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1. Introduction

The world is replete with spatial frictions. Trade frictions for shipping goods across cities

induce consumers and firms to spatially concentrate to take advantage of large local mar-

kets. Yet, such a concentration generates urban frictions within cities – people spend a lot

of time commuting and pay high land rents. Economists have studied this fundamental

trade-off between agglomeration and dispersion forces for decades, analyzing how firms

and workers choose their locations depending on the magnitudes of – and changes in –

spatial frictions (Fujita et al., 1999; Fujita and Thisse, 2002). However, little is known about

the quantitative importance of urban and trade frictions in shaping the spatial economy.

To what extent do spatial frictions matter for the city-size distribution? By how much do

they affect individual city sizes? To what degree do they contribute to the productivity

advantage of large cities and the toughness of competition in cities?

Answering these questions is difficult for at least two reasons. First, one needs a spatial

model with costly trade and commuting, featuring endogenous location decisions. To

investigate the productivity advantage of large cities and the toughness of competition in

cities, productivity and markups also need to be endogenous and responsive to changes

in spatial frictions. Second, to perform counterfactual analysis aimed at quantifying the

importance of those frictions, one must keep track of all general equilibrium interactions

when taking the model structurally to the data. To the best of our knowledge, there exist

to date no spatial models dealing jointly with these difficulties.

Our aim in this paper is to develop and quantify a novel multi-city general equilibrium

model that can fill this gap. Most closely related to our framework is the model by Desmet

and Rossi-Hansberg (2013). These authors develop a system-of-cities model with perfect

competition to quantify the contribution of efficiency, amenities, and local distortions to

the observed size distribution of cities. They do, however, assume that trade between

cities is costless, and their perfectly competitive setup does not allow them to investigate

endogenous productivity and markup responses due to changes in spatial frictions.

In our model, city sizes, their distribution, productivity, and markups are all en-

dogenously determined and react to changes in urban and trade frictions. Given the

population distribution, changes in spatial frictions affect productivity and markups, as

well as wages, in cities. These changes, in turn, generate utility differences across cities,

thereby affecting individual location decisions. In a nutshell, shocks to spatial frictions

affect productivity and competition, as emphasized in the recent trade literature, and

trigger population movements, as highlighted in urban economics and the ‘new economic
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geography’ (neg). We quantify our framework using data for 356 US metropolitan

statistical areas (msas) in 2007. The model performs well in replicating several empirical

facts that are not used in the quantification stage, both at the msa and firm levels. The

model can also be extended to encompass external agglomeration economies, which is

important as Combes et al. (2012) argue that the productivity advantage of large cities is

largely due to such externalities. The key qualitative and quantitative properties of our

model are robust to that and a number of other extensions, however.

We conduct two counterfactual experiments. First, we consider a scenario where

commuting within cities is costless. Second, we analyze a scenario where consumers

face the same trade costs for local and non-local products. In both cases, we compare the

actual and the counterfactual equilibria to assess the quantitative importance of spatial

frictions for the city-size distribution, individual city sizes, as well as productivity and

markups in cities. Those counterfactuals are meaningful as they provide bounds that

suggest to what extent the US economic geography is affected by urban and trade costs.

What are our main quantitative findings? First, neither type of frictions significantly

affects the US city-size distribution. Even in a world where urban or trade frictions are

eliminated for all cities, that distribution would still follow the rank-size rule also known

as Zipf’s law. Second, eliminating spatial frictions would change individual city sizes

within the stable distribution. Without urban frictions, large congested cities would gain,

while small isolated cities would lose population. For example, the size of New York

would increase by 8.5%, i.e., its size is limited by 8.5% by the presence of urban frictions.

By contrast, in a world without trade frictions, large cities would shrink compared to

small cities as local market access no longer matters. For example, the size of New

York would decrease by 10.8%, i.e., its size is boosted by 10.8% by the presence of trade

frictions. Turning to productivity and competition, eliminating trade frictions would

lead to aggregate productivity gains of 68% and markup reductions of 40%, both of

which are highly unevenly distributed across msas. Eliminating urban frictions generates

smaller productivity gains up to 1.4%. Still it leads to a notable markup reduction of

about 10% in the aggregate, but again with a lot of variation across msas. Summing

up, our counterfactual analysis suggests that spatial frictions do not matter for the city-

size distribution, they do matter for individual city sizes, and they matter differently for

productivity and competition across cities.

Our analysis contributes to both the recent empirical neg and urban economics lit-

eratures. Although these literatures have made some important progress recently (e.g.,
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Redding and Sturm, 2008; Combes and Lafourcade, 2011), it is fair to say that spatial

models have so far been confronted with data mostly in a reduced-form manner. Two

notable exceptions are Desmet and Rossi-Hansberg (2013) and Ahlfeldt et al. (2012),

although the latter deal only with a single city. Our framework is also related to the

structural international trade literature that, since Eaton and Kortum (2002), has been

flourishing (see, among others, Holmes and Stevens, 2010; Eaton et al., 2011; Corcos et al.,

2012; Behrens et al., 2012). Yet, those models abstract from population movements across

locations. Our contribution brings those various strands of literature closer together and

provides the first structural estimation of an urban system model with costly trade across

cities and costly commuting within cities.

The rest of the paper is organized as follows. In Section 2 we describe the basic setup

of our model, and then analyze the equilibrium in Section 3. Section 4 describes our

quantification procedure and discusses the model fit. We then turn to our counterfactual

experiments in Section 5. Section 6 provides some extensions and discusses the robustness

of our main results. Section 7 concludes. Several proofs and details about our model and

quantification procedure are relegated to a supplementary online appendix.

2. The model

We consider an economy that consists of K cities, with Lr identical workers/consumers

in city r = 1,...,K. Labor is the only factor of production.

2.1 Preferences and demands

There is a final consumption good, provided as a continuum of horizontally differentiated

varieties. Consumers have identical preferences that display ‘love of variety’ and give rise

to demands with variable elasticity. Let psr(i) and qsr(i) denote the price and the per

capita consumption of variety i when it is produced in city s and consumed in city r.

Following Behrens and Murata (2007, 2012a,b) the utility maximization problem of a

representative consumer in city r is given by:

max
qsr(j), j∈Ωsr

Ur ≡ ∑
s

∫

Ωsr

[
1 − e−αqsr(j)

]
dj s.t. ∑

s

∫

Ωsr

psr(j)qsr(j)dj = Er, (1)

where Ωsr denotes the endogenously determined set of varieties produced in s and

consumed in r, and where Er denotes consumption expenditure. Solving (1) yields the
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following demand functions:

qsr(i) =
Er

Nc
rpr

− 1

α

{
ln

[
psr(i)

Nc
rpr

]
+ ηr

}
, ∀i ∈ Ωsr, (2)

where Nc
r is the mass of varieties consumed in city r, and

pr ≡
1

Nc
r

∑
s

∫

Ωsr

psr(j)dj and ηr ≡ −∑
s

∫

Ωsr

ln

[
psr(j)

Nc
rpr

]
psr(j)

Nc
rpr

dj

denote the average price and the differential entropy of the price distribution, respec-

tively.1 Since marginal utility at zero consumption is bounded, the demand for a variety

need not be positive. Indeed, as can be seen from (2), the demand for a local variety i

(respectively, a non-local variety j) is positive if and only if the price of variety i (variety j)

is lower than the reservation price pdr . Formally,

qrr(i) > 0 ⇐⇒ prr(i) < pdr and qsr(j) > 0 ⇐⇒ psr(j) < pdr ,

where pdr ≡ Nc
rpreαEr/(Nc

rpr)−ηr depends on the price aggregates pr and ηr. The definition

of the reservation price allows us to express the demands for local and non-local varieties

concisely as follows:

qrr(i) =
1

α
ln

[
pdr

prr(i)

]
and qsr(j) =

1

α
ln

[
pdr

psr(j)

]
. (3)

Observe that the price elasticity of demand is given by 1/[αqrr(i)] for variety i, and

respectively, by 1/[αqsr(j)] for variety j. Thus, if individuals consume more of those

varieties, which is for instance the case when their expenditure increases, they become

less price sensitive. Last, since e−αqsr(j) = psr(j)/pdr , the indirect utility in city r is given by

Ur = Nc
r −∑

s

∫

Ωsr

psr(j)

pdr
dj = Nc

r

(
1 − pr

pdr

)
, (4)

which we use to compute the equilibrium utility in the subsequent analysis.

2.2 Technology and market structure

Prior to production, firms decide in which city they enter and engage in research and

development. The labor market in each city is perfectly competitive, so that all firms take

1As shown in Reza (1994, pp.278-279), the differential entropy takes its maximum value when there is
no dispersion, i.e., psr(i) = pr for all i ∈ Ωsr for all s. In that case, we would observe ηr = − ln(1/N c

r ) and
thus qsr(i) = Er/(N c

rpr) by (2). Behrens and Murata (2007, 2012a,b) focus on such a symmetric case. In
contrast, this paper considers firm heterogeneity, so that not only the average price pr but the entire price
distribution matter for the demand qsr(i). The differential entropy ηr captures the latter price dispersion.
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the wage rate wr as given. Entry in city r requires a fixed amount F of labor paid at the

market wage. Each firm i that enters in city r discovers its marginal labor requirement

mr(i) ≥ 0 only after making this irreversible entry decision. We assume that mr(i) is

drawn from a known, continuously differentiable distribution Gr.2 We introduce trade

frictions into our model by assuming that shipments from city r to city s are subject to

trade costs τrs > 1 for all r and s, which firms incur in terms of labor. Since entry costs

are sunk, firms will survive (i.e., operate) provided they can charge prices prs(i) above

marginal costs τrsmr(i)wr in at least one city. The surviving firms operate in the same

city where they enter.

We assume that product markets are segmented, i.e., resale or third-party arbitrage is

sufficiently costly, so that firms are free to price discriminate between cities. The operating

profit of a firm i located in city r is then as follows:

πr(i) = ∑
s

πrs(i) = ∑
s

Lsqrs(i) [prs(i)− τrsmr(i)wr] , (5)

where qrs(i) is given by (3). Each surviving firm maximizes (5) with respect to its prices

prs(i) separately. Since there is a continuum of firms, no individual firm has any impact

on pdr , so that the first-order conditions for (operating) profit maximization are given by:

ln

[
pds

prs(i)

]
=
prs(i)− τrsmr(i)wr

prs(i)
, ∀i ∈ Ωrs. (6)

A price distribution satisfying (6) is called a price equilibrium. Equations (3) and (6) imply

that qrs(i) = (1/α)[1 − τrsmr(i)wr/prs(i)]. Thus, the minimum output that a firm in

market r may sell in market s is given by qrs(i) = 0 at prs(i) = τrsmr(i)wr. This, by (6),

implies that prs(i) = pds . Hence, a firm located in r with draw mx
rs ≡ pds/(τrswr) is just

indifferent between selling and not selling to s, whereas all firms in r with draws below

mx
rs are productive enough to sell to s. In what follows, we refer to mx

ss ≡ md
s as the

internal cutoff in city s, whereas mx
rs with r 6= s is the external cutoff. External and internal

cutoffs are linked as follows:3

mx
rs =

τss

τrs

ws

wr
md

s . (7)

2Differences in Gr across cities thus reflect production amenities such as local knowledge that are not
transferable across space. Firms take those differences into account when making their entry decisions.

3Expression (7) reveals an interesting relationship of how trade costs and wage differences affect firms’
abilities to break into different markets. In particular, when wages are equalized across cities (wr = ws) and
internal trade is costless (τss = 1), all external cutoffs must fall short of the internal cutoffs since τrs > 1.
Breaking into market s is then always harder for firms in r 6= s than for local firms in s, which is the
standard case in the firm heterogeneity literature (e.g., Melitz, 2003; Melitz and Ottaviano, 2008). However,
in the presence of wage differences and internal trade costs, the internal cutoff need not be larger than the

external cutoff in equilibrium. The usual ranking md
s > mx

rs prevails only when τssws < τrswr .
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Given those cutoffs, and a mass of entrants NE
r in city r, only Np

r = NE
r Gr (maxs {mx

rs})
firms survive, namely those which are productive enough to sell at least in one market

(which need not be their local market). The mass of varieties consumed in city r is then

Nc
r = ∑

s

NE
s Gs(m

x
sr), (8)

which is the sum of all firms that are productive enough to sell to market r.

Since all firms in each city differ only by their marginal labor requirements, we can

express all firm-level variables in terms of m. Specifically, solving (6) by using the Lambert

W function, defined as ϕ = W (ϕ)eW (ϕ), the profit-maximizing prices and quantities, as

well as operating profits, are given by:4

prs(m) =
τrsmwr

W
, qrs(m) =

1

α
(1 −W ) , πrs(m) =

Lsτrsmwr

α
(W−1 +W − 2), (9)

where W denotes the Lambert W function with argument em/mx
rs, which we suppress to

alleviate notation. Since W (0) = 0, W (e) = 1 and W ′ > 0 for all non-negative arguments,

we have 0 ≤ W ≤ 1 if 0 ≤ m ≤ mx
rs. The expressions in (9) show that a firm in r

with a draw mx
rs charges a price equal to marginal cost, faces zero demand, and earns

zero operating profits in market s. Furthermore, using the properties of W ′, we readily

obtain ∂prs(m)/∂m > 0, ∂qrs(m)/∂m < 0, and ∂πrs(m)/∂m < 0. In words, firms with

higher productivity (lower m) charge lower prices, sell larger quantities, and earn higher

operating profits. These properties are similar to those of the Melitz (2003) model with

constant elasticity of subtitution (ces) preferences. Yet, our specification with variable

demand elasticity also features higher markups for more productive firms. Indeed, the

markup for a firm located in city r and a consumer located in city s,

Λrs(m) ≡ prs(m)

τrsmwr
=

1

W
(10)

implies that ∂Λrs(m)/∂m < 0. Unlike Melitz and Ottaviano (2008), who use quasi-linear

preferences, we incorporate this feature into a full-fledged general equilibrium model

with income effects for varieties.

2.3 Urban structure

Each city consists of a large amount of land that stretches out on a two-dimensional

featureless plane. Land is used for housing only. Each agent consumes inelastically one

4Further details about the Lambert W function, the technical properties of which are key to making our
model tractable, can be found in Behrens et al. (2012) and in the supplementary online appendix.
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unit of land, and the amount of land available at each location is set to one. All firms in

city r are located at a dimensionless Central Business District (cbd). A monocentric city

of size Lr then covers the surface of a disk with radius xr ≡
√
Lr/π, with the cbd located

in the middle of that disk and the workers evenly distributed within it.

We introduce urban frictions in a standard way into our model by assuming that agents

have to commute to the cbd for work. In particular, we assume that each individual in

city r is endowed with hr hours of time, which is the gross labor supply per capita in

hours, including commuting time. Commuting costs are of the ‘iceberg’ type: the effective

labor supply of a worker living at a distance xr ≤ xr from the cbd is given by

sr(xr) = hre−θrxr , (11)

where θr ≥ 0 captures the time loss due to commuting and thus measures the commuting

technology of city r.5 The total effective labor supply at the cbd is then given by

Sr =
∫ xr

0
2πxrsr(xr)dxr =

2πhr
θ2
r

[
1 −

(
1 + θr

√
Lr/π

)
e−θr

√
Lr/π

]
. (12)

Define the effective labor supply per capita as hr ≡ Sr/Lr, which is the average number of

hours worked in city r. It directly follows from (12) that Sr is positive and increasing in

Lr, while hr is decreasing in Lr: given gross labor supply per capita hr and commuting

technology θr > 0, the effective labor supply per capita is lower in a larger city.6 We

can further show that ∂hr/∂θr < 0. The effective labor supply per capita is lower, ceteris

paribus, the more severe the urban frictions are in city r, that is, the worse the commuting

technology is. Notice that with θr = 0 we would have hr = hr for all Lr workers.

Since firms locate at the cbd, the wage income net of commuting costs earned by a

worker residing at the city edge is wrsr(xr) = wrhre−θrxr . Because workers are identical,

the wages net of commuting costs and land rents are equalized across all locations in the

city: wrsr(xr)−Rr(xr) = wrsr(xr)−Rr(xr), where Rr(xr) is the land rent at a distance xr

from the cbd. We normalize the opportunity cost of land at the urban fringe to zero, i.e.,

Rr(xr) = 0. The equilibrium land rent schedule is then given by R∗
r (xr) = wr(e

−θrxr −
5We use an exponential commuting cost since a linear specification, as in, e.g., Murata and Thisse (2005),

is subject to a boundary condition to ensure positive effective labor supply at each location in the city.
Keeping track of this condition becomes tedious with multiple cities and intercity movements of people.
The exponential specification has been used extensively in the literature (e.g., Lucas and Rossi-Hansberg,
2002), and the convexity of the time loss with respect to distance from the cbd can also be justified in a
modal choice framework of intra-city transportation (e.g., Glaeser, 2008, pp.24–25).

6Here we abstract from an “urban rat race” in larger cities. However, when quantifying the model in
Section 4, we use data on hr across msas, which shows that hr is higher in big cities like New York.
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e−θrxr)hr, which yields the following aggregate land rents:

ALRr =
∫ xr

0
2πxrR

∗
r (xr)dxr =

2πwrhr

θ2
r

[
1 −

(
1 + θr

√
Lr/π +

θ2
rLr

2π

)
e−θr

√
Lr/π

]
. (13)

We assume that each worker in city r owns an equal share of the land in that city, and

thus receives an equal share of aggregate land rents. Furthermore, each worker has an

equal claim to aggregate profits Πr in the respective city. Accordingly, the per capita

expenditure which consists of the wage net of commuting costs, land rent and profit

income, is then given by Er = wrhre−θr
√
Lr/π +ALRr/Lr +Πr/Lr = wrhr +Πr/Lr.

3. Equilibrium

3.1 Single city case

To illustrate how our model works, we first consider the case of a single city. There are

two equilibrium conditions in that case: zero expected profits, and labor market clearing.

These two conditions can be solved for the internal cutoff md and the mass of entrants

NE , which completely characterize the market equilibrium. For notational convenience,

we drop the subscript r and normalize the internal trade costs to one.

