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1 Introduction

In social or economic problems, agents often need to prepare their actions before they
interact. They may obtain some information about what others are preparing and revise
their prepared actions accordingly. To analyze such situations in a stylized model, Ka-
mada and Kandori (2011; “KK” hereafter) introduced revision games. In a revision game,
players play a “component game” only once at the prespecified deadline, before which they
obtain stochastic opportunities to revise their actions. Prepared actions are assumed to
be mutually observable. KK characterized the optimal trigger strategy equilibrium and
showed that a certain level of cooperation is sustainable in a revision game. In other words,
cooperation is possible even though a game is played only once, if (i) players prepare and
revise their actions and (ii) players mutually monitor their prepared actions. KK showed
that the optimal trigger strategy equilibrium is described by a simple differential equation,
and the paper provided various economic applications. One key assumption in KK was
that revisions are synchronous—there is one Poisson process according to which revision
opportunities arrive, and at each opportunity all players revise simultaneously. This as-
sumption enables them to obtain a clear-cut analysis, but in real-life applications players’
revision opportunities are often not necessarily synchronized.

In this paper we extend the analysis of KK to the situation in which players’ revision
opportunities are asynchronous. Assuming that payoff is additively separable πi(ai, a−i) =
b(a−i) − c(ai), we are able to characterize the optimal trigger strategy equilibrium by a
differential equation. We first consider the case with homogeneous arrival rates, where the
arrival rate of each player i is λi = λ, and show that the optimal trigger strategy equilibrium
has exactly the same path of actions as in the synchronous model with arrival rate λ. We
go on to consider the case with heterogeneous arrival rates. Unlike the case of homogeneous
arrival rate, the characterization of the optimal trigger strategy is no longer self-evident,
and we obtain the full characterization by means of an optimal control problem. Using
this result, we examine what happens if one player has a higher arrival rate than the other.
In the optimal trigger strategy equilibrium, the player with the higher arrival rate exerts
more effort than the other player, when the deadline is not so close. Near the deadline,
however, the effort levels of players are reversed: the player with the lower arrival rate
exerts more effort.

Calcagno and Lovo (2010) and Kamada and Sugaya (2010) also considered asyn-
chronous revision games for a class of games that is different from the one we analyze
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in the present paper. They focused on a certain class of games with finitely many actions,
which includes coordination game and battle of the sexes. They showed that, in asyn-
chronous revision games, a unique Nash equilibrium of the component game is selected,
even if the component game has multiple equilibria. A crucial difference is that we con-
sider games with continuous actions. With continuous actions, players have more freedom
to fine-tune their actions near the deadline, and this degree of freedom creates multiple
equilibria (and hence the possibility of cooperation) in the revision game.

2 Model

Consider a normal form game with two players i = 1, 2. Player i’s action and payoff are
denoted by ai ∈ Ai and πi(ai, a−i), respectively. (Throughout the paper we denote the
opponent of player i by −i.) This game is played at time 0, but players have to prepare
their actions in advance, and they also have some stochastic opportunities to revise their
prepared actions. Hence, technically the game under consideration is a dynamic game with
preparation and revisions of actions, where the normal-form game π is played at the end
of the dynamic game (time 0). To distinguish the entire dynamic game and its component
π, the former is referred to as a revision game and π is referred to as the component game.

Time is continuous, −t ∈ [−T, 0] with T > 0. At time −T , each player i chooses an
action from Ai simultaneously. In time interval (−T, 0], revision opportunities for player i

arrive according to a Poisson process with arrival rate λi > 0 defined over the time interval
(−T, 0]. At each arrival, i chooses an action from Ai. There is no cost of revision. At
period 0, the payoffs π(a′) = (π1(a′1), π2(a′2)) materialize, where a′i is i’s finally-revised
action.

We assume that players observe all the past events in the revision game, and analyze
subgame perfect equilibria. We assume that player i observes when revision opportunities
arrived to player j, so that i can see if j has actually followed the equilibrium action path
xj(t).

Unless otherwise noted, we assume throughout this paper that the payoff function is
additively separable with respect to each player’s action. Specifically, we consider payoff
functions of the following form: For each i = 1, 2,

πi(ai, a−i) = b(a−i) − c(ai),
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where ai ∈ Ai = A = [0,∞) and let a∗ be the maximizer of b(a) − c(a).1 We also assume
b(0) = c(0) = 0, and both b and c are continuous and strictly increasing (at this point, they
may not be differentiable; we will assume differentiability in the full analysis in Section 6).
Notice that there is a unique Nash equilibrium, (a1, a2) = (0, 0).

In general, player i’s revision plan depends not only on the timing of revision but
also on the opponent’s action that is fixed at the time of revision (hence a revision plan
is represented by a function xi(t, a−i), where a−i is the fixed action of the opponent at
revision time −t). If the payoff is separable across players’ actions, as we will show below,
we can effectively ignore the dependence of action path with respect to the opponent’s
action, in the sense to be made precise in what follows. However, if the payoff function is
not additively separable with respect to each player’s action (as in the Cournot duopoly
game), the dependence of revision plans on the opponent’s action cannot be ignored, hence
the analysis would be much more complicated than given in what follows. For example,
it is not necessarily an optimal deviation to play the best response against the opponent’s
current action. We will demonstrate that even in the case of separable payoff functions,
many complications and subtlety arise. Although the full analyses on non-separable payoff
functions are beyond the scope of this paper, in the discussion section of this paper we
will show that, even without separability, we can characterize the equilibrium payoff in the
limit as the relative arrival rates diverge.

The characterization of the optimal equilibrium path is complicated, and the full anal-
ysis is provided in Setion 6. It will turn out in that section that when the deadline is close,
the optimal equilibrium path follows the following binding trigger strategy equilibrium path:

Definition 1 The binding trigger strategy equilibrium path is a path given by
(x1(t), x2(t))t∈[0,T ] such that the following properties hold:

• If player i obtains a revision opportunity at time −t and there has been no deviation
in the past, then she prepares xi(t).

• If there has been a deviation in the past, she prepares action 0.
1We note that the case with A = [0, a] for some a < ∞ may be more realistic, but the characterization

of the optimal path would be a little bit messier, because the optimal path may overshoot a∗ and may hit
the maximum action a. For the moment, we consider a cleaner case a = ∞. Later we may consider the
case with a < ∞.
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• The incentive compatibility conditions for both players bind for all time −t ∈ [−T, 0].

The next section describes the basic incentive compatibility constraint. Then we pro-
ceed from easy to difficult. We start by Section 4 from the analysis of the case of homo-
geneous arrival rates, in which we find that the binding trigger strategy equilibrium path
characterizes the actual optimal path just as in the case of synchronous revision that KK
analyzed. Then in Section 5 we consider the binding trigger strategy equilibrium path.
Full analysis of the optimal path is given in Section 6.

3 The Incentive Compatibility Constraint

Specifically, fixing the opponent’s action aj , player i’s payoff from cooperation path at time
−t in the biding trigger strategy is

e−λjtb(aj) +
∫ t

0
b(xj(τ))λje

−λjτdτ −
(

e−λitc(xi(t)) +
∫ t

0
c(xi(τ))λie

−λiτdτ

)
. (1)

On the other hand, i’s payoff from defection is

e−λjtb(aj).

Hence the incentive compatibility condition for player i is:

e−λitc(xi(t)) ≤
∫ t

0

(
b(xj(τ))λje

−λjτ − c(xi(τ))λie
−λiτ

)
dτ. (2)

Notice that this condition does not depend on aj , the fixed action of the opponent. This
is the sense in which we said “we can effectively ignore the dependence of action path with
respect to the opponent’s action.” The intuition for this is simple: Whether or not player
i cooperates at time −t, the only case where the opponent’s fixed action matters in either
case is when the opponent j will not have any further opportunity in the future. This
happens with the same probability in the two cases, and by separability what player i is
preparing does not affect the payoff from j’s fixed action, b(aj).
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4 Homogeneous Arrival Rates

In this subsection, we consider the case in which two players’ arrival rates are identical,
i.e. λ1 = λ2. The case of heterogeneous arrival rates are discussed in the next subsection.

In the case of homogeneous arrival rates, there is a simple characterization of the
optimal symmetric trigger strategy equilibrium. To see this, substitute λ1 = λ2 = λ in
the incentive compatibility condition (2), and note that the resulting condition is precisely
identical to the incentive compatibility condition that we provided in KK. This gives us
the following proposition:

Proposition 1 The optimal trigger strategy equilibrium in KK also constitute the optimal
trigger strategy equilibrium in the case of asynchronous revisions with equal arrival rates
λi = λj = λ.

That is, the results from KK apply in the case of homogeneous arrival rates.
When arrival rates are heterogeneous, however, the simple characterization in the above

proposition no longer applies. We need to work with two distinct incentive constraints (for
the two players) simultaneously, which complicates the analysis. We consider such a case
in the next subsection.

5 Heterogeneous Arrival Rates (The Binding Trigger Strat-

egy Equilibrium Path)

In this subsection we consider the case of heterogeneous arrival rates. Without loss of
generality, assume λ1 < λ2.

Rearrange the incentive compatibility condition (2) to get

Bi(t) := e−λitc(xi(t)) +
∫ t

0
c(xi(τ))λie

−λiτdτ ≤
∫ t

0
b(xj(τ))λje

−λjτdτ =: Pi(t). (3)

This inequality has the following interpretation: Bi(t) is the amount that player i can save
by optimally deviating from the path x(·) at time −t, which is equal to the expected cost
that i needs to pay on the path x(·). That is, Bi(t) is the benefit of deviation. On the other
hand, Pi(t) is the penalty associated with deviation at −t. Since the opponent j follows
the path x(·) at time −t, the loss is incurred only when there is another chance in the time
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interval (−t, 0], which is why there is only one term in the right hand side. Overall, the
inequality is saying that the benefit from deviation should be no larger than the penalty
associated with it.

Our main question in this subsection is which player exerts more effort in the binding
trigger strategy path. There are virtually two effects of player i’s having a higher arrival
rates than the opponent j. First, i is unlikely to be punished in the future upon deviation
because j’s arrival rate is low, so i has a larger incentive to deviate, which suggests i’s action
needs to be low. On the other hand, the benefit from i’s deviation is low because i could
have revision opportunities in the future many times near the deadline, so the expected
amount that i can save by deviating is small anyway, which suggests i’s action needs to be
high. As we will see in what follows, these explanations are only a part of the story, and
different effects are more relevant than others at different time points in the revision game.
This results in the reversal of amounts of efforts that players exert at some time point
−t. Notice that when two players’ homogeneous arrival rates are increased by the same
amount, Proposition 1 in the previous subsection and the “Arrival Rate Invariance” in KK
imply that two players’ actions are still the same. This means that the two effects (as well
as the ones that we have not explained here but will do so in what follows) offset to each
other. The complication arises when the arrival rates are changed by different amounts.

