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Abstract

Across a wide set of non-group insurance markets, applicants are rejected based on ob-
servable, often high-risk, characteristics. This paper argues private information, held by the
potential applicant pool, explains rejections. I formulate this argument by developing and
testing a model in which agents may have private information about their risk. I first derive
a new no-trade result that theoretically explains how private information could cause rejec-
tions. I then develop a new empirical methodology to test whether this no-trade condition
can explain rejections. The methodology uses subjective probability elicitations as noisy
measures of agents beliefs. I apply this approach to three non-group markets: long-term
care, disability, and life insurance. Consistent with the predictions of the theory, in all three
settings I find significant amounts of private information held by those who would be re-
jected; I find generally more private information for those who would be rejected relative to
those who can purchase insurance; and I show it is enough private information to explain
a complete absence of trade for those who would be rejected. The results suggest private
information prevents the existence of large segments of these three major insurance markets.

JEL classification numbers: C51, D82
Keywords: Private Information; Adverse Selection; Insurance

1 Introduction

Not everyone can purchase insurance. Across a wide set of non-group insurance markets, compa-
nies choose to not sell insurance to potential customers with certain observable, often high-risk,
characteristics. In the non-group health insurance market, 1 in 7 applications to the four largest
insurance companies in the US were rejected between 2007 and 2009, a figure that excludes those
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who would be rejected but were deterred from even applying.1 In US long-term care insurance,
12-23% of 65 year olds have health conditions that would preclude them from being able to
purchase insurance (Murtaugh et al. [1995]).2

It is surprising that a company would choose to not offer its products to a certain sub-
population. Although the rejected generally have higher expected expenditures, they still face
unrealized risk.3 Regulation does not generally prevent risk-adjusted pricing in these markets.4

So why not simply offer them a higher price?
In this paper, I argue that private information, held by the potential applicant pool, explains

rejections. In particular, I provide empirical evidence in three insurance market settings that
those who have observable conditions that prevent them from being able to purchase insurance
also have additional knowledge about their risk beyond what is captured by their observable
characteristics. To develop some intuition for this finding, consider the risk of going to a nursing
home, one of the three settings that will be studied in this paper. Someone who has had a
stroke, which renders them ineligible to purchase long-term care (LTC) insurance, may know
not only her personal medical information (which is largely observable to an insurer), but also
many specific factors and preferences that are derivatives of her health condition and affect her
likelihood of entering a nursing home. These could be whether her kids will take care of her
in her condition, her willingness to engage in physical therapy or other treatments that would
prevent nursing home entry, or her desire to live independently with the condition as opposed to
seek the aid of a nursing home. Such factors and preferences affect the cost of insuring nursing
home expenses, but are often difficult an insurance company to obtain and verify. This paper
will argue that, because of the private information held by those with rejection conditions, if an
insurer were to offer contracts to these individuals, they would be so heavily adversely selected
that it wouldn’t deliver positive profits, at any price.

To make this argument formally, I begin with a theory of how private information could lead
to rejections. The setting is the familiar binary loss environment introduced by Rothschild and
Stiglitz [1976], generalized to incorporate an arbitrary distribution of privately informed types.
In this environment, I ask under what conditions can anyone obtain insurance against the loss. I
derive new a "no-trade" condition characterizing when insurance companies would be unwilling
to sell insurance on terms that anyone would accept. This condition has an unraveling intuition
similar to the one introduced in Akerlof [1970]. The market unravels when the willingness to pay
for a small amount of insurance is less than the pooled cost of providing this insurance to those of

1Figures obtained through a formal congressional investigation by the Committee on Energy and Commerce,
which requested and received this information from Aetna, Humana, UnitedHealth Group, and WellPoint. Con-
gressional report was released on October 12, 2010. The 1 in 7 figure does not subtract duplicate applications if
people applied to more than 1 of these 4 firms.

2Appendix F presents the rejection conditions from Genworth Financial (one of the largest US LTC insurers),
gathered from their underwriting guidelines provided to insurance agents for use in screening applicants.

3For example, in long-term care I will show that those who would be rejected have an average five-year nursing
home entry rate of less than 25%.

4The Civil Rights Act is a singular exception as it prevents purely race-based pricing.

2



equal or higher risk. When this no-trade condition holds, an insurance company cannot offer any
contract, or menu of contracts, because they would attract an adversely selected subpopulation
that would make them unprofitable. Thus, the theory explains rejections as market segments
(segmented by observable characteristics) in which the no-trade condition holds.

I then use the no-trade condition to identify properties of type distributions that are more
likely to lead to no trade. This provides a vocabulary for quantifying private information. In
particular, I characterize the barrier to trade imposed by a distribution of types in terms of the
implicit tax rate, or markup, individuals would have to be willing to pay on insurance premiums
in order for the market to exist. The comparative statics of the theory suggests the implicit tax
rates should be higher for the rejectees relative to non-rejectees and high enough for the rejectees
to explain an absence of trade for plausible values of the willingness to pay for insurance.

I then develop a new empirical methodology to test the predictions of theory. I use infor-
mation contained in subjective probability elicitations5 to infer properties of the distribution of
private information. I do not assume individuals can necessarily report their true beliefs. Rather,
I use information in the joint distribution of elicitations and the realized events corresponding
to these elicitations to deal with potential errors in elicitations.

I proceed with two complementary empirical approaches. First, I estimate the explanatory
power of the subjective probabilities on the subsequent realized event, conditional on public
information. I show that measures of their predictive power provide nonparametric lower bounds
on theoretical metrics of the magnitude of private information. In particular, whether the
elicitations are predictive at all provides a simple test for the presence of private information. I
also provide a test in the spirit of the comparative static of the theory that asks whether those
who would be rejected are better able to predict their realized loss.

Second, I estimate the distribution of beliefs by parameterizing the distribution of elicitations
given true beliefs (i.e. on the distribution of measurement error). I then quantify the implicit
tax individuals would need to be willing to pay in order for an insurance company to be able to
profitably sell insurance against the corresponding loss. I then ask whether it is larger for those
who would be rejected relative to those who are served by the market and whether it is large
(small) enough to explain (the absence of) rejections for plausible values of agents’ willingness
to pay for insurance.

I apply this approach to three non-group markets: long-term care (LTC), disability, and life
insurance. I combine two sources of data. First, I use data from the Health and Retirement
Study, which elicits subjective probabilities corresponding to losses insured in each of these three
settings and contains a rich set of observable demographic and health information. Second, I
construct and merge a classification of those who would be rejected (henceforth “rejectees”6) in

5A subjective probability elicitation about a given event is a question: “What is the chance (0-100%) that
[event] will occur?”.

6Throughout, I focus on those who “would be rejected”, which corresponds to those whose choice set excludes
insurance, not necessarily the same as those who actually apply and are rejected.
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each market from a detailed review of underwriting guidelines from major insurance companies.
Across all three market settings and a wide set of specifications, I find significant amounts of

private information held by the rejectees: the subjective probabilities are predictive of the real-
ized loss conditional on observable characteristics. Moreover, I find that they are more predictive
for the rejectees than for the non-rejectees; indeed, once I control for observable characteristics
used by insurance companies to price insurance, I cannot reject the null hypothesis of no private
information where the market exists in any of the three markets I consider. Quantifying the
amount of private information in each market, I estimate rejectees would need to be willing to
pay an implicit tax of 80% in LTC, 42% in Life, and 66% in Disability insurance in order for a
market to exist. In contrast, I estimate smaller implicit taxes for the non-rejectees that are not
statistically different from zero in any of the three market settings.

Finally, not only do the results explain rejections in these three non-group markets, but
the pattern of private information about mortality can also explain the lack of rejections in
annuity markets. While some individuals are informed about being a relatively high mortality
risk, very few are exceptionally informed about having exceptionally low mortality risk. Thus,
the population of healthy individuals can obtain annuities without a significant number of even
lower mortality risks adversely selecting their contract.

This paper is related to several distinct literatures. On the theoretical dimension, it is, to my
knowledge, the first paper to show that private information can eliminate all gains to trade in an
insurance market with an endogenous set of contracts. While no trade can occur in the Akerlof
[1970] lemons model, this model exogenously restricts the set of tradable contracts, which is
unappealing in the context of insurance since insurers generally offer a menu of premiums and
deductibles. Consequently, this paper is more closely related to the large screening literature
using the binary loss environment initially proposed in Rothschild and Stiglitz [1976]. While the
Akerlof lemons model restricts the set of tradable contracts, this literature generally restricts
the distribution of types (e.g. “two types” or a bounded support) and generally argues that
trade will always occur (Riley [1979]; Chade and Schlee [2011]). But by considering an arbitrary
distribution of types, I show this not to be the case. Indeed, not only is no-trade theoretically
possible; I argue it is the outcome in significant segments of three major insurance markets.

Empirically, this paper is related to a recent and growing literature on testing for the existence
and consequences of private information in insurance markets (Chiappori and Salanié [2000];
Chiappori et al. [2006]; Finkelstein and Poterba [2002, 2004]; see Einav et al. [2010a] and Cohen
and Siegelman [2010] for a review). This literature focuses on the revealed preference implications
of private information by looking for a correlation between insurance purchase and subsequent
claims. While this approach can potentially identify private information amongst those served
by the market, my approach can study private information for the entire population, including
rejectees. Thus, my results provide a new explanation for why previous studies have not found
evidence of significant adverse selection in life insurance (Cawley and Philipson [1999]) or LTC
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insurance (Finkelstein and McGarry [2006]). The most salient impact of private information
may not be the adverse selection of existing contracts but rather the existence of the insurance
market.

Finally, this paper is related to the broader literature on the workings of markets under
uncertainty and private information. While many theories have pointed to potential problems
posed by private information, this paper presents, to the best of my knowledge, the first direct
empirical evidence that private information leads to a complete absence of trade.

The rest of this paper proceeds as follows. Section 2 presents the theory and the no-trade
result. Section 3 presents the comparative statics and testable predictions of the model. Section
4 outlines the empirical methodology. Section 5 presents the three market settings and the data.
Section 6 presents the empirical specification and results for the nonparametric lower bounds.
Section 7 presents the empirical specification and results for the estimation of the implicit tax
imposed by private information. Section 8 places the results in the context of existing literature
and discusses directions for future work. Section 9 concludes. To keep the main text to a
reasonable length, the theoretical proofs and empirical estimation details are deferred to the
Online Appendix accompanying this paper.

2 Theory

This section develops a model of private information. The primary result (Theorem 1) is a
no-trade condition which provides a theory of how private information can cause insurance
companies to not offer any contracts.

2.1 Environment

There exists a unit mass of agents endowed with non-stochastic wealth w > 0. All agents face a
potential loss of size l > 0 that occurs with privately known probability p, which is distributed
with c.d.f. F (p|X) in the population, where X is the observable information insurers could
use to price insurance (e.g. age, gender, observable health conditions, etc.). For the theoretical
section, it will suffice to condition on a particular value for the observable characteristics, X = x,
and let F (p) = F (p|X = x) denote the distribution of types conditional on this value. I impose
no restrictions on F (p); it may be a continuous, discrete, or mixed distribution, and have full
or partial support, denoted by Ψ ⊂ [0, 1].7 Throughout the paper, an uppercase P will denote
the random variable representing a random draw from the population (with c.d.f. F (p)); a
lowercase p denote a specific agent’s probability (i.e. their realization of P ).

7By choosing particular distributions F (p), the environment nests type spaces used in many previous models
of insurance. For example, Ψ = {pL, pH} yields the classic two-type model considered initially by Rothschild and
Stiglitz [1976] and subsequently analyzed by many others. Assuming F (p) is continuous with Ψ = [a, b] ⊂ (0, 1),
one obtains an environment similar to Riley [1979]. Chade and Schlee [2011] provide arguably the most general
treatment to-date of this environment in the existing literature by considering a monopolists problem with an
arbitrary F with bounded support Ψ ⊂ [a, b] ⊂ (0, 1).
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Agents have a standard Von-Neumann Morgenstern preferences u (c) with expected utility
given by

pu (cL) + (1− p)u (cNL)

where cL (cNL) is the consumption in the event of a loss (no loss). I assume u (c) is twice con-
tinuously differentiable, with u′ (c) > 0 and u′′ (c) < 0. An allocation A = {cL (p) , cNL (p)}p∈Ψ

consists of consumption in the event of a loss, cL (p), and in the event of no loss, cNL (p) for
each type p ∈ Ψ.