Using (5) and (9), the zero expected profit (zep) condition
∫ md

0 π(m)dG(m) = Fw can

be rewritten as:
L

α

∫ md

0
m(W−1 +W − 2)dG(m) = F , (14)

which is a function of md only and yields a unique equilibrium cutoff because the left-

hand side of (14) is shown to be strictly increasing in md from 0 to ∞. Furthermore, using

(9), the labor market clearing (lmc) condition, NE [L
∫ md

0 mq(m)dG(m) + F ] = S, can be

expressed as follows:

NE

[
L

α

∫ md

0
m (1 −W )dG(m) + F

]
= S, (15)

which can be uniquely solved for NE given the cutoff md obtained from (14).7

As in Melitz and Ottaviano (2008) and many other existing studies, we choose a

particular distribution function for firms’ productivity draws, 1/m, namely a Pareto

7From the zep condition L
∫
md

0 [p(m)−mw] q(m)dG(m) = Fw, and from the budget constraint

NE
∫
md

0 p(m)q(m)dG(m) = E, we get EL/(wNE) = L
∫
md

0 mq(m)dG(m) + F which, together with lmc,
yields E = (S/L)w = hw. The per capita expenditure thus depends only on effective labor supply per
capita and the wage in equilibrium, whereas profits per capita, Π/L, are zero.
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distribution: G(m) = (m/mmax)k, where mmax > 0 and k ≥ 1 are the upper bound

and the shape parameter, respectively. This distribution is useful for deriving analytical

results and taking the model to data. In particular, we obtain the following closed-form

solutions for the equilibrium cutoff and the mass of entrants in the single city case:

md =

(
µmax

L

) 1
k+1

and NE =
κ2

κ1 + κ2

S

F
, (16)

where µmax ≡
[
αF (mmax)k

]
/κ2 and κ1 and κ2 are positive constants that solely depend

on k. The term µmax can be interpreted as an inverse measure of technological possibilities:

the lower is the fixed labor requirement for entry, F , or the lower is the upper bound,

mmax, the lower is µmax and, hence, the better are the city’s technological possibilities.

How do population size and technological possibilities affect entry and selection? Re-

call from (12) that S is increasing in L. The second expression in (16) then shows that there

are more entrants NE in a larger city. The first expression in (16), in turn, shows that a

larger L or a smaller µmax entail a smaller cutoff md and, thus, a lower survival probability

G(md) of entrants. This tougher selection maps into higher average productivity, 1/m,

since m ≡ (1/N)
∫
Ω
m(i)di = [k/(k + 1)]md under a Pareto distribution. The mass of

surviving firms Np = NEG(md), which is equivalent to consumption diversity Nc in the

single city case, is then equal to

N =
α

κ1 + κ2

h

md
=

αh

κ1 + κ2

(
L

µmax

) 1
k+1

. (17)

Since firms are heterogeneous and have different markups and market shares, the simple

(unweighted) average of markups is not an adequate measure of consumers’ exposure

to market power. Using (9) and (10), we hence define the (expenditure share) weighted

average of firm-level markups as follows:

Λ ≡ 1

G(md)

∫ md

0

p(m)q(m)

E
Λ(m)dG(m) =

κ3

α

md

h
, (18)

where κ3 is a positive constant that solely depends on k.8 Note that the average markup

is proportional to the cutoff. It thus follows from (17) and (18) that our model displays

pro-competitive effects, since Λ = [κ3/(κ1 + κ2)] (1/N) decreases with the mass of com-

peting firms. Finally, indirect utility in the single city case can be expressed as

U = α

[
1

(k + 1)(κ1 + κ2)
− 1

]
h

md
=

[
1

(k + 1)(κ1 + κ2)
− 1

]
κ3

Λ
, (19)

8Recent empirical work by Feenstra and Weinstein (2010) uses a similar (expenditure share) weighted
average of markups in a translog framework.
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where the term in square brackets is, by construction, positive for all k ≥ 1. Alternatively,

indirect utility can be written as U = [1/(k+ 1)− (κ1 +κ2)]N . Hence, as can be seen from

expressions (16)–(19), a city with better technological possibilities allows for higher utility

because of tougher selection, tougher competition, and greater consumption diversity.

The impact of city size on consumption diversity, the average markup, and indirect

utility can be established as follows. Using (12) and (16), we can rewrite indirect utility as

U = α

[
1

(k + 1)(κ1 + κ2)
− 1

]{
2πh

θ2L

[
1 −

(
1 + θ

√
L/π

)
e−θ

√
L/π
]}( L

µmax

) 1
k+1

. (20)

The term in braces in (20) equals the effective labor supply per capita, h, which decreases

with L. The last term in expression (20) captures the cutoff productivity level, 1/md,

which increases with L. The net effect of an increase in L on the indirect utility U is thus

ambiguous, highlighting the trade-off between a dispersion force (urban frictions) and an

agglomeration force (tougher firm selection) inherent in our model. Yet, it can be shown

that U is single-peaked with respect to L as in Henderson (1974). Since the indirect utility

is proportional to N , it immediately follows that consumption diversity also exhibits a

∩-shaped pattern, while the average markup Λ is ∪-shaped with respect to population

size L.

Observe that for now in our model, larger cities are more productive because of tougher

selection, but not because of technological externalities associated with agglomeration. In

line with an abundant empirical literature (e.g., Rosenthal and Strange, 2004), we extend

our framework to allow for such agglomeration economies in Section 6.

3.2 Urban system: Multiple cities

We now turn to the urban system with multiple cities. The timing of events is as

follows. First, workers/consumers choose their locations. Second, given the population

distribution across cities, firm entry, selection and production take place.9 We start the

analysis by deriving the market equilibrium conditions for given city sizes, and then

define the spatial equilibrium where individuals endogenously choose their locations.

3.2.1 Market equilibrium

There are three sets of market equilibrium conditions in the urban system. For each city,

lmc and zep can be written analogously as in the single city setup. In addition, trade

9This timing simplifies our model because we need not specify which types of firms relocate as workers
move across cities. The spatial sorting of firms or workers is not the topic of the present paper.
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must be balanced for each city, which requires that the total value of exports equals the

total value of imports.

As in the single city case, we assume Pareto distributions for productivity draws. The

shape parameter k ≥ 1 is assumed to be identical, but the upper bounds are allowed

to vary across cities, i.e., Gr(m) = (m/mmax
r )k. Under this assumption, the market

equilibrium conditions – lmc, zep, and the trade balance – can be written as follows:

NE
r

[
κ1

α (mmax
r )k

∑
s

Lsτrs

(
τss

τrs

ws

wr
md

s

)k+1

+ F

]
= Sr. (21)

µmax
r = ∑

s

Lsτrs

(
τss

τrs

ws

wr
md

s

)k+1

, (22)

NE
r wr

(mmax
r )k

∑
s 6=r

Lsτrs

(
τss

τrs

ws

wr
md

s

)k+1

= Lr ∑
s 6=r

τsr
NE

s ws

(mmax
s )k

(
τrr

τsr

wr

ws
md

r

)k+1

. (23)

where µmax
r ≡ [αF (mmax

r )k]/κ2 denotes technological possibilities. Note that µmax
r is city-

specific, and captures the local production amenities that are not transferable across space.

The 3 ×K conditions (21)–(23) depend on 3 ×K unknowns: the wages wr, the masses

of entrants NE
r , and the internal cutoffs md

r . The external cutoffs mx
rs can be recovered

from (7). Combining (21) and (22), we can immediately show that

NE
r =

κ2

κ1 + κ2

Sr

F
, (24)

which implies that more firms choose to enter in larger cities in equilibrium. Adding the

term in r that is missing on both sides of (23), and using (22) and (24), we obtain the

following equilibrium relationship:

hr

(md
r)

k+1
= ∑

s

Ssτrr

(
τrr

τsr

wr

ws

)k 1

µmax
s

. (25)

The 2 ×K conditions (22) and (25) summarize how wages, cutoffs, technological possi-

bilites, trade costs, population sizes, and effective labor supplies are related in the market

equilibrium. Using those expressions, it can be shown that the mass of varieties consumed

in city r is inversely proportional to the internal cutoff, and proportional to the effective

labor supply per capita in that city:

Nc
r =

α

(κ1 + κ2)τrr

hr

md
r

. (26)
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Furthermore, the (expenditure share) weighted average of markups that consumers face

in city r can be expressed as follows:

Λr ≡
∑sN

E
s

∫ mx
sr

0

psr(m)qsr(m)

Er
Λsr(m)dGs(m)

∑sN
E
s Gs(mx

sr)
=
κ3τrr

α

md
r

hr
. (27)

It follows from (26) and (27) that there are pro-competitive effects, since Λr decreases with

the mass Nc
r of competing firms in city r as Λr = [κ3/(κ1 + κ2)](1/Nc

r ). Last, the indirect

utility is given by

Ur =
α

τrr

[
1

(k + 1)(κ1 + κ2)
− 1

]
hr

md
r

=

[
1

(k + 1)(κ1 + κ2)
− 1

]
κ3

Λr

, (28)

which implies that greater effective labor supply per capita, hr = Sr/Lr, tougher

selection, and a lower average markup in city r translate into higher indirect utility.

Alternatively, the indirect utility can be rewritten as Ur = [1/(k + 1) − (κ1 + κ2)]N
c
r ,

i.e., it is proportional to the mass of varieties consumed in city r.

3.2.2 Spatial equilibrium

We now move to the spatial equilibrium where individuals endogenously choose their

locations. We introduce city-specific amenities and taste heterogeneity in residential

location into our model. This is done for two reasons. First, individuals in reality

choose their location not only based on wages, prices, and productivities that result

from market interactions, but also based on non-market features such as amenities (e.g.,

climate or landscape). Second, individuals do not necessarily react in the same way to

regional gaps in wages and cost-of-living (Tabuchi and Thisse, 2002; Murata, 2003). Such

taste heterogeneity tends to offset the extreme outcome that often arises in typical neg

models, namely that all mobile economic activity concentrates in a single city. When

we take our model to data, taste heterogeneity is thus useful for capturing an observed

non-degenerate equilibrium distribution of city sizes.

We assume that the location choice of an individual ℓ is based on linear random utility

V ℓ
r = Ur +Ar + ξℓr, where Ur is given by (28) and Ar subsumes city-specific amenities that

are equally valued by all individuals. For the empirical implementation, we assume that

Ar ≡ A(Ao
r ,Au

r ), where Ao
r refers to observed amenities such as costal location and Au

r to

the unobserved part. The random variable ξℓr then captures idiosyncratic taste differences

in residential location. Following McFadden (1974), we assume that the ξℓr are i.i.d. across

individuals and cities according to a double exponential distribution with zero mean
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and variance equal to π2β2/6, where β is a positive constant. Since β has a positive

relationship with variance, the larger the value of β, the more heterogeneous are the

consumers’ attachments to each city. Given the population distribution, an individual’s

probability of choosing city r can then be expressed as a logit form:

Pr = Pr

(
V ℓ
r > max

s 6=r
V ℓ
s

)
=

exp((Ur +Ar)/β)

∑
K
s=1 exp((Us +As)/β)

. (29)

If β → 0, which corresponds to the case without taste heterogeneity, people choose their

location based only on Ur + Ar, i.e., they choose a city with the highest Ur + Ar with

probability one. By contrast, if β → ∞, individuals choose their location with equal

probability 1/K. In that case, taste for residential location is extremely heterogeneous, so

that Ur +Ar does not affect location decisions at all.

A spatial equilibrium is defined as a city-size distribution satisfying

Pr =
Lr

∑
K
s=1 Ls

, ∀r. (30)

In words, a spatial equilibrium is a fixed point where the choice probability of each city

is equal to that city’s share of the economy’s total population.10

3.3 The impact of spatial frictions: An example with two cities

To build intuition for our counterfactual experiments, we consider an example with two

cities, as is standard in the literature. The formal analysis is in the supplementary online

appendix, whereas the main text focuses on the intuition of how spatial frictions affect

the fundamental trade-off between agglomeration and dispersion forces.

We assume that trade costs are symmetric (τ12 = τ21 = τ and τ11 = τ22 = t), and that

intra-city trade is less costly than inter-city trade (t ≤ τ ). The market equilibrium for

any given city sizes L1 and L2 is then uniquely determined, and yields the relative wage

ω ≡ w1/w2 and the two internal cutoffs md
1 and md

2 .

Now suppose that city 1 is larger than city 2 (L1 > L2) while the two cities are

identical with respect to their gross labor supplies per capita (h1 = h2 = h), commuting

technologies (θ1 = θ2 = θ), and technological possibilities (µmax
1 = µmax

2 = µmax). Then,

the market equilibrium is such that the larger city has the higher wage (ω > 1) and the lower

cutoff (md
1 < md

2). The intuition is that – due to trade frictions – firms in the larger city

10In theory, there can of course be multiple city-size distributions satisfying (30). However, this is not
an issue given the aim of our paper. Indeed, in Section 4, where we take our model to data, we use the
observed US city sizes for the spatial equilibrium to be uniquely determined.
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have an advantage in terms of local market size, and this advantage must be offset by the

higher wage and the tougher selection in equilibrium.

Turning to choice probabilities, for any given city sizes L1 and L2, (29) can be written as

P1 =
exp(Υ/β)

exp(Υ/β) + 1
and P2 =

1

exp(Υ/β) + 1
,

where Υ ≡ (U1 − U2) + (A1 − A2). Hence, P1 is increasing and P2 is decreasing in Υ .

Plugging (28) into the definition of Υ , we readily obtain

Υ =
(α
t

) [ 1

(k + 1)(κ1 + κ2)
− 1

](
h1

md
1

− h2

md
2

)
, (31)

where we set A1 = A2 for simplicity. Recalling that L1 > L2, the lower cutoff in city 1

(md
1 < md

2) constitutes an agglomeration force as it raises the indirect utility difference Υ .

Yet, due to urban frictions, the larger city also has lower effective labor supply per capita

(h1 < h2), which negatively affects Υ , thus representing a dispersion force.

For the population distribution L1 > L2 to be a spatial equilibrium, condition (30)

requires that P1 > P2, which in turn implies Υ > 0 and h1/md
1 > h2/md

2 by (31). The

larger city then has greater consumption diversity (Nc
1 > Nc

2) according to (26) and a

lower average markup (Λ1 < Λ2) according to (27) than the smaller city. Taking such a

spatial equilibrium as the starting point, we now consider what happens if either urban

frictions or trade frictions are eliminated.

No urban frictions. Our first counterfactual experiment will be to eliminate urban frictions

while leaving trade frictions unchanged. This is equivalent to setting θ = 0, holding τ

and t constant. In what follows, we consider how Υ is affected by such a change. This

allows us to study if eliminating urban frictions involves more agglomeration (larger P1)

or more dispersion (smaller P1). Let Υ̃ be the value of Υ in the counterfactual scenario,

keeping city sizes fixed at their initial levels. Other counterfactual values are also denoted

with a tilde. Observing that h̃1 = h̃2 = h when θ = 0, we have

sign
{
Υ̃ − Υ

}
= sign

{
1

m̃d
1

(h− h1)−
1

m̃d
2

(h− h2) + h1

(
1

m̃d
1

− 1

md
1

)
− h2

(
1

m̃d
2

− 1

md
2

)}
.

(32)

The first two terms in (32) stand for the direct effects of eliminating urban frictions. In the

initial situation where θ > 0, we know that h1 < h2 < h as urban frictions are greater in the

larger city. We also know that md
1 < md

2 holds even without urban frictions as L1 > L2, so
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that m̃d
1 < m̃d

2 . Hence, the first positive term always dominates the second negative term,

thus showing that the direct effects favor the large city by increasing the probability P1 of

choosing city 1. However, eliminating urban frictions also induces indirect effects through

the cutoffs, which are captured by the second two terms in (32). Both of these terms are

negative and thus work in the opposite direction than the direct effects. Specifically, it can

be shown that setting θ = 0 implies md
1 < m̃d

1 < m̃d
2 < md

2. That is, average productivity

goes down in the larger city when the population distribution is held fixed, while it goes

up in the smaller city.11

If the direct effects dominate the indirect effects, we have Υ̃ > Υ so that P1 increases

and the large city becomes even larger as urban frictions are eliminated. The increase

in population then leads to a productivity gain, which may offset the productivity drop

at a given population size. As we show below, such a pattern indeed emerges in the

quantified multi-city model (see Figures 1, 2, and 4): big cities like New York become

even larger. Holding the initial population fixed, productivity goes down in New York,

while it goes up once we take population changes into account, as shown in Figure 4. By

the same argument, small cities may end up with a lower productivity due to their loss

in population. Hence, eliminating urban frictions makes the productivity change in the

economy as a whole ambiguous.

No trade frictions. Our second counterfactual experiment will be to eliminate trade fric-

tions while leaving urban frictions unchanged. More specifically, we consider a scenario

where consumers face the same trade costs for local and non-local varieties. This is

equivalent to setting τ = t, holding θ constant. As before, let Υ̃ be the value of Υ in the

counterfactual scenario, while keeping city sizes fixed at the initial level. Noting that h1

and h2 remain constant, the change in Υ can now be written as

sign
{
Υ̃ − Υ

}
= sign

{
h1

(
1

m̃d
1

− 1

md
1

)
− h2

(
1

m̃d
2

− 1

md
2

)}
. (33)

It can be shown that now both cutoffs decrease for given population sizes, i.e., m̃d
1 < md

1

and m̃d
2 < md

2. Both cities, therefore, experience a productivity gain. The first term in

brackets in (33) is thus positive and the second term is negative. Yet it can be shown that

Υ̃ < Υ holds if µmax
2 /µmax

1 ≤ (h2/h1)
k+1. In other words, the large city becomes smaller

11The reason is the following: the reduction of θ from any given positive value to zero raises aggregate
labor supply Sr in both cities. The increase is relatively stronger in the larger city (S1/S2 goes up), so that
the relative wage ω increases. To offset this, the equilibrium cutoff must thus increase in the larger city and
decrease in the smaller city.

16



if the two cities are not too different in terms of their technological possibilities. In the

simple case where µmax
2 /µmax

1 = 1, the large city always becomes smaller as h2/h1 >

1. In contrast, the small city becomes larger and, consequently, experiences a stronger

productivity gain than the large city. We show below that such a pattern also emerges in

our quantified multi-city model (see Figures 5 and 6).12

4. Quantification

We now take our multi-city model to the data by estimating or calibrating its parameters.

This procedure can be divided into two broad stages, namely the quantification of the

market equilibrium and that of the spatial equilibrium, which we now explain in turn.

4.1 Market equilibrium

The quantification of the market equilibrium consists of the following five steps:

1. Using the definition of total effective labor supply and data on commuting time,

hours worked, and city size at the msa level, we obtain the city-specific commuting

technology parameters θ̂r that constitute urban frictions.

2. Using the specification τrs ≡ d
γ
rs, where drs is the distance from r to s, we estimate

a gravity equation that relates the value of bilateral trade flows to distance. For a

given value of the Pareto shape parameter k, we obtain the distance elasticity γ̂ that

constitutes trade frictions.

3. The estimated distance elasticity, together with data on labor supply, value added

per worker, and city size, allows us to back out the set of city-specific technological

possibilities µ̂max
r and wages ŵr that are consistent with the market equilibrium

conditions.

4. Using the set of city-specific technological possibilities thus obtained, we draw a

large sample of firms from within the model to compute the difference between the

simulated and observed establishment size distributions.

12Other two-region neg models with commuting costs (Tabuchi, 1998; Murata and Thisse, 2005) would
come to qualitatively similar conclusions about how falling transport or commuting costs affect the spatial
equilibrium. Helpman (1998) considers a fixed supply of land instead of commuting, but his model would
also display a similar pattern as falling transport costs are dispersive, while greater abundance of land is
agglomerative. Though useful for illustrative purposes, such two-region examples do not convey a sense of
magnitude about the quantitative importance of spatial frictions in practice, however. Sections 4–6 of this
paper deals precisely with this issue.