The plan of this subsection is as follows. First we show that the binding trigger strategy
path is strictly increasing if there is a nontrivial cooperation at some time point −t, which
is needed to prove the subsequent results. Then we consider two cases, t ' 0 and t large,
to see which player exerts more effort in the binding trigger strategy path. These two
parts imply that the relative amounts of the effort must be reversed at some time −t.
We provide a numerical example in which this reversal takes place in the optimal trigger
strategy path. The final part considers a bit different question, in which we ask whether
having an infinitely low arrival rates relative to the opponent guarantees the Stackelberg
outcome. To ease the load of argument, let us assume that the binding trigger strategy
path is continuous.2

2This will follow from the same argument as in the main section.
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5.1 Strict Increasingness of the Paths

Suppose that the binding trigger strategy path xi is not strictly increasing. Then there
must exist s and t such that s < t and xi(s) = maxτ∈[0,t] xi(τ).3 We compare the benefits
and penalties from deviation at s and t.

First, compare the benefits:

Bi(t)−Bi(s) ≤ e−λitc(xi(t))−e−λisc(xi(s))+
∫ t

s
c(xi(s))λie

−λiτdτ = e−λit(c(xi(t))−c(xi(s)) ≤ 0,

where the equality holds only when xi(s) = xi(t). Second, compare the penalties:

Pi(t) − Pi(s) =
∫ t

s
b(xj(τ))λje

−λjτdτ ≥ 0,

where the equality holds only when xj(τ) = 0 for almost all τ ∈ [s, t]. But these two mean
that, by the definition of s, xi(τ) = 0 for all τ ∈ [0, t]. Hence, a nontrivial binding trigger
strategy path must be strictly increasing on [0, t]. If there is no upper bound of t such
that there exists s such that xi(s) = maxτ∈[0,t] xi(τ), this proves that a nontrivial binding
trigger strategy path must be strictly increasing on [0,∞). If there is an upper bound,
then it means that the path is strictly increasing on (t,∞), so again the proof is done. We
summarize this point in the following proposition:

Proposition 2 In the binding trigger strategy path with xj(t) > 0 for some j and t, xi is
increasing for each i = 1, 2.

In what follows we consider the case where there exist binding and optimal trigger
strategy paths such that xj(t) > 0 for some j and t. Now we compare the incentives faced
by two players in two cases: (i) the case when the deadline is very close (t ' 0) and (ii)
the case when the deadline is very far away (t very large).

5.2 Case (i): t ' 0

First, consider case (i). In this case, Bi(t) and Pi(t) in the incentive compatibility condition
(3) are approximately zero because xi is close to the Nash action 0. We first show that it
cannot be the case that x1(s) ≤ x2(s) for alls ∈ [0, t] when t > 0 is close to zero. To see

3The continuity of the path xi ensures the existence of the maximum.
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this, suppose for the contrary that x1(s) ≤ x2(s) for all s ∈ [0, t] when t > 0 is close to
zero.

By the binding incentive constraints Bi(t) = Pi(t), i = 1, 2, we have

eλ1sB1(s)
eλ2sB2(s)

=
eλ1sP1(s)
eλ2sP2(s)

for all s ∈ [0, t]. (4)

By the fact that x1(·) is increasing and our premise x1(s) ≤ x2(s) for all s ∈ [0, t], we
have c(x1(τ)) < c(x1(s)) ≤ c(x2(s)) for all τ ≤ s. Therefore, the second term in B1(s) is
bounded above by

∫ t
0 c(x2(s))λ1e

−λ1τdτ . Hence we have

eλ1sB1(s)
eλ2sB2(s)

<
c(x1(s)) + eλ1s

∫ t
0 c(x2(s))λ1e

−λ1τdτ

c(x2(s))

=
c(x1(s))
c(x2(s))

+ eλ1s
(
1 − eλ1s

)
Since c(x1(s))

c(x2(s)) ≤ 1 and eλ1s
(
1 − eλ1s

)
→ 0 as s → 0, we obtain

lim
s→0

eλ1sB1(s)
eλ2sB2(s)

≤ 1.

In contrast, we have

eλ1sP1(s)
eλ2sP2(s)

>
λ2e

(λ1−λ2)s
∫ s
0 b(x2(τ))dτ

λ1

∫ s
0 b(x1(τ))dτ

≥
λ2e

(λ1−λ2)s
∫ s
0 b(x2(τ))dτ

λ1

∫ s
0 b(x2(τ))dτ

=
λ2e

(λ1−λ2)s

λ1
,

and therefore

lim
s→0

eλ1sP1(s)
eλ2sP2(s)

≥ λ2

λ1
> 1.

Thus we have obtained

lim
s→0

eλ1sB1(s)
eλ2sB2(s)

< lim
s→0

eλ1sP1(s)
eλ2sP2(s)

,

which contradicts (4). Hence, for any sufficiently small t, there is always some s ≤ t such
that x2(s) < x1(s).

The intuition for this result is simple. First, i’s benefit from deviation at time −t is
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determined mostly by what she saves at −t, as there is almost no revision chances in the
future. This amount is independent of the arrival rate, and is increasing in the cost, and
hence in the action. On the other hand, the penalty associated with deviation at time −t

pertains to the future events in nature, hence must depend on the arrival rates. Since there
is very little time left until the deadline, the probability that there will be multiple revision
opportunities in the future is negligible compared to the probability that there will be a
single revision opportunity. This means that the relative likelihood that the punishment is
triggered is determined by the ratio of the arrival rates, and the magnitude conditional on
being punished is determined by the benefit from the opponent’s future cooperation, which
is increasing in the opponent’s future action. Overall, if 2’s action is higher than 1’s from
time −t on, then 2’s benefit from deviation is higher than 1’s because 2 has much more to
save than 1 does, while 2’s penalty is lower than 1’s because 2 expects fewer chances to
be punished in the future and the magnitude of the penalty conditional on being punished
is smaller. But this means that if 1’s incentive compatibility condition is binding then 2’s
cannot bind.

The conclusion up to this point implies that it is either that there is t̄ > 0 such that
for all t ∈ (0, t̄), x2(t) < x1(t) holds, or that there is an infinite sequence of times {tk}∞k=0

such that tk → 0, x1(tk) = x2(tk), and there exists ε > 0 such that x1(t) < x2(t) for all
t ∈ (tk, tk + ε) for all k. An analogous argument as the one provided here shows that the
latter cannot hold. We provide the proof for this in Appendix D.

To summarize, we obtain the following proposition:

Proposition 3 There exists t̄ > 0 such that for all t ∈ (0, t̄), x2(t) < x1(t) where
(x1(t), x2(t))t∈[0,T ] is the optimal trigger strategy equilibrium path.

5.3 Case (ii): t large

Next, we consider case (ii), i.e. the case when the deadline is far away. We show that the
inequality in Proposition 3 must be reversed at some point in time.

To see this, suppose that x2(τ) ≤ x1(τ) for all τ ∈ [0, t]. We show that for sufficiently
large t, the incentive compatibility condition for one player must be unable to hold with
equality at time −t.

Consider the limits of Bi(t) and Pi(t) as t → ∞. For Bi(t), in the limit we are left with
the second term. Since x2(τ) ≤ x1(τ) for all τ ∈ [0, t] and that the exponential distribution
with parameter λ1 first order stochastically dominates that with parameter λ2 (> λ1), for
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sufficiently large t we must have B1(t) > B2(t). On the other hand, for the penalty term,
by exactly the same argument we must have P1(t) < P2(t) for sufficiently large t. Together,
we cannot have B1(t) = P1(t) and B2(t) = P2(t) simultaneously.

The intuition for this is again simple. If a player cheats when there is much time to
reach the deadline, punishment will be triggered almost certainly. Since λ1 < λ2, player 1
expects less revision chances near the deadline so the amount that she can save is larger
than the case when she has a higher arrival rate, and if x2 ≤ x1 in the future then the
amount that she can save conditional on having a revision opportunity is no smaller than
what 2 would be able to save. On the other hand, the penalty associated with 1’s deviation
is determined by the expected benefit that 2 brings to her, and it is smaller than what 1
brings to 2 because x2 ≤ x1 in the future and 2 has more opportunities near the deadline
than 1 does. Overall, player 1 expects a higher benefit and a lower penalty of deviation
than player 2, so if 2’s incentive compatibility condition is binding then 1’s cannot bind.
We summarize this finding in the following proposition:

Proposition 4 In the biding trigger strategy equilibrium path (x1(t), x2(t))t∈[0,∞), it can-
not be that x1(t) > x2(t) for all t ∈ (0,∞).

5.4 Reversal of the Optimal Trigger Strategy Paths: Good Exchange

Game

Proposition 4 suggests that in the binding trigger strategy path, the sizes of x1 and x2 are
reversed at some time −t. Later we will show that the optimal path follows the binding
path until one player’s action hits a∗. This means that if the point of reversal is at an action
below a∗, then the reversal occurs in the optimal trigger strategy path as well. Numerical
computation reveals that this can indeed happen: In the good exchange game example
(πi(xi, xj) = b(xj) − c(xi) = xj − x2

i ) with arrival rates λ1 = 1 and λ2 = 5, the reversal
occurs before the path reaches the optimal action a∗ = 1

2 . Figure 1 depicts the optimal
trigger strategy path. Precisely, the following properties are true:

1. Near t = 0, x1(t) > x2(t), as we have shown above.

2. When t is larger than some threshold value, however, the inequality is reversed:
x1(t) < x2(t).

3. x1(t) is concave and x2(t) is convex in the binding trigger strategy equilibrium path.
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Figure 1: The optimal path for the good exchange game in asynchronous revision
game: λ1 = 1, λ2 = 5.

It is possible to prove Item 3 for πi = b(xj) − c(xi) = xj − x2
i , but we do not know if

this is generally true. Since the proof is a bit complicated, it is omitted.