2.2 Implementable Allocations

Under what conditions can anyone obtain insurance against the occurrence of the loss? To ask
this question in a general manner, I consider the set of implementable allocations.

Definition 1. An allocation A = {cL (p) , cNL (p)}p∈Ψ is implementable if

1. A is resource feasible:
ˆ

[w − pl − pcL (p)− (1− p) cNL (p)] dF (p) ≥ 0

2. A is incentive compatible:

pu (cL (p)) + (1− p)u (cNL (p)) ≥ pu (cL (p̃)) + (1− p)u (cNL (p̃)) ∀p, p̃ ∈ Ψ

3. A is individually rational:

pu (cL (p)) + (1− p)u (cNL (p)) ≥ pu (w − l) + (1− p)u (w) ∀p ∈ Ψ

It is easy to verify that these constraints must be satisfied in most, if not all, institutional
environments such as competition or monopoly. Therefore, to ask when agents can obtain any
insurance, it suffices to ask when the endowment, {(w − l, w)}p∈Ψ, is the only implementable
allocation.8

2.3 The No-Trade condition

The key friction in this environment is that if a type p prefers an insurance contract relative to
her endowment, then the pool of risks P ≥ p will also prefer this insurance contract relative to
their endowment. Theorem 1 says that unless some type is willing to pay this pooled cost of
worse risks in order to obtain some insurance, there can be no trade. Any insurance contract,

8Focusing on implementable allocations, as opposed to explicitly modeling the market structure, also cir-
cumvents problems arising from the potential non-existence of competitive Nash equilibriums, as highlighted in
Rothschild and Stiglitz [1976].
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or menu of insurance contracts, would be so adversely selected that it would not yield a positive
profit.

Theorem 1. (No Trade). The endowment, {(w − l, w)}, is the only implementable allocation
if and only if

p

1− p
u′ (w − l)
u′ (w)

≤ E [P |P ≥ p]
1− E [P |P ≥ p]

∀p ∈ Ψ\ {1} (1)

where Ψ\ {1} denotes the support of P excluding the point p = 1.
Conversely, if (1) does not hold, then there exists an implementable allocation which strictly

satisfies resource feasibility and individual rationality for a positive mass of types.

Proof. See Appendix A.19

The left-hand side of equation (1), p
1−p

u′(w−l)
u′(w) is the marginal rate of substitution between

consumption in the event of no loss and consumption in the event of a loss, evaluated at the
endowment, (w − l, w). It is a type p agent’s willingness to pay for an infinitesimal transfer of
consumption to the event of a loss from the event of no loss. The actuarially fair cost of this
transfer to a type p agent is p

1−p . However, if the worse risks P ≥ p also select this contract,

the cost of this transfer would be E[P |P≥p]
1−E[P |P≥p] , which is the right hand side of equation (1). The

theorem shows that if no agent is willing to pay this pooled cost of worse risks, the endowment
is the only implementable allocation.

Conversely, if equation (1) does not hold, there exists an implementable allocation which
does not totally exhaust resources and provides strictly higher utility than the endowment for a
positive mass of types. So, a monopolist insurer could earn positive profits by selling insurance.10

In this sense, the no-trade condition (1) characterizes when one would expect trade to occur.11

The no-trade condition has an unraveling intuition similar to that of Akerlof [1970]. His
model considers a given contract and shows that it will not be traded when its demand curve
lies everywhere below its average cost curve, where the cost curve is a function of those who
demand it. My model is different in the following sense: while Akerlof [1970] derives conditions
under which a given contract would unravel and result in no trade, my model provides conditions
under which any contract or menu of contracts would unravel.12

9While Theorem 1 is straightforward, its proof is less trivial because one must show that Condition 1 rules out
not only single contracts but also any menu of contracts in which different types may receive different consumption
bundles.

10Also, one can show that a competitive equilibrium, as defined in Miyazaki [1977] and Spence [1978] can be
constructed for an arbitrary type distribution F (p) and would yield trade (result available from the author upon
request).

11It is easily verified that the no-trade condition can hold for common distributions. For example, if F (p)

is uniform on [0, 1], then E [P |P ≥ p] = 1+p
2

so that the no trade condition reduces to u′(w−l)
u′(w)

≤ 2. Unless
individuals are willing to pay a 100% tax for insurance, there can be no trade when F (p) is uniform over [0, 1].

12This is also a difference between my approach and the literature on extreme adverse selection in finance
contexts that exogenously restrict the set of tradable assets. Mailath and Noldeke [2008] provide a condition,
with similar intuition to the unraveling condition in Akerlof [1970], under which a given asset cannot trade in any
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This distinction is important since previous literature has argued that trade must always
occur in similar environments with no restrictions on the contract space so that firms can
offer varying premium and deductible menus (Riley [1979]; Chade and Schlee [2011]). The key
difference in my environment is that I do not assume types are bounded away from p = 1.13 To
see why this matters, recall that the key friction that can generate no trade is the unwillingness of
any type to pay the pooled cost of worse risks. This naturally requires the perpetual existence
of worse risks. Otherwise the highest risk type, say p̄ = sup Ψ, would be able to obtain an
actuarially fair full insurance allocation, cL (p̄) = cNL (p̄) = w− p̄l, which would not violate the
incentive constraints of any other type. Therefore, the no trade requires some risks be arbitrarily
close to p = 1.

Corollary 1. Suppose condition (1) holds. Then F (p) < 1 ∀p < 1.

Corollary 1 highlights why previous theoretical papers have not found outcomes of no trade
in the binary loss environment with no restrictions on the contract space; they assume sup Ψ < 1.

The presence of risks near p = 1 make the provision of insurance more difficult because it
increases the values of E [P |P ≥ p] at interior values of p. However, the need for P to have
full support near 1 is not a very robust requirement for no trade. In reality, the cost of setting
up a contract is nonzero, so that insurance companies cannot offer an infinite set of contracts.
Remark 1 shows that if each allocation other than the endowment must attract a non-trivial
fraction of types, then risks arbitrarily close to 1 are not required for no trade.

Remark 1. Suppose each consumption bundle (cL, cNL) other than the endowment must attract
a non-trivial fraction α > 0 of types. More precisely, suppose allocations A = {cL (p) , cNL (p)}p
must have the property that for all q ∈ Ψ,

µ ({p| (cL (p) , cNL (p)) = (cL (q) , cNL (q))}) ≥ α

where µ is the measure defined by F (p). Then, the endowment is the only implementable allo-
cation if and only if

p

1− p
u′ (w − l)
u′ (w)

≤ E [P |P ≥ p]
1− E [P |P ≥ p]

∀p ∈ Ψ̂1−α (2)

where Ψ̂1−α =
[
0, F−1 (1− α)

]
∩ (Ψ\ {1}).14 Therefore, the no-trade condition need only hold

for values p < F−1 (1− α).

For any α > 0, it is easy to verify that the no trade condition not only does not require types

nonzero quantity. However, it is easy to verify in their environment that derivatives of the asset could always be
traded, even when their no trade condition holds. In contrast, by focusing on the set of implementable allocations,
my approach rules out the nonzero trading of any asset derived from the loss.

13Both Riley [1979] and Chade and Schlee [2011] assume sup Ψ < 1.
14If F−1 (1− α) is a set, I take F−1(1− α) to be the supremum of this set
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near p = 1, but it actually imposes no constraints on the upper range of the support of P .15 In
this sense, the requirement of risks arbitrarily close to p = 1 is a theoretical requirement in a
world with no other frictions, but not an empirically relevant condition if one believes insurance
companies cannot offer contracts that attract an infinitesimal fraction of the population. Going
forward, I retain the benchmark assumption of no such frictions or transactions costs, but return
to this discussion in the empirical work in Section 7.

In sum, the no-trade condition (1) provides a theory of rejections: individuals with observable
characteristics, X, such that the no-trade condition (1) holds are rejected; individuals with
observable characteristics, X, such that (1) does not hold are able to purchase insurance. This
is the theory of rejections the remainder of this paper will seek to test.

3 Comparative Statics and Testable Predictions

In order to generate testable implications of this theory of rejections, this section derives proper-
ties of distributions, F (p), which are more likely to lead to no trade. I provide two such metrics
that will be used in the subsequent empirical analysis.

3.1 Two Measures of Private Information

To begin, multiply the no-trade condition (1) by 1−p
p yielding,

u′ (w − l)
u′ (w)

≤ E [P |P ≥ p]
1− E [P |P ≥ p]

1− p
p

∀p ∈ Ψ\ {1}

The left-hand side is the ratio of marginal utilities in the loss versus no loss state, evaluated at
the endowment. The right-hand side is independent of the utility function, u, and is the markup
that would be imposed on type p if she had to cover the cost of worse risks, P ≥ p. I define this
term the pooled price ratio.

Definition 2. For any p ∈ Ψ\ {1}, the pooled price ratio at p, T (p), is given by

T (p) =
E [P |P ≥ p]

1− E [P |P ≥ p]
1− p
p

(3)

Given T (p), the no-trade condition has a succinct expression.

Corollary 2. (Quantification of the barrier to trade) The no-trade condition holds if and only
if

u′ (w − l)
u′ (w)

≤ inf
p∈Ψ\{1}

T (p) (4)

15More precisely, for any α > 0 and γ ∈ (0, 1], there exists u (·) and F (p) such that F (γ) = 1 and the no trade
condition in equation(2) holds.
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Whether or not there can be trade depends on only two numbers: the agent’s underlying
valuation of insurance, u′(w−l)

u′(w) , and the cheapest cost of providing an infinitesimal amount of
insurance, infp∈Ψ\{1} T (p). I call infp∈Ψ\{1} T (p) the minimum pooled price ratio.

The minimum pooled price ratio has a simple tax rate interpretation. Suppose for a moment
that there were no private information but instead a government levies a sales tax of rate t on
insurance premiums in a competitive insurance market. The value u′(w−l)

u′(w) −1 is the highest such
tax rate an individual would be willing to pay to purchase any insurance. Thus, infp∈Ψ\{1} T (p)−
1 is the implicit tax rate imposed by private information. Given any distribution of risks, F (p),
it quantifies the implicit tax individuals would need to be willing to pay so that a market could
exist.

Equation (4) leads to a simple comparative static.

Corollary 3. (Comparative static in the minimum pooled price ratio) Consider two market
segments, 1 and 2, with pooled price ratios T1 (p) and T2 (p) and common vNM preferences u.
Suppose

inf
p∈Ψ\{1}

T1 (p) ≤ inf
p∈Ψ\{1}

T2 (p)

then if the no-trade condition holds in segment 1, it must also hold in segment 2.

Higher values of the minimum pooled price ratio are more likely to lead to no trade. Be-
cause the minimum pooled price ratio characterizes the barrier to trade imposed by private
information, Corollary 3 is the key comparative static on the distribution of private information
provided by the theory.

In addition to the minimum pooled price ratio, it will also be helpful to have another metric
to guide portions of the empirical analysis.

Definition 3. For any p ∈ Ψ, define the magnitude of private information at p by m (p),
given by

m (p) = E [P |P ≥ p]− p (5)

The value m (p) is the difference between p and the average probability of everyone worse
than p. Note that m (p) ∈ [0, 1] and m (p) + p = E [P |P ≥ p]. The following comparative static
follows directly from the no-trade condition (1).

Corollary 4. (Comparative static in the magnitude of private information) Consider two market
segments, 1 and 2, with magnitudes of private information m1 (p) and m2 (p) and common
support Ψ and common vNM preferences u. Suppose

m1 (p) ≤ m2 (p) ∀p ∈ Ψ

Then if the no-trade condition holds in segment 1, it must also hold in segment 2.
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Higher values of the magnitude of private information are more likely to lead to no trade.
Notice that the values of m (p) must be ordered for all p ∈ Ψ; in this sense Corollary 4 is a less
precise comparative static than Corollary 3.

