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Proper scoring rules provide convenient and highly efficient tools for incentive-compatible
elicitations of subjective beliefs. As traditionally used, however, they are valid only under expected
value maximization. This paper shows how they can be generalized to modern (“non-expected utility”)
theories of risk and ambiguity, yielding mutual benefits: users of scoring rules can benefit from
the empirical realism of non-expected utility, and analysts of ambiguity attitudes can benefit from
efficient measurements using proper scoring rules. An experiment demonstrates the feasibility of our
generalization.

1. INTRODUCTION

An important problem in mechanism design concerns the elicitation of private information.
A design is incentive compatible if the actions of agents, motivated solely by self-interest,
nevertheless reveal their true private information (Hurwicz, 1960). A social planner can then use
all relevant information to devise the most efficient social allocation. This paper considers the

∗A preliminary version of this paper circulated with the title “Is the Quadratic Scoring Rule Really Incentive
Compatible?”.
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case where the private information concerns subjective beliefs about the likelihood of uncertain
events, often modelled using subjective probabilities. This case arises, for instance, when
principals rely on the judgements of specialized agents. In the absence of proper incentives,
agents may pretend to be more confident about their judgement than they really are, and may
not update their beliefs sufficiently, so as to suggest greater ability than they really have (Li,
2007). Manski (2004) presented an historical survey of belief measurement and gave many
economic applications.

For belief measurement, incentive-compatible mechanisms had been known at an early
stage in the form of proper scoring rules (Brier, 1950; Good, 1952). These scoring rules
are particularly efficient mechanisms for eliciting subjective beliefs in an incentive-compatible
manner. They use cleverly designed optimization problems where the observation of one single
choice suffices to determine the exact quantitative degree of belief of an agent in an uncertain
event. Hence, they have recently become popular in experimental economics and game theory
(Nyarko and Schotter, 2002). Proper scoring rules have been used in many other fields in
the social sciences, including accounting (Wright, 1988), Bayesian statistics (Savage, 1971),
business (Staël von Holstein, 1972), education (Echternacht, 1972), finance (Shiller, Kon-Ya
and Tsutsui, 1996; Johnstone, 2007a,b), medicine (Spiegelhalter, 1986), meteorology (Yates,
1990; Palmer and Hagedorn, 2006), politics (Tetlock, 2005), psychology (McClelland and
Bolger, 1994) and other fields (Hanson, 2002; Prelec, 2004).

An alternative way to elicit beliefs that has recently become popular concerns prediction
markets on the internet (Wolfers and Zitzewitz, 2004). Here, people trade event-contingent
payments regarding uncertain events, such as a guarantee to receive ¤100 if a Democrat
becomes the next President of the United States. If this guarantee is now traded at a price P ,
then P /100 is taken as the market probability of the event. This inference assumes expected
value. Johnstone (2007a) explained that a financial market can, for many purposes, be analysed
as if it were a rational individual, and discussed the role of proper scoring rules in such settings.
In a market with agents who maximize the logarithmic utility of wealth, good forecasters are
better identified by their performance in terms of proper scoring rules than in terms of their
average earnings (Johnstone, 2007b).

Whereas all applications of proper scoring rules that we are aware of assume expected
value maximization (“risk neutrality”), many deviations have been observed empirically. Under
expected utility, risk aversion is the common finding (Bernoulli, 1738). Johnstone (2007a) and
Winkler and Murphy (1970) discussed the implications of risk aversion for proper scoring rules.
Furthermore, many deviations from expected utility have been found, both when probabilities
exist (“risk”: Allais, 1953; Kahneman and Tversky, 1979) and when probabilities cannot even
be specified (“ambiguity”: Keynes, 1921; Knight, 1921; Ellsberg, 1961).

This paper extends proper scoring rules from the expected value model as assumed in the
1950s, when proper scoring rules were introduced, to the current state of the art in decision
theory. Thus, we can, on the one hand, improve the validity of belief measurement using
proper scoring rules. On the other hand, we can use proper scoring rules to obtain more
efficient methods for measuring risk and ambiguity attitudes. In economics, probabilities are
usually not known, and the importance of quantitative measurements of ambiguity attitudes has
been widely understood (Gilboa, 2004; Greenspan, 2004). We show how subjective beliefs and
ambiguity attitudes can be isolated from risk attitude in a surprisingly easy way by means of
proper scoring rules. Thus, we can correct measurements of subjective beliefs and ambiguity
attitudes for non-neutral risk attitudes.

We illustrate the feasibility of our method by an experiment where we measure the
subjective beliefs of participants about the future performance of stocks after the provision
of information about past performance. The empirical findings confirm the usefulness of our
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method. However, violations of additivity of subjective beliefs are reduced but not eliminated
by our corrections. Thus, the classical measurements will contain violations of additivity that
are partly due to the incorrect assumption of expected value maximization, but partly they are
genuine. Subjective beliefs are genuinely non-additive.

The analysis in this paper consists of three parts. The first part (Sections 2–4) considers
various modern theories of risk and ambiguity and derives implications for proper scoring rules.
The second part (Sections 5 and 6) applies the revealed preference technique to the results of
the first part. That is, we do not assume theoretical models to derive implications for empirical
observations, but we use empirical observations to derive implications for theoretical models.
Section 5 presents the main result of this paper, showing how subjective beliefs can easily
be derived from observed choices using what are called risk corrections. Section 6 gives an
example to illustrate such a derivation at the individual level. Readers who are only interested
in applying our method empirically can skip most of Sections 3–5, only reading Corollary 4.
A short direct proof of this result, showing that it holds for general proper scoring rules, is
given following the corollary.

The third part of the paper (Sections 7–11) implements our correction method in an exper-
iment. In order to demonstrate the applicability of our method, we use it to investigate some
properties of non-additive beliefs and of different implementations of real incentives. Section 7
contains methodological details. Section 8 presents the results regarding the biases that we cor-
rect for, and Section 9 explains some implications of the corrections of such biases. Section 10
provides an additional control treatment. The experimental results are discussed in Section 11. A
general discussion and conclusions are in Sections 12 and 13. Appendix A makes some technical
remarks, Appendix B presents the proofs and Appendix C surveys the implications of modern
decision theories for our measurements. The experimental instructions are in Appendix D.

2. PROPER SCORING RULES; DEFINITIONS

Let E denote an event such that an agent is uncertain about whether or not the event obtains,
such as whether a stock’s value will decrease during the next 6 months. The degree of
uncertainty of the agent about E will obviously depend on the information that the agent
possesses about E. For most uncertain events, no objective probabilities of occurrence are
known, and decisions have to be based on subjective likelihood assessments.

Prospects refer to event-contingent payments. We use the general notation xEy for a
prospect that yields outcome x if event E obtains and outcome y if Ec obtains, with Ec

the complementary event not-E. Outcomes are money amounts. Risk concerns the special case
of known probabilities. Then, for a prospect xEy, the probability p of event E is known.
We identify this prospect with a probability distribution xpy over money, yielding x with
probability p and y with probability 1 –p.

This paper considers the quadratic scoring rule (QSR), the most commonly used proper
scoring rule (McKelvey and Page, 1990; Nyarko and Schotter, 2002; Palfrey and Wang, 2007).
A QSR prospect

(1 − (1 − r)2)E(1 − r2) (1)

is offered to the agent, where 0 ≤ r ≤ 1 is chosen at the agent’s discretion. This number r is
a function of E, sometimes denoted rE , and is called the (uncorrected ) reported probability
of E. The reasons for using this term will be explained later. If event E has a (objective or
subjective) probability p, then, according to all theories considered, rE will depend only on p,
so that we can write it as a function R(p).

Instead of equation (1), we could have used more general prospects (a − b(1 − r)2)E(a −
br2) for any b > 0 and a ∈ R. For simplicity, we restrict our attention to a = b = 1 as in
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equation (1). No negative payments can occur then, so that the agent never loses money.
Under the event that happens, the QSR in fact yields 1 minus the squared distance between
the reported probability of a clairvoyant (who assigns probability 1 to the event that happens)
and the reported probability of the agent (this probability is r under E, and 1 − r under Ec).
The following observation about a symmetry of the QSR will be useful.

Observation 1. The QSR for event E presents the same choice of prospects as the QSR for
event Ec, with each prospect resulting from r as the reported probability of E identical to the
prospect resulting from 1–r as the reported probability of Ec.

Because of Observation 1, we have

rEc = 1 − rE (2)

and

R(1–p) = 1–R(p). (3)

Hence, we will state many results only for r ≥ 0.5. The case r < 0.5 then follows from
equations (2) and (3) applied to Ec.

3. A THEORETICAL ANALYSIS OF PROPER SCORING RULES

In this section, we consider modern decision models for decision making under uncertainty and
derive implications for proper scoring rules. As explained in detail in Appendix C, virtually all
currently existing models, including multiple priors (Gilboa and Schmeidler, 1989) and Choquet
expected utility (Gilboa, 1987; Schmeidler, 1989), evaluate the QSR prospect of equation (1)
using the following equation.

For r ≥ 0.5: W(E)U(1 − (1 − r)2) + (1–W(E))U(1 − r2). (4)

Comments on the case r < 0.5 follow later. U is the utility function, assumed to be continuous
and strictly increasing, and scaled such that U(0) = 0. We present a number of cases for W ,
with each case generalizing the preceding one. Cases 1 and 2 are well known.