6 Full Analysis of the Optimal Path

6.1 The Definition of The Optimal Path

We now assume differentiability and further regularity conditions and analyze the property
of the optimal path in depth. That is, we assume b′ > 0, b” < 0, c” > 0, c′(0) = 0, c′(a) > 0
for a > 0. At the unique Nash equilibrium (a1, a2) = (0, 0), the first and second order
conditions of payoff maximization −c′ = 0 and −c′′ < 0 are satisfied. We consider the case
λ1 ≤ λ2.

A trigger strategy equilibrium is characterized by the equilibrium path (x1, x2), where
xi : [0, T ] → A, i = 1, 2. Recall that trigger strategy requires that player i should revise his
action to xi(t), when he has a revision opportunity at time −t. If any player deviates from
the equilibrium revision path (x1, x2), player i chooses the Nash action 0 in all revision
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opportunities. The payoff to player i at (x1, x2) is given by

Vi(x1, x2) = b(x−i(T ))e−λ−iT − c(xi(T ))e−λiT

+
∫ T

0

(
b(x−i(t))λ−ie

−λ−it − c(xi(s))λie
−λit

)
dt.

To derive the optimality conditions below, we restrict our attention to the following paths.

Definition 2 XPC := {(x1, x2)| xi : [0, T ] → A is piecewise continuous for i = 1, 2}.

The optimal (trigger strategy equilibrium) path (x1, x2) is defined to be the one that
maximizes the sum of revision game payoffs subject to the (trigger strategy) incentive
constraints:

Problem 1:

max
(x1,x2)∈XPC

2∑
i=1

[
(b(xi(T )) − c(xi(T ))) e−λiT +

∫ T

0
(b(xi(t)) − c(xi(t))) λie

−λitdt

]
(5)

s.t. ∀i∀t

∫ t

0
b(x−i(s))λ−ie

−λ−isds ≥ c(xi(t))e−λit +
∫ t

0
c(xi(s))λie

−λisds.

The objective function is equal to the sum of revision game payoffs V1+V2, after rearranging
terms. The left hand side of the constraint is the benefit lost when player i deviates at
time −t, while the right hand side represents the cost saved by the deviation.

6.2 Necessary and Sufficient Conditions

First we rewrite the optimization problem (Problem 1) in the conventional form of optimal
control. First, note that we can consider

ci(t) := c(xi(t))

as the control variable. Accordingly, define

B(c) := b(c−1(c)),

and note that, for c > 0,

B′ =
b′

c′
> 0 and
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B′′ =
b′′

c′
− b′c′′

(c′)2
< 0,

As we assume that b′(0) > 0, b”(0) < 0 and c”(0) > 0 are all finite, c′(0) = 0 implies

B′(0) = ∞ and B′′(0) = −∞.

Note that B is a strictly increasing concave function. With those redefinition of vari-
ables, the objective function is concave and the set of variables that satisfy the incentive
constraints become convex (see (9) below). Define the state variable by

ki(t) :=
∫ t

0
B(c−i(s))λ−ie

−λ−isds −
∫ t

0
ci(s)λie

−λisds. (6)

Note that, with this definition, the incentive constraint is simply expressed as ki(t) ≥
c(xi(t))e−λit. Next, we replace the first term in the objective function (5) by a function of
the terminal state variable ki(T ).

Definition 3 Wi(ki(T )) is the optimal value associated with

max
ci(T )

(B(ci(T )) − ci(T )) e−λiT (7)

s.t. ki(T ) ≥ ci(T )e−λiT .

Recall that c(a∗) is the value of c that maximizes B(c) − c. When c(a∗) is not feasible
(i.e., ki(T ) < ci(a∗)e−λiT ), the above constraint is binding and the optimal ci(T ) is equal
to ki(T )eλiT . Hence we have

Wi(k) =


B(keλiT )e−λiT − k if k < ci(a∗)e−λiT

(B(c(a∗)) − c(a∗)) e−λiT otherwise

(8)

Note that Wi(·) is a concave function.
Now define

CPC := {(c1, c2)| ci : [0, T ] → [0, c(a)] is piecewise continuous for i = 1, 2}
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Then, our optimization problem (Problem 1) can be expressed as an optimal control prob-
lem:

Problem 2:

max
(c1,c2)∈CPC

2∑
i=1

[∫ T

0
(B(ci(t)) − ci(t))λie

−λitds + Wi(ki(T ))
]

s.t. ∀i∀t ki(t) ≥ ci(t)e−λit (9)
·
ki(t) = B(c−i(t))λ−ie

−λ−it − ci(t)λie
−λit (10)

ki(0) = 0 (11)

Since we consider piecewise continuous ci, (10) is required for almost all t (i.e., outside
a measure zero set where ci jumps). The incentive constraint (9) is a ”mixed inequality
constraint” on a flow (control) variable (ci(t)) and a stock (state) variable (ki(t)). Con-
ditions for optimality in such problems are found in, for example, Sethi and Thompson
(2000, Chapter 3).

Let µi(t) and be the Lagrange multiplier associated with the law of motion of state
variable (10), and define Hamiltonian

H(t)

: =
2∑

i=1

 (B(ci(t)) − ci(t)) λie
−λit︸ ︷︷ ︸

The integrand of the objective function

+ µi(t)(B(c−i(t))λ−ie
−λ−it − ci(t)λie

−λit︸ ︷︷ ︸
The right hand side of (10)

)


=

2∑
i=1

[(1 + µ−i(t))B(ci(t)) − (1 + µi(t))ci(t))]λie
−λit.

Optimality requires that H(t) is to be maximized for each t (with respect to the con-
trol variables ci(t), i = 1, 2) subject to the incentive constraint (9). Hence we consider
Lagrangian

L(t) := H(t) +
2∑

i=1

γi(t)
(
ki(t) − ci(t)e−λit

)
,

where γi(t) is the Lagrange multiplier associated with the incentive constraint (9).
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Optimality conditions are

µi(T ) = W ′
i (k

∗
i (T )) (transversality condition),

the Kuhn-Tucker conditions for the constrained maximization of the Hamiltonian

∂L(t)
∂ci(t)

= 0,

γi(t) ≥ 0 and γi(t)
(
ki(t) − ci(t)e−λit

)
= 0,

and
∂L(t)
∂ki(t)

+
·
µi(t) = 0,

together with the original constraints (9)-(11). Those conditions are necessary for opti-
mality, and they are also sufficient when

1. the integrand of the objective function (
∑2

i=1 (B(ci(t)) − ci(t))λie
−λit) is concave in

ci(t), ki(t), i = 1, 2,

2. terminal value function (
∑2

i=1 Wi(ki(T ))) is concave in ki(T ), i = 1, 2, and

3. the set of (ci(t), ki(t)) that satisfies the mixed inequality constraint (9) is convex.

Those requirements 1-3 are satisfied in our model. Hence we obtained the following
characterization of optimal path.

Proposition 5 Path (c∗1, c
∗
2) is the optimal solution to Problem 2 (and hence (x∗

1, x
∗
2) de-

fined by (c(x∗
1), c(x

∗
2)) = (c∗1, c

∗
2) is the optimal path that solves Problem 1), if and only

if the following conditions hold. There exit a continuous, piecewise continuously differen-
tiable function γi(t), a piecewise continuous function µi(t), and the state variable (k∗

1, k
∗
2)

determined by
·

k∗
i (t) = B(c∗−i(t))λ−ie

−λ−it − c∗i (t)λie
−λit, (12)

k∗(0) = 0 (13)

that satisfy the following conditions for i = 1, 2.

∀t k∗
i (t) ≥ c∗i (t)e

−λit, (14)
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µi(T ) =


B′(c∗i (T )) − 1 if k∗

i (T ) < c(a∗)e−λiT

0 otherwise

, (15)

c∗i (T ) =


k∗

i (T )eλiT if k∗
i (T ) < c(a∗)e−λiT

c(a∗) otherwise

, (16)

and for almost all t,

λi

[
(1 + µ−i(t))B′(c∗i (t)) − (1 + µi(t))

]
− γi(t) = 0, (17)

γi(t) ≥ 0 and γi(t)
(
k∗

i (t) − c∗i (t)e
−λit

)
= 0, (18)

·
µi(t) = −γi(t). (19)

Note that (17) and (19) correspond to ∂L(t)
∂ci(t)

= 0 and ∂L(t)
∂ki(t)

+
·
µi(t) = 0 respectively. Also

note that (15) corresponds to the transversality condition µi(T ) = W ′
i (k

∗
i (T )), because W ′

i

can be calculated by (8) as

W ′
i (k

∗
i (T )) =


B′( ci(T )︸ ︷︷ ︸

k∗
i (T )eλiT

) − 1 if k∗
i (T ) < c(a∗)e−λiT

0 otherwise

.

Let us now provide intuitive interpretation of the optimality conditions. The key
conditions are (17) and (18). They show that the optimal path maximizes, at each point
t,

(1 + µ−i(t))B(ci(t)) − (1 + µi(t))ci(t) (20)

subject to ki(t) ≥ ci(t)e−λit. (21)

Contrast this to the simple maximization of π1(t) + π2(t), which requires

B(ci(t)) − ci(t)

is to be maximized, subject to the same incentive constraint (21). In addition to the direct
benefit B(ci(t)), increasing B(ci(t)) is accompanied by additional benefit of relaxing the
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other player’s incentive constraints for in (t, T ]. This indirect effect is captured by µ−i(t)
in the correct objective function (20). Similarly, the direct cost ci(t) is accompanied by
additional cost of tightening the player’s own incentive constraint in (t, T ], and this effect
is captured by µi(t) in (20). A subtle but important remark is in order for t = T . This
remark plays an important role in characterizing the optimal path.

Remark T: The Hamiltonian maximization condition for t = T,

max
ci

(1 + µ−i(T ))B(ci) − (1 + µi(T ))ci (22)

s.t. ki(t) ≥ cie
−λit

is different from the condition to determine ci(T ) (= the optimal control at T ):

max
ci

B(ci) − ci (23)

s.t. ki(t) ≥ cie
−λit.

The former program (22) determines limt↑T ci(t), while the latter (23) determines the actual
ci(T ). Later we show that limt↑T ci(t) is actually different from ci(T ) in some cases (see
Propositions 7, 8 and 9). Since the Hamiltonian maximization condition is required for
almost all t, the solution to (22) can be different from the solution to (23), and this is not
a contradiction. In such a case, the Hamiltonian maximization condition turns out to be
satisfied for all t ∈ [0, T ) but not on a measure-zero set {T} (hence the solution to (22) is
limt↑T ci(t) 6= ci(T )). Nonetheless, we calculate the solution to (22) in such a case, because
this turns out to be useful in computing the optimal path for t ∈ [0, T ). To summarize,
we should interpret the program (22) as the optimization condition for t slightly smaller
than T (more precisely, (22) determines limt↑T ci(t), not (necessarily) ci(T )).