17



5. Iterating through steps 2 to 4, we search over the parameter space to find the value

of the Pareto shape parameter k that minimizes the sum of squared differences

between the simulated and observed establishment size distributions.

Several details about this procedure and the data are relegated to the supplementary

online appendix. As for the quantification results, our iterative procedure yields the

Pareto shape parameter k̂ = 6.4. Columns 1 and 2 of Table 1 below show that, despite

having only a single degree of freedom, the fit of the simulated establishment size

distribution to the observed establishment size distribution is quite good.

Turning to spatial frictions, we obtain an estimate for the commuting technology

parameter that constitutes urban frictions for each msa. As shown in Table 4 in the

supplementary online appendix, the value of θ̂r ranges from 0.0708 (Los Angeles-Long

Beach-Santa Ana and New York-Northern New Jersey-Long Island) and 0.0867 (Chicago-

Naperville-Joliet) to 0.9995 (Yuba City, CA) and 1.4824 (Hinesville-Fort Stewart, GA).

Thus, big cities tend to have better commuting technologies per unit of distance.13 For

trade frictions, our fixed effects estimation of the gravity equation yields γ̂k = 1.2918 (with

standard error 0.0271) which, given k̂ = 6.4, implies γ̂ = 0.2018.

We then obtain the values of the technological possibilities µ̂max
r , which may be viewed

as a measure for msa-level production amenities. Table 4 in the supplementary online

appendix reports those values, along with the observed msa populations scaled by their

mean (i.e., Lr/L) and average productivities (1/mr). From the quantification procedure

we also obtain the wages ŵr that are consistent with the market equilibrium conditions,

which we compare to the observed wages at the msa-level in Section 4.3. Ultimately, the

quantification of the market equilibrium allows us to measure the indirect utility Ûr from

(28) by using data on hr = Sr/Lr and md
r , as well as the estimate of τ̂rr.

4.2 Spatial equilibrium

Using the spatial equilibrium conditions (30), the expression of indirect utility Ûr, and

data on observed amenities Ao
r, we obtain a measure for unobserved amenities Au

r and

the relative weight of indirect utility and amenities for individual location decisions that

are consistent with the observed city-size distribution.

13For any given distance x from the cbd, a smaller θ implies that people spend less time to commute to
the cbd. However, this does not necessarily mean that average commuting time is shorter in larger cities
because of longer average commuting distances. Our finding that big cities tend to have better commuting
technologies also holds when assuming a linear commuting technology as in Murata and Thisse (2005).
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Setting U1 + A1 ≡ 0 as a normalization, and using the observed Lr for the 356 msas,

the spatial equilibrium conditions Pr = Lr/L for r = 2,3, . . . ,K can be uniquely solved

for (Ur +Ar)/β.14 We thus obtain the values of (Ur + Ar)/β that replicate the observed

city-size distribution as a spatial equilibrium. Let D̂r denote this solution satisfying

Pr =
exp(D̂r)

∑
K
s=1 exp(D̂s)

=
Lr

L
, D̂1 = 0. (34)

Having solved (34) for D̂r, we then gauge the relative importance of indirect utility Ûr

and observed amenities Ao
r in consumers’ location choices by estimating a simple OLS

regression as follows,

D̂r = α0 + α1Ûr + α2A
o
r + εr, (35)

which yields

D̂r = −0.2194
(0.2644)

+ 1.7481
(0.5289)

∗∗∗Ûr + 0.0652
(0.0199)

∗∗∗Ao
r + ε̂r. (36)

Consistent with theory, both indirect utility and observed amenities significantly influence

the spatial distribution of population across msas, both coefficients being positive. The

fitted residuals ε̂r can be interpreted as a measure of the unobserved part of the msa

amenities. We hence let Âu
r ≡ ε̂r which by construction is uncorrelated with Ao

r. In

Section 6.2, we discuss the robustness of our results with respect to the value of α1.

Table 4 in the supplementary online appendix reports the observed and unobserved

consumption amenities, as well as the production amenities. Several points are worth

emphasizing. First, in contrast to Roback (1982) type approaches, spatial patterns of MSA-

level consumption and production amenities (Âu
r and µ̂max

r ) are derived from a quantified

spatial equilibrium framework where trade frictions are explicitly taken into account.

Second, both observed and unobserved consumption amenities are positively correlated

with city size, the correlation being stronger for the latter (0.7023) than for the former

(0.1334). Third, while the correlation between Ao
r and Âu

r is zero by construction, there

is also little correlation between technological possibilities and each type of consumption

amenities (-0.0867 and 0.0713 for Ao
r and Âu

r , respectively). This is consistent with the

results by Chen and Rosenthal (2008) who find that good business locations in the US

need not have good consumption amenities.

14See the supplementary online appendix for the proof of uniqueness.
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4.3 msa- and firm-level model fit

Before turning to the counterfactual analysis, it is important to point out that our model

can replicate several empirical facts, both at the msa and firm levels, that have not been

used in the quantification procedure. We briefly summarize some of those dimensions

and again relegate several details of this model fit analysis to the supplementary online

appendix.

First, since our key objective is to investigate the importance of urban and trade

frictions, having an idea of how well our model captures empirical facts about these

dimensions is particularly important.

Urban frictions. We first consider urban frictions by comparing the ‘model-based’ and

observed aggregate land rents. The former can be obtained by making use of (13). The

latter is, in turn, obtained by ALRr = GMRr/(1 − ownersharer), where GMR is the

(aggregate) gross monthly rent.15 The simple correlation between the model-based and

observed aggregate land rents across msas is 0.9805, while the Spearman rank correlation

is 0.9379. Alternatively, we can use ALRr = ERVr/(ownersharer), where ERVr is the

equivalent rent value for houses that are owned. Under this alternative formula, the

correlation between the model-based and observed aggregate land rents becomes 0.9624,

while the Spearman rank correlation is 0.9129. In all cases, the correlations are high, thus

suggesting that our model does a good job in capturing urban frictions across msas.16

Trade frictions. We next turn to trade frictions. Note that our estimate of the distance

elasticity γ̂k for the year 2007 closely matches the value of 1.348 reported by Hillberry

and Hummels (2008) from estimation of a gravity equation at the 3-digit zip code level

using the confidential cfs microdata. We can further assess to what extent our model can

15The formula can be obtained as follows. First, the total amount of expenditure in housing ser-
vices (ALR) is given by the sum of the gross monthly rent (GMR) and the equivalent rent value
for houses that are owned (ERV). Data on GMR, which can be decomposed as (average rent) ×
(number of houses that are rented), is available. Now assume that GMR/(number of houses rented) =
ERV/(number of houses owned) holds in each city at equilibrium by arbitrage. We then obtain ALR =
GMR/(1 − share of houses that are owned).

16One might argue that our simple monocentric city model is not the most appropriate specification as
large msas are usually polycentric. To see how urban frictions relate to polycentricity, we compute a simple

correlation between θ̂r and the number of employment centers in each msa for the year 2000 as identified
by Arribas-Bel and Sanz Gracia (2010). The correlation is −0.4282, while the Spearman rank correlation
is −0.5643, thus suggesting that our monocentric model with city-specific commuting technology captures
the tendency that larger cities are more efficient for commuting as they allow for more employment centers,
thereby reducing the average commuting distance through employment decentralization.
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cope with existing micro evidence on the spatial structure of shipping patterns. As shown

in the supplementary online appendix, both aggregate shipment values and the number

of shipments predicted by our model fall off very quickly with distance – becoming very

small beyond a threshold of about 200 miles – whereas price per unit first rises with

distance and average shipment values do not display a clear pattern. These results are

nicely in line with those in Hillberry and Hummels (2008). Furthermore, we can also

compare shipping shares and shipping distances by establishment size class predicted

by our model, and the observed counterparts as reported by Holmes and Stevens (2012).

Our model can qualitatively reproduce their observed shipment shares. It can also explain

their finding that the mean distance shipped increases with establishment size.

Second, the correlation between actual relative wages and those predicted by our

model is 0.7379 and thus reasonably high.

Third, the representative firm sample drawn from our quantified model can replicate

the observed distribution of establishments across msas. Table 1 reports the mean,

standard deviation, minimum, and maximum of the number of establishments (top part)

and average establishment size (bottom part) at the msa level, and the number of estab-

lishments is further broken down by employment size. The last column of Table 1 reports

the correlation between the observed and our simulated data. As can be seen, the simple

cross-msa correlation for the total number of establishments is 0.7253, with a slightly

larger rank correlation of 0.733. Again, these are reasonably large numbers. Furthermore,

the correlations between the observed and the predicted numbers of medium-sized and

large establishments across msas are particularly large (between 0.889 and 0.9412).

Table 1: Cross-MSA distribution of establishment numbers and average size – summary for ob-
served and simulated data.

Mean St.dev. Min Max Correlation
Variable Model Observed Model Observed Model Observed Model Observed Model-Observed

# of establishments total 18067.10 18067.09 16878.09 43138.45 1738 911 109210 541255 0.7253
# of establishments size 1-19 15444.74 15461.97 12066.43 37449.79 1550 804 79181 478618 0.3824
# of establishments size 20-99 2121.56 2162.09 6320.64 4728.28 49 93 52178 51310 0.9412
# of establishments size 100-499 429.83 397.50 1729.44 922.34 14 13 24365 9951 0.8890
# of establishments size 500+ 70.94 45.52 132.67 113.75 2 1 1509 1376 0.9320

Avg establishment size 11.73 15.40 11.63 2.60 0.90 6.40 131.88 23.70 0.1716

Notes: Model values are computed from a representative sample of 6,431,886 establishments. See supplementary online appendix F.2 for a detailed description.

5. Counterfactuals

Having shown that our quantified model performs well in replicating several features of

the data, we now use it for counterfactual analysis. Our aim is to assess the importance
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of spatial frictions for the US city-size distribution, for individual city sizes, as well as

for the distributions of productivity and markups across msas. To this end we eliminate

urban frictions or trade frictions (counterfactuals cf1 and cf2, respectively).

5.1 No urban frictions

In the first counterfactual experiment (which we call ‘no urban frictions’), we set all

commuting-related frictions – and hence all land rents – to zero (θ̂r = 0 for all r) while

keeping trade frictions τ̂rs, technological possibilities µ̂max
r , consumption amenities (Ao

r

and Âu
r ), and the location choice parameters α̂0, α̂1, and α̂2 constant.17 This corresponds

to a hypothetical world where only goods are costly to transport while living in cities does

not impose any urban costs. Comparing the counterfactual equilibrium for this scenario

to the initial spatial equilibrium is then a meaningful exercise, as it provides bounds to

what extent the actual US economic geography is shaped by urban frictions.

City sizes. Starting with city sizes, eliminating urban frictions leads to (gross) cross-msa

population movements of about 4 million people, i.e., 1.6% of the total msa population in

our sample. Figure 1 plots percentage changes in msa population against the initial log

msa population. As can be seen, large cities would on average gain population, whereas

small and medium-sized cities tend to lose. In other words, urban frictions limit the size

of large cities. The size of New York, for example, would increase by about 8.5%. That is

to say, urban frictions matter for the size of New York, as the city is 8.5% smaller than it

would be in a hypothetical world without urban frictions. Some msas close to New York

and Boston are affected even more by urban frictions. For example, New Haven-Milford,

CT, is 12.1% smaller and Bridgeport-Stamford-Norwalk, CT, is even 15.9% smaller than it

would be. The top panel of Figure 2 further indicates that the impacts of urban frictions

follow a rich spatial pattern and are highly unevenly spread across msas.

Interestingly, although the sizes of individual cities would be substantially different in a

world without urban frictions, the city-size distribution would be almost the same. This is

shown in Figure 3. A standard rank-size rule regression reveals that the coefficient on log

size rises slightly from −0.9249 to −0.9178, the change being statistically insignificant.18

The hypothetical elimination of urban frictions would thus move single cities up or down

17Although workers are mobile in our model, we can set urban frictions to zero without having degener-
ate equilibria with full agglomeration. The reason is that, as explained before, consumers’ location choice
probabilities are expressed as a logit so that no city disappears.

18We follow Gabaix and Ibragimov (2011) and adjust the rank by subtracting 1/2.
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Figure 1: Changes in msa populations and initial size (cf1)

in the urban hierarchy, but within a stable city-size distribution. We will discuss this

stability in greater depth below in Section 5.3.

Productivity. Turning to average productivity, the middle panel of Figure 2 shows that

the impact of urban frictions differs substantially across cities. New York’s productivity

is 0.76% higher in the counterfactual equilibrium. Urban frictions thus have a negative

impact on productivity as they limit the size of New York. However, most msas would

have a lower productivity level if urban frictions were eliminated, for example small cities

like Monroe, MI, by 0.9%. This means that the presence of urban frictions in the real

world leads to a higher productivity as population is retained in those cities. Computing

the nation-wide productivity change, weighted by msa population shares in the initial

equilibrium, we find that eliminating urban frictions would increase average productivity

by a mere 0.04%.

It is important to see that these results refer to the long-run impacts of eliminating urban

frictions on productivity, as they include the effects of population movements. To gauge

the contribution of labor mobility to these overall impacts, we disentangle the short-run

effects, before the population reshufflings have taken place, from the long-run effects. The

left panel of Figure 4 illustrates the cutoff changes across msas when eliminating urban

frictions, holding city sizes fixed at their initial levels. It shows that the cutoffs md
r rise,

on average, in larger cities. However, as can be seen from the right panel of Figure 4, the

23



Change

-6.30 to -4.60

-4.60 to -3.86

-3.86 to -3.19

-3.19 to -2.23

-2.23 to  0.11

 0.11 to  27.62

Micro Stat. Area

% Population

Change

-0.90 to -0.27

-0.27 to -0.17

-0.17 to -0.10

-0.10 to -0.02

-0.02 to  0.14

 0.14 to  1.40

Micro Stat. Area

% Productivity

Change

 -7.29 to  -5.35

 -7.91 to  -7.29

 -8.50 to  -7.91

 -9.15 to  -8.50

-10.27 to  -9.15

-15.97 to -10.27

Micro Stat. Area

% Markup

Figure 2: Spatial pattern of counterfactual changes in Lr, 1/md
r and Λr (cf1)

subsequent movements of population (which flows toward the larger cities), more than

offset this initial change, thereby generating larger productivity gains in the bigger cities

in the long-run equilibrium.19 This decomposition of the short- and long-run effects can

also be related to the comparative static results of Section 3.3. There, we have shown that

the instantaneous impact of reducing urban frictions – keeping Lr fixed – is to raise the

cutoff in the large city and to lower it in the small city. This pattern can get reversed,

19Some simple ols regressions of the change in md
r in the short- and in the long-run on inital population

yield: ∆md
r = −0.0821∗∗∗ + 0.0127∗∗∗Lr in the short-run, and ∆md

r = 0.0817∗∗∗ − 0.0194∗∗∗Lr in the
long-run, thus showing the switch in the results depending on whether or not population is mobile.

24



−
2

0
2

4
6

lo
g(

ra
nk

−
1/

2)

−3 −2 −1 0 1 2 3 4
log(initial population / mean)

RS observed RS counterfactual

Figure 3: Rank-size rule, observed and counterfactual (cf1)
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Figure 4: Difference in short- and long-run relationships between ∆md
r and Lr (cf1)

however, once the population movements are taken into account.

Markups. Turning to the long-run impact on markups, the bottom panel of Figure 2

reveals that this is the dimension where the largest changes take place. Markups would

decrease everywhere, with reductions ranging from 5.3% to about 16%, but the more so

for the most populated areas of the East and West coasts. As can be seen from (27), the

reason for these large changes is twofold. First, eliminating urban frictions increases the

effective labor supply per capita hr everywhere, which allows for more firms in each msa
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and, therefore, for more competition. Second, there is an effect going through the cutoffs.

Some places see their cutoffs fall, especially larger cities which receive population inflows,

and this puts additional pressure on markups there. In contrast, cutoffs increase in cities

that lose population. However, even in those cities it turns out that markups decrease, as

the pro-competitive effect due to higher effective labor supply per capita dominates the

anti-competitive effect of the higher cutoff.

To summarize, even without urban frictions, the city-size distribution would remain

fairly stable, despite the fact that larger cities tend to grow and smaller cities tend to

shrink. Furthermore, the ‘no urban frictions’ case supports more firms, which reduces

markups and expands product diversity, though firms are not on average much more

productive than in a world with urban frictions. The productivity gap between large and

small cities would, however, widen.

5.2 No trade frictions

How do trade frictions shape the US economic geography? To address this question, we

set external trade costs from s to r equal to internal trade costs in r (τsr = τrr for all r

and s) in the second counterfactual experiment (which we call ‘no trade frictions’). This

experiment corresponds to a hypothetical world where consumers face the same trade

costs for local and non-local varieties.20

City sizes. Starting with city sizes, eliminating trade frictions would lead to significant

(gross) cross-msa population movements of about 10.2 million people, i.e., 4.08% of

the total msa population in our sample. Some small and remote cities would gain

substantially. For example, the population of Casper, WY, would grow by about 105%

and that of Hinesville-Fort Stewart, GA, by about 99.4%. That is, trade frictions limit the

size of small and remote cities substantially. Figure 5 plots the percentage changes in

msa population against the initial log msa population. Consistent with the comparative

static results of Section 3.3, in a world without trade frictions larger cities lose ground and

individuals move, on average, to smaller cities to relax urban costs. These changes are

depicted in the top panel of Figure 6. Although individual cities would be substantially

affected by the fall in trade frictions, the city-size distribution remains again quite stable,

20Eaton and Kortum (2002) consider a similar counterfactual scenario in the context of international trade
with a fixed population distribution. We have also experimented with setting τrs = τrr for all r and s, which
corresponds to a hypothetical world where goods are as costly to trade between msas as within msas from
the firms’ perspective. The results are largely the same.
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Figure 5: Changes in msa populations and initial size (cf2)

as can be seen from Figure 7. The coefficient on log size drops from −0.9249 to −0.9392,

yet this change is again statistically insignificant.

Productivity. Concerning the changes in average productivity, observe first that all msas

gain. In other words, the existence of trade frictions in the real world causes productivity

losses for the US economy. Yet, as can be seen from the middle panel of Figure 6, these

impacts are unevenly spread across msas. If trade frictions were eliminated, some small

cities would gain substantially (e.g., an increase of about 125.5% in Great Falls, MT), while

large cities would gain significantly less: 41.18% in New York, 48.08% in Los Angeles,

and 55.71% in Chicago. The first reason is linked to market access. Indeed, the more

populated areas, e.g., those centered around California and New England, would be those

gaining the least from a reduction of trade frictions, as they already provide firms with a

good access to a large local market. The second reason is that, as stated above, large cities

tend to lose population, thereby reducing the productivity gains brought about by the

fall in trade frictions. Computing the nation-wide productivity change, weighted by msa

population shares in the initial equilibrium, we find that eliminating trade frictions would

increase average productivity by 67.59%. Thus, reducing spatial frictions for shipping

goods would entail substantial aggregate productivity gains.