Case 1 [Expected value]. U is the identity function, and W is a probability measure P .
Case 2 [Expected utility]. W is a probability measure P .
Case 3 [Probabilistic sophistication (with non-expected utility)]. There exist a probability

measure P and a continuous strictly increasing function w, the probability weighting
function, such that W(·) = w(P (·)), w(0) = 0, and w(1) = 1.

Case 4 [General model]. W satisfies: (i) W(∅) = 0; (ii) W = 1 for the universal event;
(iii) C ⊃ D implies W(C) ≥ W(D).

We distinguish two subcases for Case 3 and, hence, also for Cases 2 and 1.

Subcase a. [Objective probabilities]. The probability measure P is objective, based on
statistical data that everyone agrees on.

Subcase b. [Subjective probabilities]. The probability measure P may be subjective and can
be revealed from preferences.1

1. In this paper, the term subjective probability is used only for probability judgements that are Bayesian in the
sense that they satisfy the laws of probability. In the literature, the term subjective probability has sometimes been
used for judgements that deviate from the laws of probability, including cases where these judgements are non-linear
transformations of objective probabilities when the latter are given. We use the term (probability) weights or beliefs,
depending on the way of generalization, to refer to the latter use.

© 2009 The Review of Economic Studies Limited



OFFERMAN ET AL. TRUTH SERUM FOR NON-BAYESIANS 1465

De Finetti (1937), Savage (1954) and Machina and Schmeidler (1992) gave preference
foundations for Cases 1b, 2b and 3b. Case 3 is an interesting intermediate case, with the
Bayesian principles violated at the level of decisions but not at the level of beliefs. In the
general Case 4, the Bayesian principles are also violated at the level of beliefs. The well-
known Allais (1953) paradox shows that expected utility is often violated, so that w and W are
non-additive, and we cannot restrict attention to the classical Cases 1 and 2. The well-known
Ellsberg (1961) paradox, discussed in detail later, shows that probabilistic sophistication is
often violated, so that the general Case 4 has to be considered.

For the general model, the equation to evaluate the QSR prospect of equation (1) for r < 0.5
follows from Observation 1:

For r < 0.5 : (1–W(Ec))U(1 − (1 − r)2) + W(Ec)U(1 − r2). (5)

For expected value and expected utility, equation (5) agrees with equation (4) and the two
equations can be used interchangeably, but for probabilistic sophistication and the general
model, equation (5) can be different. The latter separate, “rank-dependent”, way of weighting
the outcomes, with weights always summing to 1, was discovered independently by Quiggin
(1982) for the special case of risk with given probabilities, and by Schmeidler (1989; first
version 1982) for the general model. This idea was the key to the development of the modern
non-expected utility theories. It was incorporated in the new version of prospect theory (Tversky
and Kahneman, 1992).

Objective probabilities can best be interpreted as a special limiting case of subjective
probabilities, a point formalized by Machina (2004). The hypothetical situation of an agent
using a subjective probability different from an objective probability, if the latter is given,
cannot arise under plausible assumptions (Wakker, 2009).

We now analyse which optimal values rE are predicted under the various cases considered.

Theorem 1. In the general model, the optimal choice r in equation (1) satisfies:

If r > 0.5, then r = rE = W(E)

W(E) + (1 − W(E))
U ′(1 − r2)

U ′(1 − (1 − r)2)

. (6)

The optimality result for r < 0.5 follows from Observation 1 applied to Ec. If r = 0.5 is
optimal, then it can be a boundary solution for which equation (6) need not hold. We will
discuss this case later. Theorem 1 generalizes results, obtained by Winkler and Murphy (1970)
for expected utility, to general non-expected utility. The following corollary, first found by Brier
(1950), is highly appealing, and is, to the best of our knowledge, the first incentive-compatible
result provided in the literature.

Corollary 1. Under expected value, equation (6) holds for all r and r = rE = P (E).

Thus, under expected value, it is in the agent’s best interest to report true subjective
probabilities. The following section illustrates the extent to which reported probabilities, still
commonly equated with subjective probabilities in virtually all applications today, can deviate
from subjective probabilities because of empirical deviations from expected value. We next
consider the case r = 0.5 under expected utility.
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Observation 2. Under expected utility with probability measure P, rE = 0.5 implies
P(E) = 0.5. Conversely, P(E) = 0.5 implies rE = 0.5 if risk aversion holds. Under risk
seeking, rE 	= 0.5 is possible if P(E) = 0.5.

4. DISCREPANCIES BETWEEN SUBJECTIVE PROBABILITIES AND PROPER
SCORING RULES: NUMERICAL EXAMPLES

The solutions r presented in this section can be verified by substitution in the implicit
equation (6). We will later provide explicit expressions for R−1(p), which we used to find
the solutions and to draw Figure 1. We consider two urns each containing 100 balls that are
crimson, green, silver or yellow. Urn K (“known”) contains 25 balls of each colour, and urn A
(“ambiguous”) contains the balls in an unknown proportion. One ball will be drawn at random
from each urn. C denotes the event of a crimson ball drawn from urn K, with G, S and Y

defined similarly. E is the event that the ball drawn from K is not crimson, that is, it is the
event Cc = {G, S, Y }. Ca denotes the event of a crimson ball drawn from urn A, with Ga, Sa

and Ya defined similarly, and Ea = Cc
a . Subjects are asked to report their belief in event E
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and with w(p) as in Case 3.

Figure 1

Reported probability R(p) as a function of probability p
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and are rewarded with a QSR (equation 1). We now consider the four cases presented in the
preceding section.

Case 1 [Expected value]. Expected value holds for urn K. Then rEK = R(0.75) = 0.75
is optimal in equation (1). The point rE is depicted as rEV in Figure 1, at p = 0.75.
Corollary 1 implies that rG = rS = rY = 0.25. The reported probabilities satisfy additivity:
rG + rS + rY = rE . �

Case 2 [Expected utility]. Expected utility holds for urn K, with U(x) = x0.5. We obtain
rE = R(0.75) = 0.69, depicted as rEU in Figure 1, at p = 0.75. The expected value of the
resulting QSR prospect is 0.0031 (i.e. 0.8125–0.8094) less than it was in Case 1. This
difference can be interpreted as a risk premium, designating a profit margin for an insurance
company. Using equation (2), rC = 0.31, and by symmetry rG = rS = rY = 0.31 too. The
reported probabilities violate additivity, with rG + rS + rY = 0.93 > 0.69 = rE . Because of
this violation, the data can directly reveal that expected value, the common assumption in
applications of proper scoring rules, does not hold. �

Case 3 [Non-expected utility with probabilistic sophistication]. Probabilistic sophistication
holds for urn K, with U(x) = x0.5, and

w(p) = (exp(−(− ln(p))α)) (7)

with parameter α = 0.65 (Prelec, 1998). This function agrees with the prevailing empirical
findings (Tversky and Kahneman, 1992; Gonzalez and Wu, 1999; Abdellaoui, 2000; Bleichrodt
and Pinto, 2000). We obtain rE = R(0.75) = 0.61, depicted as rnon−EU in Figure 1 at p = 0.75.
The extra expected-value loss (and, hence, the extra risk premium) relative to Case 2 is 0.0174
(i.e. 0.8094–0.7920). Using equation (2), rC = 0.39, and, by symmetry, rG = rS = rY = 0.39
too. The reported probabilities strongly violate additivity because rG + rS + rY = 1.17 >

0.61 = rE. �
The following case describes the most fundamental deviation from expected value and

expected utility, driven by ambiguity, a central topic in decision theory today. The case concerns
a version of Ellsberg’s (1961) paradox.

Case 4 [General case; violation of probabilistic sophistication] . We assume probabilistic
sophistication for urn K but consider, in addition, urn A using the general model. If probabilities
were assigned to drawings from urn A and probabilistic sophistication were also to hold for
this urn, then, in view of symmetry, we should have P(Ca) = P(Ga) = P(Sa) = P(Ya). Then
these probabilities would be 0.25. P(Ea) would then be 0.75, as was P(E) in Case 3. Under
probabilistic sophistication combined with non-expected utility as in Case 3, rEa would be the
same as rE in Case 3 for the known urn, that is, rEa = 0.61. It implies that people would be
indifferent between xEy and xEay for all x and y. The latter condition is, however, typically
violated empirically. People usually have a strict preference for known probabilities, implying
for instance2

100E0 
 100Ea0. (8)

Consequently, it is impossible to model beliefs about uncertain events Ea with prob-
abilities, and probabilistic sophistication fails. Equation (8) implies that W(Ea) < W(E).
Using equation (6), rEa < rE .3 Given the strong aversion to unknown probabilities that is
often found empirically (Camerer and Weber, 1992), we will assume that rEa = 0.52. It
is depicted as rnon−EUa in Figure 1. The extra expected-value loss relative to Case 3 is

2. This also holds if people can choose the three colours to bet on in the ambiguous urn, so that there is no
reason to suspect unfavourable compositions.