3.2 Testable Hypotheses

The goal of the rest of the paper is to test whether the no-trade condition (1) can explain rejec-
tions by estimating properties of the distribution of private information, F (p|X), for rejectees
and non-rejectees. Assuming for the moment that F (p|X) is observable to the econometrician,
the ideal tests are as follows. First, do rejectees have private information (i.e. is F (p|X) a
non-trivial distribution for the rejectees)? Second, do they have more private information than
the non-rejectees, as suggested by the comparative statics in Corollaries 3 and 4? Finally, is the
quantity of private information, as measured by the minimum pooled price ratio, is large (small)
enough to explain (the absence of) rejections for plausible values of agents’ willingness to pay,
u′(w−l)
u′(w) , as suggested by Corollary 2?

Note that these tests do not involve on any observation of adverse selection (i.e. a correlation
between insurance purchases and realized losses). Instead, these ideal tests simulate the extent
to which private information would afflict a hypothetical insurance market that pays $1 in the
event that the loss occurs and prices policies using the observable characteristics, X.

To implement these tests, one must estimate properties of the distribution of private infor-
mation, F (p|X), to which I now turn.

4 Empirical Methodology

I develop an empirical methodology to study private information and operationalize the tests in
Section 3.2. I rely primarily on four pieces of data. First, let L denote an event (e.g. dying in
the next 10 years) that is commonly insured in some insurance market (e.g. life insurance).16

Second, let Z denote an individual’s subjective probability elicitation about event L (i.e. Z

is a response to the question: “What is the chance (0-100%) that L will occur?”). Third, let
X continue to denote the set of public information insurance companies would use to price
insurance against the event L. Finally, let ΘReject and ΘNoReject partition the space of values of
X into those for whom an insurance company does and does not offer insurance contracts that
provide payment if L occurs (e.g. if L is the event of dying in the next 10 years, ΘReject would
be the values of observables, X, that render someone ineligible to purchase life insurance).

The premise underlying the approach is that the elicitations, Z, are non-verifiable to an
insurance company. Therefore, they can be excluded from the set of public information insurance
companies would use to price insurance, X, and used to infer properties of the distribution of

16To condense notation, L will denote both a probabilistic event and also the binary random variable equal to
1 if the event occurs and 0 if the event does not occur (i.e. Pr {L} = Pr {L = 1} = E [L]).
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private information.
I maintain the implicit assumption in Section 2 that individuals behave as if they have

true beliefs, P , about the occurrence of the loss, L.17 But there are many reasons to expect
individuals not to report exactly these beliefs on surveys.18 Therefore, I do not assume Z = P .
Instead, I use information contained in the joint distribution of Z and L (that are observed) to
infer properties about the distribution of P (that is not directly observed).

I conduct two complementary empirical approaches. Under relatively weak assumptions
rooted in economic rationality, I provide a test for the presence of private information and a
nonparametric lower bound on the average magnitude of private information, E [m (P )]. Loosely,
this approach asks how predictive the elicitations are of the loss L, conditional on observable
information, X. Second, I use slightly stronger structural assumptions to estimate the distri-
bution of beliefs, F (p|X), and the minimum pooled price ratio. I then test whether it is larger
for the rejectees and large (small) enough to explain a complete absence of trade for plausible
values of u

′(w−l)
u′(w) , as suggested by Corollary 2.

In this section, I introduce these empirical approaches in the abstract. I defer a discussion of
the empirical specification and statistical inference in my particular settings to Sections 6 and
7, after discussing the data and settings in Section 5.

4.1 Nonparametric Lower Bounds

Instead of assuming people necessarily report their true beliefs, I begin with the weaker assump-
tion that people cannot report more information than what they know.

Assumption 1. Z contains no additional information than P about the loss L, so that

Pr {L|X,P,Z} = Pr {L|X,P}

This assumption states that if the econometrician were trying to forecast whether or not
an agents’ loss would occur and knew both the observable characteristics, X and the agents
true beliefs, P , the econometrician could not improve the forecast of L by also knowing the
elicitation, Z. All of the predictive power that Z has about L must come from agents’ beliefs,
P .19 Proposition 1 follows.

17The approach therefore follows the view of personal probability expressed in the seminal work of Savage
[1954]. The existence of beliefs P are guaranteed as long as people would behave consistently (in the sense of
Savage’s axioms) in response to gambles over L.

18For example, they may not have the training to know how to answer probabilistic questions; they may
intentionally lie to the surveyor; or they may simply be lazy in thinking about their response. Indeed, existing
research suggests the way in which the elicitation is conducted affects the reported belief elicitation (Gigerenzer
and Hoffrage [1995], Miller et al. [2008]), which suggests elicitations do not measure true beliefs exactly. Previous
literature has also argued that the elicitations in my settings should not be viewed as true beliefs due to excess
concentrations at 0, 50%, and 100% (Gan et al. [2005], Hurd [2009]).

19This assumption would be clearly implied in a model in which agents’ formed rational expectations from an
information set that included X and Z. In this case Pr {L|X,P,Z} = P . But, it also allows agents’ beliefs to be
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Proposition 1. Suppose Pr {L|X,Z} 6= Pr {L|X} for a positive mass of realizations of Z.
Then, Pr {L|X,P} 6= Pr {L|X} for a positive mass of realizations of P .

Proof. Assumption 1 implies E [Pr {L|X,P} |X,Z] = Pr {L|X,Z}.

Proposition 1 says that if Z has predictive information about L conditional on X, then
agents’ true beliefs P has predictive information about L conditional on X – i.e. agents have
private information. This motivates my test for the presence of private information:

Test 1. (Presence of Private Information) Are the elicitations, Z, predictive of the loss, L, conditional
on observable information, X?

Although this test establishes the presence of private information, it does not provide a
method of asking whether one group has more private information than another. Intuitively,
the predictiveness of Z should be informative of how much private information people have.
Such a relationship can be established with an additional assumption about how realizations of
L relate to beliefs, P .

Assumption 2. Beliefs P are unbiased: Pr {L|X,P} = P

Assumption 2 states that if the econometrician could hypothetically identify an individual
with beliefs P , then the probability that the loss occurs equals P . As an empirical assumption,
it is strong, but commonly made in existing literature (e.g. Einav et al. [2010b]); indeed, it
provides perhaps the simplest link between the realized loss L and beliefs, P .20

Under Assumptions 1 and 2, the predictiveness of the elicitations form a distributional lower
bound on the distribution of P . To see this, define PZ to be the predicted value of L given the
variables X and Z,

PZ = Pr {L|X,Z}

Under Assumptions 1 and 2, it is easy to verify (see Appendix B) that

PZ = E [P |X,Z]

so that the true beliefs, P , are a mean-preserving spread of the distribution of predicted values,
PZ . In this sense, the true beliefs are more predictive of the realized loss than are the elicitations.

This motivates my first test of whether rejectees have more private information than non-
rejectees. I plot the distribution of predicted values, PZ , separately for rejectees (X ∈ ΘReject)
and non-rejectees

(
X ∈ ΘNoReject

)
. I then assess whether it is more dispersed for the rejectees.

biased, so that Pr {L|X,P,Z} = h (P ) where h is any function not dependent on Z. In particular, h (P ) could be
an S-shaped function as suggested by Kahneman and Tversky [1979].

20Assumptions 1 and 2 are jointly implied by rational expectations in a model in which agents know both X
and Z in formulating their beliefs P . In this case, my approach views Z as a “garbling” of the agent’s true beliefs
in the sense of Blackwell ([1951], [1953]).
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In addition to visual inspection of PZ , one can also construct a dispersion metric derived
from the comparative statics of the theory. Recall from Corollary 4 that higher values of the
magnitude of private information, m (p), are more likely to lead to no trade. Consider the
average magnitude of private information, E [m (P ) |X]. This is a non-negative measure of the
dispersion of the population distribution of P . If an individual were drawn at random from the
population, one would expect the risks higher than him to have an average loss probability that
is E [m (P ) |X] higher.

Although P is not observed, I construct the analogue using the PZ distribution. First, I
construct mZ (p) as the difference between p and the average predicted probability, PZ , of those
with predicted probabilities higher than p.

mZ (p) = EZ|X [PZ |PZ ≥ p,X]− p

The Z|X subscript highlights that I am integrating over realizations of Z conditional on X.
Then I construct the average magnitude of private information implied by Z in segment X,
E [mZ (PZ) |X]. This is the average difference in segment X between an individual’s predicted
loss, and the predicted losses of those with higher predicted probabilities. Proposition follows
from Assumption 1 and 2.

Proposition 2. (Lower Bound) E [mZ (PZ) |X] ≤ E [m (P ) |X]

Proof. See Appendix B.

Proposition 2 states that the average magnitude of private information implied by Z is a lower
bound on the true average magnitude of private information. Therefore, using only Assumptions
1 and 2, one can provide a lower bound to the answer to the question: if an individual is drawn
at random, on average how much worse are the higher risks?

Given this theoretical measure of dispersion, E [mZ (PZ) |X], I conduct a test in the spirit
of the comparative statics given by Corollary 4. I test whether rejectees have higher values of
E [mZ (PZ) |X]:

∆Z = E
[
mZ (PZ) |X ∈ ΘReject

]
− E

[
mZ (PZ) |X ∈ ΘNoReject

]
>? 0 (6)

Stated loosely, equation (6) asks whether the subjective probabilities of the rejectees better
explain the realized losses than the non-rejectees, where “better explain” is measured using the
dispersion metric, E [mZ (PZ) |X]. I now summarize the tests for more private information for
the rejectees relative to the non-rejectees.

Test 2. (More Private Information for Rejectees) Are the elicitations, Z, more predictive of L for the
rejectees: (a) is PZ more dispersed for rejectees and (b) Is ∆Z > 0?
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Discussion In sum, I conduct two sets of tests motivated by Assumptions 1 and 2. First, I ask
whether the elicitations are predictive of the realized loss conditional on X (Test 1); this provides
a test for the presence of private information as long as people cannot unknowingly predict
their future loss (Assumption 1). Second, I ask whether the elicitations are more predictive for
rejectees relative to non-rejectees (Test 2). To do so, I analyze whether the predicted values, PZ ,
are more dispersed for rejectees relative to non-rejectees. In addition to assessing this visually, I
collapse these predicted values into the average magnitude of private information implied by Z,
E [mZ (PZ)] and ask whether it is larger for those who would be rejected relative to those who
can purchase insurance (Equation 6).

The approach is nonparametric in the sense that I have made no restrictions on how the
elicitations Z relate to the true beliefs P . For example, PZ and mZ (p) are invariant to one-to-
one transformations in Z: PZ = Ph(Z) and mZ (p) = mh(Z) (p) for any one-to-one function h.
Thus, I do not require that Z be a probability or have any cardinal interpretation. Respondents
could all change their elicitations to 1 − Z or 100Z; this would not change the value of PZ or
E [mZ (PZ) |X].21

But while the lower bound approach relies on only minimal assumptions on how subjective
probabilities relate to true beliefs, the resulting empirical test in equation (6) suffers several
significant limitations as a test of the theory that private information causes insurance rejections.
First, comparisons of lower bounds of E [m (P ) |X] across segments do not necessarily imply
comparisons of its true magnitude. Second, orderings of E [m (P ) |X] does not imply orderings
of m (p) for all p, which was the statement of the comparative static in m (p) in Corollary
4. Finally, in addition to having limitations as a test of the comparative static, this approach
cannot quantify the minimum pooled price ratio. These shortcomings motivate a complementary
empirical approach, which imposes structure on the relationship between Z and P and estimates
of the distribution of private information, F (p|X).