Markups. The bottom panel of Figures 6 reveals that markups would decrease consider-

ably in a world without trade frictions, with reductions ranging from 29% to 55%. Such
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Figure 6: Spatial pattern of counterfactual changes in Lr, 1/md
r and Λr (cf2)

reductions are particularly strong in msas with poor market access, i.e., the center of the

US and the areas close to the borders. Observe that the changes in markups – though

substantial – are more compressed than the changes in productivity (the coefficient of

variation for productivity changes is 0.18, while that for changes in markups is 0.09).

The reason is the following. Eliminating trade frictions reduces cutoffs in all msas, but

especially in small and remote ones. This puts downward pressure on markups. Yet,

there is also an indirect effect through changes in effective labor supply hr. An increase

in hr, which occurs in big cities that lose population, reduces markups more strongly than
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Figure 7: Rank-size rule, observed and counterfactual (cf2)

what is implied by the direct change only, while the decrease in hr that occurs in small

and remote cities gaining population works in the opposite direction and dampens the

markup reductions.

To summarize, without trade frictions, the city-size distribution would remain fairly

stable, despite the fact that larger cities tend to shrink and smaller cities tend to grow.

Furthermore, the ‘no trade frictions’ case allows for higher average productivity and lower

markups by intensifying competition in all msas, and especially in small and remote ones.

The productivity gap between large and small cities would, hence, shrink.

5.3 How important are spatial frictions?

Our paper is, to the best of our knowledge, the first to investigate the impact of both

urban and trade frictions on the size distribution of cities.21 A key novel insight of our

analysis is that spatial frictions have a quite limited impact on that distribution. The

rank-size rule would still hold with a statistically identical coefficient in a world without

urban or trade frictions.

21The influential models on the city-size distribution by Gabaix (1999), Eeckhout (2004), Duranton (2007)
and Rossi-Hansberg and Wright (2007) include urban costs but assume away trade costs. None of these
papers analyzes how the city-size distribution is affected by urban frictions. The most closely related paper
in that respect is Desmet and Rossi-Hansberg (2013). Yet, their framework is not suited to investigate the
impact of trade frictions on the city-size distribution, as it also abstracts from trade costs.
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Note that our result on the stability of the city-size distribution contrasts with that of

Desmet and Rossi-Hansberg (2013), who find that the size distribution tilts substantially

when urban frictions are reduced. The difference in results can be understood as follows.

In their analysis, the commuting friction parameter is common to all msas, whereas we

allow commuting technologies to differ across cities. In our setting, big cities like New

York or Los Angeles tend to have the best commuting technologies per unit of distance

in the initial equilibrium, so that the impacts of setting θ̂r = 0 are relatively small there.

By contrast, in Desmet and Rossi-Hansberg (2013), the commuting technology improves

equally across all msas so that big cities get very large due to larger efficiency gains

in commuting than in our case. Another key difference is that in Desmet and Rossi-

Hansberg (2013), all consumers react in the same way to changes in utility and amenities,

whereas those reactions are idiosyncratic in our model and, therefore, less extreme.

Although spatial frictions hardly affect the city-size distribution in our framework,

they do matter for the sizes of individual cities within that stable distribution. Indeed,

eliminating spatial frictions leads to aggregate (gross) inter-msa reallocations of about 4–

10 million people. Whether or not large or small cities gain population crucially depends

on what type of spatial frictions is eliminated. Urban frictions limit the size of large cities,

whereas trade frictions limit the size of small cities. As extensively discussed above, our

approach is able to quantify those effects.

Notice that we have so far considered simultaneous reductions in spatial frictions for all

cities. We can also look at a unilateral reduction for a single city. Specifically, let us briefly

consider two additional counterfactuals. In the first one, we only eliminate urban frictions

for New York. In that case, New York grows by about 19.73% (i.e., by about 3.7 million

people). In the second one, we set τsr = τrr for all s only when r is New York. That is,

we improve the market access to New York for all firms that are located elsewhere, while

holding the market access of firms located in New York to other msas constant. In that

case, New York shrinks remarkably by 15.57% (i.e., about 3 million people). Hence, a

unilateral change in spatial frictions for a single city has a much larger impact on the size

of that city. More generally, these results show that the relative levels across cities of both

types of frictions matter a lot to understand the sizes of individual cities.

Finally, our experiments show that urban and trade frictions matter, though to a differ-

ent extent, for the distributions of productivity and markups – and ultimately welfare –

across msas. Eliminating trade frictions would lead to significant productivity gains and

substantially reduced markups. These changes are highly heterogeneous across space and
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tend to reduce differences in productivity and city sizes across msas. Concerning urban

frictions, their elimination would not give rise to such significant productivity gains, but

would still considerably intensify competition and generate lower markups by allowing

for more firms in equilibrium.

6. Extensions and robustness

6.1 Agglomeration economies

The recent literature shows that agglomeration economies, i.e., productivity gains due to

larger or denser urban areas, are a prevalent feature of the spatial economy (see Rosenthal

and Strange, 2004; Melo et al., 2010). We have so far focused entirely on one channel:

larger cities are more productive because of tougher firm selection. Yet, larger or denser

cities can become more productive for various other reasons such as sharing–matching–

learning externalities (Duranton and Puga, 2004), and sorting by human capital (Combes

et al., 2008; Behrens et al., 2010). In fact, Combes et al. (2012) have argued that the

productivity advantage of large cities is mostly due to such agglomeration externalities.

We illustrate a simple way to extend our framework to include agglomeration

economies. Specifically, we allow the upper bound in each msa (mmax
r ) to be a function of

the density of that msa. Agglomeration economies are thus modeled as a right-shift in the

ex ante productivity distribution: upon entry, a firm in a denser msa has a higher probabil-

ity of getting a better productivity draw.22 Starting from the baseline model, assume that

technological possibilities µmax
r can be expressed as µmax

r = c · density−kξ
r · ψmax

r , where

densityr ≡ Lr/surfacer, ξ is the elasticity of the ex ante upper bound of the marginal labor

requirement with respect to density, and ψmax
r is an idiosyncratic measure of technological

possibilities that is purged from agglomeration effects. We can then estimate the ex ante

productivity advantage of large cities by running a simple log-log regression of µ̂max
r on

msa population densities and a constant, which yields:

ln(µ̂max
r ) = 2.6898

(0.3566)

∗∗∗ − 0.1889
(0.0813)

∗∗ ln(densityr).

Since lnµmax
r = k lnmmax

r plus a constant, the elasticity ξ of mmax
r with respect to density

is given by 0.1889/k̂ = 0.0295 which is the value we use in what follows. In words,

doubling msa density reduces the upper bound (and, equivalently, the mean by the

22Formally, the right-shift in the ex ante productivity distribution implies that the distribution in a denser
msa first-order stochastically dominates that in a less dense msa. Observe that firm selection afterwards
acts as a truncation, so that the ex post distribution is both right-shifted and truncated.

31



properties of the Pareto distribution) of the ex ante marginal labor requirement of entrants

by 2.95%. That figure, though computed for the ex ante distribution, lies within the

consensus range of previous elasticity estimates for agglomeration economies measured

using ex post productivity distributions (see Melo et al., 2010). This effect is independent

of the subsequent truncation of the ex post productivity distribution, thus disentangling

agglomeration from selection.

In the supplementary online appendix, we show how those agglomeration economies

can be taken into account in the quantification of our model. We then run both counter-

factuals (‘no urban frictions’ and ‘no trade frictions’) with the agglomeration economies

specification. The results are summarized in the bottom panel of Table 2 (labeled cf3

and cf4, respectively). As can be seen, the results change little compared to our previous

specification without agglomeration economies (reported in the top panel). Observe that

this finding does not mean that agglomeration economies are unimportant. The reason

why they do not matter much in our experiments is that not so many people move

between the initial and the counterfactual equilibria. Yet, given the measured elasticities

of agglomeration economies, much larger population movements would be required for

them to become quantitatively more visible.

Table 2: Summary of the counterfactuals.

Baseline counterfactuals (no agglomeration economies)
No urban frictions (CF1) No trade frictions (CF2)

Mean Std. dev. Weighted mean Mean Std. dev. Weighted mean
% change 1/mr -0.06 0.26 0.04 78.50 14.26 67.59
% change Lr -2.15 3.60 0 4.30 15.28 0
% change Λr -8.79 1.82 -9.85 -43.55 4.27 -39.90
% change Vr 9.69 2.24 10.98 78.17 13.79 67.62
RS coefficient -0.9178 -0.9392

Robustness checks (with agglomeration economies)
No urban frictions (CF3) No trade frictions (CF4)

Mean Std. dev. Weighted mean Mean Std. dev. Weighted mean
% change 1/mr -0.12 0.31 0.04 78.71 14.03 67.63
% change Lr -2.21 3.74 0 4.50 16.15 0
% change Λr -8.74 1.89 -9.85 -43.60 4.33 -39.90
% change Vr 9.62 2.33 10.98 78.36 14.03 67.66
RS coefficient -0.9176 -0.9394

Notes: Weighted mean refers to the mean percentage change where the weights are given by the MSAs’
initial population shares. The counterfactual scenarios CF3 and CF4 include the agglomeration economies
specification. RS coefficient refers to the slope of the estimated rank-size relationship.

6.2 Amenities and inter-city population reallocations

The quantification of our model suggests that amenities and regional attachment are

important for shaping the city-size distribution. One may thus wonder how important

the estimated value of α1 is for our qualitative and quantitative results. More specifically,

the value of α1 in (35) determines the relative weight of indirect utility and amenities,

and any omitted variable will lead to a biased estimate of this relative weight. Hence, it
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could be the case that our relatively small population movements in response to shocks

to spatial frictions are driven by too low an estimate of α1. To see that our results – both

qualitatively and to a large extent also quantitatively – are not very sensitive to the value

of α1, we consider the following ‘no trade frictions’ counterfactual.23 We scale up the

estimate α̂1 by either 50% or 100% and recompute the new values for the unobserved

amenities, keeping α̂0, α̂2, D̂r, Ûr, and Ao
r constant. Using the larger values of α1 and

the new (smaller) unobserved amenities, we run the counterfactual scenario and look at

how different the implied changes are. A larger value of α1 is expected to deliver larger

population movements as agents become more sensitive to differences in prices, wages,

and consumption diversity across msas.

Whether we increase α1 by 50% or by 100%, the city-size distribution remains fairly

stable, with the Zipf coefficient going from -0.9249 to -0.9399 or to -0.9376 (see Figure 8

for the latter case). The total (gross) population movement is 14,943,005 or 19,459,006,

respectively, which amounts to 5.98% or 7.78% of the urban population (recall the cor-

responding number in the baseline case is 4.08%). Hence, larger values of α1 lead to

greater population reallocations when trade frictions are eliminated, as people are more

sensitive to indirect utility differences across cities. The changes in individual city sizes

range from -26.31% to 179.78% with a 50% increase in α1, and from -33.00% to 269.25%

with a 100% increase.24 The spatial patterns (not depicted here for the sake of brevity)

look fairly similar to those in the benchmark case.

Those findings suggest that our main results are robust, both qualitatively and to

a large extent quantitatively, to higher values of α1. In particular, amenities do not

matter for the city-size distribution to remain stable between the initial and counterfactual

equilibria because that distribution is hardly affected even when we greatly reduce the

importance of amenities relative to indirect utility in consumers’ location choices.

However, amenities do matter for replicating the observed initial city-size distribu-

tion. To see this, we briefly consider a similar counterfactual exercise as in Desmet and

Rossi-Hansberg (2013) and set all unobserved amenities across cities equal to their mean,

holding all spatial frictions fixed. Figure 9 shows that there would be a substantial tilt of

the city-size distribution. The Zipf coefficient falls from -0.9249 to -3.6715, and about a

half of the US msa population move, leading to a much less unequal city-size distribution

23We also considered the ‘no urban frictions’ counterfactual obtaining similar insights.
24The changes in productivity range from 25.85% to 49.18% in the former case, and from 25.80% to 49.26%

in the latter case.
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Figure 8: Changes in the city-size distribution (robustness, increasing α1 by 100% in cf2)

– large cities shrink and small cities grow.25

7. Conclusions

We have developed a novel general equilibrium model of a spatial economy with multiple

cities and endogenous location decisions. Using 2007 US data at the state and msa levels,

we have quantified our model using all of its market and spatial equilibrium conditions,

as well as a gravity equation for trade flows and a logit model for consumers’ location

choice probabilities. The quantified model performs well and is able to replicate – both

at the msa and firm levels – a number of empirical features that are linked to urban and

trade frictions.

To assess the importance of spatial frictions, we have used our model to study two

counterfactual scenarios. Those allow us to trace out the impacts of both trade and

urban frictions on the city-size distribution, the sizes of individual cities, as well as

on productivity and competition across space. A first key insight is that the city-size

distribution is hardly affected by the presence of either trade or urban frictions. A

second key insight is that, within the stable distribution, the sizes of individual cities

can be affected substantially by changes in spatial frictions. Last, our third key insight

is that their presence imposes quite significant welfare costs. The reasons are too high

25We also experimented with setting all technological possibilities equal to the mean. In that case, 5.57%
of the population moves and there is no strong impact on the city-size distribution.
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Figure 9: Changes in the city-size distribution (equal amenities case)

price-cost margins and, depending on the type of spatial frictions we consider, foregone

productivity or reduced product diversity.

Our approach brings various strands of literature closer together. In particular, our

model: (i) considers trade and urban frictions that are identified as being relevant by

the neg and urban economics literature; (ii) endogenizes productivity, markups, and

product diversity, three aspects that loom large in the recent trade literature; (iii) allows

to deal with heterogeneity along several dimensions (across space, across firms, across

consumers); (iv) can be readily brought to data in very a self-contained way; and (v) fits

quite nicely features of the data not used in the quantification stage. We believe that our

framework provides a useful starting point for further general equilibrium counterfactual

analysis.
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Supplementary Online Appendices,
not intended for publication

The Appendix is structured as follows: Appendix A shows how to derive the demand

functions (2) and the firm-level variables (9) using the Lambert W function. In Ap-

pendix B we provide integrals involving the Lambert W function and derive the terms

{κ1, κ2, κ3, κ4} that are used in the paper. Appendix C contains proofs and computations

for the single city case. In Appendix D we derive the equilibrium conditions (21)–(23)

and provide further derivations for the multi-city case. Appendix E deals with the

example with two cities. Appendix F provides details about the quantification procedure,

the data used, and the different elements of model fit. Appendix G proves that the

spatial equilibrium is uniquely determined in our quantification procedure. Appendix

H describes the procedure for conducting counterfactual analyses with our quantified

framework, while Appendix I spells out the procedure with agglomeration economies.

Finally, Appendix J reports some additional results tables.

Appendix A: Demand functions and firm-level variables.

A.1. Derivation of the demand functions (2). Letting λ stand for the Lagrange multiplier,

the first-order condition for an interior solution to the maximization problem (1) satisfies

αe−αqsr(i) = λpsr(i), ∀i ∈ Ωsr (A-1)

and the budget constraint ∑s

∫
Ωsr

psr(k)qsr(k)dk = Er. Taking the ratio of (A-1) for i ∈ Ωsr

and j ∈ Ωvr yields

qsr(i) = qvr(j) +
1

α
ln

[
pvr(j)

psr(i)

]
∀i ∈ Ωsr, ∀j ∈ Ωvr.

Multiplying this expression by pvr(j), integrating with respect to j ∈ Ωvr, and summing

across all origins v we obtain

qsr(i)∑
v

∫

Ωvr

pvr(j)dj = ∑
v

∫

Ωvr

pvr(j)qvr(j)dj

︸ ︷︷ ︸
≡ Er

+
1

α
∑
v

∫

Ωvr

ln

[
pvr(j)

psr(i)

]
pvr(j)dj. (A-2)
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Using pr ≡ (1/Nc
r )∑v

∫
Ωvr

pvr(j)dj, expression (A-2) can be rewritten as follows:

qsr(i) =
Er

Nc
r p̄r

− 1

α
ln psr(i) +

1

αNc
r p̄r

∑
v

∫

Ωvr

ln [pvr(j)] pvr(j)dj

=
Er

Nc
r p̄r

− 1

α
ln

[
psr(i)

Nc
r p̄r

]
+

1

α
∑
v

∫

Ωvr

ln

[
pvr(j)

Nc
r p̄r

]
pvr(j)

Nc
r p̄r

dj,

which, given the definition of ηr, yields (2).

A.2. Derivation of the firm-level variables (9) and properties of W . Using pds = mx
rsτrswr, the

first-order conditions (6) can be rewritten as

ln

[
mx

rsτrswr

prs(m)

]
= 1 − τrsmwr

prs(m)
.

Taking the exponential of both sides and rearranging terms, we have

e
m

mx
rs

=
τrsmwr

prs(m)
e
τrsmwr
prs(m) .

Noting that the Lambert W function is defined as ϕ = W (ϕ)eW (ϕ) and setting ϕ =

em/mx
rs, we obtain

W

(
e
m

mx
rs

)
=
τrsmwr

prs(m)
,

which implies prs(m) as given in expression (9). The expression for the quanti-

ties qrs(m) = (1/α) [1 − τrsmwr/prs(m)] and the expression for the operating profits

πrs(m) = Lsqrs(m) [prs(m)− τrsmwr] are then straightforward to compute.

Turning to the properties of the Lambert W function, ϕ = W (ϕ)eW (ϕ) implies that

W (ϕ) ≥ 0 for all ϕ ≥ 0. Taking logarithms on both sides and differentiating yields

W ′(ϕ) =
W (ϕ)

ϕ[W (ϕ) + 1]
> 0

for all ϕ > 0. Finally, we have 0 = W (0)eW (0), which implies W (0) = 0; and e =

W (e)eW (e), which implies W (e) = 1.

Appendix B: Integrals involving the Lambert W function.

To derive closed-form solutions for various expressions throughout the paper we need

to compute integrals involving the Lambert W function. This can be done by using the

change in variables suggested by Corless et al. (1996, p.341). Let

z ≡ W
(

e
m

I

)
, so that e

m

I
= zez, where I = md

r ,mx
rs.
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The subscript r can be dropped in the single city case. The change in variables then

yields dm = (1 + z)ez−1Idz, with the new integration bounds given by 0 and 1. Under

our assumption of a Pareto distribution for productivity draws, the change in variables

allows to rewrite integrals in simplified form.

B.1. First, consider the following expression, which appears when integrating firms’

outputs: ∫ I

0
m
[
1 −W

(
e
m

I

)]
dGr(m) = κ1 (m

max
r )−k

Ik+1,

where κ1 ≡ ke−(k+1)
∫ 1

0 (1 − z2) (zez)k ezdz > 0 is a constant term which solely depends

on the shape parameter k.

B.2. Second, the following expression appears when integrating firms’ operating profits:

∫ I

0
m

[
W
(

e
m

I

)−1
+W

(
e
m

I

)
− 2

]
dGr(m) = κ2 (m

max
r )−k

Ik+1,

where κ2 ≡ ke−(k+1)
∫ 1

0 (1 + z)
(
z−1 + z − 2

)
(zez)k ezdz > 0 is a constant term which

solely depends on the shape parameter k.