3. It is easiest to see in equation (6) that 1/rE is decreasing in W(E).
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0.7920–0.7596 = 0.0324. This amount can be interpreted as the ambiguity-premium. Using
equation (2), rC = 0.48, and by symmetry rG = rS = rY = 0.48 too. The reported probabilities
violate additivity to an extreme degree, with rG + rS + rY = 1.44 > 0.52 = rEa . �

Figure 1 illustrates the extent to which reported probabilities can deviate from subjective
probabilities, because of violations of expected value. The cases presented in this section con-
cerned p = 0.75, but Figure 1 deals with all probabilities p under probabilistic sophistication.
In the general model, there are only events and no probabilities, so that the latter cannot be put
on the x-axis and no graph can be drawn. For expected utility, a similar figure is in Winkler
and Murphy (1970, figure 3). Its pattern was confirmed empirically by Huck and Weizsäcker
(2002). The figure illustrates the errors generated by the assumption of expected value maxi-
mization from the perspective of modern views in decision theory. Johnstone (2007a, p. 164)
gave similar results from the perspective of a mean-variance model.

5. REVEALED PREFERENCE TECHNIQUES TO ELICIT SUBJECTIVE BELIEFS
FROM PROPER SCORING RULES

In the preceding sections, we assumed theoretical decision models and derived predictions
about reported probabilities in proper scoring rules. This section presents the usual revealed
preference technique. That is, we assume that we observe reported probabilities, and we then
investigate what we can infer about decision models and their parameters. In particular, we will
be interested in inferring subjective probabilities and their generalizations from proper scoring
rules.

If we could observe enough general decisions under risk without proper scoring rules, with
enough events available with known probabilities (such as those referring to urn K in Case 4),
then we could, in principle, reveal the whole function w. Similarly, we could reveal the whole
function W if we could observe enough decisions under uncertainty. Then, we could obtain
the following concept, which will be central in this paper.

B(E) = w−1 (W(E)). (9)

In general, B assigns value 0 to the vacuous event ∅ and value 1 to the universal event,
and B is increasing in the sense that C ⊃ D implies B(C) ≥ B(D). These properties similarly
hold for the composition W(·) = w(B(·)), as we saw before. Under probabilistic sophistication
(including expected utility and expected value), B(E) agrees with the probability P(E). In all
cases in Section 4 up to Case 3, it is indeed the case that B(E) = 0.75 = P(E). Thus, B(E)

is a better candidate for measuring subjective beliefs than rE , the value still commonly used in
applications of proper scoring rules today. Whenever subjective probabilities exist, B measures
them correctly, irrespective of the risk attitude. B is what results from rE after correction for
non-neutral risk attitudes. We call B the (risk -)corrected reported probability.

Case 4 showed that decisions sometimes cannot be modelled using subjective probabilities.
In particular, B in equation (9) will not be a probability measure in Case 4. Yet we think that
B is a better candidate to reflect subjective beliefs of likelihood than the uncorrected reported
probabilities. Risk attitude is a behavioural component rather than a component reflecting
beliefs and, hence, it should be filtered out from belief assessments. Many studies of direct
judgements of belief have supported the thesis that subjective beliefs cannot be modelled
through probabilities (Shafer, 1976; McClelland and Bolger, 1994; Tversky and Koehler,
1994), so that B will violate additivity. Bounded rationality is an extra reason to expect that
subjective beliefs will violate the laws of probability (Aragones et al., 2005; Charness and
Levin, 2005).
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Example 1. Consider Case 4. The belief component B(Ea) is estimated to be w−1(W(Ea)) =
w−1(0.52) = 0.62. This value implies that B must violate additivity. Under additivity, we would
have B(Ca) = 1 − B(Ea) = 0.38, and then, by symmetry, B(Ga) = B(Sa) = B(Ya) = 0.38, so
that B(Ga) + B(Sa) + B(Ya) = 3 × 0.38 = 1.14. This value should then equal B{Ga, Sa, Ya} =
B(Ea) = 0.62, but it does not. Additivity is violated and B is no probability measure.

Of the total deviation of rEa = 0.52 from 0.75, which is 0.23, a part of 0.06 + 0.08 = 0.14
is the result of deviations from risk neutrality that distorted the measurement of B(Ea). The
remaining 0.09 is not a distortion in the measurement of belief. It rather shows that belief is
genuinely non-additive. �

The measurement of B through entire measurements of w and W is laborious, in particular
because of interactions with utility (Tversky and Kahneman, 1992, p. 311; Abdellaoui, Vossman
and Weber, 2005). The following results prepare for a tractable measurement of B. Whereas
the expression of r in terms of W in Theorem 1 was implicit, we now present an explicit
expression of its inverse, that is, of W in terms of r . For easy later reference, we state the
result for B = w−1(W) instead of W .

Corollary 2. For the optimal choice r = rE:

If r > 0.5, then B(E) = w−1

⎛
⎜⎜⎝

r

r + (1 − r)
U ′(1 − (1 − r)2

U ′(1 − r2)

⎞
⎟⎟⎠ . (10)

We next display the special case of W = w(P ) (with P objective or subjective), in which
case B = P = R−1(r).

Corollary 3. Under probabilistic sophistication, we have for the optimal choice r = R(p):

If r > 0.5, then p = w−1

⎛
⎜⎜⎝

r

r + (1 − r)
U ′(1 − (1 − r)2

U ′(1 − r2)

⎞
⎟⎟⎠ . (11)

As it so happens, the right-hand sides in equations (10) and (11) are identical. This allows
a particularly convenient way to measure B.

Corollary 4. Assume the general model (equations 4 and 5). For an event E with rE = r ,
we can find the objective probability p with the same value R(p) = r , and then we can conclude
that B(E) = p. That is,

If rE = r > 0.5, then B(E) = R−1(r). (12)

The corollary is useful for empirical applications because all the terms involved are easily
observable. The corollary is the only implication of our theoretical analysis that is needed
for our application. Two points underlie the corollary. First, it can be applied where proper
scoring rules uniquely identify the underlying subjective factors so that the inverse function
R−1 can be defined. Second, R(p) and rE optimize the same goal function if we set p = B(E)
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(equations 4 and 5 with W(E) = w(B(E)) = w(p)). Then, by the uniqueness mentioned, they
must be identical. This reasoning shows that Corollary 4 holds for all proper scoring rules and
not just for the quadratic one. It confirms that B rather than W is a non-Bayesian analogue of
subjective probability.

In practice, we first infer the (for the participant) optimal R(p) for a set of objective
probabilities p which is so dense that we obtain a sufficiently accurate estimation of R and
R−1. In our experiment, we will consider all values p = j/20 for j ≥ 10. Then, for all uncertain
events E (or Ec if r < 0.5), we derive B(E) from the observed rE using equation (12). For
rE = 0.5, B(E) and the inverse p may not be uniquely determined because of the flat part
of Rnon-EU in Figure 1. The case r < 0.5 follows from equations (2) and (12), as always. We
call the function R−1 the risk correction (for proper scoring rules). R−1(rE) = B(E) is the
corrected reported probability.

6. AN ILLUSTRATION OF OUR MEASUREMENT OF BELIEF

This section describes risk corrections for a participant in the experiment to illustrate how
our method can be applied empirically. It will show that Corollary 4 is the only result of the
theoretical analysis needed to apply our method. Results and curves for r < 0.5 are derived
from r > 0.5 using equation (2); we will not mention this point explicitly in what follows.

The left side of Figure 2 displays the performance of stock 12 (the Royal Begemann Group)
in our experiment from 1 January, 1991 until 1 June, 1991, as given to the participants. Further
details (such as the absence of a unit on the y-axis) will be explained in Section 7. The right
side of the figure displays two disjoint intervals S and T , and their union I = S ∪ T . For
each of the intervals S, T and I , participants reported the probability of the stock ending up

send

Probability:

S

T

I

Jan Feb Apr May Jun Jul Aug Sep Oct Nov JanMar Dec

Figure 2

Layout of the screens (with braces and letters added)

© 2009 The Review of Economic Studies Limited



OFFERMAN ET AL. TRUTH SERUM FOR NON-BAYESIANS 1471

in that interval on 1 January, 1992 (with some other questions in between the three questions
considered here). For participant 14, the results are as follows.

rS = 0.35; rT = 0.55; rI = 0.65. (13)

Under additivity of reported probability, rS + rT − rI (the additivity bias, defined in general
following equation (21)), should be 0, but here it is not and additivity is violated.

The additivity bias is 0.35 + 0.55–0.65 = 0.25. (14)

Table 1 and Figure 3 (in inverted form) display the reported probabilities that we measured
from this participant as a function of objective probabilities, with the curves explained later.
We use progressive averages (midpoints between data points) so as to reduce noise.4

For simplicity of presentation, we analyse the data here using linear interpolation. Then
R(0.23) = 0.35.5 Using this value for R(0.23), using the values R(0.56) = 0.55, and R(0.77) =
0.65, and, finally, using equation (12), we obtain the following corrected reported probabilities:

B(S) = R−1(0.35) = 0.23; B(T ) = R−1(0.55) = 0.56; B(I) = R−1(0.65) = 0.77;
the additivity bias is 0.23 + 0.56–0.77 = 0.02. (15)

The risk correction has reduced the violation of additivity, which, according to Bayesian
principles, can be interpreted as a desirable move towards rationality. In the experiment
described in the following sections, we will see that this effect is statistically significant for
single evaluations (treatment “t = ONE”), but is not significant for repeated payments and
decisions (treatment “t = ALL”).