4.2 Estimation of the Distribution of Private Information

The second approach estimates the distribution of private information and the minimum pooled
price ratio. For expositional ease, fix an observable, X = x, and let fP (p) denote the p.d.f. of the
distribution of beliefs, P , given X = x, which is assumed to be continuous. For this approach,
I expand the joint p.d.f./p.m.f. of the observed variables L and Z, denoted fL,Z (L,Z) by

21In principle, Z need not even be a number. Some individuals could respond to the elicitation question in a
crazy manner by saying they like red cars, others that they like Buffy the Vampire Slayer. The empirical approach
would proceed to analyze whether a stated liking of red cars versus Buffy the Vampire Slayer is predictive of L
conditional on X. Of course, such elicited information may have low power for identifying private information
about L.
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integrating over the unobserved beliefs, P :

fL,Z (L,Z) =

ˆ 1

0
fL,Z (L,Z|P = p) fP (p) dp

=

ˆ 1

0
(Pr {L|Z,P = p})L (1− Pr {L|Z,P = p})1−L fZ|P (Z|P = p) fP (p) dp

=

ˆ 1

0
pL (1− p)1−L fZ|P (Z|P = p) fP (p) dp

where fZ|P (Z|P = p) is the distribution of elicitations given beliefs. The first equality follows by
taking the conditional expectation with respect to P . The second equality follows by expanding
the joint density of L and Z given P . The third equality follows from Assumptions 1 and 2.

The goal of this approach is to specify a functional form for fZ|P , say fZ|P (Z|P ; θ), and a
flexible approximation for fP , say fP (p; ν), and estimate θ and ν using maximum likelihood
from the observed data on L and Z. To do so, one must impose sufficient restrictions on
fZ|P so that θ and ν are identified. Because the discussion of functional form for fZ|P and
its identification is more straightforward after discussing the data, I defer a detailed discussion
of my choice of specification and the details of identification to Section 7.1. At a high level,
identification of the elicitation error parameters, θ, comes from the relationship between L and
Z, and identification of the distribution of P is a deconvolution of the distribution of Z, where θ
contains the parameters governing the deconvolution. Therefore, a key concern for identification
is that the measurement error parameters are well identified from the relationship between Z

and L; I discuss how this is the case in my particular specification in Section 7.1.22

With an estimate of fP , the pooled price ratio follows from the identity, T (p) = E[P |P≥p]
1−E[P |P≥p]

1−p
p .

I then construct an estimate of its minimum, infp∈[0,1) T (p). Although T (p) can be calculated at
each p using estimates of E [P |P ≥ p], as p increases, E [P |P ≥ p] relies on a smaller and smaller
effective sample size. Thus, the minimum of T (p) is not well-identified over a domain including
the uppermost points of the support of P . To overcome this extreme quantile estimation prob-
lem, I construct the minimum of T (p) over the restricted domain, Ψ̂τ =

[
0, F−1

P (τ)
]
∩ (Ψ\ {1}).

For a fixed quantile, estimates of the minimum pooled price ratio over Ψ̂τ are continuously dif-
ferentiable functions of the MLE parameter estimates of fP (p) for p ≤ F−1

P (τ).23 So, derived
MLE estimates of infp∈Ψ̂τ

T (p) are consistent and asymptotically normal, provided FP (p) is
continuous.24 One can assess the robustness to the choice of τ , but the estimates will become
unstable as τ → 1.

While the motivation for restricting attention to Ψ̂τ as opposed to Ψ is primarily because
22Indeed, not all distributions fZ|P are identified from data on L and Z since, in general, fZ|P is an arbitrary

two-dimensional function whereas L is binary.
23Non-differentiability could hypothetically occur at points where the infimum is attained at distinct values of

p.
24To see this, note if FP (p) is continuous then T (p) =

1−pFP (p)−
´ p
0 FP (p̂)dp̂

1−FP (p)
, so that T (p) is continuous in the

estimated parameters of FP .
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of statistical limitations, Remark 1 in Section 2.3 provides an economic rationale for why
infp∈Ψ̂τ

T (p) may not only be a suitable substitute for infp∈Ψ\{1} T (p) but also may actually be
more economically relevant. If contracts must attract a non-trivial fraction 1− τ of the market
in order to be viable, then infp∈Ψ̂τ

T (p) characterizes the barrier to trade imposed by private
information.

Given estimates of infp∈Ψ̂τ
T (p) for rejectees and non-rejectees, I test whether it is larger

(smaller) for the rejectees (Corollary 3) and whether it is large (small) enough to explain a
complete absence of (presence of) trade for plausible values of people’s willingness to pay, u

′(w−l)
u′(w) ,

as suggested by Corollary 2.

Test 3. (Quantification of Private Information) Is the minimum pooled price ratio larger for the rejectees
relative to the non-rejectees; and is it large enough (small enough) to explain an absence of (presence of)
trade for plausible values of agents’ willingness to pay?

5 Setting and Data

I ask whether private information can explain rejections in three non-group insurance market
settings: long-term care, disability, and life insurance.

5.1 Short Background on the Three Non-Group Market Settings

Long-term care (LTC) insurance insures against the financial costs of nursing home use and
professional home care. Expenditures on LTC represent one of the largest uninsured financial
burdens facing the elderly with expenditures in the US totaling over $135B in 2004. Moreover,
expenditures are heavily skewed: less than half of the population will ever move to a nursing
home (CBO [2004]). Despite this, the LTC insurance market is small, with roughly 4% of all
nursing home expenses paid by private insurance, compared to 31% paid out-of-pocket (CBO
[2004]).25

Private disability insurance protects against the lost income resulting from a work-limiting
disability. It is primarily sold through group settings, such as one’s employer; more than 30% of
non-government workers have group-based disability policies. In contrast, the non-group market
is quite small. Only 3% of non-government workers own a non-group disability policy, most of
whom are self-employed or professionals who do not have access to employer-based group policies
(ACLI [2010]).26

Life insurance provides payments to ones’ heirs or estate upon death, insuring lost income or
other expenses. In contrast to the non-group disability and LTC markets, the private non-group

25Medicaid pays for nursing home stays provided one’s assets are sufficiently low and is a substantial payer of
long-term stays.

26In contrast to health insurance where the group market faces significant tax advantages relative to the non-
group market, group disability policies are taxed. Either the premiums are paid with after-tax income, or the
benefits are taxed upon receipt.
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life insurance market is quite big. More than half of the adult US population owns life insurance,
54% of which are sold in the non-group market.27

Previous Evidence of Private Information Previous research has found minimal or no
evidence of adverse selection in these three markets. In life insurance, Cawley and Philipson
[1999] find no evidence of adverse selection. He [2009] revisits this with a different sample
focusing on new purchasers and does find evidence of adverse selection under some empirical
specifications. In long-term care, Finkelstein and McGarry [2006] find direct evidence of private
information by showing subjective probability elicitations are correlated with subsequent nursing
home use. However, they find no evidence that this private information leads to adverse selection:
conditional on the observables used to price insurance, those who buy LTC insurance are no
more likely to go to a nursing home than those who do not purchase LTC insurance.28 To my
knowledge, there is no previous study of private information in the non-group disability market.

5.2 Data

To implement the empirical approach in Section 4, the ideal dataset contains four pieces of
information for each setting:

1. Loss indicator, L, corresponding to a commonly insured loss in a market setting

2. Agents’ subjective probability elicitation, Z, about this loss

3. The set of public information, X, which would be observed by insurance companies in the
market to set contract terms

4. The classification, ΘReject and ΘNoReject, of who would be rejected if they applied for
insurance in the market setting

The data source for the loss, L, subjective probabilities, Z, and public information X, come
from years 1993-2008 of the Health and Retirement Study (HRS). The HRS is an individual-
level panel survey of older individuals (mostly over age 55) and their spouses. It contains a
rich set of health and demographic information. Moreover, it asks respondents three subjective
probability elicitations about future events that correspond to a commonly insured loss in each
of the three settings.

Long-Term Care: "What is the percent chance (0-100) that you will move to a nursing
home in the next five years?"

27Life insurance policies either expire after a fixed length of time (term life) or cover one’s entire life (whole
life). Of the non-group policies in the US, 43% of these are term policies, while the remaining 57% are whole life
policies (ACLI [2010]).

28They suggest heterogeneous preferences, in which good risks also have a higher valuation of insurance, can
explain why private information doesn’t lead to adverse selection.
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Disability: "[What is the percent chance] that your health will limit your work activity
during the next 10 years?"

Life: "What is the percent chance that you will live to be AGE or more?" (where
AGE∈ {75,80,85,90,95,100} is respondent-specific and chosen to be 10-15 years from
the date of the interview)29

Figures 1(a,b,c) display histograms of these responses (divided by 100 to scale to [0, 1]).30 These
histograms highlight one reason why it would be problematic to view these elicitations as true
beliefs. As has been noted in previous literature using these subjective probabilities (Gan et al.
[2005]; Finkelstein and McGarry [2006]), many respondents report 0, 50, or 100. Taken literally,
responses of 0 or 100 imply an infinite degree of certainty. The lower bound approach remains
agnostic on the way in which focal point responses relate to true beliefs. The parametric approach
will take explicit account of this focal point response bias in the specification of fZ|P (Z|P ; θ),
discussed further in Section 7.1.1.

Corresponding to each subjective probability elicitation, I construct binary indicators of the
loss, L. In long-term care, L denotes the event that the respondent enters a nursing home in
the subsequent 5 years.31 In disability, L denotes the event that the respondent reports that
their health limits their work activity in the subsequent 10-11 years.32 In life, L denotes the
event that the respondent dies before AGE, where AGE∈ {75,80,85,90,95,100} corresponds to
the subjective probability elicitation, which is 10-15 years from the survey date.33

5.2.1 Public Information

To identify private information, it is essential to control for the public information, X, that would
be used by insurance companies to price contracts. For non-rejectees, this is a straightforward
requirement which involves analyzing existing contracts. But for rejectees, I must make an
assumption about how insurance companies would price these contracts if they were to offer
them. My preferred approach is to assume insurance companies price rejectees separately from
those to whom they currently offer contracts, but use a similar set of public information. Thus,
the primary data requirement is the public information currently used by insurance companies

29I construct the corresponding elicitation to be Zdie = 100% − Zlive where Zlive is the survey elicitation for
the probability of living to AGE.

30The histograms use the sample selection described in Subsection (5.2.3)
31Although the HRS surveys every two years, I use information from the 3rd subsequent interview (6 years

post) which provides date of nursing home entry information to construct the exact 5 year indicator of nursing
home entry.

32The loss is defined as occurring when the individual reports yes to the question: “Does your health limit your
work activity?” over the subsequent five surveys, which is 10 years for all waves except AHEAD wave 2, which
corresponds to a time interval of 11 years because of a slightly different survey spacing. Although the HRS has
other measures of disability (e.g. SSDI claims), I use this measure because the wording corresponds exactly to
the subjective probability elicitation, which will be important for the structural assumptions made to estimate
the minimum pooled price ratio.

33The HRS collects date of death information that allows me to establish the exact age of death.
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in pricing insurance.
The HRS contains an extensive set of health, demographic, and occupation information

that allows me to approximate the set of information that insurance companies use to price
insurance. Indeed, previous literature has used the HRS to replicate the observables used by
insurance companies to price insurance in LTC and Life (for LTC, see Finkelstein and McGarry
[2006] and for Life, see He [2009]), and I primarily follow this literature in constructing this set
of covariates. Appendix C.1 provides a detailed listing of the control specifications used in each
market setting.

The quality of the approximation to what insurers actually use to price insurance is quite
good, but does vary by market. For long-term care, I replicate the information set of the
insurance company quite well. For example, perhaps the most obscure piece of information that
is acquired by some LTC insurance companies is an interview in which applicants are asked
to perform word recall tasks to assess memory capabilities; the HRS conducts precisely this
test with survey respondents. In disability and life, I replicate most of the information used
by insurance companies in pricing. One caveat is that insurance companies will sometimes
perform tests, such as blood and urine tests, which I will not observe in the HRS. Conversations
with underwriters in these markets suggest these tests are primarily to confirm application
information, which I can approximate quite well with the HRS. But, I cannot rule out the
potential that there is additional information which can be gathered by insurance companies in
the disability and life settings.34

While the preferred specification attempts to replicate the variables used by insurance com-
panies in pricing, I also assess the robustness of the estimates to larger and smaller sets of
controls.35 As a baseline, I consider a specification with only age and gender. As an extension,
I also consider an extended controls specification that adds a rich set of interactions between
health conditions and demographic variables that could be, but are not currently, used in pricing
insurance. I conduct the lower bound approach for all three sets of controls. For brevity, I focus
exclusively on the preferred specification of pricing controls for the parametric approach.