B.3. Third, the following expression appears when deriving the (expenditure share)

weighted average of markups:

∫ I

0
m

[
W
(

e
m

I

)−2
−W

(
e
m

I

)−1
]

dGr(m) = κ3 (m
max
r )−k

Ik+1,

where κ3 ≡ ke−(k+1)
∫ 1

0 (z
−2 − z−1)(1 + z)(zez)kezdz > 0 is a constant term which solely

depends on the shape parameter k.

B.4. Finally, the following expression appears when integrating firms’ revenues:

∫ I

0
m

[
W
(

e
m

I

)−1
− 1

]
dGr(m) = κ4 (m

max
r )−k

Ik+1,

where κ4 ≡ ke−(k+1)
∫ 1

0 (z
−1 − z) (zez)k ezdz > 0 is a constant term which solely depends

on the shape parameter k. Using the expressions for κ1 and κ2, one can verify that

κ4 = κ1 + κ2.
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Appendix C: Equilibrium in the single city case.

C.1. Existence and uniqueness of the equilibrium cutoff md. To see that there exists a unique

equilibrium cutoff md, we apply the Leibniz integral rule to the left-hand side of (14) and

use W (e) = 1 to obtain

eL

α(md)2

∫ md

0
m2
(
W−2 − 1

)
W ′dG(m) > 0,

where the sign comes from W ′ > 0 and W−2 ≥ 1 for 0 ≤ m ≤ md. Hence, the left-hand

side of (14) is strictly increasing. This uniquely determines the equilibrium cutoff md,

because

lim
md→0

∫ md

0
m
(
W−1 +W − 2

)
dG(m) = 0 and lim

md→∞

∫ md

0
m
(
W−1 +W − 2

)
dG(m) = ∞.

C.2. Indirect utility in the single city. To derive the indirect utility, we first compute the

(unweighted) average price across all varieties. Multiplying both sides of (6) by p(i),

integrating over Ω, and using (3), we obtain:

p = mw+
αE

N

where m ≡ (1/N)
∫
Ω
m(j)dj denotes the average marginal labor requirement of the

surviving firms. Using p, expression (4) can be rewritten as

U =
N

k + 1
− S

L

α

md
, (A-3)

where we use E = (S/L)w, pd = mdw and m = [k/(k + 1)]md. When combined with

(17) and (18), we obtain the expression for U as given in (19).

C.3. Single-peakedness of indirect utility in the single city case. We now show that U is

single-peaked with respect to L. To this end, we rewrite the indirect utility (20) as

U = b(S/L)L1/(k+1) , where b is a positive constant capturing k, α, and µmax, and then

consider a log-transformation, lnU = ln b+ lnS − [k/(k + 1)] lnL. It then follows that

∂ lnU

∂ lnL
=
LS ′

S
− k

k + 1
.

To establish single-peakedness, we need to show that

LS ′

S
=

θ2(L/π)

2
(

eθ
√
L/π − 1 − θ

√
L/π

)

IV



cuts the horizontal line k/(k + 1) ∈ (0,1) only once from above. Notice that LS ′/S → 1

as L→ 0, whereas LS ′/S → 0 as L→ ∞. Single-peakedness therefore follows if

d

dL

(
LS ′

S

)
= −2 + θ

√
L/π + eθ

√
L/π

(
θ
√
L/π − 2

)

(4/θ2)
[√

π
(

eθ
√
L/π − 1

)
− θ

√
L
]2

< 0, ∀L.

For this to be the case, the numerator must be positive. Let y ≡ θ
√
L/π > 0. Then we can

show that H(y) ≡ 2 + y + ey(y − 2) > 0 for all y > 0. Obviously, H(0) = 0. So, if H ′ > 0

for all y > 0, the proof is complete. It is readily verified that H ′ = 1 + yey − ey > 0 is

equivalent to e−y > 1− y, which is true for all y by convexity of e−y (observe that 1− y is

the tangent to e−y at y = 0 and that a convex function is everywhere above its tangent).

Appendix D: Equilibrium in the urban system.

D.1. Equilibrium conditions using the Lambert W function. By definition, the zero expected

profit condition for each firm in city r is given by

∑
s

Ls

∫ mx
rs

0
[prs(m)− τrsmwr] qrs(m)dGr(m) = Fwr. (D-1)

Furthermore, each labor market clears in equilibrium, which requires that

NE
r

[
∑
s

Lsτrs

∫ mx
rs

0
mqrs(m)dGr(m) + F

]
= Sr. (D-2)

Last, in equilibrium trade must be balanced for each city

NE
r ∑

s 6=r

Ls

∫ mx
rs

0
prs(m)qrs(m)dGr(m) = Lr ∑

s 6=r

NE
s

∫ mx
sr

0
psr(m)qsr(m)dGs(m). (D-3)

We now restate the foregoing conditions (D-1)–(D-3) in terms of the Lambert W function.

First, using (9), the labor market clearing condition can be rewritten as follows:

NE
r

{
1

α
∑
s

Lsτrs

∫ mx
rs

0
m

[
1 −W

(
e
m

mx
rs

)]
dGr(m) + F

}
= Sr. (D-4)

Second, plugging (9) into (D-1), zero expected profits require that

1

α
∑
s

Lsτrs

∫ mx
rs

0
m

[
W

(
e
m

mx
rs

)−1

+W

(
e
m

mx
rs

)
− 2

]
dGr(m) = F . (D-5)
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Last, the trade balance condition is given by

NE
r wr ∑

s 6=r

Lsτrs

∫ mx
rs

0
m

[
W

(
e
m

mx
rs

)−1

− 1

]
dGr(m)

= Lr ∑
s 6=r

NE
s τsrws

∫ mx
sr

0
m

[
W

(
e
m

mx
sr

)−1

− 1

]
dGs(m). (D-6)

Applying the city-specific Pareto distribution Gr(m) = (m/mmax
r )k to (D-4)–(D-6) yields,

using the results of Appendix B, expressions (21)–(23) given in the main text.

D.2. The mass of varieties consumed in the urban system. Using Nc
r as defined in (8), and

the external cutoff and the mass of entrants as given by (7) and (24), and making use of

the Pareto distribution, we obtain:

Nc
r =

κ2

κ1 + κ2

(
md

r

)k
∑
s

Ss

F (mmax
s )k

(
τrr

τsr

wr

ws

)k

=
α

κ1 + κ2

(
md

r

)k

τrr
∑
s

Ssτrr

(
τrr

τsr

wr

ws

)k
κ2

αF (mmax
s )k

.

Using the definition of µmax
s , and noting that the summation in the foregoing expression

appears in the equilibrium relationship (25), we can then express the mass of varieties

consumed in city r as given in (26).

D.3. The weighted average of markups in the urban system. Plugging (9) into the definition

(27), the weighted average of markups in the urban system can be rewritten as

Λr =
1

αEr ∑sN
E
s Gs(mx

sr)
∑
s

NE
s τsrws

∫ mx
sr

0
m
(
W−2 −W−1

)
dGs(m),

where the argument em/mx
sr of the Lambert W function is suppressed to al-

leviate notation. As shown in Appendix B, the integral term is given by

κ3(m
max
s )−k(mx

sr)
k+1 = κ3Gs(mx

sr)m
x
sr. Using this, together with (7) and

Er = (Sr/Lr)wr, yields the expression in (27).

D.4. Indirect utility in the urban system. To derive the indirect utility, we first compute

the (unweighted) average price across all varieties sold in each market. Multiplying both

sides of (6) by prs(i), integrating over Ωrs, and summing the resulting expressions across

r, we obtain:

ps ≡
1

Nc
s

∑
r

∫

Ωrs

prs(j)dj =
1

Nc
s

∑
r

τrswr

∫

Ωrs

mr(j)dj +
αEs

Nc
s

,
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where the first term is the average of marginal delivered costs. Under the Pareto dis-

tribution,
∫
Ωsr

ms(j)dj = NE
s

∫ mx
sr

0 mdGs(m) = [k/(k + 1)]mx
srN

E
s Gs(mx

sr). Hence, the

(unweighted) average price can be rewritten for city r as follows

pr =
1

Nc
r

∑
s

τsrws

(
k

k+ 1

)
mx

srN
E
s Gs(m

x
sr) +

αEr

Nc
r

=

(
k

k+ 1

)
pdr +

αEr

Nc
r

, (D-7)

where we have used (8) and pdr = τsrwsm
x
sr. Plugging (D-7) into (4) and using (7), the

indirect utility is then given by

Ur =
Nc

r

k + 1
− α

τrr

Sr

Lrmd
r

,

which together with (26) and (27) yields (28).

Appendix E: The case with two cities.

E.1. Market equilibrium in the two city case. Recall that τ12 = τ21 = τ , τ11 = τ22 = t, and

τ ≥ t by assumption. For given city sizes L1 and L2, the market equilibrium is given by

a system of three equations (22)–(24) with three unknowns (the two internal cutoffs md
1

and md
2, and the relative wage ω ≡ w1/w2) as follows:

µmax
1 = L1t

(
md

1

)k+1
+ L2τ

(
t

τ

1

ω
md

2

)k+1

(E-1)

µmax
2 = L2t

(
md

2

)k+1
+ L1τ

(
t

τ
ωmd

1

)k+1

(E-2)

ω2k+1 =
ρ

σ

(
md

2

md
1

)k+1

, (E-3)

where ρ ≡ µmax
2 /µmax

1 and σ ≡ h2/h1 = (S2/L2)/(S1/L1).

When τ > t, equations (E-1) and (E-2) can be uniquely solved for the cutoffs as a

function of ω:

(md
1)

k+1 =
µmax

1

L1t

1 − ρ(t/τ)kω−(k+1)

1 − (t/τ)2k
and (md

2)
k+1 =

µmax
2

L2t

1 − ρ−1(t/τ)kωk+1

1 − (t/τ)2k
. (E-4)

Substituting the cutoffs (E-4) into (E-3) yields, after some simplification, the following

expression:

LHS ≡ ωk = ρ
S1

S2

ρ− (t/τ)k ωk+1

ωk+1 − ρ (t/τ)k
≡ RHS. (E-5)
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The RHS of (E-5) is non-negative if and only if ω < ω < ω, where ω ≡ ρ1/(k+1) (t/τ)k/(k+1)

and ω ≡ ρ1/(k+1) (τ/t)k/(k+1). Furthermore, the RHS is strictly decreasing in ω ∈ (ω,ω)

with limω→ω+ RHS = ∞ and limω→ω− RHS = 0. Since the LHS of (E-5) is strictly

increasing in ω ∈ (0, ∞), there exists a unique equilibrium relative wage ω∗ ∈ (ω,ω).

The internal cutoffs are then uniquely determined by (E-4).

When τ = t, we can also establish the uniqueness of ω, md
1 and md

2 . The proof is

relegated to E.4. (i).

E.2. Market equilibrium: L1 > L2 implies ω > 1 and md
1 < md

2. Assume that h1 = h2 = h,

θ1 = θ2 = θ, and ρ = 1. Observe that L1/L2 = 1 implies S1/S2 = 1, so that the

unique equilibrium wage is ω∗ = 1 by (E-5) if the two cities are equally large. Now

suppose that city 1 is larger than city 2, L1/L2 > 1, which implies S1/S2 > 1. Then, the

equilibrium relative wage satisfies ω∗ > 1 because an increase in S1/S2 raises the RHS

of (E-5) without affecting the LHS. Finally, expression (E-3), together with the foregoing

assumption, yields ω2k+1 = (1/σ)
(
md

2/md
1

)k+1
. As L1 > L2 implies ω > 1 and σ > 1

(recall that h ≡ S/L is decreasing in L), it follows that md
1 < md

2. Hence, the unique

market equilibrium is such that the larger city has the higher wage and the lower cutoff.

Note that the proof relies on (E-5), which is obtained under τ > t. However, we can

establish the same properties for τ = t by using the expressions in E.4. (i) below.

E.3. Spatial equilibrium: No urban frictions. We have claimed that the third and the fourth

term in (32) are negative because md
1 < m̃d

1 < m̃d
2 < md

2. To verify these inequalities, notice

at first that the reduction in θ from any given positive value to zero raises S1/S2. This is

straightforward to prove: In a world with urban frictions (where θ > 0), and given that

h1 = h2 = h and θ1 = θ2 = θ, the term S1/S2 is given by

S1

S2
=

1 −
(
1 + θ

√
L1/π

)
e−θ

√
L1/π

1 −
(
1 + θ

√
L2/π

)
e−θ

√
L2/π

. (E-6)

In a world without urban frictions (θ = 0), we have S̃1 = L1h and S̃2 = L2h, so

that S̃1/S̃2 = L1/L2. Letting yr ≡ θ
√
Lr/π > 0, proving that L1/L2 is larger than

the term S1/S2 given in (E-6) is equivalent to proving that y2
1/ (1 − e−y1 − y1e−y1) >

y2
2/ (1 − e−y2 − y2e−y2). We thus need to show that y2/(1 − e−y − ye−y) is increasing

because y1 > y2. By differentiating, we have the derivative

ye−y

(1 − e−y − ye−y)2
Y , where Y ≡ 2ey − [(y + 1)2 + 1].
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Noting that Y = 0 at y = 0 and Y ′ = 2[ey − (y + 1)] > 0 for all y > 0, we know that the

derivative is positive for all y > 0. Hence, S̃1/S̃2 = L1/L2 > S1/S2. The elimination of

urban frictions thus raises S1/S2, and thereby the relative wage ω by shifting up the RHS

of (E-5). We hence observe wage divergence. The expressions in (E-4) then indeed imply

md
1 < m̃d

1 < m̃d
2 < md

2 as ω increases.

E.4. Spatial equilibrium: No trade frictions. Our aim is to show the condition for Υ̃ < Υ to

hold in (33), and we proceed in two steps. First, we show that the elimination of trade

frictions implies a lower cutoff in both regions. Second, we show under which conditions

the elimination of trade frictions lead to a decrease in P1.

(i) Setting τ = t, the market equilibrium conditions (E-1)–(E-3) can be rewritten as

µmax
1

t
= L1X1 + L2

X2

Ω
(E-7)

µmax
2

t
= L2X2 + L1ΩX1 (E-8)

Ω =

(
ρ

σ

X2

X1

) k+1
2k+1

, (E-9)

where X1 ≡ (md
1)

k+1, X2 ≡ (md
2)

k+1, and Ω ≡ ωk+1. From (E-7) and (E-8), we thus have

Ωµmax
1 /t = µmax

2 /t = L1ΩX1 + L2X2. Hence, Ω = ρ must hold when τ = t, and ω is

uniquely determined. We know by (E-9) that X2 = (σ/ρ)Ω
2k+1
k+1 X1 = σρ

k
k+1X1. Plugging

this expression into (E-7) yields the unique counterfactual cutoffs

X̃1 = (m̃d
1)

k+1 =
µmax

1 /(L1t)

1 + σρ−
1

k+1 (L2/L1)
and X̃2 = (m̃d

2)
k+1 =

µmax
2 /(L2t)

1 + σ−1ρ
1

k+1 (L1/L2)
.

(E-10)

Establishing that X̃1 < X1, i.e., that m̃d
1 < md

1 requires

1 − ρ(t/τ)kω−(k+1)

1 − (t/τ)2k
>

1

1 + σρ−
1

k+1 (L2/L1)

⇒ σρ−
1

k+1

(
L2

L1

)[
1 − ρ

(
t

τ

)k

ω−(k+1)

]
>

(
t

τ

)k
[
ρω−(k+1) −

(
t

τ

)k
]

⇒ ρ−
1

k+1

(
S2

S1

)
ω−(k+1)

[
ωk+1 − ρ

(
t

τ

)k
]
>

(
t

τ

)k

ω−(k+1)

[
ρ−

(
t

τ

)k

ωk+1

]

⇒ ρρ−
1

k+1

(τ
t

)k
> ρ

(
S1

S2

)
ρ− (t/τ)kωk+1

ωk+1 − ρ(t/τ)k
= ωk,
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where the last equality holds by (E-5). We thus need to prove ρk/(k+1)(τ/t)k > ωk or

ρ1/(k+1)(τ/t) > ω, which is straightforward since ρ1/(k+1)(τ/t) > ρ1/(k+1)(τ/t)k/(k+1) ≡
ω > ω. Hence, m̃d

1 < md
1 must hold. Using a similar approach, it can be shown that

m̃d
2 < md

2. The elimination of trade frictions thus leads to lower cutoffs in both regions.

(ii) Now we want to show under which conditions we have Υ̃ < Υ in (33). Let

∆md
r ≡ md

r − m̃d
r > 0. Then, proving h1(1/m̃d

1 − 1/md
1) < h2(1/m̃d

2 − 1/md
2) is equivalent

to proving that
h1∆m

d
1

md
1m̃

d
1

<
h2∆m

d
2

md
2m̃

d
2

⇔ md
1m̃

d
1∆m

d
2

md
2m̃

d
2∆m

d
1

h2

h1
> 1. (E-11)

This can be done by the following steps. First, we prove cutoff convergence, i.e., m̃d
2/m̃d

1 <

md
2/md

1 . Using (E-10), the counterfactual cutoff ratio is given by (m̃d
2/m̃d

1)
k+1 = σρk/(k+1),

whereas using (E-4), the cutoff ratio with trade frictions is

(
md

2

md
1

)k+1

=
L1

L2

1

ω−(k+1)

ρ− (t/τ)kωk+1

ωk+1 − ρ(t/τ)k
=
L1

L2

1

ω−(k+1)

ωk

ρ

S2

S1
=
σ

ρ
ω2k+1,

where we use (E-5) to obtain the second equality. Taking their difference, showing that

m̃d
2/m̃d

1 < md
2/md

1 boils down to showing that ρ1/(k+1) < ω at the market equilibrium.

This can be done by evaluating (E-5) at ω = ρ1/(k+1). The LHS is equal to ρk/(k+1), which

falls short of the RHS given by ρS1/S2 (because ρ ≥ 1, k ≥ 1, and S1/S2 > 1). Since

the LHS is increasing and the RHS is decreasing, it must be that ρ1/(k+1) < ω∗. Thus, we

have proved m̃d
2/m̃d

1 < md
2/md

1 . Turning to the second step, this cutoff convergence then

implies

md
2

md
1

>
m̃d

2

m̃d
1

⇒ md
1

md
2

∆md
2

∆md
1

> 1 ⇒
(
md

1

md
2

m̃d
1

m̃d
2

∆md
2

∆md
1

h2

h1

)
m̃d

2

m̃d
1

h1

h2
> 1. (E-12)

Recall from (E-11) that we ultimately want to prove that
(
md

1

md
2

m̃d
1

m̃d
2

∆md
2

∆md
1

h2
h1

)
> 1. A sufficient

condition for this to be satisfied, given condition (E-12), is that (m̃d
2/m̃d

1)(h1/h2) ≤ 1, i.e.,

that [σρk/(k+1)]1/(k+1)(1/σ) = [ρ1/(k+1)/σ]k/(k+1) ≤ 1. This is the case if ρ1/(k+1) ≤ σ. In

words, the elimination of trade frictions leads to a decrease in the size of the large city

if the two cities are not too different in terms of their technological possibilities. In the

simple case where ρ = 1, the large city always becomes smaller as σ > 1.
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Appendix F: Quantification – Data, procedure, and model fit.

