as a programming matter the “user interface”
for this flexibility is “downstream” of the evaluation of the probability of choices condition
on parameter values. That is, the user-friendly interface available for writing these alternative
specifications does not actually evaluate the probability (and hence likelihood) of the trial
value of parameters: this is undertaken “upstream” in some elegant code that is likely cryptic
to outsiders. Given the interest in mixture specifications, we therefore extended the Stata
programs to allow this in a user-friendly manner. The user defines two “utility functions”
instead of one, and the final parameter in the program is assumed to be the mixing
probability. Instead of making a call to the Stata command mixlognl, the call is to the Stata
command mixlognlmm. The programming logic can be easily extended to mixtures of three or
more models, although that is not needed for our analysis.53
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54 They also report (p.133) a small follow-up experiment with 5 subjects and a front end delay of two
weeks. In that case 4 of the 5 choices entailed a switch from the later payment to the earlier payment. 

55 He also reports an experiment in which a willingness to accept a sooner payment in compensation
for the subject’s post-dated check for $50 in one month. This experiment suffered from even more serious
credibility problems than the willingness to pay experiment (p.320) and will not be discussed.
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Appendix D: Literature Review (NOT FOR PUBLICATION)

A. Older Experimental Studies

Ainslie and Haendel [1983; p.131-133] report experiments with 18 patients in a
substance abuse program that made 66 choices over several weeks. Each subject earned a
certain amount of money in an unrelated task during the week, ranging from $2 up to $10;
call that $x. They were given a choice between receiving that $x in 7 days, or receiving $1.25x
in 10 days. Then, on the 7th day, they were given a choice between receiving $x on that day or
receiving $1.25x in 3 days. It is implied that this second choice was for the same $x, and not
an additional choice, so subjects were allowed to change their minds on the 7th day. Observed
behavior was generally consistent with exponential discounting for the majority of choices:
35% of the choices were consistently for the earlier option, and 27% of the choices were
consistently for the later option. On the other hand, one-third were consistent with
hyperbolic or quasi-hyperbolic preferences, and entailed a shift from the later option to the
sooner option. Thus there is, overall, evidence in favor of non-constant discounting, but for a
minority of the observed choices.54 It is not possible to draw any inferences about average
discount rates from these data.

Horowitz [1991] was a remarkable early study that elicited a willingness to pay using a
multiple-unit analogue of the Vickrey auction where the winning bidders pay the highest
rejected bid.55 The object was a fixed $50 to be paid in 64 days in one experiment, and in 34
days in an experiment conducted a month after the first experiment. If the weakly dominant
strategy is understood, and this is behaviorally problematic in this sealed-bid context
(Rutström [1998] and Harstad [2000]), the bid is the individual’s true certainty-equivalent for
the delayed payment. Hence the bid can be directly used to infer a discount factor and hence
an annualized discount rate. In effect, then, the elicitation of the certainty-equivalent with this
“uniform-price” sealed-bid auction bypasses the need for correction for non-linear utility, but
at the price that the mechanism is notoriously hard to get to work behaviorally. The average
(median) discount rate for the shorter horizon was 830% (436%) and for the longer horizon it
was 271% (167%). Horowitz [1991; p. 320] is remarkably honest about the credibility and
comprehension problems in his procedures, so these results should be taken with a pound of
salt, but they clearly exhibit rampant, hyperbolicky behavior.

Kirby and Marakoviƒ [1996] undertook a clean experiment in which each subject
was asked to make 21 binary choices between a certain amount of money today and a larger
amount of money in the future. The “principal” was varied from choice to choice, as they
were presented to subjects, as was the larger amount and the horizon. The principal was
varied between $16 and $83, the later amount was varied between $30 and $85, and the
horizon was varied between 10 and 70 days. This design yielded choices that had annualized
discount rates between 128% and 1.2E+13. The average subject started switching over to the
later option when discount rates were above 596%, and only 12% of subjects accepted the
lowest discount rate of 128%. It is almost irrelevant if discounting over this horizon was
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constant or not, since one can undertake though experiments with longer horizons and rule
out such rates being accepted for those choice.