Now recall that the indirect incentive effects captured by µi(t) arise in the interval (t, T ],
and this interval shrinks when t increases. Hence, µi(t), i = 1, 2, should be decreasing.
This is captured by (19) and (18), which shows

·
µi(t) = −γi(t) ≤ 0. Note that, because γi(t)
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is the Lagrange multiplier associated with the constraint (21), it measures the marginal
benefit of relaxing the incentive constraint at t, consistent with our intuitive explanation.
For t ≈ T , the only major indirect effects is to change the incentive constraint of the initial
action choice at T , and this is represented by the transversality condition (15).

6.3 The Optimal Path

In this section, we derive the optimal path from the optimality conditions in Proposition
5. Note that the differential equations for the control variables ci(t), i = 1, 2 are derived
by two of the optimality conditions, (12) and (14), if the latter (the incentive constraint)

is binding. By differentiating ki(t) = ci(t)e−λit, we have
·
ki(t) =

·
ci(t)e−λit − λici(t)e−λit.

From this and (12), we can derive the differential equation for our control variable, when
(14) is binding:

·
ci(t) = λ−iB(c−i(t))e(λi−λ−i)t. (24)

Recall that our control variable is ci = c(xi) and B(c(xi)) = b(xi), where xi represents an
action in the component game. Hence the above equation can be transformed into our
differential equation of the binding path of action

·
xi(t) = λ−i

b(x−i(t))
c′(xi(t))

e(λi−λ−i)t. (25)

We can use this result to show that, in the model with heterogeneous arrival rates
λ1 6= λ2, the non-trivial path (x0

1, x
0
2) with binding incentive constraints is optimal, when

T is small so that x0
t is yet to hit the optimal action a∗.

Note: We need to show the existence of the non-trivial solution. The same argument as
in Revision Games (the finite time condition) would do.

Note that this is not completely obvious. Recall that we are examining the case where
aN < a∗. In the synchronous case, choosing maximum possible symmetric action x(t) at
each t both improves total payoff and relaxes the incentive constraints of s > t. In the
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asynchronous case, however, choosing maximum possible action xi(t) at each t improves
total payoff but it makes the incentive constraints of s > t more stringent (because when
i deviates at s > t, i can save more cost). Therefore, it might be more profitable to take
a smaller action at t, because in that way player i can supply more effort at some s > t.
Proposition above actually show that this is not the case. The very rough intuition is that
the marginal productivity of player i’s effort (to improve the total payoff) is higher at t than
at s (s > t), because i’s action is smaller at t. Hence the aforementioned manipulation
does not pay.

Proposition 6 Let (c0
1, c

0
2) be the non-trivial path with binding incentive constraints and

suppose that T is small so that c0
i (T ) < c(a∗) for i = 1, 2 Then, (c0

1, c
0
2) is optimal.

Proof. Let µi(t), i = 1, 2 be the solution to the system of differential equations

·
µi(t) = −λi

[
(1 + µ−i(t))B′(c0

i (t)) − (1 + µi(t))
]
, i = 1, 2 (26)

with boundary conditions

µi(T ) = B′(k∗
i (T )eλiT ) − 1

= B′(c0
i (T )) − 1 > 0 i = 1, 2, (27)

where the second equality and the last inequality follows from c0
i (T ) < c(a∗) (recall

B′(c(a∗)) = 1), under which the terminal incentive constraint k∗
i (T ) ≥ ci(T )e−λiT is bind-

ing. Let us also define

γi(t) := λi

[
(1 + µ−i(t))B′(c0

i (t)) − (1 + µi(t))
]

(28)

Our task is to show that γi(t) ≥ 0. If this is shown, (c0, γ, µ) satisfies all the conditions in
Proposition 5 and therefore optimal.

First, consider t = T . By (27), we have

(1 + µ−i(T ))B′(c0
i (T )) − (1 + µi(T ))

> B′(c0
i (T )) − (1 + µi(T )) = 0.

The inequality comes from µ−i(T ) > 0 and the equality is implied by µi(T ) = B′(c0
i (T ))−1.

Hence γi(T ) > 0.
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Consider
Q := {t ∈ [0, T ]| ∀s ≥ t γi(s) > 0, i = 1, 2} .

Since T ∈ Q, Q is not empty and therefore we can define

t′ := inf Q.

Since γi(T ) > 0, i = 1, 2, by continuity of γi, we have

t′ < T. (29)

We suppose t′ > 0 and find a contradiction. We first claim that there is i such that

γi(t′) = 0. (30)

If γi(t′) > 0 for both i = 1, 2, by continuity of γi(t), we must have inf Q < t′, a contradiction.
Now we show that

γ′
i(t

′) < 0. (31)

Note that, γi(t′) = 0 implies
·
µi(t′) = −γi(t′) = 0. Hence, by differentiating (28), we obtain

γ′
i(t

′) =
·
µ−i(t

′)B′(c0
i (t

′)) + (1 + µ−i(t′))B′′(c0
i (t

′))
·
c0
i (t

′).

Now we evaluate the each term in this expression as follows.
(i) Since

·
µ−i(t) = −γ−i(t) < 0 for all t ∈ Q, by taking limit t → t′, we obtain

·
µ−i(t1) ≤ 0.

(ii) Since
·
µ−i(t) = −γ−i(t) < 0 for all t ∈ Q and

·
µ−i(T ) > 0, we obtain µ−i(t′) > 0.

Those facts, together with B′ > 0, B′′ < 0 and
·
c0
i (t

1) > 0, show (31).
When (29), (30) and (31) are satisfied, however, there must be t ∈ Q which is slightly

larger than t′ such that γi(t) < 0, which contradicts the definition of Q.
Hence inf Q must be equal to zero, and this implies γi(t) > 0 for all t and all i.
With this result, we are now ready to characterize fully the optimal path when T is

large. Consider again (c0
1, c

0
2), the non-trivial path with binding incentive constraints.

Note that (c0
1, c

0
2) is the non-trivial solution (i.e., the solution satisfying ci(t) 6= c(aN ) = 0

for t > 0, i = 1, 2) to (24) with boundary condition ci(0) = 0, i = 1, 2. By (24), both
c0
1(t) and c0

2(t) are strictly increasing, and we now show that at least one of them hits the
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optimal level c(a∗) at some finite time. The reason is the following. Consider player i

who has the largest arrival rate (λi ≥ λ−i) and fix any c0
−i(t

′) > 0. Then, for t ≥ t′,
·
c0
i (t)

is strictly positive and bounded away from 0:

·
c0
i (t) = λ−iB(c0

−i(t))e
(λi−λ−i)t > λ−iB(c0

−i(t
′)) > 0.

Hence c0
i (t) must hit c(a∗) at a finite time.

The above argument guarantees that there is player j whose binding path c0
j (t) hits the

optimal level c(a∗) first:

Definition 4 Let j be the player whose binding path hits the optimal level first, and
denote the hitting time by t0: c0

j (t
0) = c(a∗) and c0

−j(t
0) ≤ c(a∗).

Since c0
−j(t) is strictly increasing, the above condition c0

−j(t
0) ≤ c(a∗) guarantees that

c0
−j(t) hits c(a∗) after or at t0 (if it ever does).

If both players’ binding paths hit the optimal simultaneously (c0
−j(t

0) = c(a∗)), then
Proposition 6 implies that the binding path is optimal. More precisely, we have the
following very simple characterization.

Corollary 1 Suppose the binding paths c0
1(t) and c0

2(t) hit the optimal level c(a∗) at the
same time t0. Then, the following holds. If T ≤ t0, the binding path (c0

1(t), c
0
2(t)) for all

t ∈ [0, T ] is optimal. If T > t0,

ci(t) =


c0
i (t) for t ∈ [0, t0]

c(a∗) for t ∈ (t0, T ]

is optimal.

In particular, the Corollary above provides the optimal in the case of symmetric arrival
rates λ1 = λ2, as we have shown in the companion paper Kamada and Kandori (2011). In
what follows, we consider the remaining case and therefore assume:

Assumption A6.3: When player j’s binding path hits the optimal at t0, the other player’s
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binding path is below the optimal level: c0
j (t

0) = c(a∗) and c0
−j(t

0) < c(a∗).

We are going to show that the incentive constraints of both players continue to bind
even after t0. This means that the optimal action overshoots the optimal level a∗.

Proposition 7 Under A6.3, there exists t1 ∈ (t0,∞] such that the following statements
are true if and only if t0 ≤ T ≤ t1: The incentive constraints of both players are binding
for all t ∈ [0, T ), and the optimal path is given by

(cj(t), c−j(t)) =


(c0

j (t), c
0
−j(t)) if t ∈ [0, T )

(c(a∗), c0
−j(T )) if t = T

(32)

Furthermore, t1 is the unique solution to

B′(c0
−j(t))B

′(c0
j (t)) − 1 = 0 (33)

if the solution exists, and otherwise t1 = ∞.

Remarks: Since T > t0 implies c0
j (T ) > c(a∗), this Proposition shows two interesting

features of the optimal path, when t1 ≥ T > t0. First, the action of player j (whose
incentive is not binding near T ) ”overshoots” the optimal level cj(t) > c(a∗), for t close
to T . Second, there is discontinuity in player j’s optimal action at t = T ; limt→T cj(t) =
c0
j (T ) > cj(T ) = c(a∗). The intuition is as follows. At T , player j simply takes optimal

action a∗ to maximize the total payoff. At t = T −ε, however, player j exerts higher effort
than the optimal (c0

j (t) > c(a∗)) to improve the other player’s action in (t − ε, T ].
Proof. Step 1: First, we show that (32) is optimal only if t0 ≤ T ≤ t1. If cj(T ) = c(a∗)

is optimal, the incentive constraint at T is slack for player j (i.e., c(a∗)e−λjT ≤ ki(T )).
Since c0

j (T ) satisfies the binding incentive constraint c0
j (T )e−λjT = ki(T ), we must have

c0
j (T ) ≥ c(a∗).

Recall that c0
j (t

0) = c(a∗) and c0
j (t) is strictly increasing. Hence the above inequality is

equivalent to
t0 ≤ T. (34)
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In summary, (32) is optimal only if (34) is satisfied.
If (cj(T ), c−j(T )) = (c(a∗), c0

−j(T )) is optimal, then by the transversality condition (15),
we must have {

µj(T ) := 0
µ−j(T ) := B′(c0

−j(T )) − 1.
(35)

With this definition, consider the Hamiltonian maximization problem at T with respect to
j’s action

(PT) max
cj

(1 + µ−j(T ))B(cj) − (1 + µj(T ))cj

s.t. cje
−λjT ≤ kj(T ).