F.1. Data. We summarize the data used for the quantification of our model.

i) msa data

We construct a dataset for 356 msas (see Table 4 below for a full list). The bulk of our

msa-level data comes from the 2007 American Community Survey (acs) of the US Census,

from the Bureau of Economic Analysis (bea), and from the Bureau of Labor Statistics (bls).

The geographical coordinates of each msa are computed as the centroid of its constituent

counties’ geographical coordinates. The latter are obtained from the 2000 US Census

Gazetteer county geography file, and the msa-level aggregation is carried out using

the county-to-msa concordance tables for 2007. We then construct our measure of dis-

tance between two msas as drs = cos−1
(
sin(latr) sin(lats) + cos(|lonr − lons|) cos(latr)×

cos(lats)
)
× 6,378.137 using the great circle formula, where latr and lonr are the ge-

ographical coordinates of the msa. The internal distance of an msa is defined as

drr ≡ (2/3)
√

surfacer/π as in Redding and Venables (2004). All msa surface measures are

given in square kilometers and include only land surface of the msa’s forming counties.

That data is obtained from the 2000 US Census Gazetteer, and is aggregated from the

county to the msa level.

We further obtain total gross domestic product by msa from the bea metropolitan GDP

files. Total employment at the msa level is obtained from the 2007 bls employment flat

files (we use aggregate values for ‘All occupations’). Using gross domestic product, total

employment, and the average number of hours worked allows us to recover our measure

of average msa productivity (GDP per employee), which is proportional to 1/md
r because

of the Pareto distribution. Wages at the msa level for 2007 are computed as total labor

expenses (compensation of employees plus employer contributions for employee pension

and insurance funds plus employer contributions for government social insurance) di-

vided by total msa employment. Data to compute total labor expenses is provided by

the bea.

ii) Amenity data

Next, county-level data on natural amenities refer to the year 1999 and are provided

by the US Department of Agriculture (usda). The usda data includes six measures of

climate, topography, and water area that reflect environmental attributes usually valued

by people. We use the standardized amenity score from that data as a proxy for our
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observed amenities Ao
r. We aggregate the county-level amenities up to the msa level by

using the county-to-msa concordance table and by weighting each county by its share in

the total msa land surface.

iii) Urban frictions data

Data is taken from the 2007 acs which provides total msa population, average weekly

hours worked and average (one-way) commuting time in minutes. Those pieces of

information are used to compute the aggregate labor supply hrLr, and the effective labor

supply Sr.

iv) Trade frictions data

Finally, we use aggregate bilateral trade flows Xrs from the 2007 Commodity Flow Survey

(cfs) of the Bureau of Transportation Statistics (bts) for the lower 48 contiguous US states,

as these are the states containing the msas that will be used in our analysis. We work at

the state level since msa trade flows from the cfs public files can only be meaningfully

exploited for a relatively small sample of large ‘cfs regions’. The distance between r and

s in kilometers is computed using the great circle formula given above. In that case, latr

and lonr denote the coordinates of the capital of state r, measured in radians, which are

taken from Anderson and van Wincoop’s (2003) dataset.

F.2. Quantification procedure. As explained in the main text, the quantification procedure

for the market equilibrium consists of five steps that we now explain in detail.

i) Urban frictions θr

To obtain the city-specific commuting technology parameters θ̂r that constitute urban

frictions, we rewrite equation (12) as

Lr
hr

hr
=

2π

θ2
r

[
1 −

(
1 + θr

√
Lr/π

)
e−θr

√
Lr/π

]
, (F-1)

where we use Sr = Lrhr. We compute hr as the average number of hours worked per

week in msa r. The gross labor supply per capita, hr, which is the endowment of hours

available for work and commuting, is constructed as the sum of hr and hours per week

spent by workers in each msa for travel-to-work commuting in 2007. Given hr, hr, as well

as city size Lr, the above equation can be uniquely solved for the city-specific commuting

parameter θ̂r. Table 4 below provides the values for the 356 msas.

ii) Trade frictions τrs

To estimate the distance elasticity γ̂ that constitutes trade frictions, we consider the value
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of sales from r to s:

Xrs = NE
r Ls

∫ mx
rs

0
prs(m)qrs(m)dGr(m). (F-2)

Using (7), (9), (24), and the result from Appendix B.4, we then obtain the following

gravity equation: Xrs = SrLsτ
−k
rs τ

k+1
ss (ws/wr)

k+1
wr

(
md

s

)k+1
(µmax

r )−1. Turning to the

specification of trade costs τrs, we stick to standard practice and assume that τrs ≡ d
γ
rs,

where drs stands for the distance from r to s. The gravity equation can then be rewritten

in log-linear stochastic form:

lnXrs = const. − kγ ln drs + I0
rs + ζ1

r + ζ2
s + εrs, (F-3)

where all terms specific to the origin and the destination are collapsed into fixed effects

ζ1
r and ζ2

s , where I0
rs is a zero-flow dummy, and εrs is an error term with the usual

properties for ols consistency.26 Using aggregate bilateral trade flows Xrs in 2007 for the

48 contiguous US states that cover all msas used in the subsequent analysis, we estimate

the gravity equation on state-to-state trade flows. Given a value of k, we then obtain an

estimate of the distance elasticity γ̂ that constitutes trade frictions.

iii) Market equilibrium conditions (wr,µmax
r )

Observe that expressions (22) and (25) can be rewritten as:

µmax
r = ∑

s

Lsτrs

(
md

s

τss

τrs

ws

wr

)k+1

(F-4)

Sr

Lr

1

(md
r)

k+1
= ∑

s

Ssτrr

(
τsr

τrr

ws

wr

)−k 1

µmax
s

. (F-5)

Ideally, we would use data on technological possibilities µmax
r to solve for the wages

and cutoffs. Yet, µmax
r is unobservable. We thus solve for wages and technological

possibilities (ŵr, µ̂max
r ) by using the values of md

r that are obtained as follows. Under

the Pareto distribution, we have (1/mr) = [k/(k + 1)](1/md
r ), where 1/mr is the average

productivity in msa r. The latter can be computed as gdp per employee, using data on gdp

of msa r and the total number of hours worked in that msa (hours worked per week times

total employment). Given an estimate of 1/mr and the value of k, we can compute the

cutoffs md
r . Using the value of k, the cutoffs md

r , the city-specific commuting technologies

θ̂r, the observed msa populations Lr, as well as trade frictions τ̂rs = d
γ̂
rs, we can solve

26There are 179 ‘zero flows’ out of 2,304 in the data, i.e., 7.7% of the sample. We control for them by using
a standard dummy-variable approach, where I0

rs takes value 1 if Xrs = 0 and 0 otherwise.
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(F-4) and (F-5) for the wages and unobserved technological possibilities (ŵr, µ̂max
r ) that

are consistent with the market equilibrium.

iv) Firm size distribution and Pareto shape parameter k

The quantification procedure described thus far has assumed a given value of the shape

parameter k. To estimate k structurally, we proceed as follows. First, given a value of k, we

can compute trade frictions τ̂rs and the wages and cutoffs (ŵr, µ̂max
r ) as described before.

This, together with the internal cutoff md
r computed from data, yields the external cutoffs

m̂x
rs by (7). With that information in hand, we can compute the share ν̂r of surviving firms

in each msa as follows:

ν̂r ≡
N̂

p
r

∑s N̂
p
s

, where N̂p
r = N̂E

r Gr

(
max

s
m̂x

rs

)
=

α

κ1 + κ2
Sr (µ̂

max
r )−1

(
max

s
m̂x

rs

)k

denotes the number of firms operating in msa r. The total effective labor supply Sr

is computed as described above in i). Note that ν̂r is independent of the unobservable

constant scaling α/(κ1 + κ2) that multiplies the number of firms.

Second, we draw a large sample of firms from our calibrated msa-level productivity

distributions Ĝr(m) =
(
m/md

r

)k
. For that sample to be representative, we draw firms

in msa r in proportion to its share ν̂r. For each sampled firm with marginal labor

requirement m in msa r, we can compute its employment as follows:27

employmentr(m) = m∑
s

χ̂rsLsqrs(m) =
m

α
∑
s

χ̂rsLs

[
1 −W

(
e
m

m̂x
rs

)]
,

where χ̂rs = 1 if m < m̂x
rs (the establishment can sell to msa s) and zero otherwise

(the establishment cannot sell to msa s). Since we can identify employment only up to

some positive constant (which depends on the unobservable α) we choose, without loss

of generality, that coefficient such that the average employment per firm in our sample

of establishments matches the observed average employment in the 2007 cbp. Doing so

allows us to readily compare the generated and observed data as we can sort the sampled

firms into the same size bins as those used for the observed firms. We use four standard

employment size bins from the cbp: ι = {1–19, 20–99, 100–499, 500+} employees. Let NSIM
(ι)

and NCBP
(ι)

denote the number of firms in each size bin ι in our sample and in the cbp,

respectively. Let also NSIM and NCBP denote our sample size and the observed number of

establishments in the cbp. Given a value of k, the following statistic is a natural measure

27We exclude the labor used for shipping goods and the sunk initial labor requirement.
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Table 3: Shipment shares and shipping distances – summary for observed and simulated data.

Employment Number of establishments Shipment shares by distance shipped to destination Mean distance shipped
< 100 miles 100–500 miles > 500 miles

Observed Model Observed Model Observed Model Observed Model Observed Model Model (wgt)
All 6,431,884 6,431,886 0.261 0.506 0.288 0.277 0.348 0.217 529.6 71.98 739.8

1–19 5,504,463 5,498,328 0.561 0.984 0.204 0.016 0.194 0.000 327.2 38.5 61.2
20–99 769,705 755,275 0.382 0.835 0.288 0.162 0.276 0.004 423.8 157.9 194.4
100–499 141,510 153,021 0.254 0.420 0.318 0.440 0.342 0.139 520.4 556.0 740.3
500+ 16,206 25,255 0.203 0.079 0.272 0.332 0.388 0.590 588.6 1450.6 1519.1

Notes: Shipping distance and shipping share columns are adapted from calculations by Holmes and Stevens (2012, Table 1) who use confidential Census microdata from the 1997
Commodity Flow Survey. The small difference (of 2 units) between the observed and model total number of establishments is due to rounding in our sampling procedure. The last
column reports distances shipped weighted by establishments’ sales shares in total sales.

of the goodness-of-fit of the simulated establishment-size distribution:

SS(k) =
4

∑
ι=1

[
NSIM

(ι)

NSIM
−
NCBP

(ι)

NCBP

]2

, (F-6)

the value of which depends on the chosen k. It is clear from (F-6) that we can choose

any large sample size NSIM since it would not affect the ratio NSIM
(ι)

/NSIM. Without loss

of generality, we choose the sample size such that the total number of simulated firms

operating matches the observed total number of establishments (NSIM = NCBP). There

are 6,431,884 establishments across our 356 msas in the 2007 cbp, and we sample the same

number of firms from our quantified model.28 We finally choose k by minimizing SS(k).

F.3. Model fit. We now provide details about our model fit with respect to trade frictions.

Figure 10 below is analogous to Figures 1-3 in Hillberry and Hummels (2008) who provide

micro evidence on the spatial structure of firms’ shipping patterns. The figure reports

kernel regressions of various predicted shipment characteristics on distance. Specifically,

we consider that the value of sales from an establishment in city r to city s represents one

shipment characterized by an origin msa, a destination msa, a shipping value, a unit price,

and a shipping distance. We then draw a representative sample of 40,000 establishments

from all msas, which yields a total of 40,000 × 3562 potential shipments.29 Most of these

shipments do of course not occur, and there are only 243,784 positive shipments in our

sample. As in Hillberry and Hummels (2008), we then use a Gaussian kernel with optimal

bandwidth and calculated on 100 points.

We illustrate the results for distances greater than about 10 miles (the minimum in our

sample) and up to slightly below 3,000 miles (the maximum in our sample). Note that

28Doing so allows for a direct comparison of NSIM
(ι)

and NCBP
(ι)

for each ι. The very small differences in the

aggregate numbers in Tables 1 and 3 are due to rounding as the number of firms has to be an integer.
29The sample size is immaterial for our results provided that it is large enough. Given that the number

of shipments is substantially larger than the number of firms, drawing a large sample of 6.5 million firms
as before proves computationally infeasible.
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Figure 10: Micro-fit for establishment-level shipments across msas (kernel regressions on dis-
tance)

we have less variation in distances than Hillberry and Hummels (2008) who use either

3-digit or 5-digit zip code level data instead of msa data. In line with the micro evidence

presented in Hillberry and Hummels (2008), we find that both aggregate shipment values

and the number of shipments predicted by our model fall off very quickly with distance

– becoming very small beyond a threshold of about 200 miles – whereas price per unit

first rises with distance and average shipment values do not display a clear pattern.

Next, we compare shipping shares and shipping distances by establishment size class

predicted by our model, and their empirically observed counterparts. The former are

obtained as follows. First, for each establishment with labor requirement m in msa r, we

compute the value of its sales:

salesr(m) = ∑
s

χrsLsprs(m)qrs(m) =
ŵrm

α
∑
s

χrsLsd
γ̂
rs[W (em/m̂x

rs)
−1 − 1].

We then classify all 6,431,886 establishments in our sample by employment size class, and

disaggregate the value of sales for each establishment by distance shipped to compute
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the shares reported in Table 3.30 The observed patterns in Table 3 come from Holmes and

Stevens (2012) who use confidential cfs microdata from 1997 to compute the shares of

shipping values by distance as well as average shipping distances. As can be seen, our

model can qualitatively reproduce the observed shipment shares, and it can also explain

the tendency that the mean distance shipped increases with establishment size.

Appendix G: Unique solution for Dr and the spatial equilibrium.

Letting Dr = (Ur +Ar)/β, the spatial equilibrium condition can be written as

exp(Dr)

∑
K
s=1 exp(Ds)

=
Lr

∑
K
s=1 Ls

, with D1 = 0. (G-1)

Taking the ratio for regions r and 1, we have

exp(Dr)

exp(D1)
= exp(Dr) =

Lr

L1
, ∀r. (G-2)

Hence, Dr is uniquely determined as Dr = ln(Lr/L1) for all r.

Appendix H: Numerical procedure for counterfactual analyses.

For simplicity, we only explain the procedure for the ‘no urban frictions’ case, as it works

analogously for the ‘no trade frictions’ scenario. First, we let θ̂r = 0 for all r and keep

the initial population distribution fixed. This parameter change induces changes in the

indirect utility levels. Let Ũ0
r denote the new counterfactual utility in msa r, evaluated

at the initial population and θ̂r = 0. Second, we replace Ûr with its new counterfactual

value Ũ0
r to obtain D̃0

r = α̂0 + α̂1Ũ
0
r + α̂2A

o
r + Âu

r . The spatial equilibrium conditions (34)

will then, in general, no longer be satisfied, and hence city sizes must change.

We thus consider the following iterative adjustment procedure to find the new coun-

terfactual spatial equilibrium:

1. Consider the new choice probabilities

P̃
0
r =

exp(D̃0
r)

∑s exp(D̃0
s)

(H-1)

induced by the change in spatial frictions, which yield a new population distribution

L̃0
r = LP̃

0
r for all r = 1,...,K.

30Since we work with shares, the unobservable scaling parameter α does not affect our results.
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2. Given the intial µ̂max
r , the new population distribution L̃0

r for all r = 1,...,K, as

well as the counterfactual value for the commuting technology parameter θ̂r = 0,

the market equilibrium conditions generate new wages and cutoffs {w̃1
r , (m̃d

r)
1}.

Expression (28) then yields new utility levels Ũ1
r .

3. Using D̃1
r = α̂0 + α̂1Ũ

1
r + α̂2A

o
r + Âu

r , the choice probabilities can be updated as in

(H-1), which yields a new population distribution L̃1
r = LP̃

1
r for all r = 1,...,K.

4. We iterate over steps 2–3 until convergence of the population distribution to obtain

{L̃r, w̃r, m̃
d
r} for all r = 1,...,K.

Appendix I: Agglomeration economies.

We compute µ̂max
r in the initial equilibrium. Call it µ̂max,0

r . Assume now that the

population of msa r changes from L0
r to L1

r. The new µ̂max
r is then given by µ̂max,1

r =

c · (L1
r/surfacer)

−kξ · ψ̂max
r . Hence, it is easy to see that, given the initial estimates µ̂max,0

r

we have µ̂max,1
r = µ̂max,0

r

(
L1
r/L0

r

)−kξ
. Thus, we can integrate agglomeration economies in

a straightforward way into our framework by replacing µ̂max
r by µ̂max

r

(
L1
r/L0

r

)−kξ
in the

market equilibrium conditions (F-4) and (F-5) when running the counterfactuals:

µ̂max
r

(
L1
r

L0
r

)−kξ

= ∑
s

L1
sτrs

(
md

s

τss

τrs

ws

wr

)k+1

(I-1)

S1
r

L1
r

1

(md
r)

k+1
= ∑

s

S1
sτrr

(
τsr

τrr

ws

wr

)−k 1

µ̂max
s

(
L1
s

L0
s

)−kξ
. (I-2)

XVIII



Appendix J: Additional results tables.

Table 4: MSA variables and descriptives for the initial equilibrium.