5.2.2 Rejection Classification

Not everyone can purchase insurance in these three non-group markets. To identify conditions
that lead to rejection, I obtain underwriting guidelines used by underwriters and provided to
insurance agents for use in screening applicants. An insurance company’s underwriting guide-
lines list the conditions for which underwriters are instructed to not offer insurance at any price

34In LTC, insurance companies are legally able to conduct tests, but it is not common industry practice.
35While it might seem intuitive that including more controls would reduce the amount of private information,

this need not be the case. To see why, consider the following example of a regression of quantity on price. Absent
controls, there may not exist any significant relationship. But, controlling for supply (demand) factors, price may
have predictive power for quantity as it traces out the demand (supply) curve. Thus, adding controls can increase
the predictive power of another variable (price, in this case). Of course, conditioning on additional variables X ′

which are uncorrelated with L or Z has no effect on the population value of E [m (P ) |X ∈ Θ].
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and for which insurance agents are expected to discourage applications. These guidelines are
generally viewed as a public relations liability and are not publicly available.36 Thus, the extent
of my access varies by market: In long-term care, I obtained a set of guidelines used by an
insurance broker from 18 of the 27 largest long-term care insurance companies comprising a
majority of the US market.37 In disability and life, I obtained several underwriting guidelines
and supplement this information with interviews with underwriters at several major US insur-
ance companies. Appendix F provides several pages from the LTC underwriting guideline from
Genworth Financial, one of the largest LTC insurers in the US.38

I then use the detailed health and demographic information available in the HRS to identify
individuals with these rejection conditions. While the HRS contains a relatively comprehensive
picture of respondents’ health, sometimes the rejection conditions are too precise to be matched
to the HRS. For example, individuals with advanced stages of lung disease would be unable to
purchase life insurance, but some companies will sell policies to individuals with a milder case
of lung disease; however, the HRS only provides information for the presence of a lung disease.

Instead of attempting to match all cases, I construct a third classification in each setting,
"Uncertain", to which I classify those who may be rejected, but for whom data limitations
prevent a solid assessment. This allows me to be relatively confident in the classification of
rejectees and non-rejectees. For completeness, I present the lower bound analysis for all three
classifications.

Table 1 presents the list of conditions for the rejection and uncertain classification, along
with the frequency of each condition in the sample (using the sample selection outlined below
in Section 5.2.3). LTC insurers generally reject applicants with conditions that would make
them more likely to use a nursing home in the relatively near future. Activity of daily living
(ADL) restrictions (e.g. needs assistance walking, dressing, using toilet, etc.), a previous stroke,
any previous home nursing care, and anyone over the age of 80 would be rejected regardless of
health status. Disability insurers reject applicants with back conditions, obesity (BMI > 40),
and doctor-diagnosed psychological conditions such as depression or bi-polar disorder. Finally,
life insurers reject applicants who have had a past stroke or currently have cancer.

Table 1 also lists the conditions which may lead to rejection depending on the specifics of
the disease. People with these conditions are allocated into the Uncertain classification.39 In
addition to health conditions, disability insurers also have stringent income and job characteristic

36An example of these guidelines is presented in Appendix F and a collection of these guidelines is available
on my website. Also, many underwriting guidelines are available via internet searches of “underwriting guideline
not-for-public-use pdf”. These are generally left on the websites of insurance brokers who leave them electronically
available to their sales agents and, potentially unknowingly, available to the general public.

37I thank Amy Finkelstein for making this broker-collected data available.
38A collection of undewriting guidelines from these three markets are available from the author upon request

and are posted on my website.
39I also attempt to capture the presence of rarer conditions not asked in the HRS (e.g. Lupus would lead to

rejection in LTC, but is not explicitly reported in the HRS). To do so, I allocate to the uncertain classification
individuals who report having an additional major health problems which was not explicitly asked about in the
survey.
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underwriting. Individuals earning less than $30,000 (or wages below $15/hr) and individuals
working in blue-collar occupations are often rejected regardless of health condition due to their
employment characteristics. I therefore allocate all such individuals to the uncertain category
in the disability insurance setting.

Given these classifications, I construct the Reject, No Reject, and Uncertain samples by first
taking anyone who has a known rejection condition in Table 1 and classify them into the Reject
sample in each setting. I then classify anyone with an uncertain rejection condition into the
Uncertain classification, so that the remaining category is the set of people who can purchase
insurance (the No Reject classification).

5.2.3 Sample Selection

For each sample, I begin with years 1993-2008 of the HRS. The selection process varies across
each of the three market settings due to varying data constraints. Appendix C.2 discusses
the specific data construction details for each setting. The primary sample restrictions arise
from requiring the subjective elicitation be asked (e.g. only individuals over age 65 are asked
about future nursing home use) and needing to observe individuals in the panel long enough to
construct the loss indicator, L in each setting.40 For LTC, the sample consists of individuals
aged 65 and older; for disability the sample consists of individuals aged 60 and under41; and for
life, the sample consists of individuals over age 65. Table 2 presents the summary statistics for
each sample. I include multiple observations for a given individual (which are spaced roughly
two years apart) to increase power.42

There are several broad patterns across the three samples. First, there is a sizable sample
of rejectees in each setting. Because the HRS primarily surveys older individuals, the sample
is older, and therefore sicker, than the average insurance purchaser in each market. Obtaining
this large sample size of rejectees is a primary benefit of the HRS; but it is important to keep in
mind that the fraction of rejectees in the HRS is not a measure of the fraction of the applicants
in each market that are rejected.

Second, many rejectees own insurance. These individuals could (and perhaps should) have
purchased insurance prior to being stricken with their rejection condition. Also, they may have
been able to purchase insurance in group markets through their employer, union, or other group
which has less stringent underwriting requirements than the non-group market.

40Note that death during this subsequent time horizon does not exclude an individual from the sample; I classify
the event of dying before the end of the time horizon as L = 0 for the LTC and Disability settings as long as an
individual did not report the loss (i.e. nursing home entry or health limiting work) prior to death.

41The disability question is asked of individuals up to age 65, but I exclude individuals aged 61-65 because of
the near presence of retirement. Ideally, I would focus on a sample of even younger individuals, but unfortunately
the HRS contains relatively few respondents below age 55.

42All standard errors will be clustered at the household level. Because the multiple observations within a person
will always have different X values (e.g. different ages), including multiple observations per person does not induce
bias in the construction of F (p|X).
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However, the fact that some own insurance raises the concern that moral hazard could
generate heterogeneity in loss probabilities from differential insurance ownership. Therefore, I
also perform robustness checks in LTC and Life on samples that exclude those who currently own
insurance.43 Since Medicaid also pays for nursing home use, I also exclude Medicaid enrollees
from this restricted LTC sample. Unfortunately, the HRS does not ask about disability insurance
ownership, so I cannot conduct this robustness check for the disability setting.

Finally, although the rejectees have, on average, a higher chance of experiencing the loss
than the non-rejectees, it is not certain that they would experience the loss. For example, only
22.5% of rejectees in LTC actually end up going to a nursing home in the subsequent 5 years.
This suggests there is substantial unrealized risk amongst the rejectees.

5.2.4 Relation to Ideal Data

Before turning to the results, it is important to be clear about the extent to which the data
resembles the ideal dataset in each market setting. In general, I approximate the ideal dataset
quite well, aside from the necessity to classify a relatively large fraction of the sample to the
Uncertain rejection classification. In Disability and in Life, I classify a smaller fraction of the
sample as rejected or not rejected as compared with LTC. Also, for Disability and Life I rely on
a smaller set of underwriting guidelines (along with underwriter interviews) to obtain rejection
conditions, as opposed to LTC where I obtain a fairly large fraction of the underwriting guidelines
used in the market. In Disability and Life I also do not observe medical tests that may be used by
insurance companies to price insurance (although conversations with underwriters suggest this
is primarily to verify application information, which I approximate quite well using the HRS).
In contrast, in LTC I classify a relatively large fraction of the sample, I closely approximate
the set of public information, and I can assess the robustness of the results to the exclusion of
those who own insurance to remove the potential impact of a moral hazard channel driving any
findings of private information. While re-iterating that all three of the samples approximate the
ideal dataset quite well, the LTC sample is arguably the best of the three samples.

6 Lower Bound Estimation

I now turn to the estimation of the distribution of PZ and the lower bounds of the average
magnitude of private information, E [mZ (PZ) |X], outlined in Section 4.1.

43Since rejection conditions are generally absorbing states, this rules out the path through which insurance
contract choice could generate heterogeneity for the rejectees. For the non-rejectees, this removes the heterogeneity
induced by current contract choice; but it does not remove heterogeneity introduced from expected future purchase
of insurance contracts. But, for my purposes this remaining moral hazard impact only biases against finding more
private information amongst the rejectees.
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6.1 Specification

All of the empirical estimation is conducted separately for each of the settings and rejection
classifications within each setting. Here I provide an overview of the preferred specification,
which controls for the variables used by insurance companies to price insurance. I defer a
detailed discussion of all three control specifications to Appendix E.1.

I estimate the distribution of PZ = Pr {L|X,Z} using a probit specification

Pr {L|X,Z} = Φ (βX + Γ (age, Z))

where X are the control variables (i.e. the pricing controls listed in Table A1) and Γ (age, Z)

captures the relationship between L and Z, allowing it to depend on age. With this specification,
the null hypothesis of no private information, Pr {L|X,Z} = Pr {L|X}, is tested by restricting
Γ = 0.44 I choose a flexible functional form for Γ (age, Z) that uses full interactions of basis
functions in age and Z. For the basis in Z, I use second-order Chebyshev polynomials plus
separate indicators for focal point responses at Z = 0, 50, and 100. For the basis in age, I use
a linear specification.

With infinite data, one could estimate E [mZ (PZ) |X] at each value of X. However, the high-
dimensionality of X requires being able to aggregate across values of X. To do this, I assume
that conditional on ones’ age and rejection classification, the distribution of PZ − Pr {L|X}
does not vary with X. This allows the rich set of observables to flexibly affect the mean loss
probability, but allows for aggregation of the dispersion of the distribution across values of X.45

I then estimate the conditional expectation, mZ (p) = E [PZ |PZ ≥ p,X] − p using the
estimated distribution of PZ − Pr {L|X} within each age grouping and rejection classifica-
tion. After estimating mZ (p), I use the estimated distribution of PZ to construct its average,
E [mZ (PZ) |X ∈ Θ], where Θ is a given sample (e.g. LTC rejectees). I construct the difference
between the reject and no reject estimates,

∆Z = E
[
mZ (PZ) |X ∈ ΘReject

]
− E

[
mZ (PZ) |X ∈ ΘNoReject

]
and test whether I can reject a null hypothesis that ∆Z ≤ 0.

6.2 Statistical Inference

Statistical inference for E [mZ (PZ) |X ∈ Θ] for a given sample Θ and for ∆Z is straightforward,
but requires a bit of care to cover the possibility of no private information. In any finite sample,

44At various points in the estimation I require an estimate of Pr {L|X}, which I obtain with the same specifi-
cation as above, but restricting Γ = 0.