Our candidate path (32) is optimal only if the solution to this program (PT) is c0
j (T ).

This follows from the fact that (PT) determines limt→T cj(t) (recall the Remark T). More
precisely, the argument goes as follows. Note that c0

j (T ) satisfies the binding incentive
constraint c0

j (T )e−λj = kj(T ). If c0
j (T ) is not the solution to (PT), then we have an

interior solution c∗j with c∗je
−λjT < kj(T ). Then, by continuity, the optimization program

(Pt) max
cj

(1 + µ−j(t))B(cj) − (1 + µj(t))cj

s.t. cje
−λjt ≤ kj(t).

also has an interior solution satisfying cj(t)e−λjT < kj(t) for some interval (t̂, T ). This
means that the binding path c0

j (t), which satisfies c0
j (t)e

−λjT = kj(t) for all t, is not the
solution to (Pt) on (t̂, T ), and the necessary conditions for optimal path (17) and (18)
(which are also the necessary conditions for the solution to (Pt)) cannot be satisfied for
almost all t by c0

j (t).
Hence, the necessary condition for our candidate path (32) to be optimal is that c0

j (T )
is the solution to (PT). Since c0

j (T ) satisfies the constraint of (PT) with equality, c0
j (T ) is

the solution to (PT) if and only if

d

dcj
[(1 + µ−j(T ))B(cj) − (1 + µj(T ))cj ]|cj=c0j (T )

= B′(c0
−j(T ))B′(c0

j (T )) − 1 ≥ 0. (36)

24



Let us now examine the properties of

ϕ(t) := B′(c0
−j(t))B

′(c0
j (t)) − 1.

Recall that t0 is the time where c0
j (t

0) = c(a∗) and our maintained assumption is c0
−j(t

0) <

c(a∗) (see A6.3). The latter implies B′(c0
−j(t

0)) − 1 > 0 and therefore we have ϕ(t0) > 0
because

B′(c0
−j(t

0))B′(c0
j (t

0)) − 1

> B′(c0
j (t

0)) − 1 = B′(c(a∗)) − 1 = 0.

Since B′ is strictly decreasing and c0
i (t), i = 1, 2 are strictly increasing, ϕ(t) is strictly

decreasing. Hence either there is a unique finite t1 > t0 such that ϕ(t1) = 0 holds
(⇔(33)), or ϕ(t) > 0 for all t (in which case t1 = ∞). In either case, ϕ(t) ≥ 0 if and only
if t ≤ t1, and therefore (36), the Hamiltonian maximization condition at T for j’s action,
is satisfied if and only if

T ≤ t1. (37)

Hence, we have obtained two necessary conditions (34) and (37). Therefore, a necessary
condition for (32) to be optimal is

t0 ≤ T ≤ t1.

Step 2: We now show that (32) is optimal if t0 ≤ T ≤ t1. We are going to check all the
optimality conditions in Proposition 5 are satisfied.

[1] Terminal conditions (16) and (15): In Step 1, we have shown that c0
j (T ) ≥ c(a∗)

when t0 ≤ T . Since c0
j (T ) satisfies the incentive constraint, cj(T ) = c(a∗) also satisfies the

incentive constraint. This implies (i) cj(T ) = c(a∗) satisfies optimality condition (16) for
i = j and (ii) if we define

µj(T ) := 0, (38)

it satisfies the transversality condition (15) for i = j.
Next we show that c−j(T ) = c0

−j(T ) satisfies optimality condition (16). This condition
holds if c0

−j(T ) ≤ c(a∗), or equivalently,

B′(c0
−j(T )) − 1 > 0 (39)
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(because B′(c(a∗))− 1 = 0 and B′′ < 0). Recall that c0
j (t

0) < c0
j (T ) (because t0 < T ) and

therefore B′(c0
j (t

0)) > B′(c0
j (T )). Furthermore, B′(c0

j (t
0)) = 1 because c0

j (t
0) = c(a∗), and

therefore we have
1 > B′(c0

j (T )).

Now recall that Step 1 shows that

ϕ(T ) = B′(c0
−j(T ))B′(c0

j (T )) − 1 ≥ 0

for any T ≤ t1. The two inequalities above imply (39), and therefore c0
−j(T ) ≤ c(a∗). This

implies that (i) c−j(T ) = c0
−j(T ) satisfies optimality condition (16) for i = −j and (ii) if

we define
µ−j(T ) := B′(c0

−j(T )) − 1 > 0, (40)

it satisfies the transversality condition (15) for i = −j.
[2] The Hamiltonian maximization conditions (17) and (18) for T : In Step 1,

we have shown that the solution to

(PT) max
cj

(1 + µ−j(T ))B(cj) − (1 + µj(T ))cj

s.t. cje
−λjT ≤ kj(T ).

is equal to c0
j (T ), when T ≤ t1. The optimality conditions (17) and (18) for this problem

is satisfied if we define

γj(T ) := λj

[
(1 + µ−j(T ))B′(c0

j (T )) − (1 + µj(T ))
]
.

Note that
γj(T ) ≥ 0, (41)

because Step 1 shows (1 + µ−j(T ))B′(c0
j (T )) − (1 + µj(T )) = B′(c0

−j(T ))B′(c0
j (T )) − 1 =

ϕ(T ) ≥ 0 if T ≤ t1.
Next, consider the Hamiltonian maximization condition at T for −j’s action:

max
c−j

(1 + µj(T )) B(c−j) − (1 + µ−j(T ))c−j

s.t. c−je
−λ−j ≤ k−j(T ).
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By our definitions (38) and (40), the objective function is B(c−j) − B′(c0
−j(T ))c−j . Its

unconstrained maximizer is c0
−j(T ), because it satisfies the first order condition B′(c−j) −

B′(c0
−j(T )) = 0. Hence, if we define

γ−j(T ) := λ−j

[
(1 + µj(T ))B′(c0

−j(T )) − (1 + µ−j(T ))
]

= 0, (42)

the optimality conditions (17) and (18) at T for −j are satisfied.
[3] The remaining conditions (17), (18) and (19) for t ∈ [0, T ): To satisfy the

remaining conditions of optimality, let µi(t), i = 1, 2 be the solution to the system of
differential equations

·
µi(t) = −λi

[
(1 + µ−i(t))B′(c0

i (t)) − (1 + µi(t))
]
, i = 1, 2 (43)

with boundary conditions (38) and (40). Let us also define

γi(t) := λi

[
(1 + µ−i(t))B′(c0

i (t)) − (1 + µi(t))
]

If we show that γi(t) ≥ 0 for all t, all the remaining conditions are satisfied. Note that

γ′
i(T ) =

·
µ−i(T )B′(c0

i (T )) + (1 + µ−i(T ))B′′(c0
i (T ))

·
c0
i (T ) − ·

µi(T ).

Also note that, for any ι = 1, 2,
(i)

·
µι(T ) = −γι(T ) ≤ 0 (by (41) and (42)),

(ii) µι(T ) ≥ 0 (by (38) and (40), and

(iii) B′ > 0, B′′ < 0 and
·
c0
ι (T ) > 0.

Hence, we conclude that, for any i,

γi(T ) = 0 ⇒ γ′
i(T ) < 0.

This and γi(T ) ≥ 0 for any i implies that

Q := {t ∈ [0, T ]| ∀s ∈ [t, T ) γi(s) > 0, i = 1, 2} .

contains some interval (t̃, T ). Then, by the same argument as in the proof of Proposition
6, we can show that inf Q = 0. Therefore, we obtained γi(t) > 0 for all t ∈ [0, T ) and any
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i. Hence we conclude γi(t) ≥ 0 for all t and all i.

Remark: The proof shows that

·
µj(T ) = −γj(T )

{
< 0 if T < t1

= 0 if T = t1
,

·
µ−j(T ) = −γ−j(T ) = 0, and

·
µi(T ) = −γi(t) < 0 for all i and all t ∈ [0, T ).

Lastly, we determine the optimal path for T > t1. When T > t1, the incentive con-
straint for player j becomes non-binding for some t < T . More precisely, the Hamiltonian
maximization condition at t for j’s action,

max
cj

(1 + µ−j(t))B(cj) − (1 + µj(t))cj

s.t. cje
−λj ≤ kj(t).

has an interior solution cj(t) with cj(t)e−λj < kj(T ), for some t < T . As we verify below,
µ−j(t) = 0 while player j’s incentive constraint is non-binding, and therefore the first order
condition for the optimization problem given above is

(1 + µ−j(t))B′(cj(t)) − 1 = 0. (44)

From this condition, we derive the differential equation for non-binding action cj(t) as
follows (its optimality is going to be rigorously verified in Proposition 8 below). With an
abuse of notation define µ−j(cj(t)) to satisfy the above equality:

µ−j(cj(t))) :=
1

B′(cj(t))
− 1. (45)

Note that, under (45)
·
µ−j = − B′′(cj(t))

[B′(cj(t))]
2

·
cj . (46)
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For cj(t) to be optimal, it must satisfy one of the optimality conditions
·
µ−j(t) = −λ−j [(1+

µj(t)︸ ︷︷ ︸
0

)B′(c−j(t)) − (1 + µ−j(t))]. Under (46), this is satisfied if

·
cj(t) = λ−j

B′(cj(t))
B′′(cj(t))

(
B′(cj(t))B′(c−j(t)) − 1

)
. (47)

In contrast, it turns out that while player j’s action follows the differential equation above,
player −j’s action is given by the binding incentive constraint and therefore satisfies the
differential equation (24) for the binding path. In what follows, we show that a part of
the optimal path when T > t1 is given by ”one-sided biding path” defined as:

Definition 5 A one-sided binding path (c#
j , c#

−j) is a solution to the system of differ-
ential equations 

·
cj(t) = λ−j

B′(cj(t))
B′′(cj(t))

(B′(cj(t))B′(c−j(t)) − 1)

·
c−j(t) = λiB(cj(t))e(λ−j−λj)t

(48)

Remark: Since B′(0) = ∞, (48) is not well-defined when cj = 0 or c−j = 0. Therefore
a solution (c#

j , c#
−j) to (48) is defined to be a pair of strictly positive functions, defined over

some time interval (t, t) (t and t can be −∞ and ∞ respectively). In other words, for
i = 1, 2, c#

i (·) > 0 over its domain (t, t).