One obvious concern with this task is that it is “almost hypothetical.” Questionnaires
were sent out to every undergraduate student at Williams College, which had a student
population of roughly 2000 at the time. Subjects were told that the questionnaires could be
returned by one of two days, and that on each day one would be drawn at random and one of
the 21 choices played out for real. Despite cheap talk in the instructions that, to “make sure
that you get a reward you prefer, you should assume that you are the winner, and then make
each choice as though it were the one that you will win,” these are very poor financial incentives.
Even if the subject was certain that the lottery with the (delayed) $85 payment would be
chosen, this is an expected earning of only $0.085. Although subjects were not told how many
of the questionnaires were distributed, this is a small campus and such things are not private.
In the event, 672 responded, implying that there was actually an expectation of only $0.25 if
the largest prize was then selected. Moreover, even if the largest payment was chosen in all 21
cases, the expected earnings were only $56.19 per lucky subject, and not $85. It is a pity that
this clean, transparent task was marred by the use of such poor incentives.

Kirby [1997] is a remarkable study: it used real incentives, used payments by subjects
out of their own cash, used an incentive-compatible second-price sealed-offer auction to elicit
present values, considered the effect of varying the deferred amount ($10 or $20), and
considered all odd-numbered horizons between 1 and 29. Each subject entered 30 bids, and
was told that one of these bids would be selected at random for payment if the bid was the
winning bid. Each auction apparently consisted of the entire sample in an experiment, which
does not affect the incentive compatibility of the procedure. Subjects in experiment 1 were
“pseudo-volunteers” receiving extra credit in a psychology class for attending, but apart from
the show-up rewards all payments were salient. Subjects in experiments 2 and 3 were “people
from the Williams College community, including summer students, college staff, and persons
unaffiliated with the college,” and recruitment was by sign-up fliers and newspaper
advertisements.

B. Recent Experimental Studies

Benhabib, Bisin and Schotter [2010] present subjects with two types of matching
tasks. In one type, the subject was asked 30 questions of the form “what amount of money,
$x, if paid to you today would make you indifferent to $y paid to you in t days?” In this case
the amount $y and the horizon t would be filled in: y 0 {10, 20, 30, 50, 100} and t 0 {3 days,
1 week, 2 weeks, 1 month, 3 months, 6 months}. The response $x was incentivized with a
Becker, DeGroot and Marschak [1964] (BDM) auction for one of the 30 choices selected at
random. A price would be drawn from a uniform distribution between [$0, $y], and if the
random price was greater than the stated amount $x then the subject would receive that
random price immediately; otherwise the subject would receive $y in t days. So the upper
bound of the BDM auction was the larger amount to be provided in the future. The other
type of matching question involved 30 questions of the form, “what amount of money, $y,
would make you indifferent between $x today and $y t days from now? [upper bound = $z],”
where the text in brackets was given to subjects as notation instead of these words. In this
case the values of t were the same as the first matching task, and the values of x 0 {1, 2, 3, 5,
6, 7} for z=10, x 0 {4, 7, 8, 10, 12, 14} for z=20, x 0 {8, 14, 17, 19, 22, 24} for z=30, x 0



56 Since it matters for the interpretation of responses, we note that the increments from row to row
are not constant. In percentage points, they are 0.1, 0.1, 0.2, 0.1, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.2, 0.2, 0.2, 0.5, 0.6,
0.9, 2.4, 2.5 and 5.3, in rows 2 through 20, respectively. So subjects at row 14 and deciding whether to switch
one row later or not will have a disproportionate impact on the average discount rate compared to subjects
contemplating the same switch in earlier rows. Roughly 30% of their subjects were in this upper region (per
their Figure 1; their Table 6 is a less reliable guide, since it excludes 26 of the 103 subjects due to their “re-
switching” behavior).

57 The monetary discounting task had information on the annual interest rate and the annual effective
interest rate implied by each option, following Coller and Williams [1999]. The utility discounting task did not
have this information (the decision sheet was on paper, and already had a lot of information).
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{15, 20, 28, 32, 36, 39} for z=50, and x 0 {40, 60, 65, 70, 75, 80} for z=100. The same
subjects were given both sets of questions on different days. The data were evaluated using
the flexible FC specification introduced in this study, and the model estimated for each
individual using non-linear least squares. The individual estimates are very erratic, with a wide
range of behaviors being inferred. The general theme is of extremely high discount rates,
support for the fixed cost specification, and considerable noise.