FIPS MSA name State Lr/L µ̂max
r

1/mr θ̂r Ao

r
Âu

r

10180 Abilene TX 0.2268 6.8852 0.8328 0.3925 1.3141 -0.6556
10420 Akron OH 0.9956 17.4352 0.8212 0.2473 -2.2749 1.0062
10500 Albany GA 0.2336 28.3000 0.7182 0.4608 -0.0435 -0.4451
10580 Albany-Schenectady-Troy NY 1.2149 15.6558 0.8722 0.2015 -0.2432 1.1317
10740 Albuquerque NM 1.1889 11.6475 0.8694 0.2232 3.7322 0.9275
10780 Alexandria LA 0.2133 14.7747 0.7632 0.5445 -0.2067 -0.5842
10900 Allentown-Bethlehem-Easton PA-NJ 1.1444 22.9469 0.8678 0.3088 0.3026 0.9760
11020 Altoona PA 0.1787 28.9660 0.6877 0.5223 -0.8600 -0.7009
11100 Amarillo TX 0.3449 7.1209 0.8305 0.3277 1.6304 -0.2289
11180 Ames IA 0.1207 0.7978 0.9817 0.6556 -3.5400 -1.1175
11300 Anderson IN 0.1869 6.1621 0.8247 0.8718 -3.4700 -0.6463
11340 Anderson SC 0.2562 16.3593 0.7543 0.5571 0.7100 -0.4872
11460 Ann Arbor MI 0.4983 2.9986 0.9738 0.2977 -2.1900 0.1721
11500 Anniston-Oxford AL 0.1610 13.1516 0.7430 0.5613 0.2200 -0.9536
11540 Appleton WI 0.3104 9.1579 0.7999 0.3684 -2.7304 -0.0904
11700 Asheville NC 0.5756 31.3698 0.7609 0.3163 2.1012 0.2978
12020 Athens-Clarke County GA 0.2668 15.4460 0.7858 0.4865 -1.0511 -0.3069
12060 Atlanta-Sandy Springs-Marietta GA 7.5152 7.9312 1.0828 0.1174 0.2253 2.7880
12100 Atlantic City-Hammonton NJ 0.3853 4.3460 0.9247 0.3301 -0.0400 -0.2364
12220 Auburn-Opelika AL 0.1858 14.1079 0.7298 0.6358 -0.2400 -0.7240
12260 Augusta-Richmond County GA-SC 0.7524 23.6409 0.8053 0.2920 -0.0192 0.6829
12420 Austin-Round Rock TX 2.2752 5.6156 0.9979 0.1860 1.6141 1.5231
12540 Bakersfield CA 1.1257 8.3291 0.9841 0.2453 4.8400 0.6741
12580 Baltimore-Towson MD 3.7983 12.0935 0.9856 0.1519 -0.3557 2.1378
12620 Bangor ME 0.2118 5.6207 0.8107 0.5506 -0.5200 -0.5302
12700 Barnstable Town MA 0.3163 2.9345 0.8556 0.4759 1.5200 -0.4993
12940 Baton Rouge LA 1.0962 3.7242 1.0012 0.2569 -0.6186 0.9311
12980 Battle Creek MI 0.1945 7.2642 0.8301 0.4982 -2.7300 -0.6453
13020 Bay City MI 0.1531 6.5755 0.7780 0.7995 -1.5300 -0.9167
13140 Beaumont-Port Arthur TX 0.5356 8.3601 0.8672 0.2801 0.9407 0.1728
13380 Bellingham WA 0.2748 1.1589 0.9747 0.4955 5.2600 -0.7955
13460 Bend OR 0.2193 2.3869 0.8996 0.4620 6.1000 -1.0336
13740 Billings MT 0.2131 7.1640 0.7761 0.3735 2.4532 -0.6830
13780 Binghamton NY 0.3508 56.9535 0.6866 0.3785 -0.9289 0.0588
13820 Birmingham-Hoover AL 1.5777 5.8973 1.0014 0.2055 0.5780 1.2351
13900 Bismarck ND 0.1470 12.2467 0.7085 0.4403 -1.6258 -0.7564
13980 Blacksburg-Christiansburg-Radford VA 0.2244 10.1677 0.8144 0.5208 0.5141 -0.5979
14020 Bloomington IN 0.2616 14.7889 0.8140 0.5467 -0.4507 -0.3408
14060 Bloomington-Normal IL 0.2338 2.4247 0.9891 0.3871 -3.5700 -0.4375
14260 Boise City-Nampa ID 0.8367 10.6193 0.8491 0.2399 2.2919 0.6976
14460 Boston-Cambridge-Quincy MA-NH 6.3819 2.7007 1.1870 0.1098 0.1444 2.4955
14500 Boulder CO 0.4132 0.6188 1.1168 0.3373 5.8200 -0.6755
14540 Bowling Green KY 0.1651 12.3177 0.7702 0.5611 -0.2160 -0.8510
14740 Bremerton-Silverdale WA 0.3370 1.2068 1.0491 0.7249 2.6100 -0.6981
14860 Bridgeport-Stamford-Norwalk CT 1.2742 0.0329 1.8325 0.2506 2.2500 -0.2081
15180 Brownsville-Harlingen TX 0.5512 55.3719 0.5912 0.3178 2.4600 0.3482
15260 Brunswick GA 0.1449 13.3594 0.7523 0.6313 1.3530 -1.0593
15380 Buffalo-Niagara Falls NY 1.6061 15.4178 0.8225 0.1730 -0.6399 1.4505
15500 Burlington NC 0.2069 16.5166 0.7377 0.6324 -0.9600 -0.6176
15540 Burlington-South Burlington VT 0.2952 2.2778 0.9027 0.4271 -0.1238 -0.3845
15940 Canton-Massillon OH 0.5797 27.4059 0.7541 0.3382 -1.4796 0.4955
15980 Cape Coral-Fort Myers FL 0.8407 2.0378 0.9635 0.3210 5.2300 0.1676
16220 Casper WY 0.1021 0.0797 1.3629 0.4917 2.4900 -1.9697
16300 Cedar Rapids IA 0.3599 6.3374 0.8708 0.3126 -3.3035 0.0590
16580 Champaign-Urbana IL 0.3145 14.7922 0.8363 0.3848 -4.3383 0.0884
16620 Charleston WV 0.4327 6.2623 0.9251 0.3322 -0.7294 0.0286
16700 Charleston-North Charleston-Summerville SC 0.8970 8.8536 0.8690 0.2777 0.5686 0.7409
16740 Charlotte-Gastonia-Concord NC-SC 2.3512 0.6377 1.3186 0.1561 0.1000 1.3196
16820 Charlottesville VA 0.2744 7.2636 0.9001 0.4341 -0.0364 -0.4526
16860 Chattanooga TN-GA 0.7326 8.8814 0.8897 0.2830 0.2832 0.5342
16940 Cheyenne WY 0.1229 2.1311 0.9176 0.5112 3.0500 -1.4960
16980 Chicago-Naperville-Joliet IL-IN-WI 13.5596 7.6522 1.1400 0.0867 -2.1021 3.4958
17020 Chico CA 0.3115 5.1269 0.8541 0.5341 5.1100 -0.5608
17140 Cincinnati-Middletown OH-KY-IN 3.0376 14.2620 0.9455 0.1438 -0.7916 2.0448
17300 Clarksville TN-KY 0.3727 1.4179 1.0663 0.5319 0.0733 -0.3729
17420 Cleveland TN 0.1582 3.0055 0.9115 0.7279 0.8781 -1.1302
17460 Cleveland-Elyria-Mentor OH 2.9846 7.3233 0.9836 0.1352 -1.4310 1.9676
17660 Coeur d’Alene ID 0.1914 8.3418 0.7161 0.6066 3.5000 -0.9011
17780 College Station-Bryan TX 0.2895 47.5407 0.7123 0.4095 0.8622 -0.2296
17820 Colorado Springs CO 0.8671 7.0613 0.8860 0.2838 5.3867 0.3780
17860 Columbia MO 0.2311 16.7125 0.7364 0.4196 0.1054 -0.4706
17900 Columbia SC 1.0194 22.2288 0.8323 0.2385 0.5017 0.9371
17980 Columbus GA-AL 0.4025 8.7851 0.8541 0.3100 -0.2353 -0.0490

XIX



Table 4 (continued).

FIPS MSA name State Lr/L µ̂max
r

1/mr θ̂r Ao

r
Âu

r

18020 Columbus IN 0.1064 2.9595 0.8788 0.4856 -2.3800 -1.3775
18140 Columbus OH 2.4975 11.5892 0.9535 0.1398 -1.9162 1.8984
18580 Corpus Christi TX 0.5899 5.0627 0.8543 0.2746 2.8551 0.1577
18700 Corvallis OR 0.1159 0.1014 1.2152 0.7211 3.1000 -1.8133
19060 Cumberland MD-WV 0.1414 56.7425 0.6576 0.7389 1.0076 -0.9889
19100 Dallas-Fort Worth-Arlington TX 8.7483 3.2987 1.2029 0.0923 0.6857 2.8079
19140 Dalton GA 0.1908 15.8567 0.7386 0.3339 0.4652 -0.8035
19180 Danville IL 0.1156 13.3585 0.7769 0.7748 -3.2100 -1.0515
19260 Danville VA 0.1506 34.1566 0.7025 0.6804 -0.3000 -0.8908
19340 Davenport-Moline-Rock Island IA-IL 0.5355 8.2798 0.8791 0.2759 -2.6893 0.4377
19380 Dayton OH 1.1895 14.1872 0.8640 0.1988 -2.1260 1.1962
19460 Decatur AL 0.2125 3.5335 0.9214 0.6612 0.7910 -0.8247
19500 Decatur IL 0.1548 2.7975 0.8839 0.4092 -2.7900 -0.9344
19660 Deltona-Daytona Beach-Ormond Beach FL 0.7124 22.2777 0.7462 0.3743 3.4500 0.3884
19740 Denver-Aurora CO 3.4326 2.2957 1.1516 0.1477 4.1942 1.7018
19780 Des Moines-West Des Moines IA 0.7782 2.2274 1.0158 0.2050 -2.0346 0.6429
19820 Detroit-Warren-Livonia MI 6.3602 8.3299 1.0380 0.1089 -1.6704 2.7501
20020 Dothan AL 0.1986 49.5100 0.6561 0.4212 -0.4149 -0.5370
20100 Dover DE 0.2168 1.9540 1.0020 0.5895 -0.0700 -0.8842
20220 Dubuque IA 0.1315 5.7814 0.7869 0.3977 -0.7900 -1.1171
20260 Duluth MN-WI 0.3905 18.6402 0.7996 0.3678 -0.8127 0.1938
20500 Durham NC 0.6828 0.8200 1.1939 0.2552 0.0966 0.1845
20740 Eau Claire WI 0.2247 12.7566 0.7611 0.4796 -2.6695 -0.3365
20940 El Centro CA 0.2304 19.7182 0.7872 0.4081 6.4500 -0.8598
21060 Elizabethtown KY 0.1589 3.7636 0.8891 0.5914 -0.8465 -1.0560
21140 Elkhart-Goshen IN 0.2818 9.4337 0.7923 0.2901 -2.7200 -0.2450
21300 Elmira NY 0.1253 16.7836 0.7000 0.6243 -1.1300 -1.0690
21340 El Paso TX 1.0459 2.2083 0.9271 0.2441 4.4600 0.5021
21500 Erie PA 0.3973 18.7253 0.7395 0.3204 -0.5700 0.0764
21660 Eugene-Springfield OR 0.4891 13.2218 0.7821 0.3197 4.2900 0.0543
21780 Evansville IN-KY 0.4979 8.0962 0.8860 0.2898 -1.6375 0.2844
22020 Fargo ND-MN 0.2739 4.1400 0.8364 0.3067 -4.5908 -0.0388
22140 Farmington NM 0.1743 0.2874 1.2203 0.5778 2.8300 -1.3307
22180 Fayetteville NC 0.4968 0.7242 1.1132 0.3601 -0.9161 -0.1293
22220 Fayetteville-Springdale-Rogers AR-MO 0.6203 13.9314 0.8230 0.2715 0.8552 0.4160
22380 Flagstaff AZ 0.1814 41.4362 0.7797 0.4704 4.9300 -0.8937
22420 Flint MI 0.6189 11.2936 0.8235 0.4086 -1.9000 0.4963
22500 Florence SC 0.2829 14.4850 0.7801 0.4358 -0.2137 -0.3219
22520 Florence-Muscle Shoals AL 0.2038 22.0682 0.7281 0.6420 0.8059 -0.6681
22540 Fond du Lac WI 0.1411 5.1570 0.8386 0.6231 -1.9200 -1.0104
22660 Fort Collins-Loveland CO 0.4094 9.8391 0.8295 0.3890 5.6200 -0.3039
22900 Fort Smith AR-OK 0.4124 21.2879 0.7892 0.3342 1.6228 -0.0124
23020 Fort Walton Beach-Crestview-Destin FL 0.2584 0.3985 1.1155 0.4967 2.0100 -0.9455
23060 Fort Wayne IN 0.5838 20.3049 0.7882 0.2692 -3.0754 0.5929
23420 Fresno CA 1.2803 22.9506 0.8468 0.2171 6.0300 0.8406
23460 Gadsden AL 0.1469 27.7629 0.6669 0.7121 0.9600 -1.0397
23540 Gainesville FL 0.3660 7.8664 0.8210 0.3731 2.0892 -0.2095
23580 Gainesville GA 0.2565 4.7162 0.8383 0.6287 0.9600 -0.6703
24020 Glens Falls NY 0.1835 53.2073 0.6769 0.6495 -0.3136 -0.6305
24140 Goldsboro NC 0.1617 4.7743 0.8234 0.6350 -1.4100 -0.9470
24220 Grand Forks ND-MN 0.1391 7.5933 0.7678 0.4540 -4.2873 -0.6426
24300 Grand Junction CO 0.1980 14.4225 0.7324 0.5205 2.2600 -0.7599
24340 Grand Rapids-Wyoming MI 1.1058 14.8202 0.8746 0.2091 -2.1226 1.1623
24500 Great Falls MT 0.1164 3.0799 0.7954 0.5633 2.2000 -1.3183
24540 Greeley CO 0.3470 11.1165 0.8543 0.6195 1.7000 -0.2422
24580 Green Bay WI 0.4287 7.7067 0.8387 0.2912 -1.3945 0.1489
24660 Greensboro-High Point NC 0.9944 12.2863 0.8764 0.2038 -0.2512 0.8794
24780 Greenville NC 0.2455 8.4053 0.8048 0.4570 -1.9108 -0.3848
24860 Greenville-Mauldin-Easley SC 0.8739 29.0690 0.7805 0.2293 1.3467 0.7392
25060 Gulfport-Biloxi MS 0.3296 3.7705 0.8944 0.4062 0.1310 -0.3076
25180 Hagerstown-Martinsburg MD-WV 0.3718 29.3045 0.7547 0.6204 0.3042 -0.0839
25260 Hanford-Corcoran CA 0.2119 4.4956 0.8817 0.5882 3.4800 -0.9992
25420 Harrisburg-Carlisle PA 0.7529 15.7008 0.8614 0.2220 -0.0004 0.5819
25500 Harrisonburg VA 0.1674 3.5773 0.9210 0.4938 1.2500 -1.0739
25540 Hartford-West Hartford-East Hartford CT 1.6929 0.6312 1.3157 0.1934 1.4760 0.8809
25620 Hattiesburg MS 0.1967 14.5668 0.7576 0.6026 -0.2014 -0.6437
25860 Hickory-Lenoir-Morganton NC 0.5132 43.2249 0.7227 0.3150 1.5055 0.2302
25980 Hinesville-Fort Stewart GA 0.1022 0.0097 1.7152 1.4824 0.8063 -2.4818
26100 Holland-Grand Haven MI 0.3690 4.6934 0.8693 0.4246 -0.0400 -0.1742
26300 Hot Springs AR 0.1372 11.9767 0.7219 0.7581 1.6400 -1.1335
26380 Houma-Bayou Cane-Thibodaux LA 0.2863 2.3685 0.9718 0.4086 0.3192 -0.5579
26420 Houston-Sugar Land-Baytown TX 8.0123 0.7875 1.4273 0.1036 0.8426 2.4951
26580 Huntington-Ashland WV-KY-OH 0.4043 18.9859 0.7879 0.3638 -0.1699 0.0365
26620 Huntsville AL 0.5504 4.8277 0.9105 0.2864 -0.9066 0.2760
26820 Idaho Falls ID 0.1700 14.9270 0.6994 0.6242 1.7783 -0.8152
26900 Indianapolis-Carmel IN 2.4131 6.4117 1.0203 0.1453 -2.5367 1.8239
26980 Iowa City IA 0.2093 3.0028 0.9098 0.4185 -2.9476 -0.5311
27060 Ithaca NY 0.1439 7.6229 0.7882 0.5491 -0.2800 -0.9925
27100 Jackson MI 0.2321 5.6531 0.8683 0.6124 -2.4500 -0.4931
27140 Jackson MS 0.7603 9.3264 0.8735 0.2701 -0.6024 0.6792
27180 Jackson TN 0.1604 8.0248 0.7820 0.4913 -1.6345 -0.8225
27260 Jacksonville FL 1.8519 6.0828 0.9489 0.1930 2.0244 1.3020
27340 Jacksonville NC 0.2317 0.1526 1.2201 0.6158 0.7400 -1.3510
27500 Janesville WI 0.2272 17.1165 0.7514 0.5567 -2.6200 -0.3910
27620 Jefferson City MO 0.2074 21.2752 0.7585 0.4518 0.3296 -0.5943

XX



Table 4 (continued).