It is statistically preferable to fit data with smoother curves than those resulting from linear
interpolation. We derived “decision-theoretic” parametric curves for R(p) from Corollary 3,
with further assumptions explained in Section 8.1.6 The resulting curve for participant 14 is
given in Figure 3. The equality B = R−1(r) and this curve imply:

B(S) = R−1(0.35) = 0.24; B(T ) = R−1(0.55) = 0.59; B(I) = R−1(0.65) = 0.76;
the additivity bias is 0.24 + 0.59–0.76 = 0.07. (16)

The uncorrected additivity bias is, again, reduced. For this participant, the quadratic curve,
explained in Section 12, happens to be indistinguishable from the decision-theoretic curve.

TABLE 1

Progressive average reported probabilities R(p) of participant 14

P 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475
R(p) 0.067 0.192 0.267 0.305 0.345 0.382 0.422 0.435 0.437 0.470

P 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975
R(p) 0.530 0.563 0.565 0.578 0.618 0.655 0.695 0.733 0.808 0.933

4. For each midpoint between two given probabilities p, we calculated the average report for the adjacent
probabilities. For instance, to compute the R(p) for p = 0.625, we averaged the reported probabilities for p = 0.6
and those for p = 0.65.

5. We have 0.23 = 0.865 × 0.225 + 0.135 × 0.275, R(0.225) = 0.345, and R(0.275) = 0.382, so that
R(0.23) = R(0.865 × 0.225 + 0.135 × 0.275) = 0.865 × R(0.225) + 0.135 × R(0.275) = 0.865 × 0.345 + 0.135 ×
0.382 = 0.35.

6. The decision-theoretic curve in the figure is the function p = B(E) = r

r+(1−r)
0.26(1−(1−r)2)−1.26

0.26(1−r2)−1.26

on (0.5, 1),

in agreement with Corollaries 3 and 4, where we estimated w(p) = p and found ρ = −0.26 as the optimal value for
U(x) in equation (17).
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7. AN EXPERIMENTAL APPLICATION OF RISK CORRECTIONS: METHOD

The following five sections (Sections 7–11) present the third part of this paper. These sections
give an experimental implementation of our new measurement method. We first describe the
two main treatments in detail. Section 10 presents a third, control, treatment.

• : Datapoints (progres-
  sive averages);

: Linear interpolation;

: Decision-theoretic
   regression and
quadratic regression
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R−1(r) of participant 14

7.1. Participants

For the first two treatments, N = 93 students from a wide range of disciplines (45 economics,
13 psychology and 35 other disciplines) participated in the experiment. They were self-selected
from a mailing list of approximately 1100 people.

7.2. Procedure

Participants were seated in front of personal computers in six groups of approximately 16 par-
ticipants each. They first received an explanation of the QSR, given in Appendix D. Then, for
each uncertain event, participants could first report a probability (in percentages) by typing in
an integer from 0 to 100. Subsequently, the confirmation screen displayed a list box with prob-
abilities and the corresponding score when the event was true/not true, illustrated in Figure 4.

All the figures (including Figure 2) are reproduced here in black and white; in the
experiment, we used colours to further clarify the figures. The entered probability and the
corresponding score were preselected in this list box. The participant could confirm the decision
or change to another probability by using the up or down arrow or by scrolling to another
probability using the mouse. The event itself was also visible on the confirmation screen.
Thus, the reported probability r finally resulted for the uncertain event.
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Figure 4

A confirmation screen

7.3. Stimuli

The participants provided 100 reported probabilities r for events with unknown probabilities
in the stock price part of the experiment. For these events, we fixed 1 June, 1991, as the
“evaluation date”. The uncertain events always concerned the question whether or not the
price of a stock would lie in a target interval 7 months after the evaluation date. For each
stock, the participants received a graph depicting the price of the stock on 0, 1, 2, 3, 4 and
5 months before the evaluation date, as well as an upper and lower bound to the price of the
stock on the evaluation date. Figure 2 (without the braces and letters) gives an example of the
layout. We used 32 different stocks, all real-world stock market data from the 1991 Amsterdam
stock exchange. After four practice questions, the graph of each stock price was displayed once
in the questions 5–36, once in the questions 37–68 and once in the questions 69–100. We
thus obtained three probabilistic judgements of the performance of each stock, once for a large
target interval and twice for the small target intervals that partitioned the large target interval
(Figure 2). We partially randomized the order of presentation of the elicitations. Each stock was
presented at the same place in the first, second and third 32-tuple of elicitations, so as to ensure
that questions pertaining to the same stock were always far apart. The order of presentation
of the one large and the two small intervals for each stock was not randomized stochastically,
but was varied systematically, so that all orders of big and small intervals occurred equally
often. We also maximized the variation of whether small intervals were both very small, or
were both moderately small, or one was very small and one was moderately small.

In the calibration part of the experiment, participants essentially made the same decisions
as in the stock price part, but now for 20 events with objective probabilities. We used two
10-sided dice to determine the outcome of the different prospects. One die determined the first
digit and the other determined the second digit of a random number below 100. An event with
probability 0.25 was, for example, described as “The outcome of the roll with two 10-sided dice
is in the range 01–25”. The subjects then chose r in (1 − (1 − r)2)E(1 − r2) with E the event
as described. This amounts to choosing the optimal r for objective probability distributions (1 −
(1 − r)2)0.25(1 − r2) in the example. We obtained measurements of the reported probabilities
corresponding to the objective probabilities 0.05, 0.10, 0.15, . . . , 0.85, 0.90 and 0.95 (we
measured the objective probability 0.95 twice). The decision screen was very similar to
Figure 4, but we wrote “row-percentage” instead of “probability” and “your score if the roll
of the die is 01–25” instead of “your score if the statement is true;” and so on.
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7.4. Motivating participants

Depending on whether the uncertain event obtained or not, and on the reported probability for
the uncertain event, a number of points were determined for each question by means of the
QSR (equation 1), using 10,000 points as the unit of payment so as to have integer scores with
four digits of precision. Thus, the maximum score for one question was 10,000, the minimum
score was 0 and the certain score resulting from reported probability 0.5 was 7500 points.

In treatment t = ALL, the sum of all points for all questions was calculated for each
participant and converted to money using an exchange rate of 60,000 points = ¤1, yielding an
average payment of ¤15.05 per participant. For the calibration part, we then used a box with
20 separate compartments containing pairs of 10-sided dice to determine the outcome of each
of the 20 prospects at the same time for the treatment t = ALL.

In treatment t = ONE, the random incentive system was used. That is, at the end of
the experiment, 1 out of the 120 questions that they answered was selected at random for
each participant, and the points obtained for this question were converted to money using an
exchange rate of 500 points = ¤1, yielding an average payment of ¤15.30 per participant.

All payments were done privately at the end of the experiment.

7.5. Analysis

For the calibration part, we only need to analyse probabilities of 0.5 or higher, using
equation (3) (see also Observation A2). Every observation for p < 0.5 amounts to an
observation for p′ = 1 − p > 0.5. It implies that we have two observations for all p > 0.5
(and three for p = 0.95).

We first analyse the data at the group level, assuming homogeneous participants. We start
from general probabilistic sophistication. Note that this model can be estimated using a non-
parametric procedure. If the agent is willing to go through a large series of correction questions,
it is possible to measure the corresponding reported probability of each objective probability
repeatedly. In this way, an accurate estimate of the whole correction curve can be obtained
without making assumptions about the utility function or the weighting function. This procedure
is appropriate if the goal is to correct an expert, for example, correct the reports provided by a
weatherman. In applications of experimental economics where subjects participate for a limited
amount of time, the researcher will only be able to collect a limited number of observations of
the correction curve. Then it is more appropriate to follow a parametric approach to elicit the
curve that best fits the observations. In this paper, we used parametric fittings. For U , we used
the power utility with parameter ρ, also known as the family of constant relative risk aversion
(CRRA),7 and the most popular parametric family for fitting utility, which is defined as follows:

For ρ > 0: U(x) = xρ;
For ρ = 0: U(x) = ln(x);
For ρ < 0: U(x) = −xρ. (17)

It is well known that the unit of payment is immaterial for this family. The most general
family that we consider for w(p) is Prelec’s (1998) two-parameter family

w(p) = (exp(−β(− ln(p))α)), (18)

7. We avoid the latter term because, in non-expected utility models as relevant for this paper, risk aversion
depends not only on the curvature of utility.
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chosen for its analytic tractability and good empirical performance. We will mostly use the one-
parameter subfamily with β = 1, as in equation (7), for reasons explained later. Substituting
the above functions yields

B(E) = exp

⎛
⎜⎝−

⎛
⎝− ln

(
r(2r−r2)1−ρ

(1−r)(1−r2)1−ρ+r(2r−r2)1−ρ

)

β

⎞
⎠

1/α
⎞
⎟⎠

for equation (10).
The model we estimate for each subject separately is as follows:

Rk(j/20) = h(j/20, α, ρ) + εk(j/20). (19)

Here, Rk(j/20) is the reported probability of the participant for known probability p = j/20
(10 ≤ j ≤ 19) in treatment t (t = ALL or t = ONE) for the k-th measurement for this
probability, with only k = 1 for j = 10, k = 1, 2 for 11 ≤ k ≤ 18, and k = 1, 2, 3 for j = 19.
With β set equal to 1, α is the remaining probability weighting parameter (equation 18), and ρ is
the power of utility (equation 17). The function h is the inverse of equation (11). Although we
have no analytic expression for this inverse, we could calculate it numerically in the analyses.
The error terms εk(j /20) are drawn from a truncated normal distribution with mean 0 and
variance σ 2. The distribution of the error terms is truncated because reported probabilities below
0 and above 1 are excluded by design. Error terms are identically and independently distributed
across choices. We employed maximum likelihood to estimate the parameters of equation (19).