45Note also that I only impose this assumption within a setting/rejection classification – I do not require the
dispersion of the rejectees to equal that of the non-rejectees. Also, note that this assumption is only required
to arrive at a point estimate for E [mZ (PZ) |X ∈ Θ], and is not required to test for the presence of private
information (i.e. whether Γ = 0).
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estimates of E [mZ (PZ) |X ∈ Θ] will be positive (Z will always have some predictive power in
finite samples). Provided the true value of E [mZ (PZ) |X ∈ Θ] is positive, the bootstrap provides
consistent, asymptotically normal, standard errors for E [mZ (PZ) |X ∈ Θ] (Newey [1997]). But,
if the true value of E [mZ (PZ) |X ∈ Θ] is zero (as would occur if there were no private information
amongst those with X ∈ Θ), then the bootstrap distribution is not asymptotically normal and
does not provide adequate finite-sample inference.46 Therefore, I supplement the bootstrap
with a Wald test that restricts Γ (age, Z) = 0.47 The Wald test is the key statistical test for
the presence of private information, as it tests whether Z is predictive of L conditional on X. I
report results from both the Wald test and the bootstrap.

I conduct inference on ∆Z in a similar manner. To test the null hypothesis that ∆Z ≤ 0,
I construct conservative p-values by taking the maximum p-value from two tests: 1) a Wald
test of no private information held by the rejectees, E

[
mZ (PZ) |X ∈ ΘReject

]
= 0, and 2) the

p-value from the bootstrapped event of less private information held by the rejectees, ∆ ≤ 0.48

6.3 Results

I begin with graphical evidence of the predictive power of the subjective probability elicitations
in each sample. Figures 2(a,b,c) plot the estimated distribution of PZ − E [PZ |X] aggregated
by rejection classification for the rejectees and non-rejectees, using the preferred pricing control
specification.49

Across all three market settings, the distribution of PZ − Pr {L|X} appears more dispersed
for the rejectees relative to non-rejectees. In this sense, the subjective probability elicitations
contain more information about L for the rejectees than for the non-rejectees.

Table 3 presents the measurements of this dispersion using the average magnitude of private
information implied by Z. The first set of rows, labelled “Reject”, presents the estimates for the
rejectees in each setting and control specification. Across all settings and control specifications, I
find significant evidence of private information amongst the rejectees (p < 0.001); the subjective
probabilities are predictive of the realized loss, conditional on the set of insurance companies use
to price insurance and also are predictive conditional on the baseline controls (age and gender)
and the extended controls.

In addition, the estimates provide an economically significant lower bound on the average
magnitude of private information. For example, the estimate of 0.0358 for the LTC price controls
specification indicates that if a rejectee was drawn at random, one would expect the average

46In this case, Γ̂→ 0 in probability, so that estimates of the distribution of PZ − E [PZ |X] converge to zero in
probability (so that the bootstrap distribution converges to a point mass at zero).

47The event Γ (age, Z) = 0 in sample Θ is equivalent to both the event Pr {L|X,Z} = Pr {L|X} for all X ∈ Θ
and the event E [mZ (PZ) |X ∈ Θ] = 0.

48More precise p-values would be a weighted average of these two p-values, where the weight on the Wald test
is given by the unknown quantity Pr

{
E
[
mZ (PZ) |X ∈ ΘReject

]
= 0|∆ ≤ 0

}
. Since this weight is unknown, I use

these conservative p-values that are robust to any weight in [0, 1].
49Subtracting E [PZ |X] or equivalently, Pr {L|X}, allows for simple aggregation across X within each sample.
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probability of higher risks (with the same observables, X) to be at least 3.58pp higher, which is
16% higher than the mean loss probability of 22.5% for LTC rejectees.

The third set of rows in Table 3 provides the estimates of ∆Z . Again, across all specifications
and market settings, I estimate larger lower bounds on the average magnitude of private infor-
mation for the rejectees relative to those served by the market. These differences statistically
significant at the 1% level in LTC and life, and positive (but not significant at standard levels)
in disability.50

Not only do I find smaller amounts of private information for the non-rejectees, but I cannot
actually reject the null hypothesis of no private information amongst this group once one includes
the set of variables insurers use to price insurance, as indicated by the second set of rows in
Table 3.51 This provides a new explanation for why previous research has not found significant
amounts of adverse selection of insurance contracts in LTC (Finkelstein and McGarry [2006]) and
Life insurance (Cawley and Philipson [1999]). The practice of rejections by insurance companies
limits the extent to which private information manifests itself in adverse selection of contracts.

6.4 Age 80 in LTC insurance

LTC insurers reject applicants above age 80 regardless of health status. This provides an op-
portunity for a finer test of the theory by exploring whether those without rejection health
conditions start to obtain private information at age 80. To do so, I construct a series of esti-
mates of E [mZ (PZ)] by age for the set of people who do not have a rejection health condition
and thus would only be rejected if their age exceeded 80.52

Figure 3 plots the results for those without health conditions (hollow circles), along with a
comparison set of results for those with rejection health conditions (filled circles).53 The figure

50The estimated magnitudes for the uncertain classification generally fall between the estimates for the rejection
and no rejection groups, as indicated by the bottom set of rows in Table 3. In general, the theory does not have
a prediction for the uncertain group. However, if E [mZ (PZ) |X] takes on similar values for all rejectees (e.g.
E [mZ (PZ) |X] ≈ mR) and non-rejectees (e.g. E [mZ (PZ) |X] ≈ mNR), then linearity of the expectation implies

E
[
mZ (PZ) |X ∈ ΘUncertain

]
= λmR + (1− λ)mNR (7)

where λ is the fraction in the uncertain group who would be rejected. Thus, it is perhaps not unreasonable to have
expected E

[
mZ (PZ) |X ∈ ΘUncertain] to lie in between the estimates for the rejectees and non-rejectees, as I find.

Nevertheless, there is no theoretical reason to suppose the average magnitude of private information is constant
within rejection classification; thus this should be viewed only as a potential rationalization of the results, not as
a robust prediction of the theory.

51Of course, the difference between the age and gender specification and the price controls specification is not
statistically significant. Also, the inability to reject a null of no private information is potentially driven by the
small sample size in the Disability setting; but the LTC sample of non-rejectees is quite large (>9K) and the
sample of non-rejectees in Life is larger than the sample of rejectees.

52To ensure no information from those with rejection health conditions is used in the construction of E [mZ (PZ)]
for those without health conditions above age 80, I split the Reject sample into two groups: those who do not have
a rejection health condition (and thus would only be rejected because their age is above 80) and those who do
have a rejection condition. I estimate PZ separately on these two samples using the pricing specification outlined
in Section 6.1.

53The graph presents bootstrapped 95% confidence intervals adjusted for bias using the non-accelerated proce-
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suggests that the subjective probability elicitations of those without rejection health conditions
become predictive of L right around age 80 – exactly the age at which insurers choose to to start
rejecting applicants based on age, regardless of health status. Indeed, from the perspective of
E [mZ (PZ)], a healthy 81 year old looks a lot like a 70 year old who had a stroke. This is again
consistent with the theory that private information limits the existence of insurance markets.

6.5 Robustness

Moral Hazard As discussed in Section 5.2.3, one alternative hypothesis is that the private
information I estimate is the result of moral hazard from insurance contract choice, not an
underlying heterogeneity in loss probabilities. To assess whether this is driving any of the
results, I re-estimate the average magnitude of private information implied by Z on samples in
LTC and Life that exclude those who currently own insurance. For LTC, I exclude those who
own private LTC insurance along with those who are currently enrolled in Medicaid, since it pays
for nursing home stays. As shown in Table 2, this excludes 20.6% of the sample of rejectees and
19.5% of non-rejectees. For Life, I exclude those with any life insurance policy. Unfortunately,
this excludes 63% of the rejectees and 65% of the non-rejectees; thus the remaining sample is
quite small.

Table 4 presents the results. For LTC, I continue to find significant amounts of private
information for the rejectees (p < 0.001), that is significantly more than for the non-rejectees
(∆Z = 0.0313, p < 0.001), and cannot reject the null hypothesis of no private information for

dure suggested in Efron and Gong [1983]. These are appropriate confidence intervals as long as the true magnitude
of private information is positive; In the aggregate sample of rejectees, I reject the null hypothesis of no private
information (see Table 3). However, for any particular age, I am unable to reject a null hypothesis of no private
information using the Wald test.
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the non-rejectees (p = 0.8325). For Life, I estimate marginally significant amounts of private
information for the rejectees (p = 0.0523) of a magnitude similar to what is estimated on the
full sample (0.0491 versus 0.0587). I estimate more private information for the rejectees relative
to the non-rejectees, however the difference is no longer statistically significant (∆Z = 0.011,
p = 0.301), which is arguably a result of the reduced sample size. I also continue to be unable
to reject the null hypothesis of no private information for the non-rejectees (p = 0.2334). In
short, the results suggest moral hazard is not driving my findings of private information for the
rejectees and more private information for the rejectees relative to the non-rejectees.

Additional Robustness Checks Appendix D.2 contains a couple of additional robustness
checks. I present the age based plots, similar to Figure 3, for the Disability and Life settings and
show that I generally find larger amounts of private information across all age groups for the
rejectees in each setting. I also present an additional specification in life insurance that includes
additional cancer controls, discussed in Appendix C.1, that are available for a smaller sample of
the HRS data; I show that the estimates are similar when introducing these additional controls.

6.6 Summary

In all three market settings, I estimate a significant amount of private information held by the
rejectees that is robust to a wide set of controls for public information. I find more private infor-
mation held by the rejectees relative to the non-rejectees; and I cannot reject a null hypothesis of
no private information held by those actually served by the market. Moreover, a de-aggregated
analysis of the practice of LTC insurers rejecting all applicants above age 80 (regardless of
health) reveals that healthy individuals begin to have private information right around age 80 –
precisely the age chosen by insurers to stop selling insurance. In sum, the results are consistent
with the theory that private information leads to insurance rejections.

7 Estimation of Distribution of Private Information

While the lower bound results, and in particular the stark pattern of the presence of private in-
formation, provides support for the theory that private information would afflict a hypothetical
insurance market for the rejectees, it does not establish whether the amount of private infor-
mation is sufficient to explain why insurers don’t sell policies to the rejectees. This requires an
estimate of the minimum pooled price ratio, and hence an estimate of the distribution of private
information, F (p|X). To do so, I follow the second approach, outlined in Section 4.2: I impose
additional structure on the relationship between elicitations, Z, and true beliefs, P , that allows
for a flexible estimation of F (p|X).
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7.1 Empirical Specification

7.1.1 Elicitation Error Model

Elicitations Z may differ from true beliefs P in many ways. They may be systematically biased,
with values either higher or lower than true beliefs. They may be noisy, so that two individuals
with the same beliefs may have different elicitations. Moreover, as shown in Figures 1(a,b,c)
and recognized in previous literature (e.g. Gan et al. [2005]), people may have a tendency to
report focal point values at 0, 50, and 100%. My model of elicitations will capture all three of
these forms of elicitation error.

To illustrate the model, first define the random variable Z̃ by

Z̃ = P + ε

where ε ∼ N
(
α, σ2

)
. The variable Z̃ is a noisy measure of beliefs with bias α and noise variance

σ2 where the error follows a normal distribution. I assume there are two types of responses:
focal point responses and non-focal point responses. With probability 1 − λ, an agent gives a
non-focal point response, Znf ,

Znf =


Z̃ if Z̃ ∈ [0, 1]

0 if Z̃ < 0

1 if Z̃ > 1

which is Z̃ censored to the interval [0, 1]. These responses are continuously distributed over [0, 1]

with some mass at 0 and 1.
The second type of responses are focal point responses. With probability λ an agent reports

Zf given by:

Zf =


0 if Z̃ ≤ κ

0.5 if Z̃ ∈ (κ, 1− κ)

1 if Z̃ ≥ 1− κ

where κ ∈ [0, .5) captures the focal point window. With this structure, focal point responses
have the same underlying structure as non-focal point responses, but are reported on a scale of
low, medium, and high as opposed to a continuous scale on [0, 1].54 As a result, non-focal point
responses will contain more information about P than will focal point responses. Therefore,
most of the identification for the distribution of P will come from those reporting non-focal
point values.

Given this model, I have four elicitation parameters to be estimated: {α, σ, κ, λ}, which will
54Note that I do assume the act of providing a focal point response is not informative of P (λ is not allowed

to be a function of P ). Ideally, one would allow focal point respondents to have differing beliefs from non-focal
point respondents; yet the focal point bias inherently limits the extent of information that can be extracted from
their responses.
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be estimated separately in each market setting and classification. This allows for the potential
that rejectees have a different elicitation error process than non-rejectees.