Laury, McInnes, Swarthout and Von Nessen [2011] build in controls for risk
neutrality into the elicitation task, by asking subjects to make time-delay choices over binary
lotteries. Since the binary lotteries are each defined over the same low prize and high prize,
one can normalize the utility of each to 0 and 1 and then translate the probability of the
lottery directly into a utility number (e.g., a 26.3% chance of the high prize has a utility value
of 0.263, and a 55.5% chance of the high prize has a utility value of 0.555). This binary lottery
method has been widely used in experimental economics for many years, and was first
employed as such by Roth and Malouf [1979]. Their procedure offers subjects a multiple
price list of choices between sooner and later options. The sooner option is always a 50:50
chance of getting $0 or $200 in 3 weeks time. The latter option offers increasing chances of
the $200 in 12 weeks time. In the first row it is a 50% chance; in the second row it is 50.1%,
in the third row it is 50.2%, and so on up to 64.9% in row 20.56 Of course, these are strikingly
similar choices from row to row, by any intuitive metric: in the middle of the table the
expected value of the later option is varying from row to row by only 20 cents or 40 cents,
compared to a sooner option with a constant expected value of $100.

Although behaviorally challenging for subjects, the elegance of this design is that
subjects are choosing directly over time delays of utilities, so in a theoretical sense one can
directly infer utility-adjusted discount rates. Of course, EUT is a maintained assumption of
this approach. Their maximum-likelihood estimate of the discount rate is 12.2%, with a 95%
confidence interval between 4.6% and 19.7% (their Table 7). They also undertake
experiments with the same subjects to measure risk aversion and discounting over monetary
flows, and infer a discount rate of 14.1%, with a 95% confidence interval between 6.6% and
21.5%, using the maximum-likelihood methods of Andersen, Harrison, Lau and Rutström
[2008].57 These two maximum-likelihood estimates are not statistically different from each
other.

Andreoni and Sprenger [2010] also propose a “one shot” elicitation procedure that
can control for non-linear utility and discounting at the same time, rather than requiring
several procedures and joint estimation over the choices in those procedures to infer discount
rates. Each subject is given a series of choices in which they allocate 100 fictitious tokens



58 Their computer interface makes the implications of these choices clearer to subjects than they
might seem from this description. The top of the display shows a calendar with the sooner and later dates
displayed, and the bottom of the display instantly updates the actual amounts to be received sooner and later
as the token allocation is changed by the subjects.

59 It is not obvious if this is a reflection of the preferences of their particular college-student sample, 
an implication of their procedures and estimation methods, or both. Their finding certainly contrasts with the
evidence for comparable samples, as reviewed by Harrison and Rutström [2008].

60 If one assumes that an exponential model characterizes the data, then their estimate of * is 28.6%
with a 95% confidence interval between 16.7% and 40.5% (their Table 2). If one assumes that a quasi-
hyperbolic model characterizes the data, they estimate $ to be 0.987 and * to be 9.3%; a test that $=1 has a
two-sided p-value of only 0.002.
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between a sooner option and a later option. The exchange rate between tokens and money is
always fixed at $0.20 per token for the later option. For the sooner option the exchange rate
varies from row to row.58 In effect, this generates a convex budget set for individuals to
choose from, avoiding the problems of indeterminacy with the linear budget set in the
standard multiple price list identified by Cubitt and Read [2007]. It also allows one to estimate
utility functions and discounting functions from the same set of choices, using parametric
functional forms for both and assuming the validity of EUT.

Using non-linear least squares methods, Andreoni and Sprenger [2010] estimate
discount rates to be 29.8% in their preferred specification (their Table 1, specification 1). This
overall estimate includes choices with no FED and choices with a FED of 7 days or 35 days:
the estimated discount rate with no FED is 28.3%, and the estimated discount rates with the
FED of 7 and 35 days are 32.9% and 26.7%, respectively (their Table 3, specification 1). All
of these estimates have standard errors of around 6 percentage points, so all are statistically
indistinguishable. Hence there is striking evidence here of non-hyperbolic discounting, albeit
at very high rates. The estimates with no FED are virtually identical to those implied by the
comparable treatment in Coller and Williams [1999], but the estimates with a FED are about a
half of those of Coller and Williams [1999] from comparable treatments. The estimates with a
FED are virtually identical to the estimates of Harrison, Lau and Williams [2002]. On the
other hand, the estimates of Coller and Williams [1999] and Harrison, Lau and Williams
[2002] make no effort to correct for non-linear utility, and those of Andreoni and Sprenger
[2010] do. The comparable, utility-adjusted estimates of Andersen, Harrison, Lau and
Rutström [2008] and Laury, McInnes, Swarthout and Von Nessen [2011] with a FED are
significantly lower, at 10.1% and 14.1% respectively. The comparable, utility-adjusted
estimates of Coller, Harrison and Rutström [2010; Table 2, Panel A] without a FED are
virtually identical, at 29.8%. One reason that their estimates with a FED are so high appears
to derive from their estimated utility functions being virtually linear.59