We also carried out an analysis at the aggregate level of the calibration part, with αt and
ρt , that is, with these parameters depending on the treatment but not on the participant. To
correct for individual differences, we added an individual-specific constant cs,t to the equation
where s refers to the participant and t to the treatment:

Rs,t,k(j/20) = h(j/20, αt , ρt ) + cs,t + εs,t,k(j/20, σ 2
t ). (20)

Here, the error terms are independent across subjects, treatments and choices.
In the stock price part, violations of additivity were tested. With I the large interval of a

stock, being the union S ∪ T of the two small intervals S and T , additivity of the uncorrected
reported probabilities implies

rS + rT − rI = 0. (21)

Hence, rS + rT − rI is an index of deviation from additivity, which we call the additivity bias
of r .

Under the null hypothesis of additivity for corrected reported probabilities B, binary
additivity holds, and we can obtain B(S) = 1 − B(Sc) for small intervals S in the experiment
(cf. equation 2). Thus, under additivity of B, we have

B(S) + B(T ) − B(I) = 0. (22)

Hence, B(S) + B(T ) − B(I) is an index of deviation from additivity of B, and is B’s
additivity bias.

We next discuss tests of the additivity bias. For each individual stock, and also for the
average over all stocks, we tested for both treatments t = ONE and t = ALL: (i) whether the
additivity bias was zero or not, both with and without risk correction; (ii) whether the average
additivity bias, as relevant for aggregated group behaviour and expert opinions, was enlarged
or reduced by correction; (iii) whether the absolute value of the additivity bias, as relevant for
additivity at the individual level, was enlarged or reduced by correction. We report only the
tests for averages over all stocks.
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8. RESULTS OF THE CALIBRATION PART

Risk corrections and, in general, QSR measurements, do not make sense for participants who
are hardly responsive to probabilities, so that R(p) is almost flat on its entire domain. Hence,
we kept only those participants for whom the correlation between reported probability and
objective probability exceeded 0.35. We thus dropped four participants. The following analyses
are based on the remaining 89 participants.

8.1. Group averages

We did several tests using equation (18) with β as a free (treatment dependent or treatment
independent) variable, but β’s estimates added little extra explanatory power to the other
parameters and usually were close to 1. Hence, we chose to focus on a more parsimonious
model in which the restriction βONE = βALL = 1 is employed. Table 2 lists the estimates for
the model of equation (20) for β = 1 (equation 7 instead of equation 18), together with the
estimates of some models with additional restrictions. We first give results at the aggregate
level. Because there turns out to be a strong correlation between the α and the ρ parameters,
estimation results where both parameters are estimated simultaneously cannot be trusted, and
we only report the results where either α or ρ is estimated.

8.1.1. Overall need for risk correction. The first row of Table 2 shows the results
without any correction. The second row presents the results when utility curvature is introduced.
The likelihood improves significantly (likelihood ratio test, p = 0.01) and substantially, so that
risk correction is called for. Risk correction can also be done by probability weighting. This
is done in the third row of the table. Probability weighting also increases the likelihood of
observing the data significantly compared with the model without correction, but less so than
utility curvature does. Therefore, in the remainder of the paper, we focus on risk correction
obtained through utility curvature.

8.1.2. Comparing the two treatments. At the aggregate level, risk correction is needed
less in treatment ALL than in treatment ONE, as the fourth and fifth rows show. In treatment

TABLE 2

Estimation results at the aggregate level

Row Restrictions σONE αONE ρONE σALL αALL ρALL − log L

1 αONE = αALL =
ρONE = ρALL = 1

9.00**
(0.21)

− − 8.36**
(0.20)

− − 6373.21

2 αONE = αALL = 1 8.73**
(0.20)

− 0.43**
(0.09)

8.36**
(0.20)

− 0.94**
(0.07)

6345.43

3 ρONE = ρALL = 1 8.82**
(0.21)

0.69**
(0.03)

− 8.35**
(0.20)

1.09**
(0.07)

− 6354.14

4 αONE = αALL =
ρONE = 1

9.00**
(0.21)

− − 8.36**
(0.20)

− 0.94**
(0.07)

6372.87

5 αONE = αALL =
ρALL = 1

8.73**
(0.20)

− 0.43**
(0.09)

8.36**
(0.20)

− − 6345.77

6 αONE = αALL =
1, ρONE = ρALL

8.78**
(0.21)

− 0.70**
(0.06)

8.41**
(0.20)

− − 6556.48

Notes: Standard errors in parentheses, ** denotes significance at the 1% level.

© 2009 The Review of Economic Studies Limited



OFFERMAN ET AL. TRUTH SERUM FOR NON-BAYESIANS 1477

0

0·1

0·2

0·3

0·4

0·5

0·6

0·7

0·8

0·9

0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1

1 

Reported probability

C
or

re
ct

ed
 p

ro
ba

bi
lit

y

treatment
t = ONE

treatment
t = ALL

Figure 5

Corrected versus uncorrected probability

ONE, the likelihood is improved significantly (compare the fifth and the first row; likelihood
ratio test, p = 0.01) but in treatment ALL the likelihood is not improved significantly (compare
the fourth and the first row: likelihood ratio test, p > 0.10). We obtain ρONE < ρALL: if only
one decision is paid out, then participants exhibit more concave curvature of utility than when
all decisions are paid out. Given the same degree of probability weighting, it implies more
risk aversion for t = ONE than for t = ALL (and R closer to 0.5). The finding is supported
by comparing the sixth row of Table 2 with the restriction ρONE = ρALL, to the second row.
This restriction significantly reduces the likelihood of observing the data (likelihood ratio test,
p = 0.01).

Figure 5, on the basis of the estimates reported in the second row of Table 2, displays the
resulting average risk correction for the two treatments separately. The figure illustrates that
risk correction is clearly needed at the aggregate level in treatment ONE.

8.2. Individual analyses

8.2.1. Need for risk correction at the individual level. There is considerable hetero-
geneity in each treatment. Whereas the corrections required were small at the level of group
averages, they are big at the individual level. This appears from Figure 6, which displays the
cumulative distribution of the (per-subject) estimated ρ-coefficients for each treatment, assum-
ing α = β = 1. (The figure also displays a treatment t = ALLnp that will be explained in
Section 10.) There are wide deviations from the value ρ = 1 (i.e. no correction) on both sides.
As seen from the group-average analysis, there are more deviations at the risk-averse side of
ρ < 1.

8.2.2. Comparing the two treatments. The ρ-coefficient distribution of treatment t =
ONE dominates the ρ-coefficient distribution of treatment t = ALL. Thus, the ρ-coefficients for
t = ONE are lower than for t = ALL (p = 0.001: two-sided Mann–Whitney test). It confirms
the result from Table 2 that there is more risk aversion for group averages, moving R in the
direction of 0.5, for t = ONE than for t = ALL. The figure also shows that, in an absolute
sense, there is more deviation from ρ = 1 for t = ONE than for t = ALL, implying that there
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Cumulative density of ρ

are more deviations from expected value and more risk corrections for t = ONE than for
t = ALL.

Unlike the median ρ-coefficients that are fairly close to each other for the two treatments
(0.92 for t = ONE versus 1.04 for t = ALL), the mean ρ coefficients are substantially different
(0.24 for t = ONE versus 0.91 for t = ALL), which is caused by skewedness to the left
for t = ONE. That is, there is a relatively high number of strongly risk-averse participants
for t = ONE. Analyses of the individual ρ parameters (two-sided Wilcoxon signed rank
sum tests) confirm findings of group-average analyses in the sense that the ρ-coefficients
are significantly smaller than 1 for t = ONE (z = −3.50, p = 0.0005), but not for t = ALL
(z = 1.42, p = 0.16).

9. RESULTS FOR THE STOCK PRICE PART: RISK CORRECTION
AND ADDITIVITY

All comparisons in this section are based on two-sided Wilcoxon signed rank sum tests. Figure 7
displays the data, aggregated over both stocks and individuals, of the additivity biases for
t = ONE and for t = ALL. The figures show that the additivity bias is more often positive
than negative, in agreement with common findings in the literature (Tversky and Koehler,
1994). Indeed, for virtually all stocks the additivity bias is significantly positive for both
treatments, showing in particular that additivity does not hold. This also holds when taking the
average additivity bias over all stocks as one data point per participant (z = 5.27, p < 0.001
for t = ONE, z = 4.35, p < 0.001 for t = ALL). We next consider whether risk corrections
reduce the violations of additivity.