First, we consider T ∈ (t1, t2], where t2 is the time when the binding path of player −j

hits the optimal level:

Definition 6 Let t2 be the time when c0
−j(t

2) = c(a∗). If c0
−j(t

2) never reaches c(a∗), let
t2 = ∞.

The following lemma confirms that t2 is in fact larger than the threshold t1 defined in
Proposition 7:

Lemma 1 t1 < t2.

Proof. t1 satisfies B′(c0
−j(t

1))B′(c0
j (t

1)) − 1 = 0. We show that t1 ≥ t2 leads to a

contradiction. If t1 ≥ t2, then c0
−j(t

2) = c(a∗), B′′ < 0,
·

c0
−j > 0 and B′(c(a∗)) = 1imply
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B′(c0
j (t

1)) − 1 > 0. Since Proposition 7 asserts t1 > t0 (t0 is the time when c0
j = c(a∗)),

·
c0
j > 0 and B′′ < 0 imply B′(c(a∗)) − 1 > 0, which contradicts B′(c(a∗)) − 1.

Now we are ready to characterize the optimal path for T ∈ (t1, t2].

Proposition 8 When T ∈ (t1, t2], the optimal path exists and it is given by the following
conditions:

cj(T ) = c(a∗), (49)

cT
j := lim

t→T
cj(t) > c(a∗), (50)

c−j(T ) < c(a∗), (51)

∃s (cj(t), c−j(t)) =



(c0
j (t), c

0
−j(t)) if t ∈ [0, s]

(c#
j (t), c#

−j(t)) if t ∈ [s, T )

(c(a∗), c#
−j(T )) if t = T

, (52)

where (c#
j (t), c#

−j(t)) is the solution to (48) with boundary condition (c#
j (T ), c#

−j(T )) =
(cT

j , c−j(T )). Furthermore,

·
c#
j (T ) = 0 and

·
c#
j (t) < 0 for t ∈ [s, T ) (53)

and s, cT
j , and c−j(T ) are determined by

B′(c−j(T ))B′(cT
j ) − 1 = 0, (54)

and {
c0
j (s) = c#

j (s)
c0
−j(s) = c#

−j(s)
. (55)

Remarks: The first two conditions (49) and (50) show that cj(t) overshoots the opti-
mal level c(a∗) and is discontinuous at T . In contrast, (51) implies that c−j(t) cannot reach
optimal. Condition (52) says that it is optimal to follow the binding path (c0

j (t), c
0
−j(t))

until some time s, and then to follow a one-sided binding path (c#
j (t), c#

−j(t)) after that.
Condition (54) corresponds to the first order condition for the Hamiltonian maximization
at T with respect to player j’s action. The last condition (55) requires that the two
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paths, (c0
j (t), c

0
−j(t)) and (c#

j (t), c#
−j(t)), should be pasted continuously at s. Because

player −j’s action follows the same differential equation
·

c−j(t) = λiB(cj(t))e(λ−j−λj)t both

on (c0
j (t), c

0
−j(t)) and (c#

j (t), c#
−j(t)), the first condition in (55) implies

·
c0
−j(s) =

·
c#
−j(s).

Namely, player −j’s path is pasted smoothly at s. In contrast, c#
j (t) is decreasing and

c0
j (t) is strictly decreasing. Hence, player j’s path is not pasted smoothly and has a kink

at s. Figure t’ depicts the typical shape of the optimal path.
Proof. For a parameter v > 0, let (cv

j (t), c
v
−j(t)) be the solution to (48) with boundary

condition
(cv

j (T ), cv
−j(T )) = (u, v),

where u is determined by v by
B′(u)B′(v) − 1 = 0 (56a)

to satisfy (54). The path (c#
j (t), c#

−j(t)) in the proposition is equal to (cv
j (t), c

v
−j(t)) for

the right choice of parameter v. The proof proceeds in three steps. In Step 1, we show
·

cv
j (t) ≤ 0 for any v > 0. This shows (53) and also helps us to prove Steps 2 and 3. In

Step 2, we show that, with the right choice of parameter v, (c#
j (t), c#

−j(t)) := (cv
j (t), c

v
−j(t))

is pasted to (c0
j (t), c

0
−j(t)) at some time s (condition (55) holds). In Step 3, we check that

all optimality conditions are satisfied.
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Step 1: Recall the Remark about the system of differential equations (48) to notice
that, by definition, cv

j (t) and cv
−j(t) are strictly positive functions defined over some time

interval. We denote the time interval (the set of t over which cv
j (t) and cv

−j(t) are defined)
by Dv. Since

·
cv

j(t) = λ−j

B′(cv
j (t))

B′′(cv
j (t))

(
B′(cv

j (t))B
′(cv

−j(t)) − 1
)
,

we have
·

cv
j(T ) = 0.

because (56a) implies
B′(cv

j (T ))B′(cv
−j(T )) − 1 = 0. (57)

Next we show
·

cv
j (t) < 0 for all t ∈ Dv ∩ [0, T ). (58)

and for all v > 0. By B′ > 0 and B′′ < 0, (58) is equivalent to

ζ(t) := B′(cv
j (t))B

′(cv
−j(t)) − 1 > 0 for all t ∈ Dv ∩ [0, T ). (59)

The argument to show ζ(t) > 0 is similar to the proof of Proposition 6. Consider

Q := {t ∈ Dv ∩ [0, T )| ∀s ∈ Dv ∩ [t, T ) ζ(s) > 0} .

First, we claim
ζ(t) = 0 ⇒ ζ ′(t) < 0. (60)

This is shown as follows. Since
·
cv

j(t) = λ−j
B′(cv

j (t))

B′′(cv
j (t))ζ(t), ζ(t) = 0 implies

·
cv

j(t) = 0.
Therefore, by differentiating ζ(t) = B′(cv

j (t))B
′(cv

−j(t)) − 1, we obtain

ζ ′(t) = B′′(cv
j (t))B

′(cv
−j(t))

·
cv
−j(t) < 0,

because
·

cv
−j = λiB(cv

j (t))e
(λ−j−λj)t > 0.

Since ζ(T ) = 0 (by (57)), (60) implies t ∈ Q for t slightly smaller than T . Hence, Q is
non-empty and therefore we can define

inf Q =: t′ < T .
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We suppose t′ > inf Dv and find a contradiction. We first claim

ζ(t′) = 0. (61)

If ζ(t′) > 0, by continuity of ζ(t) and our premise t′ > inf Dv, we must have inf Q < t′, a
contradiction. Second, by (61) and (60), there must be t ∈ Q that is slightly larger than t′

such that ζ(t) < 0, which contradicts the definition of Q. Hence, t′ > inf Dv is impossible
and therefore

t′ = inf Dv

(by definition, t′ cannot be strictly below inf Dv). This shows (59) and therefore (58)
holds.

Step 2: We now show that, with the right choice of parameter v, (c#
j (t), c#

−j(t)) :=
(cv

j (t), c
v
−j(t)) coincides with (c0

j (t), c
0
−j(t)) at some time. To this end, we first define the

time t = t(v) at which cv
−j(t) coincides with c0

−j(t). Our task is to show that, with the
right choice of v, cv

j (t) also touches c0
j (t) at the same time t = t(v). Consider

f(v, t) := c0
−j(t) − cv

−j(t)

and and note that t(v) satisfies f(v, t(v)) = 0. For some values of v, there may be more
than one t(v) to satisfy f(v, t(v)) = 0, or there may be no such t(v). Hence, to define t(v)
rigorously, we apply the implicit function theorem. To simplify notation let us define

w := c0
−j(T ).

Note that f(w, T ) = 0, because cw
−j(T ) = w = c0

−j(T ). Note that

∂f

∂t
(w, T ) =

·
c0
−j(T ) −

·
cw
−j(T )

= λi

(
B(c0

j (T )) − B(cw
j (T ))

)
e(λ−j−λj)T

> 0. (62)

The last inequality is shown as follows. Note that

ϕ(t) := B′(c0
−j(t))B

′(c0
j (t)) − 1
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is a strictly decreasing function and t1 is defined by ϕ(t1) = 0 (see Proposition 7). Hence
our premise t1 ≤ T implies

B′(c0
−j(T ))B′(c0

j (T )) − 1 < 0.

In contrast, by definition, (56a) should be satisfied for u = cw
−j(T ) and v = w = c0

−j(T ),
and therefore we have

B′(cw
−j(T ))B′(c0

j (T )) − 1 = 0.

Hence cw
−j(T ) < c0

−j(T ) (because B′ > 0 and B′′ < 0). Since B is increasing, we obtained
(62).

Hence, ∂f
∂t (w, T ) 6= 0 and also note that f(·, ·) is continuous. Hence, by the implicit

function theorem, we can define a function t(v) that satisfies f(v, t(v)) = 0 (⇔ c0
−j(t(v)) =

cv
−j(t(v))) and t(w) = T , defined on a neighborhood of w = c0

−j(T ). We gradually decrease
v below w = c0

−j(T ) in this neighborhood and show that eventually the paths of the other
player j, c0

j (t) and cv
j (t), cross at t(v).

To show that, let R be the set of v ∈ [0, w] such that, for all v′ ∈ [v, w]
(i) the implicit function t(·) is defined at v′, and
(ii) ∂f

∂t (v′, t(v′)) > 0.

Since ∂f
∂t =

·
c0
−j −

·
cv
−j = λi

(
B(c0

j ) − B(cv
j )

)
e(λ−j−λj)T , the second requirement (ii) is

equivalent to
(ii’) c0

j (t(v
′)) > cv′

j (t(v′)).
Next, we show that c0

−j(t
1) > 0 is a lower bund of R. Recall that t1 is defined by

B′(c0
−j(t

1))B′(c0
j (t

1)) − 1 = 0.

Hence, if we choose v = c0
−j(t

1), then by (56a) u = c0
j (t

1), and therefore we obtain

cv
j (T ) = v = c0

j (t
1) (63)

and
cv
−j(T ) = u = c0

−j(t
1). (64)

Note that
·

cv
−j = λiB(cv

j )e
(λ−j−λj)T > 0, because cv

j is defined to be strictly positive (see the
Remark after (48)). Furthermore, c0

−j(t) is also strictly increasing. Those facts, together
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with cv
−j(T ) = c0

−j(t
1) > 0 ((64)) and t1 < T imply that either

(a) cv
−j(t) and c0

−j(t) never cross for t < T (in which case, t(v) is not defined), or
(b) they cross at t(v) < t1.
If (a) is the case, v = c0

−j(t
1) is a lower bound of R, since condition (i) is violated.