7.1.2 Flexible Approximation for the Distribution of Private Information

With infinite data, one could flexibly estimate f (p|X) separately for every possible value of
X and p. Faced with finite data and a high dimensional X, this is not possible. Since the
minimum pooled price ratio is essentially a function of the shape of the distribution of f (p|X)

across values of p, I choose a specification that allows for considerable flexibility across p. In
particular, I assume f (p|X) is well-approximated by a mixture of beta distributions,

f (p|X) =
∑
i

wiBeta (p|ai + Pr {L|X} , ψi) (8)

where Beta (p|µ, ψ) is the p.d.f. of the beta distribution with mean µ and shape parameter ψ.55

With this specification, {wi} governs the weights on each beta distribution, {ai} governs the
non-centrality of each beta distribution, and ψi governs the dispersion of each beta distribution.
The flexibility of the beta distributions ensures that I impose no restrictions on the size of
the minimum pooled price ratio.56 For the main specification, I include 3 beta distributions.57

Additional details of the specification are provided in Appendix E.1.

7.1.3 Pooled Price Ratio (and its Minimum)

With an estimate of f (p|X) the pooled price ratio is easily constructed as T (p) = E[P |X]
1−E[P |X]

1−p
p

for each p, where E [P |P ≥ p,X] is computed using the estimated f (p|X). Throughout, I focus
on estimates evaluated for a mean loss characteristic, Pr {L|X}. In principle, one could analyze
the pooled price ratio across all values of X; but given the specification, focusing on differing
values of X or Pr {L|X} does not yield an independent test of the theory. In Appendix E.2, I

55The p.d.f. of a beta distribution with parameters α and β is given by

beta (x;α, β) =
1

B(α, β)
xα−1xβ−1

where B (α, β) is the beta function. The mean of a beta distribution with parameters α and β is given by µ = α
α+β

and the shape parameter is given by ψ = α+ β.
56In principle, the event of no private information is captured with ψ1 → ∞, a1 = 0, and w1 = 1. For

computational reasons, I need to impose a cap on ψi in the estimation. In the initial estimation, this cap binds for
the central most beta distribution in both the LTC No Reject and Disability No Reject samples. Intuitively, the
model wants to estimate a large fraction of very homogenous individuals around the mean. Therefore, for these two
samples, I also include a point-mass distribution with weight w0 in addition to the three beta distributions. This
allows me to capture a large concentration of mass in a way that does not require integrating over a distribution
f (p|X) with very high curvature. Appendix E.1 provides further details.

57While equation 8 allows for a very flexible shape of f (p|X) across p; it is fairly restrictive in how this shape
varies across values of X. Indeed, I do not allow the distribution parameters to vary with X. This is a practical
necessity due to the size of my samples and the desire to allow for a very flexible shape for f (p|X). Moreover, it
is important to stress that I will still separately estimate f (p|X) for the rejectees and the non-rejectees using the
separate samples.
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show the results are generally robust to focusing on values of Pr {L|X} at the 20, 50, and 80th
percentiles of its distribution.

As described in Section 4.2, I estimate the analogue to the minimum pooled price ratio,
infp∈Ψ̂τ

T (p), for the restricted domain Ψ̂τ =
[
0, F−1 (τ)

]
. My preferred choice for τ is 0.8,

as this ensures at least 20% of the sample (conditional on q) is used to estimate E [P |P ≥ p]
and produces estimates that are quite robust to changes in the number of approximating beta
distributions. For robustness, I also present results for τ = 0.7 and τ = 0.9 along with plots of
the pooled price ratio for all p below the estimated 90th quantile, F−1 (0.9).

7.1.4 Identification

Before turning to the results, it is important to understand the sources of identification for the
model. As discussed above, much of the model is identified from the non-focal point responses.
If the elicitation error parameters were known, then identification of the distribution of P is a
deconvolution of the distribution of Znf ; thus, the empirical distribution of non-focal elicitations
provides a strong source of identification for the distribution of P conditional on having identified
the elicitation error parameters.58

To identify the elicitation error parameters, the model relies on the relationship between Znf

and L. To see this, note that Assumptions 1 and 2 imply

E
[
Znf − P

]
= E

[
Znf

]
− E [L]

so that the mean elicitation bias is the difference between the mean elicitation and the mean
loss probability. This provides a strong source of identification for α.59 In practice, the model
calculates α jointly with the distribution of P to adjust for the fact that the non-focal elicitations
are not censored over [0, 1].

To identify σ, note that Assumptions 1 and 2 imply

var
(
Znf

)
− cov

(
Znf , L

)
= var

(
Znf − P

)
+ cov

(
Znf − P, P

)
(9)

where var
(
Znf − P

)
is the variance of the non-focal elicitation error and cov

(
Znf − P, P

)
is

correction term that accounts for the fact that I allow non-focal elicitations are censored on
[0, 1].60 The quantity var

(
Znf

)
− cov

(
Znf , L

)
is the variation in Z that is not explained by L.

58If Znf were not censored on [0, 1], then P would be non-parametrically identified from the observation of the
distribution of Znf = Z̃ (this follows from the completeness of the exponential family of distributions). However,
since I have modeled the elicitations as being censored at 0 and 1, some distributions of P , especially those leading
to a lot of censored values, may not be non-parametrically identified solely from the distribution of Znf and may
also rely on moments of the joint distribution of Znf and L for identification.

59Indeed, if Znf were not censored on [0, 1] this quantity would equal α.
60To see this, note that

var
(
Znf

)
= var

(
Znf − P

)
+ var (P ) + 2cov

(
Znf − P, P

)
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Since the primary impact of changing σ is to change the elicitation error variance of Znf − P ,
the value of var

(
Znf

)
− cov

(
Znf , L

)
provides a strong source of identification for σ.61 Finally,

the fraction of focal point respondents, λ, and the focal point window, κ, are identified from the
distribution of focal points and the loss probability at each focal point.

7.1.5 Statistical Inference

Bootstrap delivers appropriate confidence intervals for the estimates of infp∈[0,F−1(τ)] T (p) and
the values of fP (p|X) and FP (p|X) as long as the estimated parameters are in the interior of
their potential support. This assumption is violated in the potentially relevant case in which
there is no private information. In this case, ψ1 → ∞, w1 = 1, and a1 = 0. As with the lower
bound approach, the problem is that in finite samples one may estimate a nontrivial distribution
of P even if the true P is only a point mass. Because the parameters are at a boundary, one
cannot use bootstrapped estimates to rule out the hypothesis of no private information.

To account for the potential that individuals have no private information, I again use the
Wald test from the lower bound approach (see Table 3) that tests whether Pr {L|X,Z} =

Pr {L|X} for all X in the sample (by restricting Γ = 0).62 I construct 5/95% confidence
intervals for infp∈Ψ̂τ

T (p) by combining bootstrapped confidence intervals and extending the 5%
boundary to 1 in the event that I cannot reject a null hypothesis of no private information at
the 5% level. Given the results in Table 3, this amounts to extending the 5/95% CI to include
1 for the non-rejectees in each of the three settings.

I will also present graphs of the estimated p.d.f., fP (p|X), c.d.f., FP (p|X), and pooled price
ratio, T (p), evaluated at the mean characteristic, Pr {L|X} = Pr {L}, in each sample. For these,
I present the 95% confidence intervals and do not attempt to incorporate information from the
Wald test. The reader should keep in mind that one cannot reject F (p|X) = 1 {p ≤ Pr {L|X}}
at the 5% level for the non-rejectees in any of the three settings.63Also, for the estimated

and
cov

(
Znf , L

)
= cov

(
Znf − P, P

)
+ cov (P,L) = cov

(
Znf − P, P

)
+ var (P )

where the latter equality follows from Pr {L|P} = P . Subtracting these equations yields equation 9.
61More generally, Assumptions 1 and 2 impose an infinite set of moment conditions that can be used to identify

the elicitation parameters:
E
[
PN |L = 1

]
Pr {L} = E

[
PN+1

]
It is easy to verify that N = 0 provides the source of identification for α mentioned above and N = 1 provides
the source of identification for σ. This expression suggests one could in principle allow for a richer specification
of the elicitation error; I leave the interesting but difficult question of the nonparametric identification conditions
on the elicitation error for future work.

62This test also has the advantage that mis-specification of fZ|P will not affect the test for private information.
But in principle, one could use the structural assumptions made on fZ|P to generate a more powerful test for
the presence of private information. Such a test faces technical hurdles since it involves testing whether F (p|q)
lies along a boundary of the set of possible distributions and must account for sample clustering (which makes a
likelihood ratio test inappropriate). Andrews [2001] provides a potential method for constructing an appropriate
test; but this is left for future work.

63Estimates of the p.d.f., c.d.f., and minimum pooled price ratio exhibited considerable bias in the bootstrap
estimation, especially among the life and disability settings since they have smaller samples. To be conservative, I
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confidence intervals of FP (p|X), I impose monotonicity in a conservative fashion by defining
F 5
P (p|X) = minp̂≤pF̂

5
P (p|X) and F 95

P (p|X) = maxp̂≥pF̂
95
P (p|X) where F̂ 5

P (p|X) and F̂ 95
P (p|X)

are the estimated point-wise 5/95% confidence thresholds from the bootstrap.

7.2 Estimation Results

Qualitatively, no trade is more likely for distributions with a thick upper tail of high risks,
the presence of which inhibit the provision of insurance to lower risks by raising the value of
E [P |P ≥ p]. In each market setting, I find evidence consistent with this prediction. Figure 4
presents the estimated p.d.f. fP (p|X) and c.d.f. FP (p|X) for each market setting, plotted for
a mean characteristic within each sample using the price controls, X.64The solid line presents
estimates for the rejectees; the dotted line for non-rejectees. Across all three settings, there is
qualitative evidence of a thick upper tail of risks as p→ 1 for the rejectees. In contrast, for the
non-rejectees, there is less evidence of such an upper tail.

Figure 4 translates these estimates into their implied pooled price ratio, T (p), for p ≤
F−1 (0.8), and Table 5 presents the estimated minimums over this same region, infp∈[0,F−1(0.8)] T (p).
Across all three market settings, I estimate a sizable minimum pooled price ratio for the rejectees:
1.82 in LTC (5/95% CI [1.657, 2.047]), 1.66 in Disability (5/95% CI [1.524, 1.824]), and 1.42
in Life (5/95% CI [1.076,1.780]). In contrast, in all three market settings I estimate smaller
minimum pooled price ratios for the non-rejectees. Moreover, consistent with the prediction of
Corollary 3, the estimated differences between rejectees and non-rejectees are large and signifi-
cant in both LTC and Disability (roughly 59%); for Life the difference is positive (8%) but not
statistically different from zero.

The estimates suggests that an insurance market cannot exist for the rejectees unless they
are willing to pay a 82% implicit tax in LTC, a 66% implicit tax in Disability and a 42% implicit
tax in Life. These implicit taxes are large enough relative to the magnitudes of willingness to pay
found in existing literature and those implied by simple models of insurance. For LTC, there is no
exact estimate corresponding to the willingness to pay for a marginal amount of LTC insurance,
but Brown and Finkelstein [2008] suggests most 65 year olds are not willing to pay more than a
60% markup for existing LTC insurance policies.65 For disability, Bound et al. [2004] calibrates

present confidence intervals that are the union of bias-corrected confidence intervals (Efron and Gong [1983]) and
the more traditional studentized-t confidence intervals. In practice, the studentized-t confidence intervals tended
to be wider than the bias-corrected confidence intervals for the disability and life estimates. However, the use of
either of these methods does not affect the statistical conclusions.

64This involves setting Pr {L|X} = Pr {L} in equation (8) within each sample (e.g. Pr {L} = 0.052 for the LTC
No Reject sample - the other means are reported in Table 2). Appendix E.2 shows the general conclusions are
robust to focusing on other values of Pr {L|X} in each sample; I focus on the mean since it is the most in-sample
estimate.