Let us first consider treatment t = ONE. Here, the risk corrections reduce the average
additivity bias significantly for 27 of the 32 stocks and enlarge it for none. We only report
the statistics for the average additivity bias over all stocks taken as one data point per
participant, which has overall averages 0.163 (uncorrected) and 0.120 (corrected), with the latter
significantly smaller (z = 3.21, p = 0.001). For assessing the degree of irrationality (additivity
violation) at the individual level, the absolute values of the additivity bias are relevant. For
t = ONE, Figure 7 suggests that these are smaller after correction, because on average the
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additivity biases in the interval, aggregated over 32 stocks and 89 individuals, for both
treatments. With risk-correction, there were 65 additivity biases between 0·375 and 0·425 in
the treatment t = ONE, and without risk correction there were 95 such; and so on.
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Empirical density of additivity bias for the two treatments

corrected curve is closer to 0 on the x-axis. These absolute values were significantly reduced for
nine stocks, and enlarged for none. Again, we only report the statistics for the average absolute
value of the additivity bias over all stocks taken as one data point per participant, which has
overall averages 0.239 (uncorrected) and 0.228 (corrected), with the latter significantly smaller
(z = 2.26, p = 0.02).

For t = ALL, risk corrections did not significantly alter the average additivity bias. More
specifically, it gave a significant increase for three stocks and a significant decrease for one
stock, which, for 32 stocks, suggests no systematic effect. The latter was confirmed when
we took the average additivity bias over all stocks for each individual, with no significant
differences generated by correction (average 0.128 uncorrected and average 0.136 corrected;
z = −1.64, p = 0.1). Similar results hold for absolute values of additivity biases, which gave
a significant increase for one stock and a significant decrease for no stocks. Taking the average
additivity bias over all stocks as one data point per participant (average 0.237 uncorrected and
average 0.239 corrected; z = −0.36, p = 0.70) also gave no significant difference.

Risk correction reduces the additivity bias for treatment t = ONE to a level similar to
that observed for t = ALL (averages 0.120 and 0.136). The overall pattern is that beliefs for
t = ONE after correction, and for t = ALL both before and after correction, exhibit a similar
degree of violation of additivity, which is clearly different from zero. The additivity bias is not
completely caused by non-linear risk attitudes when participants report probabilities, but has a
genuine basis in beliefs.

10. A TREATMENT WITHOUT EXPLICIT REFERENCE TO BELIEFS OR
PROBABILITY

This section briefly reports the results of a robustness check of our experimental design. In
agreement with the current practice of scoring rules, the instructions of our main treatments
repeatedly used the terms probability and belief. These terms may have influenced the subjects.
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To assess such influences, we performed a control treatment in which we did not refer to
probabilities or beliefs.8 Thus, in Figure 4 we now used the expression “choose a number”
instead of probability. In the instructions of this control treatment, we similarly asked subjects
to choose numbers without calling them probabilities, and we dropped all interpretations of
likelihood. In this manner, we ran the control treatment for t = ALL. We chose t = ALL rather
than t = ONE because the former is most commonly used in applications of proper scoring
rules. We refer to the control treatment as t = ALLnp (np for no probabilities). N = 44 students
participated. The number of participants dropped from the analysis because their correlation
between reported and objective probability was below 0.35, was now 2. In all other respects,
the new treatment was identical to the t = ALL treatment in the main experiment.

The results confirmed all patterns and inequalities found for t = ALL. We give some
numerical details for individual analyses. The ρ’s of t = ALLnp are not significantly different
from those of t = ALL (z = 1.57, p = 0.12), with a similar median (1.00 for t = ALLnp vs.
1.04 for t = ALL) and mean (0.80 for t = ALLnp vs. 0.91 for t = ALL). They, accordingly, are
not significantly below 1 either (z = 0.52, p = 0.60), and they also exceed the ρ for t = ONE
(z = −2.30, p = 0.02).

The additivity bias is, again, positive, showing that additivity is violated, for most individual
stocks. It also is when taking the average additivity bias over all stocks per participant
(z = 4.47, p < 0.001). Risk corrections did not significantly increase or decrease the average
additivity bias for any stock. For the (absolute) average additivity bias over all stocks per
participant, we again found no significant difference between the non-corrected and corrected
average additivity bias (z = 0.378, p = 0.71; z = 0.265, p = 0.79 for absolute values). The
risk-corrected average additivity bias for t = ALLnp being virtually the same as for t = ALL
(0.126 vs. 0.136) obviously implies that it is also equal to the one for t = ONE (0.120).
In summary, all the results for the t = ALL treatment were confirmed by the t = ALLnp
treatment, suggesting that the explicit use of the term probability in our instructions did not
alter the results.

11. DISCUSSION OF EXPERIMENT

11.1. Methods

We chose the evaluation date (1 June, 1991) sufficiently long ago to ensure that participants
would be unlikely to recognize the stocks or have private information about them. In addition,
no numbers were displayed on the vertical axis, making it extra hard for participants to
recognize specific stocks. We thus ensured that participants based their probability judgements
entirely on the prior information about past performance of the stocks given by us. Given
the large number of questions, it is unlikely that participants noticed that the graphs were
presented more than once (three times) for each stock. Indeed, in informal discussions after
the experiment no participant showed awareness of this point.

In some studies in the literature, the properness of scoring rules is explained to participants
by stating that it is in their best interest to state their true beliefs, either without further
explanation, or with the claim added that they will thus maximize their “expected” money.
A drawback of this explanation is that expected value maximization is empirically violated,
which is the central topic of this paper (Section 3), so that the recommendation is debatable. We,
therefore, used an alternative explanation that relates properness of one-off events to observed
frequencies of repeated events (Appendix D).

8. This treatment was recommended to us by a referee and the editor.
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11.2. Optimal incentive scheme

After some theoretical debates about the random incentive system (Holt, 1986), as in our
treatment t = ONE, the system was tested empirically and found to be incentive compatible
(Starmer and Sugden, 1991; Lee, 2008). It is today the almost exclusively used incentive system
for the measurement of individual preferences (Myagkov and Plott, 1997; Harrison, Lau and
Williams, 2002; Holt and Laury, 2002). Unlike repeated payments, it avoids income effects
such as Thaler and Johnson’s (1990) house money effect, and the drift towards expected value
and linear utility that is commonly generated by repeated choice.9 For the purpose of measuring
individual preference, the treatment t = ONE is, therefore, preferable. When the purpose is,
however, to derive subjective probabilities from proper scoring rules, and no risk correction
is possible, then a drift towards expected value is actually an advantage, because uncorrected
proper scoring rules assume expected value. This point agrees with our findings, where less risk
correction was required for the t = ALL treatment. Li (2007) discussed other arguments for and
against repeated rewarding when events are not verifiable and binary rewards have to be used.

For some applications, group averages of probability estimates are most relevant, such as
when aggregating expert judgements or predicting group behaviour. Then our statistical results
regarding “non-absolute” values of reported probabilities are most relevant. For the assessment
of rationality at the individual level, absolute values of the additivity biases are most relevant.

11.3. Choice of parameters

The lack of extra explanatory power of parameter β in equation (18) should come as no
surprise because β and α imply similar phenomena on [0.5,1], enhancing risk aversion there.
They mainly deviate from one another on [0,0.5], where β continues to enhance risk aversion
but α enhances the inverse-S shape that is mostly found empirically. The domain [0,0.5] is,
however, not relevant to our study (Observation A2).

11.4. Pragmatic applications

More tractable families can be used to fit the reported probabilities than the decision-theory-
based curves that we used. For example, in Figure 3, we also used quadratic regression to find
the curve p = a + br + cr2 that best fits the data. For most participants, the curve is virtually
indistinguishable from the decision-theoretic curve. This observation, together with Corollary
4 which demonstrates that we only need the readily observable reported probabilities and not
the actual utility function or probability weighting function to apply our method, shows that
applications of our method are straightforward. The theoretical analysis of this paper, and
the decision-theory-based curve fitting that we adopted, served to prove that our method is in
agreement with modern decision theories. If this thesis is accepted, and the only goal is to obtain
corrected reported probabilities, then one may choose the pragmatic shortcuts just described.

11.5. General discussion

We emphasize that the biases because of violations of expected value that we correct for need
not concern mistakes or irrationalities in decision making. Deviations from risk neutrality need
not be irrational and, according to some, even deviations from Bayesian beliefs need not be

9. It is required that the repeated choices are perceived as sufficiently uncorrelated. Correlation can enhance
the perception of, and aversion to, ambiguity (Halevy and Feltkamp, 2005).
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irrational, nor need the corresponding ambiguity attitudes be irrational (Gilboa and Schmeidler,
1989; Schmeidler, 1989). The required corrections concern empirical deficiencies of the model
of expected value, that is, they concern biases on the part of the researchers analysing the data.

Under proper scoring rules, beliefs are derived solely from decisions, and equation (1) is
taken purely as a decision problem, where the only goal of the agent is to optimize the prospect
received. We considered two treatments that explicitly referred to probabilities and beliefs, and
a treatment that did not do so, finding no differences between the two. Thus, this paper has
analysed proper scoring rules purely from the decision-theoretic perspective supported with real
incentives and has corrected only for biases resulting therefrom. Many studies have investigated
direct judgements of belief without real incentives, and then many other aspects play a role,
leading for instance to the often found overconfidence. Such introspective effects are beyond
the scope of this paper.