Hence, we consider case (b), and show that (ii’) is violated.
In case (b), Since cv

j (t) is non-increasing by Step 1 and c0
j (t) is strictly increasing, (63)

and t1 < T imply that
c0
j (t) < cv

j (t) if t < t1.

Since t(v) < t1 in case (b), condition (ii’) is violated. Therefore, conditions (i) and (ii’)
cannot be simultaneously satisfied for v′ = v = c0

−j(t
1), and this implies that c0

−j(t
1) > 0

is a lower bound of R.
The above argument shows that v := inf R > 0 exists. Since t(v) is a continuous

function, we can define
t(v) := lim

v↓v
t(v)

and
f(v, t(v)) = c0

−j(t(v)) − c
v
−j(t(v)) = 0

is satisfied. By (ii’), c0
j (t(v)) > cv

j (t(v)) for all v ∈ R, and therefore

c0
j (t(v)) ≥ c

v
j (t(v)).

If c0
j (t(v)) > c

v
j (t(v)), we have ∂f

∂t (v, t(v)) > 0 (because (ii) and (ii’) are equivalent). Then,
because ∂f

∂t (v, t(v)) 6= 0, we can apply the implicit function theorem and t(·) can be ex-
tended to a neighborhood of v, where c0

j (t(v)) > cv
j (t(v)) hold by continuity. In particular,

we have v < v such that (i) and (ii’) are satisfied for all v′ ∈ [v, w]. This means v ∈ R,
which contradicts v < v = inf R. Hence we conclude

c0
j (t(v)) = c

v
j (t(v)),

and therefore at s := t(v) the pasting condition{
c0
j (s) = c#

j (s)
c0
−j(s) = c#

−j(s)
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is satisfied if we define (c#
j (t), c#

−j(t)) := (cv
j (t), c

v
−j(t)).

Lastly, let us verify that (c#
j (t), c#

−j(t)) thus defined satisfies all the conditions in
the Proposition. First, (c#

j (t), c#
−j(t)) is the solution to (48) with boundary condition

(c#
j (T ), c#

−j(T )) = (u, v), where u is defined by

B′(u)B′(v) − 1 = 0.

Hence, if we define (cT
j , c−j(T )) := (u, v), it satisfies (54). Next we show (51). Recall

that c0
−j(t

2) = c(a∗) and T ≤ t2 imply c0
−j(T ) ≤ c(a∗). Since c0

−j(T ) = w ∈ R and
c0
−j(T ) 6= inf R, we obtain

c−j(T ) = v = inf R < c(a∗),

and therefore (51) is satisfied. Since B′(c(a∗)) = 1 and B′ is decreasing,

B′(cT
j )B′(c−j(T )) − 1 = 0

and c−j(T ) < c(a∗) imply
0 > B′(cT

j ) − 1.

This in turn implies cT
j > c(a∗) (condition (50)). Finally, the monotonicity (53) holds

because of Step 1.
Step 3: We are now ready to verify that all the optimality conditions in Proposition

5 are satisfied. Define the path (cj(t), c−j(t)) to satisfy (52) with s = t(v) as defined in
Step 2. Also define

µj(t) := 0 for t ∈ [s, T ],

and for t ∈ [s, T ], and define µ−j(t) be for t ∈ [s, T ], by

µ−j(T ) = B′(c−j(T )) − 1.

and
(1 + µ−j(t))B′(cj(t)) − (1 + µj(t))

= (1 + µ−j(t))B′(cj(t)) = 0. (65)

Define also m := µ−j(s). Next we let (µj(t), µ−j(t)) for t ∈ [0, s) to be the solution to the
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system of differential equations

·
µi(t) = −λi

[
(1 + µ−i(t))B′(ci(t)) − (1 + µi(t))

]
, i = 1, 2

with boundary condition {
µj(s) = 0

µ−j(s) = m
.

Next define
γi(t) := λi

[
(1 + µ−i(t))B′(ci(t)) − (1 + µi(t))

]
, i = 1, 2.

Finally define ki(t) by ki(0) = 0 and

·
ki(t) = B(c−i(t))λ−ie

−λ−it − ci(t)λie
−λit, i = 1, 2.

Now we check (c, µ, γ, k) thus defined satisfies the conditions in Proposition 5. First, we
check the incentive constraint ki(t) ≥ ci(t)e−λit. By construction, c−j(t) for all t and cj(t)
for t ∈ [0, s] satisfy the incentive constraint with equality. For t ∈ (s, T ], we show that
cj(t) satisfies the incentive constraint. Recall that

cj(t) =


c#
j (t) for t ∈ (s, T ]

c(a∗) for t = T

and also that c#
j (t) = cT

j > c(a∗) (condition (50)). Hence, to show that the cj(t) satisfies
the incentive constraint for all t ∈ (s, T ], it is sufficient to show that c#

j (t) satisfies the
incentive constraint for all t ∈ (s, T ].

Let us now define
h(t) := kj(t)eλjt.

The incentive constraint is expressed as h(t) ≥ cj(t) and note that h(t) = c0
j (t) for t ∈ [0, s].

Since cj(t) is strictly increasing, we have

0 <
·
c0
j (s) = lim

∆↓0

h(s) − h(s − ∆)
∆

= B(c−j(s))λ−je
(λj−λ−j)s + λj(h(s) − cj(s)).
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Define P be the set of t ∈ [s, T ] such that, for all τ ∈ [s, t]
[1] B(c#

−j(τ))λ−je
(λj−λ−j)τ + λj(h(τ) − c#

j (τ)) > 0 and
[2] h(τ) − c#

j (τ) ≥ 0.
Since s ∈ P , P is non-empty and we can define supP ≤ T . Now we show that

supP = T (and this implies the incentive constraint of cj(t) for t ∈ (s, T ], because of [2]).
To show this, we assume t+ := supP < T and derive a contradiction. Note that h′(t) =
B(c#

−j(t))λ−je
(λj−λ−j)t + λj(h(t) − c#

j (t)) and condition [2] implies h(t+) − c#
j (t+) ≥ 0.

Hence h′(t+) > 0, because c−j(t+) > 0. Since cj(t) is decreasing for t ∈ [s, T ), conditions
[1] and [2] must also hold for all τ ∈ [s, t++ε], for sufficiently small ε > 0. This contradicts
t+ = sup P < T , and therefore we must have supP = T. This implies (by condition [2])
the incentive constraint of c#

j (t) for t ∈ (s, T ]. Hence we have shown that all incentive
constraints are satisfied.

Since the incentive constraint is satisfied at T , it is easy to check that terminal condi-
tions (15) and (16) hold. Conditions (17) is satisfied by our definition of γ. Given that
(17) is satisfied, the remaining conditions to be checked boil down to

·
µi(t) ≤ 0 and

·
µi(t)

(
ki(t) − ci(t)e−λit

)
= 0, (66)

(an alternative expression of (18)) and,

·
µi(t) = −λi

[
(1 + µ−i(t))B′(ci(t)) − (1 + µi(t))

]
, (67)

(an alternative expression of (19)). First, consider player i = j for t ∈ (s, T ]. Since µj(t)
is defined to be zero for t ∈ (s, T ], condition (66) is satisfied. Condition (67) also holds
because µ−j(t) for t ∈ (s, T ] is defined to satisfy (1 + µ−i(t))B′(ci(t)) − 1 = 0.

Second, consider player i = −j for t ∈ (s, T ]. Because (1 + µ−i(t))B′(ci(t))− 1 = 0 for
all t ∈ (s, T ], by differentiating the both sides we obtain

·
µ−j(t)B′(cj(t)) + (1 + µ−j(t))B′′(cj(t))

·
cj(t) = 0. (68)

This equation, together with
·
cj = λ−j

B′(cj)
B′′(cj)

(B′(cj)B′(c−j) − 1) and (1+µ−i)B′(ci)−1 = 0,

implies that condition (67) is satisfied for i = −j. Equation (68) also implies that
·

µ−j(t)
and

·
cj(t) have the same sign, and

·
cj(t) ≤ 0 (by Step 1) shows

·
µ−j(t) ≤ 0. The second

condition in (66) is satisfied for i = −j, because by the construction of c−j , the incentive
constraint is always binding and therefore k−j(t)−c−j(t)e−λ−jt = 0. Hence we have shown
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that conditions (66) and (67) are satisfied for all players for t ∈ (s, T ].
Finally, we show (66) and (67) for t ∈ [0, s]. Condition (67) is satisfied by definition.

The second condition in (66),
·

µi(t)
(
ki(t) − ci(t)e−λit

)
= 0 is satisfied because the incentive

constraint for all players are binding for t ∈ [0, s] and therefore ki(t) − ci(t)e−λit = 0. The
remaining condition

·
µi(t) ≤ 0 is shown by the same argument as in the proof of Proposition

6.
Finally, we consider the case T > t2. Recall that t2 is the smallest t when the binding

paths of both players, c0
i (t), i = 1, 2, are more than or equal to the optimal level c(a∗).

The optimal path for T > t is given by the following proposition. The graph of the optimal
path (for Case 1 in the proposition) is given in Figure T large.

Proposition 9 When T > t2, the optimal path (cj(t), c−j(t)) exists and one of the follow-
ing holds.

Case 1:

∃τ∗ ≤ T ∀i ci(t) = c(a∗) for t ∈ [τ∗, T ] (69)
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∃s (cj(t), c−j(t)) =


(c0

j (t), c
0
−j(t)) if t ∈ [0, s]

(c#
j (t), c#

−j(t)) if t ∈ [s, τ∗]

, (70)

where (c#
j (t), c#

−j(t)) is the solution to (48) with boundary condition c#
i (τ∗) = c(a∗), i =

1, 2. Furthermore,
·

c#
j (τ∗) = 0 and

·
c#
j (t) < 0 for t ∈ [s, τ∗) (71)

and s and τ∗ are determined by {
c0
j (s) = c#

j (s)
c0
−j(s) = c#

−j(s)
. (72)

Case 2: The optimal path satisfies all the conditions in Proposition 8.

Proof. For a parameter τ ≥ t2, let (cj,τ (t), c−j,τ (t)) be the solution to (48) with
boundary condition

∀i ci(τ) = c(a∗).