Coller, Harrison and Rutström [2010] extend the procedures of Coller and
Williams [1999] to focus on time delay choices over money that have no FED, and that have
horizons varying between 1 day and 60 days. They also pool data on lottery choices from a
sample of subjects drawn from the same population, and presented in Harrison, Johnson,
McInnes and Rutström [2005]. With these data they estimate exponential and quasi-
hyperbolic models using maximum likelihood, and then a mixture specification of the two.60

They estimate the mixture weight on the exponential model at 0.59, and hence at 0.41 for the
quasi-hyperbolic model; they cannot reject the hypothesis that this weight is 0.5, although
they can reject the hypothesis that it is 0 or 1. In the mixture specification they estimate a



61 We generate 100,000 random normal deviates with the mean set equal to the reported point
estimates and the standard deviation set equal to the reported standard error. We then generate the discount
rates using the non-linear formulae appropriate for their specification (Laibson, Repetto and Tobacman [2007;
p.11]), and report the confidence intervals of these generated discount rates. The correct calculation would
use the “delta method” to correctly infer the standard errors for the discount rates (Oehlert [1992]), but for
that one needs access to the estimated covariance matrix.
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value of 0.94 for the $ of the quasi-hyperbolic model, and a value of * for both models of
0.116. These estimates imply discount rates overall that range from thousands of percent for
horizons of less than a week, around 1000% for a horizon of one week, around 200% for a
horizon of two weeks, 63% for a horizon of a month, and 33% for a horizon of two months.
Eventually these estimated rates would asymptote to 11.6%, but clearly there is evidence for
hyperbolic discounting. Whether the weight of 0.41 on the quasi-hyperbolic model represents
41% of the sample or 41% of the choices of each subject, or something in between, is not
clear from the estimates, although formally their mixture model assumed that it reflected each
choice by each subject.

C. Estimation with Naturally Occurring Data

There have been several attempts to measure discounting functions using naturally
occurring, non-experimental data. One that pays attention to the importance of jointly
estimating the utility function and discount rates is Laibson, Repetto and Tobacman [2007].
They correctly note that experimental data and naturally occurring data should be viewed as
complementary, and each has strengths and weaknesses. They use data from the United
States, and a wide range of assumptions to estimate a quasi-hyperbolic and exponential
discounting functions. In particular, in their baseline, preferred estimates they parametrically
assume a CRRA of 2. This assumption leads them to find striking evidence in favor of quasi-
hyperbolic behavior, with $ estimated to be 0.70 and * (in our notation) estimated to be
0.043, implying “short-run” discount rates for one-year horizon of 39.5% and long-run
discount rates of 4.3%. Under these assumptions the exponential discount rate is 16.7%.

They report some sensitivity analyses of parameters (Table 4B), and note that when
the CRRA is lowered to 1 the implied discount rates move closer to being exponential,
although one cannot reject the hypothesis of hyperbolicky discounting. The short-run
discount rate is then 24% and the long-run discount rate is 4%, with an exponential discount
rate at 11.4%. Indeed, when they jointly estimate the RRA and discounting functions, as
advocated by Andersen, Harrison, Lau and Rutström [2008a], the RRA point estimate is
lowered to 0.22 for the quasi-hyperbolic model and 0.28 for the exponential model. These
changes in RRA understandably imply a short-run discount rate of 14.6%, with a long-run
discount rate of 3.9% and an exponential discount rate of 9.2%. It is a pity that the bulk of
their sensitivity analyses use the RRA of 2, given the clear importance of this preference
parameter for the estimates. In one case they interact a parametrically assumed RRA equal to
the estimated values, and other robustness checks (their “Compound Case D”) and infer a
short-run discount rate of 11% with a long-run discount rate of 5.6% and an exponential
discount rate at 8.2%.

A crude evaluation of the uncertainty of these estimates can be inferred from the
reported standard errors on the point estimates.61 To take just the case of direct comparison
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to our results, where their preferred calibrating assumptions are used but the RRA is jointly
estimated, the 90% confidence intervals for the short-run discount rate are 11.3% : 18.1%,
for the long-run discount they are 3.5% : 4.3%, and for the exponential discount they are
7.6% : 10.7%. This still generates evidence of hyperbolicky discounting, albeit in a less
spectacular manner than their preferred specification with the RRA set parametrically to 2.
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