An immediate advantage of our calibration measurement, prior to any theoretical analysis,
is that it helps to identify subjects whose understanding of the concepts to be measured is below
what is minimally acceptable. Indeed, subjects for whom the correlation between objective and
reported probabilities is very low clearly have little clue what likelihood means. Their reported
probabilities are of so little interest that we recommend dropping them from the sample. If we
are interested in the beliefs of such subjects in more elaborate studies, then further teaching
and learning will be called for.

The experimental data show that a substantial correction of reported probabilities needs to
be made for a subset of the subjects. The fraction of the sample that needs substantial corrections
is larger when only a single large-stake decision is paid than when repeated small decisions
are paid. Our conclusion is that it is desirable to correct agents’ reported probabilities elicited
with scoring rules, especially if only a single large-stake decision is paid. A drawback of our
method is, obviously, that it requires individual measurements of QSRs for given probabilities.
If it is not possible to obtain individual measurements of the correction curve, then it will be
useful to use best guess corrections: for instance, through averages obtained from individuals
as similar as possible. Thus, at least, the systematic error for the group average to risk attitude
has been corrected for as well as is possible without requiring extra measurements. In this
respect, the average curves in Figure 5 are reassuring for existing studies, because these curves
suggest that only small corrections were needed for the group averages in our context.

Several methods have been used in the literature to measure the subjective degree of
belief of an agent in an event E. Mostly these have been derived from: (i) binary preferences,
which only give inequalities or approximations; (ii) binary indifferences, which are hard
to elicit, for example, by the complex Becker–DeGroot–Marschak mechanism (Karni and
Safra, 1987; Braga and Starmer, 2005) or bisection (Abdellaoui, Vossman and Weber, 2005);
(iii) introspection, which is not revealed preference based let alone incentive compatible. Proper
scoring rules provide an efficient way to measure subjective beliefs while avoiding the problems
mentioned.

12. THEORETICAL DISCUSSION

A way to reveal B(E) from observed choice, as an alternative to our method, is by revealing
the matching probability p of event E, defined through the equivalence

xpy ∼ xEy (23)

for some preset x > y, say x = 100 and y = 0. Then w(B(E))(U(x) − U(y)) = w(p)(U(x) −
U(y)), and B(E) = p follows. Wakker (2004) discussed the interpretation of equations (9) and
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(23) as belief. Matching probabilities were commonly used in early decision analysis (Raiffa,
1968, section 5.3; Yates, 1990, pp. 25–27) under the assumption of expected utility. A recent
experimental measurement is in Holt (2006, chapter 27), who also assumed expected utility.
Abdellaoui, Vossman and Weber (2005) measured and analysed them in terms of prospect
theory, as does our paper. A practical difficulty is that the measurement of matching
probabilities requires the measurement of indifferences, and these are not easily inferred
from choice. For example, Holt (2006) used the Becker–DeGroot–Marschak mechanism, and
Abdellaoui, Vossman and Weber (2005) used a bisection method. If we want to measure
B(E) for only few events E, then matching probabilities provide a tractable alternative to
our correction method. Our method is more efficient when dealing with many events. The
measurement of the correction curve is a one-time investment that can next be applied to an
unlimited number of events.

Another way to correct reported probabilities is through calibration. Then many reported
probabilities are collected over time and are related to observed relative frequencies. Calibration
has been studied in game theory (Sandroni, Smorodinsky and Vohra, 2003) and has been
applied to weather forecasters (Murphy and Winkler, 1974). It needs extensive data, which is
especially difficult to obtain for rare events such as earthquakes, and further assumptions such
as the stability of the characteristics of these events over time. Clemen and Lichtendahl (2005)
discussed these drawbacks and proposed correction techniques for probability estimates in the
spirit of our paper, but still based these on traditional calibration techniques. Our correction
(“calibration”) technique is considerably more efficient than the traditional ones. It shares with
Prelec’s (2004) method the advantage that we need not wait until the truth or untruth of
uncertain events has been revealed to implement it.

Allen (1987) proposed to avoid biases of the QSR because of non-linear utility by paying in
terms of the probability of winning a prize instead of in terms of money, and this procedure was
implemented by McKelvey and Page (1990). The procedure, however, only works if expected
utility holds, and there is much evidence against this assumption. Indeed, Selten, Sadrieh and
Abbink (1999) showed empirically that payment in probability generates more deviations from
risk neutrality than payment in money does.

The decision-based distortion in the direction of 0.5 because of risk aversion in Section 4
is opposite to the overconfidence (probability judgements too far from 0.5) mostly found in
direct judgements of probability without real incentives (McClelland and Bolger, 1994), and
found among experts seeking to distinguish themselves (Keren, 1991, pp. 224, 252; the “expert
bias”, Clemen and Rolle, 2001). Similar optimistic and pessimistic distortions of probability
can result from non-linear utility if the probability considered is a consensus probability for a
group of individuals with heterogeneous beliefs (Jouini and Napp, 2007).

The curve for non-EU in Figure 1 is flat around p = 0.5, or more precisely, on the
probability interval [0.43, 0.57]. For probabilities from this interval, the risk aversion generated
by non-expected utility is so strong that the agent goes for maximal safety and chooses r = 0.5,
corresponding with the sure outcome 0.75 (cf. Segal and Spivak, 1990; Manski, 2004, footnote
10). Such a degree of risk aversion is not possible under expected utility, where r = 0.5 can
happen only for p = 0.5 (Observation 2). This flat curve cautions against assigning specific
levels of belief to observations r = 0.5, because proper scoring rules may be insensitive to
small changes in the neighbourhood of p = 0.5. It in fact means that there the scoring rules,
traditionally called proper, are not really proper.

B captures the component of decision making separate from risk attitude. It is common in
decision theory to interpret factors separate from risk attitude as ambiguity. Then B reflects
ambiguity attitude. There is no consensus about the extent to which ambiguity reflects non-
Bayesian beliefs, and to what extent it reflects non-Bayesian decision attitudes separate from
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belief. If the equality B(E) + B(Ec) = 1 (binary additivity) is violated, then it can further be
debated whether B(E) or 1 − B(Ec) is to be taken as an index of belief (or of ambiguity). Such
interpretations have not yet been settled, and further studies are called for. We have mostly
referred to B as reflecting beliefs, in order to stay as close as possible to the terminology used
today in the literature on proper scoring rules. Irrespective of the interpretation of B, it is clear
that the behavioural component of risk attitude should be filtered out before an interpretation of
belief can be considered. This paper shows how this filtering out can be done. In Schmeidler
(1989), the main paper initiating equations (4) and (5), w was assumed to be linear, with
expected utility for given probabilities, and W coincided with B. Schmeidler interpreted this
component as reflecting beliefs.

As is common in the mechanism design literature, our correction procedure assumed
deterministic choice. A fundamental question concerns how the mechanism performs when
agents make mistakes, as in the random utility model (Luce, 1959; McFadden, 1974, 1976).
Such mistakes will affect the optimal elicitation procedure. These issues are relevant to the
entire mechanism design literature and are a topic for future research.

13. CONCLUSION

This paper has applied modern theories of risk and ambiguity to proper scoring rules. Mutual
benefits have resulted for users of proper scoring rules and for analysts of risk and ambiguity.
For the former, we have shown which distortions affect their common measurements and how
large these distortions are, using theories that are descriptively better than the expected value
hypothesis still common today in applications of proper scoring rules. We have provided a
procedure to correct for the aforementioned distortions, and a theoretical foundation has been
given for interpretations of the resulting measurements as (possibly non-Bayesian) beliefs and
ambiguity attitudes. For analyses of risk and ambiguity, we have shown how the remarkable
efficiency of proper scoring rules can be used to measure and analyse subjective beliefs
and ambiguity attitudes in ways more tractable than is possible with the binary preferences
traditionally used.

The feasibility and tractability of our method have been demonstrated in an experiment,
where we used it to investigate some properties of beliefs and quadratic proper scoring rules. We
found, for instance, that our correction method reduces the violations of additivity in subjective
beliefs but does not eliminate them. It confirms that beliefs are genuinely non-Bayesian and
that ambiguity attitudes play a central role in proper scoring rules.

APPENDIX A. TECHNICAL REMARKS

For QSR prospects in equation (1), every choice r < 0 is inferior to r = 0, and r > 1 is inferior to r = 1. The
optimization problem does not change if we allow all real r , instead of 0 ≤ r ≤ 1. Hence, solutions r = 0 or r = 1
can be treated as interior solutions, and they satisfy the first-order optimality conditions.

In general, it may not be possible to derive both w and U from R(p) without further assumptions, that is, U and
w may be non-identifiable for proper scoring rules. Under regular assumptions about U and w, however, they have
some different implications. The main difference is that, if we assume that U is differentiable (as done throughout
this paper) and concave, then a flat part of R(p) around 0.5 must be caused by w (Observation 2).

We next discuss dualities between B(E) and 1 − B(Ec) in more detail. Event A is (revealed) more likely than
event B if, for some positive outcome x, say x = 100, the agent prefers xA0 to xB0. This observation is independent
of the outcome x > 0. In view of the symmetry of QSRs in Observation 1, for r 	= 0.5 the agent will always allocate
the highest payment to the most likely of E and Ec. It leads to the following restriction of QSRs.