By the same argument as in Step 1 in the proof of Proposition 8, we have

·
c−j,τ (t) ≤ 0

for all τ ≥ t2 and all t for which c−j,τ (t) is defined.
By definition, c−j,t2(t2) = c(a∗) and therefore

c0
−j(t

2) − c−j,t2(t
2) = 0.

Now define
F (τ, t) := c0

−j(t) − c−j,τ (t)

and note that F (t2, t2) = 0. Also note that F (·, ·) is continuous. In addition, we have

∂F

∂t
(t2, t2) =

·
c0
−j(t

2) − ·
c−j,t2(t

2)

= λi

(
B(c0

j (t
2)) − B(cj,t2(t

2))
)
e(λ−j−λj)t

2
(73)
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> 0.

The above inequality is implied by

cj,t2(t
2) = c(a∗) (by definition)

= c0
j (t

0) (by definition)

< c0
j (t

2) (by t0 < t2 and
·
c0
j > 0).

Hence all the conditions of the implicit function theorem are satisfied, and there is the
unique implicit function s(τ) defined by

t2 = s(t2) and f(τ, s(τ)) = 0,

in a neighborhood of t2. Let H be the set of τ ∈ [t2,∞) such that, for all τ ′ ∈ [t2, τ ],
(a) s(τ ′) is defined, and
(b) ∂F

∂t (τ ′, s(τ ′)) > 0.
By (73), condition (b) is equivalent to
(b’) c0

j (s(τ
′)) > cj,τ ′(s(τ ′)).

Since t2 ∈ H, H is non-empty. We have the following two cases.
Case 1: τ∗ := supH ≤ T . In this case, by the same line of argument as in Step

2 of the proof of Proposition 8 shows that c0
j (s(τ

∗)) = cj,τ∗(s(τ∗)). Hence the pasting
condition (72) in Case 1 is satisfied for τ∗ := sup H, and we can check the path described
in Case 1 is optimal by the same line of argument as in Step 3 of the proof of Proposition
8.

Case 2: supH ≤ T does not hold. Then, both conditions (a) and (b’) are satisfied
for τ ′ = T . Recall (cv

j (t), c
v
−j(t)) defined in the proof of Proposition 8: (cv

j (t), c
v
−j(t)) is

the solution to (48) with boundary condition

(cv
j (T ), cv

−j(T )) = (u, v),

where u is determined by v by
B′(u)B′(v) − 1 = 0.
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Note that v = c(a∗) implies u = c(a∗), because B′(c(a∗)) = 1. Also recall

f(v, t) := c0
−j(t) − cv

−j(t)

introduced in the proof of Proposition 8. Note that, by definition,

f(c(a∗), s(T )) = c0
−j(s(T )) − c

c(a∗)
−j (s(T ))

= c0
−j(s(T )) − c−j,T (s(T )) = 0.

Also by our premise that condition (b’) holds for τ ′ = T , we have

c0
j (s(T )) > cj,T (s(T ))

⇔ c0
j (s(T )) > c

c(a∗)
−j (s(T ))

and therefore
∂f

∂t
(c(a∗), s(T )) > 0,

because ∂f
∂t =

·
c0
−j −

·
cv
−j = λi

(
B(c0

j ) − B(cv
j )

)
e(λ−j−λj)T . Hence we have f(c(a∗), s(T )) =

0 and ∂f
∂t (c(a

∗), s(T )) 6= 0, and therefore by the implicit function theorem, there exists
function t(v) defined on a neighborhood of c(a∗) such that

f(v, t(v)) = c0
−j(t(v)) − cv

−j(t(v)) = 0, and

t(c(a∗)) = s(T ).

Now let us define R′ to be the set of v ∈ [0, c(a∗)] such that, for all v′ ∈ [v, c(a∗)]
(i) the implicit function t(·) is defined at v′, and
(ii) ∂f

∂t (v′, t(v′)) > 0.
By the same argument as in Step 2 of the proof of Proposition 8, we can show that

v := inf R′ > 0 exists and (c#
j (t), c#

−j(t)) := (cv
j (t), c

v
−j(t)) coincides with (c0

j (t), c
0
−j(t)) at

s := t(v). The optimality of the path described in Case 2 is shown by the same argument
as in the proof of Proposition 8.
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7 Discussion: Commitment Power of a Low Arrival Rate

Since λ1 < λ2, It is natural to conjecture that player 1 has a greater ability to commit
to an action that induces player 2 to play an action favorable to player 1. We deal with
this issue by considering the limit that the arrival rates become extreme. The following
proposition holds for any component game, whether additively separable or not.

Proposition 10 Fix any component game that satisfies Assumptions A2 and A3 in KK
with action space A = [a, ā], where the payoff functions can either be additively separable
or not. For any ε > 0, there exists T large enough and δ > 0 such that for all (λ1, λ2) such
that λ1

λ2
< δ, player 1’s expected payoff in any subgame perfect equilibrium of the revision

game is at least maxx π(x,BR(x)) − ε.4

That is, given a fixed length of the revision phase, player 1 becomes a “Stackelberg
leader” if she has a very small chance to revise her action compared to the opponent. This
is intuitive: If player 1’s arrival rate is very small compared to player 2’s, then there is a
time t̄ such that 1 expects almost no chances to further revise her action in future while
2 expects future opportunities with probability close to 1. By continuity (A2) and the
assumption of unique best reply (A3), given 1’s Stackelberg action aS , player 2’s action at
an opportunity after t̄ is close to the best reply to aS . This means that by taking aS before
t̄ (which is one possible deviation from any equilibrium), player 1 can ensure a payoff close
to the Stackelberg payoff. The formal proof is relegated to Appendix D.
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Appendix
Here we provide the remaining proofs.

Proof of Proposition 3

Given the proof provided in the main text, it is sufficient to prove that it cannot be the
case that there is an infinite sequence of times {tk}∞k=0 such that tk → 0, x1(tk) = x2(tk),
and there exists ε > 0 such that x1(t) < x2(t) for all t ∈ (tk, tk + ε) for all k. Below we
prove this claim.

Suppose that there exists such a sequence. We will derive a contradiction.
First, compare the benefits:

B1(tk + ε) − B1(tk)
B2(tk + ε) − B2(tk)

=
e−λ1(t+ε)c(x1(tk + ε)) − e−λ1tkc(x1(tk)) +

∫ tk+ε
tk

c(x1(τ))λ1e
−λ1τdτ

e−λ2(t+ε)c(x2(tk + ε)) − e−λ2tkc(x2(tk)) +
∫ tk+ε
tk

c(x2(τ))λ2e−λ2τdτ
.

Notice that since the third term in the numerator is less than c(x1(tk + ε))λ1εe
−λ1tk , the

numerator is smaller than

e−λ1tk(c(x1(tk + ε)) − c(x1(tk))) + c(x1(tk + ε))e−λ1tk(λ1ε − (1 − e−λ1ε)).

Observe that for any fixed tk > 0, the second term becomes negligible compared to the
first term as ε → 0. In the same manner, we can bound the denominator from below by

e−λ2(tk+ε)(c(x2(tk + ε)) − c(x2(tk))) + c(x2(tk))e−λ2tk(λ2ε − (1 − e−λ2ε)),

where the second term becomes negligible compared to the first term as ε → 0 for any
fixed tk > 0. Hence the ratio of the numerator to the denominator in the limit as ε → 0 is
determined by the comparison of the first terms, i.e.

lim sup
k→∞

lim sup
ε→0

B1(tk + ε) − B1(tk)
B2(tk + ε) − B2(tk)

= lim sup
k→∞

lim sup
ε→0

e−λ1tk(c(x1(tk + ε)) − c(x1(tk))
e−λ2(tk+ε)(c(x2(tk + ε)) − c(x2(tk))

.

But e−λ1tk/e−λ2(tk+ε) → 1 and x1(tk) = x2(tk) for all k and x1(τ) < x2(τ) for all τ ∈
(tk, tk + ε), we have that the above limit is no more than 1.
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Second, compare the penalties:

P1(t) − P1(s)
P2(t) − P2(s)

=

∫ t
s b(x2(τ))λ2e

−λ2τdτ∫ t
s b(x1(τ))λ1e−λ1τdτ

>
λ2e

−λ2t
∫ t
s b(x2(τ))dτ

λ1e−λ1s
∫ t
s b(x1(τ))dτ

.

Again, by λ1 < λ2 and the assumption that x1(τ) < x2(τ) for all τ ∈ (s, t), the ratio
converges to a number strictly greater than 1 as ε tends to 0.

However, since on the optimal trigger strategy path the incentive compatibility con-
dition (2) has to hold with equality for small enough time, B1(t)−B1(s)

B2(t)−B2(s) must be equal to
P1(t)−P1(s)
P2(t)−P2(s) for small enough ε > 0. Contradiction.

Proof of Proposition 10

For any γ > 0, there exists δ > 0 such that for all (λ1, λ2) such that λ1
λ2

< δ, there exists
t̄ such that λ1 · t̄ < γ, and 1

γ < λ2t̄.
Suppose that at −t ∈ (−t̄, 0], player 1 plays aS and player 2 obtains a revision opportu-

nity. Since player 2 in equilibrium must get no less than what she would get by consistently
taking a best reply to aS at time −t onwards no matter what the history is, 2’s expected
payoff must be no less than

e−λ1tπ(BR(aS), aS) + (1 − e−λ1t)π ≥ e−γπ(BR(aS), aS) + (1 − e−γ)π.

For any ε′ > 0, there exists γ > 0 sufficiently small such that the right hand side (hence the
left hand side) is no less than π(BR(aS), aS)− ε′. Then, by A2 and A3, player 2’s action at
any time −t must lie in some neighborhood of BR(aS), [BR(aS) − ξ,BR(aS) + ξ], where
γ → 0 implies ε′ → 0, which in turn implies ξ → 0.

Now we consider the minimum possible payoff of player 1 by playing aS := arg maxa π(a, BR(a))
at all time −t ∈ [−T, 0]. Since any subgame perfect equilibrium is a Nash equilibrium,
player 1 must obtain a payoff no less than the payoff that he would receive by playing this
strategy.

The conclusion so far implies that player 1’s expected payoff by playing aS at all time
is no less than

(1 − e−λ2 t̄) min
a′S)−ξ,BR(aS)+ξ]

π(aS , a′−λ2 t̄π ≥ (1 − e
− 1

γ ) min
a′S)−ξ,BR(aS)+ξ]

π(aS , a
′− 1

γ π

Since ξ → 0 as γ → 0, the right hand side converges to π(aS , BR(aS)) by A2 as γ → 0.
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This completes the proof.
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