FIPS MSA name State Lr/L µ̂max
r

1/mr θ̂r Ao

r
Âu
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27740 Johnson City TN 0.2755 15.4626 0.7613 0.4448 1.5055 -0.4559
27780 Johnstown PA 0.2064 47.5556 0.6679 0.5599 -0.2300 -0.5483
27860 Jonesboro AR 0.1657 19.0537 0.7332 0.4910 -2.2503 -0.6718
27900 Joplin MO 0.2438 33.7469 0.6737 0.4025 -1.3200 -0.2872
28020 Kalamazoo-Portage MI 0.4602 10.9030 0.8445 0.3422 -1.3239 0.2034
28100 Kankakee-Bradley IL 0.1576 66.9572 0.6773 0.7130 -3.3000 -0.6326
28140 Kansas City MO-KS 2.8265 9.2978 0.9719 0.1388 -1.3222 2.0201
28420 Kennewick-Pasco-Richland WA 0.3260 1.7999 0.9386 0.4454 0.7491 -0.3261
28660 Killeen-Temple-Fort Hood TX 0.5268 2.1655 1.0220 0.3488 1.5578 -0.0822
28700 Kingsport-Bristol-Bristol TN-VA 0.4323 20.7011 0.7895 0.3835 0.3622 0.0800
28740 Kingston NY 0.2589 38.4944 0.7621 0.7757 0.7000 -0.4394
28940 Knoxville TN 0.9702 10.7076 0.8633 0.2284 1.0960 0.7774
29020 Kokomo IN 0.1421 4.4454 0.8611 0.4794 -4.4522 -0.9032
29100 La Crosse WI-MN 0.1864 15.4794 0.7197 0.4276 -1.1484 -0.6119
29140 Lafayette IN 0.2736 6.6786 0.8963 0.4269 -3.4119 -0.2047
29180 Lafayette LA 0.3652 0.3936 1.1340 0.3333 -0.9092 -0.4845
29340 Lake Charles LA 0.2732 0.2160 1.2988 0.4158 0.1230 -0.8452
29460 Lakeland-Winter Haven FL 0.8182 41.3451 0.7338 0.3320 3.9800 0.5254
29540 Lancaster PA 0.7096 23.6630 0.8138 0.2773 0.4500 0.4974
29620 Lansing-East Lansing MI 0.6498 8.5097 0.9034 0.3102 -3.3358 0.6664
29700 Laredo TX 0.3319 40.7539 0.6586 0.3942 1.1200 -0.0710
29740 Las Cruces NM 0.2830 14.1950 0.7658 0.4945 4.7700 -0.5204
29820 Las Vegas-Paradise NV 2.6143 5.7538 0.9982 0.1449 4.8600 1.4990
29940 Lawrence KS 0.1616 9.0883 0.7461 0.6893 0.3600 -0.9008
30020 Lawton OK 0.1620 1.7247 0.9186 0.4717 2.2900 -1.2620
30140 Lebanon PA 0.1821 21.6701 0.7301 0.6784 -0.6600 -0.7918
30340 Lewiston-Auburn ME 0.1521 6.7201 0.7348 0.6650 -0.3200 -0.9631
30460 Lexington-Fayette KY 0.6366 7.4339 0.8874 0.2408 -2.0342 0.5128
30620 Lima OH 0.1498 6.3170 0.7978 0.4620 -2.3700 -0.9154
30700 Lincoln NE 0.4160 6.3780 0.8194 0.2917 -2.8183 0.2242
30780 Little Rock-North Little Rock-Conway AR 0.9487 8.6504 0.8992 0.2235 -0.0673 0.8521
30860 Logan UT-ID 0.1724 17.5016 0.6920 0.6184 2.2845 -0.8079
30980 Longview TX 0.2899 3.1890 0.9405 0.4235 1.0970 -0.5565
31020 Longview WA 0.1430 5.9983 0.8127 0.8130 4.5400 -1.3338
31100 Los Angeles-Long Beach-Santa Ana CA 18.3301 4.3306 1.2309 0.0708 10.0712 2.8862
31140 Louisville/Jefferson County KY-IN 1.7564 14.2754 0.9145 0.1752 -0.7687 1.5113
31180 Lubbock TX 0.3804 12.8002 0.7377 0.3094 1.7950 -0.0905
31340 Lynchburg VA 0.3468 21.0406 0.7998 0.4312 0.4764 -0.1345
31420 Macon GA 0.3272 31.5646 0.7452 0.3784 0.9051 -0.1751
31460 Madera CA 0.2086 6.7275 0.8891 0.8123 6.0000 -1.0943
31540 Madison WI 0.7910 4.1702 0.9806 0.2343 -0.4945 0.6170
31700 Manchester-Nashua NH 0.5727 0.1167 1.4554 0.5151 0.0700 -0.3611
31900 Mansfield OH 0.1789 33.4517 0.6730 0.4979 -2.8800 -0.5658
32580 McAllen-Edinburg-Mission TX 1.0115 78.4494 0.6015 0.2479 0.4600 1.0886
32780 Medford OR 0.2837 7.3664 0.7742 0.3762 4.5000 -0.5412
32820 Memphis TN-MS-AR 1.8230 5.5326 0.9880 0.1653 -0.7140 1.4824
32900 Merced CA 0.3495 3.4046 0.9806 0.6661 4.5100 -0.5673
33100 Miami-Fort Lauderdale-Pompano Beach FL 7.7064 5.1829 1.0756 0.1063 5.2315 2.4562
33140 Michigan City-La Porte IN 0.1563 21.9162 0.7391 0.6279 -1.8700 -0.8200
33260 Midland TX 0.1800 0.0677 1.2915 0.3498 1.4200 -1.5392
33340 Milwaukee-Waukesha-West Allis WI 2.1987 5.9256 0.9583 0.1410 -1.7072 1.6745
33460 Minneapolis-St. Paul-Bloomington MN-WI 4.5673 4.2763 1.0673 0.1133 -2.1830 2.4717
33540 Missoula MT 0.1504 2.8725 0.8180 0.4512 1.7400 -1.0344
33660 Mobile AL 0.5757 9.1311 0.8016 0.3067 1.5200 0.2423
33700 Modesto CA 0.7278 6.4113 0.9156 0.4128 7.2100 0.0268
33740 Monroe LA 0.2453 9.2380 0.7899 0.4184 0.3390 -0.5074
33780 Monroe MI 0.2187 2.0031 0.9750 0.9408 -1.4300 -0.7490
33860 Montgomery AL 0.5210 12.6484 0.8354 0.3087 0.4625 0.2498
34060 Morgantown WV 0.1677 4.0622 0.9172 0.6007 -0.5645 -0.9222
34100 Morristown TN 0.1916 17.5432 0.7285 0.6252 1.4428 -0.8147
34580 Mount Vernon-Anacortes WA 0.1657 0.7668 1.0340 0.7719 4.9400 -1.4000
34620 Muncie IN 0.1643 21.3999 0.7009 0.5363 -2.6000 -0.6699
34740 Muskegon-Norton Shores MI 0.2483 10.5424 0.7619 0.4962 -0.4000 -0.4569
34820 Myrtle Beach-North Myrtle Beach-Conway SC 0.3558 14.1273 0.7514 0.3492 0.8800 -0.1685
34900 Napa CA 0.1887 0.7977 1.1158 0.6025 7.5300 -1.5827
34940 Naples-Marco Island FL 0.4496 0.8553 1.0987 0.3608 5.0000 -0.4961
34980 Nashville-Davidson–Murfreesboro–Franklin TN 2.1660 8.8103 0.9775 0.1761 -0.8913 1.6814
35300 New Haven-Milford CT 1.2037 0.3565 1.3393 0.3373 2.5200 0.3149
35380 New Orleans-Metairie-Kenner LA 1.4669 0.3827 1.3139 0.1997 0.3337 0.8483
35620 New York-Northern New Jersey-Long Island NY-NJ-PA 26.7870 2.3289 1.4318 0.0708 0.7740 3.7219
35660 Niles-Benton Harbor MI 0.2272 4.2225 0.8899 0.4910 -0.3000 -0.7112
35980 Norwich-New London CT 0.3806 2.5282 0.9939 0.3834 2.4300 -0.4626
36100 Ocala FL 0.4625 26.5691 0.7385 0.4508 2.5900 0.0392
36140 Ocean City NJ 0.1373 1.0674 0.9729 0.6085 0.0700 -1.4334
36220 Odessa TX 0.1845 1.7012 0.8694 0.4434 2.5000 -1.1410
36260 Ogden-Clearfield UT 0.7379 7.3733 0.8296 0.3433 4.0883 0.3479
36420 Oklahoma City OK 1.6984 8.9525 0.9256 0.1702 0.1199 1.4212
36500 Olympia WA 0.3396 2.6762 0.8761 0.5266 3.3200 -0.5078
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36540 Omaha-Council Bluffs NE-IA 1.1815 4.6939 0.9594 0.1726 -1.6836 1.1351
36740 Orlando-Kissimmee FL 2.8935 9.3348 0.9478 0.1484 3.6792 1.6530
36780 Oshkosh-Neenah WI 0.2308 3.4099 0.8448 0.3631 -1.3700 -0.5731
36980 Owensboro KY 0.1596 5.0431 0.8563 0.4904 -0.9396 -0.9497
37100 Oxnard-Thousand Oaks-Ventura CA 1.1366 1.0892 1.1665 0.3101 11.1700 -0.0195
37340 Palm Bay-Melbourne-Titusville FL 0.7633 7.0268 0.8433 0.3242 3.9300 0.3194
37460 Panama City-Lynn Haven FL 0.2335 3.9684 0.8128 0.4859 2.1500 -0.7925
37620 Parkersburg-Marietta-Vienna WV-OH 0.2287 20.4051 0.7635 0.4824 -0.0229 -0.5302
37700 Pascagoula MS 0.2164 3.3176 0.8870 0.6623 0.1912 -0.7469
37860 Pensacola-Ferry Pass-Brent FL 0.6455 10.5757 0.8059 0.3574 2.0978 0.3456
37900 Peoria IL 0.5285 6.0365 0.9428 0.2890 -2.5036 0.3764
37980 Philadelphia-Camden-Wilmington PA-NJ-DE-MD 8.2969 5.0519 1.1876 0.1023 -0.6748 2.8345
38060 Phoenix-Mesa-Scottsdale AZ 5.9500 13.0025 0.9713 0.1114 4.3136 2.4388
38220 Pine Bluff AR 0.1445 18.4953 0.7485 0.5508 -1.2731 -0.8725
38300 Pittsburgh PA 3.3537 10.5364 0.9970 0.1425 0.4012 2.0415
38340 Pittsfield MA 0.1848 0.0590 1.5480 0.7997 0.8100 -1.5454
38540 Pocatello ID 0.1247 18.4792 0.6806 0.5365 1.9030 -1.1149
38860 Portland-South Portland-Biddeford ME 0.7305 0.3729 1.2367 0.3868 0.9595 0.1744
38900 Portland-Vancouver-Beaverton OR-WA 3.0966 2.5795 1.0900 0.1534 2.8130 1.7475
38940 Port St. Lucie FL 0.5696 4.4925 0.8792 0.4656 5.1827 -0.0890
39100 Poughkeepsie-Newburgh-Middletown NY 0.9537 57.5790 0.7869 0.3958 0.0107 0.8914
39140 Prescott AZ 0.3027 55.8791 0.7200 0.5665 5.2100 -0.4084
39300 Providence-New Bedford-Fall River RI-MA 2.2790 1.8282 1.1372 0.2242 1.2849 1.3694
39340 Provo-Orem UT 0.7023 15.6423 0.8210 0.3378 3.0296 0.5132
39380 Pueblo CO 0.2200 33.0571 0.6806 0.5804 2.1100 -0.5738
39460 Punta Gorda FL 0.2176 4.7904 0.8279 0.6776 5.1000 -1.0319
39540 Racine WI 0.2777 2.6053 0.9046 0.5556 -0.5100 -0.5717
39580 Raleigh-Cary NC 1.4914 4.1913 0.9997 0.2143 -0.6762 1.1883
39660 Rapid City SD 0.1712 10.5487 0.7744 0.4558 -0.3579 -0.7024
39740 Reading PA 0.5722 12.9659 0.8697 0.3670 -0.7300 0.2974
39820 Redding CA 0.2554 5.9179 0.8368 0.4672 5.6900 -0.7588
39900 Reno-Sparks NV 0.5841 6.1702 0.9153 0.2685 6.7038 -0.0559
40060 Richmond VA 1.7268 11.1761 0.9742 0.1846 -0.9568 1.4730
40140 Riverside-San Bernardino-Ontario CA 5.8104 104.4265 0.8632 0.1695 4.3817 2.5456
40220 Roanoke VA 0.4222 22.5390 0.7805 0.3012 0.9380 0.0199
40340 Rochester MN 0.2578 7.1786 0.8243 0.3375 -3.3458 -0.2406
40380 Rochester NY 1.4670 9.7948 0.9057 0.1746 -0.6948 1.3292
40420 Rockford IL 0.5015 16.7848 0.7779 0.3553 -2.7901 0.3797
40580 Rocky Mount NC 0.2073 6.0239 0.8554 0.4688 -1.7475 -0.6464
40660 Rome GA 0.1361 17.3345 0.7232 0.6475 0.3300 -1.0785
40900 Sacramento–Arden-Arcade–Roseville CA 2.9770 4.8303 1.0444 0.1708 5.4091 1.5526
40980 Saginaw-Saginaw Township North MI 0.2880 16.5948 0.7583 0.3910 -3.3300 -0.0839
41060 St. Cloud MN 0.2642 12.5971 0.7626 0.4347 -3.0004 -0.1386
41100 St. George UT 0.1905 23.2639 0.6948 0.4957 2.5700 -0.7385
41140 St. Joseph MO-KS 0.1756 10.6024 0.7922 0.5409 -1.4641 -0.7059
41180 St. Louis MO-IL 3.9914 19.9079 0.9226 0.1312 -0.4277 2.3707
41420 Salem OR 0.5505 9.5532 0.8053 0.3850 3.4215 0.1330
41500 Salinas CA 0.5803 1.2221 1.1497 0.3426 9.2400 -0.5045
41540 Salisbury MD 0.1703 13.6356 0.7665 0.6063 -0.3934 -0.8133
41620 Salt Lake City UT 1.5660 5.5353 0.9849 0.1645 3.3545 1.1401
41660 San Angelo TX 0.1539 11.3999 0.7550 0.5001 1.5945 -0.9984
41700 San Antonio TX 2.8340 12.2914 0.9238 0.1656 2.1287 1.8188
41740 San Diego-Carlsbad-San Marcos CA 4.2351 1.5943 1.2222 0.1332 9.7800 1.4266
41780 Sandusky OH 0.1101 4.8876 0.7919 0.5651 -0.9100 -1.3725
41860 San Francisco-Oakland-Fremont CA 5.9848 0.3531 1.4952 0.1203 7.3604 1.6192
41940 San Jose-Sunnyvale-Santa Clara CA 2.5677 0.1447 1.5878 0.1526 5.5612 0.8121
42020 San Luis Obispo-Paso Robles CA 0.3736 2.4081 1.0086 0.3809 7.8700 -0.6538
42060 Santa Barbara-Santa Maria-Goleta CA 0.5754 0.8643 1.1438 0.2810 10.9700 -0.5659
42100 Santa Cruz-Watsonville CA 0.3584 0.6286 1.1396 0.6419 8.4900 -1.0716
42140 Santa Fe NM 0.2035 0.1706 1.2396 0.6477 3.0200 -1.2264
42220 Santa Rosa-Petaluma CA 0.6612 1.8173 1.0370 0.3670 7.9300 -0.2054
42260 Bradenton-Sarasota-Venice FL 0.9783 8.0869 0.8481 0.2326 4.7123 0.5228
42340 Savannah GA 0.4688 9.2001 0.8077 0.3385 0.7595 0.0822
42540 Scranton–Wilkes-Barre PA 0.7822 62.6807 0.7348 0.2540 0.3497 0.7451
42660 Seattle-Tacoma-Bellevue WA 4.7113 1.1719 1.2432 0.1332 4.6088 1.8885
42680 Sebastian-Vero Beach FL 0.1877 1.2555 0.9359 0.6381 4.7200 -1.2862
43100 Sheboygan WI 0.1630 3.2650 0.8625 0.4794 -0.3700 -1.0073
43300 Sherman-Denison TX 0.1689 20.5729 0.7343 0.7441 0.7800 -0.9061
43340 Shreveport-Bossier City LA 0.5518 0.5061 1.2082 0.2672 0.4263 -0.0654
43580 Sioux City IA-NE-SD 0.2033 6.7056 0.8078 0.3518 -1.6477 -0.5531
43620 Sioux Falls SD 0.3234 0.9176 1.0383 0.3194 -3.1981 -0.1810
43780 South Bend-Mishawaka IN-MI 0.4508 5.9962 0.9017 0.3487 -2.3182 0.1576
43900 Spartanburg SC 0.3923 11.2840 0.7992 0.3525 0.5200 -0.1066
44060 Spokane WA 0.6494 3.8173 0.8466 0.2893 1.3300 0.3953
44100 Springfield IL 0.2941 14.5944 0.7757 0.3680 -2.6215 -0.1150
44140 Springfield MA 0.9719 48.7269 0.7653 0.2673 -0.0296 0.9868
44180 Springfield MO 0.5980 42.4428 0.7162 0.3118 -0.1019 0.5377
44220 Springfield OH 0.2000 20.6803 0.7124 0.6353 -2.0300 -0.5560
44300 State College PA 0.2059 5.6983 0.8980 0.4912 -0.4000 -0.6733
44700 Stockton CA 0.9552 9.1216 0.8869 0.3999 4.7700 0.4709
44940 Sumter SC 0.1480 5.4151 0.8191 0.6486 0.4500 -1.1196
45060 Syracuse NY 0.9187 11.6878 0.8621 0.2285 -1.0878 0.9094
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45220 Tallahassee FL 0.5016 15.0466 0.7887 0.3650 1.8418 0.1910
45300 Tampa-St. Petersburg-Clearwater FL 3.8779 17.9295 0.8662 0.1303 4.0087 1.9781
45460 Terre Haute IN 0.2411 20.4346 0.7766 0.5363 -2.2437 -0.3093
45500 Texarkana TX 0.1911 11.9339 0.7701 0.4806 0.3401 -0.7535
45780 Toledo OH 0.9267 18.0928 0.8282 0.2156 -2.2985 0.9937
45820 Topeka KS 0.3256 22.9574 0.7672 0.3978 -1.2054 -0.0417
45940 Trenton-Ewing NJ 0.5203 1.6191 1.0467 0.3137 -0.8000 -0.1181
46060 Tucson AZ 1.3768 24.1671 0.8204 0.2328 4.0400 1.0965
46140 Tulsa OK 1.2895 5.5205 0.9845 0.1913 0.4138 1.0760
46220 Tuscaloosa AL 0.2922 7.7286 0.8737 0.3964 0.5956 -0.3554
46340 Tyler TX 0.2829 3.5960 0.8892 0.4075 0.7200 -0.5192
46540 Utica-Rome NY 0.4198 76.1905 0.6887 0.3637 -1.6177 0.3300
46660 Valdosta GA 0.1853 33.3007 0.6831 0.4890 0.4906 -0.6906
46700 Vallejo-Fairfield CA 0.5817 2.3184 1.0196 0.5800 5.8800 -0.2641
47020 Victoria TX 0.1620 1.9775 0.9658 0.5431 0.7132 -1.1395
47220 Vineland-Millville-Bridgeton NJ 0.2214 18.9165 0.7773 0.5472 0.3800 -0.6868
47260 Virginia Beach-Norfolk-Newport News VA-NC 2.3615 6.6554 0.9682 0.1646 0.7721 1.5923
47300 Visalia-Porterville CA 0.6001 20.2186 0.8264 0.3309 5.6500 0.1024
47380 Waco TX 0.3248 14.4336 0.7623 0.3399 0.7600 -0.2405
47580 Warner Robins GA 0.1865 2.0361 0.8817 0.5774 -0.0400 -0.9647
47900 Washington-Arlington-Alexandria DC-VA-MD-WV 7.5546 2.1874 1.2875 0.1175 -0.5658 2.6267
47940 Waterloo-Cedar Falls IA 0.2325 4.0817 0.8784 0.3123 -3.6928 -0.3363
48140 Wausau WI 0.1850 8.5505 0.7840 0.4457 -3.3000 -0.5433
48260 Weirton-Steubenville WV-OH 0.1745 12.5561 0.7784 0.6507 -0.4289 -0.8395
48300 Wenatchee WA 0.1526 2.5064 0.9367 0.6415 1.1223 -1.0532
48540 Wheeling WV-OH 0.2071 27.1680 0.7306 0.5045 -0.0508 -0.6087
48620 Wichita KS 0.8491 7.0330 0.8959 0.2070 -0.5189 0.7748
48660 Wichita Falls TX 0.2109 3.6100 0.9231 0.4866 -0.0733 -0.7295
48700 Williamsport PA 0.1663 37.1189 0.7212 0.5359 0.3300 -0.8261
48900 Wilmington NC 0.4833 4.2397 0.9124 0.3689 0.8620 0.0454
49020 Winchester VA-WV 0.1725 8.0065 0.8765 0.8358 0.2643 -0.9449
49180 Winston-Salem NC 0.6594 3.7013 0.9707 0.2738 -0.3283 0.3418
49340 Worcester MA 1.1124 1.7596 1.1348 0.4121 0.2400 0.7079
49420 Yakima WA 0.3318 3.8343 0.9066 0.4012 1.4800 -0.2958
49620 York-Hanover PA 0.5994 20.5103 0.8111 0.4145 -0.5800 0.3817
49660 Youngstown-Warren-Boardman OH-PA 0.8125 37.2035 0.7640 0.2679 -2.2828 0.9348
49700 Yuba City CA 0.2337 1.2193 1.0373 0.9995 3.3821 -1.0057
49740 Yuma AZ 0.2713 45.4247 0.6962 0.3985 4.2400 -0.5236

Notes: See Appendix F.2 for additional details on computations.
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