Observation A1. Under the QSR in equation (1), the highest outcome is always associated with the most likely
event of E and Ec.
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Hence, QSRs do not give observations about most likely events when endowed with the worst outcome. Similar
restrictions apply to all other proper scoring rules considered in the literature so far. It implies the following result.

Observation A2. For the QSR, only the restriction of w to [0.5,1] plays a role, and w’s behaviour on [0,0.5)
is irrelevant.

For our risk corrections, we need w only on [0.5,1]. An advantage is that the empirical findings about w are
uncontroversial on this domain, the general finding being that w underweights probabilities there. This holds both
for the mostly found inverse-S shape (Tversky and Kahneman, 1992; Gonzalez and Wu, 1999; Abdellaoui, 2000;
Bleichrodt and Pinto, 2000) and for the also often found convex shapes (Goeree, Holt and Palfrey, 2002; van de
Kuilen and Wakker 2009).10

Some details on weak inequalities and corner solutions are as follows. A choice of r = 0.5 may be driven by risk
aversion, so that no likelihood ordering between E and Ec can then be concluded. A choice of r 	= 0.5 (if close to
0.5) may be driven by risk seeking with equal likelihood of E and Ec. Only interior solutions with a strict inequality
r > 0.5 exclude that E be strictly less likely than Ec.

As with the weighting function w under risk, B is also applied only to the most likely one of E and Ec in the
preceding equations, reflecting again the restriction of the QSR of Observation A1. Hence, under traditional QSR
measurements, we cannot test binary additivity directly because we measure B(E) only when E is more likely than
Ec. These problems can easily be amended by modifications of the QSR. For instance, we can consider prospects

(2 − (1 − r)2)E(1 − r2), (A1)

that is, QSR prospects as in equation (1) but with a unit payment added under event E. The classical proper scoring
rule properties of Section 2 are not affected by this modification, and the results of Section 3 are easily adapted. With
this modification, we have the liberty to combine event E with the highest outcome both if E is more likely than
Ec and if E is less likely, and we avoid the restriction of Observation A1. We can then observe w of the preceding
subsection, and W(E) and B(E) over their entire domain. Similarly, with prospects

(1 − (1 − r)2)E(2 − r2), (A2)

we can measure the duals 1 − W(Ec), 1 − w(1 − p), and 1 − B(Ec) over their entire domain. In this study, we
confined our attention to the QSRs of equation (1) as they are classically applied throughout the literature. We have
revealed their biases according to the current state of the art of decision theory, have suggested remedies whenever
possible and have signalled the problems that remain. Further investigations of the, we think promising, modifications
of QSRs in the preceding equations are left to future studies.

The restrictions of the classical QSRs also hold for the experiment in this paper. There an application of the QSR
to events E less likely than their complements are to be interpreted formally as the measurement of 1 − B(Ec). The
restrictions also explain why the theorems concerned only the case of r > 0.5 (with r = 0.5 as a boundary solution).

APPENDIX B. PROOFS

For QSR prospects in equation (1), every choice r < 0 is inferior to r = 0, and r > 1 is inferior to r = 1. The
optimization problem does not change if we allow all real r , instead of 0 ≤ r ≤ 1. Hence, solutions r = 0 or r = 1
can be treated as interior solutions, and they satisfy the first-order optimality conditions.

Proof of Theorem 1. We write π for the decision weight W(E), and consider the general prospects (a − b(1 −
r)2)E(a − br2) for any b > 0 and a ∈ R. Theorem 1 concerns the special case of a = b = 1. For optimality of interior
solutions r , the first-order optimality condition for equation (4) is that

πU ′(a − b(1 − r)2)2b(1 − r) − (1 − π)U ′(a − br2)2br = 0,

implying

π(1 − r)U ′(a − b(1 − r)2) = (1 − π)rU ′(a − br2) (B1)

10. On [0,0.5) the patterns is less clear, with both underweighting and overweighting (Gonzalez and Wu, 1999;
Abdellaoui, 2000; Bleichrodt and Pinto, 2000).
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or
πU ′(a − b(1 − r)2) = r × (πU ′(a − b(1 − r)2) + (1 − π)U ′(a − br2)),

and equation (6) follows. ‖

Proof of Observation 2. If r = 0.5 then the marginal utility ratio in equation (6) is 1, and p = 0.5 follows. For
the reversed implication, assume risk aversion. Then r > 0.5 is not possible for p = 0.5 because then the marginal
utility ratio in equation (6) would be at least 1 so that the right-hand side of equation (6) (where now W(E) = 0.5)
would at most be 0.5, contradicting r > 0.5. Applying this finding to Ec and using equation (2), r < 0.5 is not possible
either, and r = 0.5 follows.

Under strong risk seeking, r may differ from 0.5 for p = 0.5. For example, if U(x) = e2.5x , then r = 0.14 and
r = 0.86 are optimal, and r = 0.5 is a local infimum, as calculations can show. As an aside, the same optimal values
of r result under non-expected utility with linear U , and with w(0.5) = 0.86. Such large w-values also generate risk
seeking. ‖

Proof of Corollary 2. Let r > 0.5 be optimal, and write π = W(E). Then equation (B1) implies

π × ((1 − r)U ′(a − b(1 − r)2) + rU ′(a − br2)) = rU ′(a − br2),

implying
π = r

r + (1 − r)
U ′(a − b(1 − r)2)

U ′(a − br2)

. (B2)

Applying w−1 to both sides yields the corollary. ‖
In measurements of belief, one first observes r and then derives B(E) from it. Corollary 2 gave an explicit

expression. In general, it does not seem to be possible to write r as an explicit expression of B(E) or, in the case of
objective probabilities with B(E) = p, of the probability p.

Proof of Corollary 4. Theorem 1 implies that the right-hand side of equation (6) is r both as it is, and with p

substituted for B(E) (in W(E) = w(B(E))). Because equation (6) is strictly increasing in w(B(E)), and w is strictly

increasing too, p = B(E) follows. ‖

APPENDIX C. MODELS FOR DECISION UNDER RISK AND UNCERTAINTY

For binary (two-outcome) prospects with both outcomes non-negative, as considered in QSRs, equations (4) and
(5) have appeared many times in the literature. References include the early Allais (1953, equation 19.1) and Edwards
(1954, figure 3) for risk and, more recently, Luce (1991) for uncertainty. The convenient feature that binary prospects
suffice to identify utility U and the non-additive w(B) = W was pointed out by Ghirardato and Marinacci (2001),
Gonzalez and Wu (2003), Luce (1991, 2000), Miyamoto (1988), Pfanzagl (1959, p. 287) and Wakker and Deneffe
(1996, pp. 1143, 1144–1145).

The convenient feature that most decision theories agree on the evaluation of binary prospects was pointed out
by Miyamoto (1988), calling equations (4) and (5) generic utility, and Luce (1991), calling these equations binary
rank-dependent utility. It was most clearly analysed by Ghirardato and Marinacci (2001), who called the equations
the biseparable model. These three works also axiomatized the model. The agreement for binary prospects was also
central in many works by Luce (e.g. Luce, 2000, chapter 3) and in Gonzalez and Wu (2003). Only for more than two
outcomes, do the theories diverge (Mosteller and Nogee, 1951, p. 398; Luce, 2000, Introductions to chapters 3 and 5).
Theories that also deviate for two outcomes include betweenness models (Chew and Tan, 2005), the variational model
(Maccheroni, Marinacci and Rustichini, 2006) and models with underlying multistage decompositions (Halevy and
Feltkamp, 2005; Klibanoff, Marinacci and Mukerji, 2005; Nau, 2006; Halevy and Ozdenoren, 2007; Olszewski, 2007).

We next describe some of the agreeing decision theories. Because we consider only non-negative outcomes, losses
play no role, and we describe prospect theory only for gains.

We begin with decision under risk, with known objective probabilities P (E). Expected utility (von Neumann
and Morgenstern, 1944) is the special case where w is the identity and B(E) = P (E). Kahneman and Tversky’s
(1979) original prospect theory, Quiggin’s (1982) rank-dependent utility and Tversky and Kahneman’s (1992) new
prospect theory concern the special case of B(E) = P (E), where w now can be non-linear. The case B(E) = P (E)

also includes Gul’s (1991) disappointment aversion theory.
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We next consider the more general case where no objective probabilities need to be given for all events E.
Expected utility is the special case where B is an additive, now “subjective”, probability and w is the identity. Cho-
quet expected utility (Schmeidler, 1989) and cumulative prospect theory (Tversky and Kahneman, 1992) start from the
general weighting function W , from which B obviously results as w−1(W), with w the probability weighting function
for risk. The multiple priors model (Gilboa and Schmeidler, 1989) results with W(E) the infimum value P (E) over
all priors P . Under the alpha maxmin model, W is alpha times that infimum plus 1− alpha times the supremum.
Under Machina and Schmeidler’s (1992) probabilistic sophistication, B is an additive probability measure.

APPENDIX D. EXPERIMENTAL INSTRUCTIONS

This appendix is not reproduced here, but is made available online.
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