65More specifically, the results of Brown and Finkelstein [2008] imply that an individual at the 60-70th percentile
of the wealth distribution is willing to pay roughly a 27-62% markup for existing LTC insurance policies This
is not reported directly, but can be inferred from Figure 1 and Table 2. Figure 2 suggests the break-even point
for insurance purchase is at the 60-70th percentile of the wealth distribution. Table 2 shows this corresponds to
individuals being willing to pay a tax of 27-62%. Their model would suggest that those above the 80th percentile
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Figure 4: Distribution of Private Information
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the marginal willingness to pay for an additional unit of disability insurance to be roughly 46-
109%. This estimate is arguably an over-estimate of the willingness to pay for insurance because
the model calibrates the insurance value using income variation, not consumption variation,
which is known to be less variable than income. Nonetheless, the magnitudes are of a similar
level to the implicit tax of 66% for the disability rejectees.66 Finally, if a loss incurs a 10% drop in
consumption and individuals have CRRA preferences with coefficient of 3, then u′(w−l)

u′(w) = 1.372,
so that individuals would be willing to pay a 37.2% markup for insurance, a magnitude that
roughly rationalizes the pattern of trade in all three market settings.67 In short, the size of the
estimated implicit taxes suggest the barrier to trade imposed by private information is large
enough to explain a complete absence of trade for the rejectees.

Robustness to choice of τ The results in Table 5 focus on the results for τ = 80%. Table 6
assesses the robustness of the findings to the choice of τ by also presenting results for τ = 0.7 and
τ = 0.9. In general, the results are quite similar. For LTC and Disability, both the minimums
for the rejectees and non-rejectees are obtained at an interior point of the distribution, so that
the estimated minimum is unaffected by the choice of τ in the region [0.7, 0.9]. For Life, the
minimums are obtained at the endpoints, so that changes in τ do affect the estimated minimum.
At τ =0.7, the minimum pooled price ratio rises to 1.488 for the rejectees and 1.423 for the
non-rejectees; at τ = 0.9 the minimum pooled price ratio drops to 1.369 for the rejectees and
1.280 for the non-rejectees. In general, the results are similar across values of τ .

Additional Robustness Checks The results in Tables 5 and 6 evaluate the minimum pooled
price ratio for a characteristic, X, corresponding to a mean loss probability within each sample,
Pr {L|X} = Pr {L}. In Appendix E.2, I show that the estimates are quite similar if, instead of
evaluating at the mean, one chooses X such that Pr {L|X} lies at the 20th, 50th or 80th quantile
of its within sample distribution.68 The minimum pooled price ratio for rejectees ranges from
1.77 to 2.09 in LTC, 1.659 to 1.741 in Disability, and 1.416 to 1.609 in Life. For the non-rejectees
I estimate significantly smaller magnitudes in LTC and Disability and the estimated differences
between rejectees and non-rejectees for Life remain statistically indistinct from zero.

of the wealth distribution are willing to pay a substantially higher implicit tax; however Lockwood [2012] shows
that incorporating bequest motives significantly reduces the demand for LTC insurance in the upper income
distribution.

66See column 6 of Table 2 in Bound et al. [2004]. The range results from differing samples. The lowest estimate
is 46% for workers with no high school diploma and 109% for workers with a college degree. The sample age range
of 45-61 is roughly similar to the age range used in my analysis.

67To the best of my knowledge, there does not exist a well-estimated measure of the marginal willingness to
pay for an additional unit of life insurance.

68Because of the choice of functional form for fP (p|X), these should not be considered separate statistical tests
of the theory. The functional form is restrictive in the extent to which the shape of the distribution can vary
across values of X within a rejection classification. But, nonetheless it is important to ensure that the results do
not change simply by focusing on different levels of the index, Pr {L|X}.
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Figure 5: Pooled Price Ratio
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8 Discussion

The results shed new light on many existing patterns found in existing literature and pose new
questions for future work.

8.1 Annuities

There are no rejections in annuity markets. Indeed, annuity companies generally post the same
prices to all applicants based solely on their age and gender. At first glance, it may seem odd
that I find evidence of private information about mortality that, I argue, leads to rejections in
life insurance. But annuities, which provide a fixed income stream regardless of one’s length of
life, insure the same (yet opposing) risk of living too long.

However, the pattern of private information found in this paper can explain not only why
applicants for annuities are not rejected, but also why previous literature has found adverse
selection in annuity markets (Finkelstein and Poterba [2002, 2004]) but not life insurance markets
(Cawley and Philipson [1999]). My results suggests that although some people, namely those
with health conditions, know that they have a relatively higher than average mortality risk, few
people know that they have an exceptionally lower than average mortality risk. There’s only one
way to be healthy but many (unobservable) ways to be sick. Thus, annuity companies can sell
to an average person without any major health conditions without the risk of it being adversely
selected by an even healthier subset of the population. Annuities may be adversely selected,
as the sick choose not to buy them, but by reversing the direction of the incentive constraints,
rejections no longer occur.69

8.2 Welfare

My results suggest that the practice of rejections by insurers is constrained efficient. Insurance
cannot be provided without relaxing one of the three implementability constraints. Either
insurers must lose money or be subsidized (relax the resource constraint), individuals must be
convinced to be irrational (relax the incentive constraint), or agents’ outside option must be
adjusted via mandates or taxation (relax the participation constraint). However, policymakers
must ask whether they like the constraints. Indeed, the first-best utilitarian allocation is full
insurance for all, c = W −E [p]L, which could be obtained through subsidies or mandates that
use government conscription to relax the participation constraints.

However, literal welfare conclusions based on the stylized model in this paper should be highly
qualified. The model abstracts from many realistic features such as preference heterogeneity,
moral hazard, and the dynamic aspect of insurance purchase. Indeed, the latter may be quite
important for understanding welfare. Although my analysis asks why the insurance market

69Moreover, the presence of private information amongst those with health conditions may explain why annuity
companies are generally reluctant to offer discounts to those with health conditions.
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shuts down, I do not address why those who face rejection did not purchase a policy before they
obtained the rejection condition. Perhaps they don’t value insurance (in which case mandates
may lower welfare) or perhaps they face credit constraints (in which case mandates may be
beneficial). Unpacking the decision of when to purchase insurance in the presence of potential
future rejection is an interesting direction for future work.

8.3 Group Insurance Markets

Although this paper focuses on non-group insurance markets, much insurance is sold in group
markets, often through one’s firm. For example, more than 30% of non-government US work-
ers have group-based disability insurance; whereas just 3% of workers a non-group disability
policy([ACLI 2010]). Similarly, in health insurance 49% of the US population has an employer-
based policy, whereas only 5% have a non-group policy.70

While it is commonplace to assume that the tax advantage status for employer-sponsored
health insurance causes more insurance to be sold in group versus non-group health insurance
markets, tax advantages cannot explain the same pattern in disability insurance. Disability
benefits are always taxed regardless of whether the policy is sold in the group or non-group
market.71 This suggests group markets may be more prevalent because of their ability to deal
with informational asymmetries. Indeed, group markets can potentially relax participation
constraints by subsidizing insurance purchase for its members. Identifying and quantifying this
mechanism is an important direction for future work, especially for understanding the impact of
government policies that attempt to promote either the individual or the group-based insurance
market.

8.4 Private Information versus Adverse Selection

There is a recent and growing literature seeking to identify the impact of private information on
the workings of insurance markets. Generally, this literature has searched for adverse selection,
asking whether those with more insurance have higher claims. Yet my theoretical and empirical
results suggest this approach is unable to identify private information precisely in cases where
its impact is most severe: where the insurance market completely shuts down. This provides a
new explanation for why previous literature has found mixed evidence of adverse selection and,
in cases where adverse selection is found, estimated small welfare impacts (Cohen and Siegelman
[2010], Einav et al. [2010a]).

Existing explanations for the oft-absence of adverse selection focus on preference heterogene-
ity (see Finkelstein and McGarry [2006] in LTC, Fang et al. [2008] in Medigap, and Cutler et al.
[2008] for a broader focus across five markets). At a high level, these papers suggest that in some

70Figures according to Kaiser Health Facts, www.statehealthfacts.org.
71If premiums are paid with after-tax income, then benefits are not taxed. If premiums are paid with pre-tax

income (as is often the case with an employer plan), then benefits are taxed.
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contexts the higher risk (e.g. the sick) may have a lower preference for insurance. Unfortunately,
this paper cannot directly shed more light on whether those with different beliefs have differ-
ent utility functions, u. Indeed, I do not estimate demand and instead assume u is constant
throughout the population. But future work could merge my empirical approach to identify
beliefs with traditional revealed preference approaches to identify demand, thereby identifying
the distribution of preferences for insurance conditional on beliefs and further exploring the role
of preference heterogeneity in insurance markets.

But it is important to note that my results raise concerns about the empirical conclusion that
the sick have lower demand for insurance; such studies generally have not considered the potential
that the supply of insurance to the sick, especially those with observable health conditions, is
limited through rejections.72 It may not be that the sick don’t want insurance, but rather that
the insurers don’t want the sick.

9 Conclusion

This paper argues private information leads insurance companies to reject applicants with cer-
tain observable, often high-risk, characteristics. In short, my findings suggest that if insurance
companies were to offer any contract or set of contracts to those currently rejected, they would
be too adversely selected to yield a positive profit. More generally, the results suggest that the
most salient impact of private information may not be the adverse selection of existing contracts,
but rather the existence of the market itself.
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Primary 
Sample

Excluding 
Insured

Primary 
Sample

Excluding 
Insured

Reject 0.0358*** 0.0351*** 0.0587*** 0.0491*
s.e.1 (0.0037) (0.0041) (0.0083) (0.0115)
p-value2 0.0000 0.0000 0.0000 0.0523

No Reject 0.0049 0.0038 0.0249 0.0377
s.e.1 (0.0018) (0.0019) (0.007) (0.0107)
p-value2 0.3356 0.8325 0.1187 0.2334

Difference: ∆Z 0.0309*** 0.0313*** 0.0338*** 0.011
s.e.1 (0.0041) (0.0046) (0.0107) (0.0157)
p-value3 0.000 0.000 0.000 0.301

Uncertain 0.0086*** 0.0064 0.0294*** 0.0269
s.e.1 (0.0025) (0.0024) (0.0054) (0.0078)
p-value2 0.0014 0.1130 0.0001 0.1560

3p-value is the maximum of the p-value for the rejection group having no private information (Wald test) and the p-value 
for the hypothesis that the difference is less than or equal to zero, where the latter is computed using bootstrap

Table 4: Robustness to Moral Hazard: No Insurance Sample

LTC, Price Controls

1Bootstrapped standard errors computed using block re-sampling at the household level (results shown for N=1000 
repetitions)

2p-value for the Wald test which restricts coefficients on subjective probabilities equal to zero

*** p<0.01, ** p<0.05, * p<0.10

Life, Price Controls



Reject 1.827 1.661 1.428
5%1 1.657 1.524 1.076
95% 2.047 1.824 1.780

No Reject 1.163 1.069 1.350
5%1 1.000 1.000 1.000
95% 1.361 1.840 1.702

Difference 0.664 0.592 0.077
5%2 0.428 0.177 -0.329
95% 0.901 1.008 0.535

25/95% CI computed using bootstrap block re-sampling at the household 
level (N=1000 Reps); 5% level extended to include 1.00 if p-value of F-test 
for presence of private information for the rejectees is less than .05; 
Bootstrap CI is the union of the percentile-t bootstrap and bias corrected (non-
accelerated) percentile invervals from Efron and Gong (1983).

Note: Minimum Pooled Price Ratio evaluated for X s.t. Pr{L|X} = Pr{L} in each 
sample

Table 5: Minimum Pooled Price Ratio

LTC Disability Life

15/95% CI computed using bootstrap block re-sampling at the household 
level (N=1000 Reps); 5% level extended to include 1.00 if p-value of F-test 
for presence of private information is less than .05; Bootstrap CI is the union 
of the percentile-t bootstrap and bias corrected (non-accelerated) percentile 
invervals from Efron and Gong (1983).
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