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Abstract

We examine how interaction choices depend on the interplay of social and physical distance, and

show that agents who are more central in the social network, or are located closer to the geographic

center of interaction, choose higher levels of interactions in equilibrium. As a result, the level of

interactivity in the economy as a whole will rise with the density of links in the social network and

with the degree to which agents are clustered in physical space. When agents can choose geographic

locations, there is a tendency for those who are more central in the social network to locate closer

to the interaction center, leading to a form of endogenous geographic separation based on social

distance. We also show that the market equilibrium is not optimal because of social externalities.

We determine the value of the subsidy to interactions that could support the first-best allocation as

an equilibrium and show that interaction effort and the incentives for clustering are higher under

the subsidy program. Finally, we interpret our model in terms of labor-market networks and show

that the lack of good job contacts would be here a structural consequence of the social isolation of

inner-city neighborhoods.
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1 Introduction

Cities exist because proximity facilitates interactions between economic agents. There are few, if

any, fundamental issues in urban economics that do not hinge in some way on reciprocal action

or influence between or among workers and firms. Thus, the localization of industry arises from

intra-industry knowledge spillovers in Marshall (1890), while the transmission of ideas through local

inter-industry interaction fosters innovation in Jacobs (1969). In fact, the face-to-face interactions

that Jacobs emphasizes are believed to be so critical to cities that Gaspar and Glaeser (1997) (and

others) have asked whether advances in communication and information technology might make

cities obsolete. As Glaeser and Scheinkman (2001, pp. 90) note: “Cities themselves are networks

and the existence, growth, and decline of urban agglomerations depend to a large extent on these

interactions.”

The interactions that underlie the formation of urban areas are also important in other contexts.

Following Romer (1986, 1990), Lucas (1988) views the local interactions that lead to knowledge

spillovers as an important component of the process of endogenous economic growth. Non-market

interactions also figure prominently in contemporary studies of urban crime (Glaeser et al., 1996;

Verdier and Zenou, 2004), earnings and unemployment (Topa, 2001, Calvó-Armengol and Jackson,

2004; Moretti, 2004; Bayer et al., 2008; Zenou, 2009), peer effects in education (de Bartolome, 1990;

Benabou, 1993; Epple and Romano, 1998), local human capital externalities and the persistence

of inequality (Benabou, 1996, and Durlauf, 1996) and civic engagement and prosperity (Putnam,

1993).

While there is broad agreement that nonmarket interactions are essential to cities and impor-

tant for economic performance more broadly, the mechanisms through which local interactions

generate external effects are not well understood. The dominant paradigm lies in models of spatial

interaction, which assume that knowledge, or some other source of increasing returns, arises as a

by-product of the production marketable goods. The level of the externality that is available to

a particular firm or worker depends on its location relative to the source of the external effect —

the spillover is assumed to attenuate with distance — and on the spatial arrangement of economic

activity. There is a rich literature (whose keystones include Beckmann, 1976; Fujita and Ogawa,

1980; and Lucas and Rossi-Hansberg, 2002) that examines how such spatial externalities influence

the location of firms and households, urban density patterns, and productivity. There is also a

substantial empirical literature (including Jaffee et al., 1993; Rosenthal and Strange, 2003, 2008;

and Argazi and Henderson, 2008) demonstrating that knowledge spillovers do in fact attenuate

with distance. Finally, there are more specific models that treat part of the interaction process as

endogenous. For example, Glaeser (1999) examines a model in which random contacts influence
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skill acquisition, while Helsley and Strange (2004) consider a model in which randomly matched

agents choose whether and how to exchange knowledge.

This paper uses recent results from the theory of social networks to open the black box of local

nonmarket interactions. We consider a population of agents who have positions within a social

network and locations in a geographic space. As in Goyal (2007), Jackson (2008) and Jackson and

Zenou (2013), we use the tools of graph theory to model the social network. In this model the

value of interaction effort increases with the efforts of others with whom one has direct links in the

social network. As in Helsley and Strange (2007) and Zenou (2013), all interactions take place at

a point in space, the interaction center.

To be more precise, we consider a geographical model with two locations, the center, where all

interactions occur, and the periphery. All agents are located in either the center or the periphery

(geographical space). Each agent is also located in a social network (social space). We first assume

that locations are exogenous and agents have to decide how often they want to visit the center, given

that there a cost of commuting from the periphery. Each visit results in one interaction, so that

the aggregate number of visits is a measure of aggregate interactivity. We examine how interaction

choices depend on the interplay of social and physical distance and show that there exists a unique

Nash equilibrium in agents’ effort (i.e. number of visits or interactions to the center). We also

show that agents who are more central in the social network, or are located closer to interaction

center, choose higher levels of interactions in equilibrium. As a result, the level of interactivity in

the economy as a whole will rise with the density of links in the social network and with the degree

to which agents are clustered in physical space.

We then look at a subgame-perfect Nash equilibrium where agents first choose their geographic

location and then their social effort. We characterize this equilibrium and give the condition under

which there is a unique subgame-perfect Nash equilibrium. We also show that there is a tendency

for agents who are more central in the social network to locate closer to the interaction center,

leading to a form of endogenous geographic separation based on social distance. Interestingly, the

network structure plays an important role in the determination of equilibrium. In a regular network

where all agents have the same position in the network (like e.g. the complete or the circle network),

there can only be two possible equilibria: either all agents live in the center or in the periphery.

On the contrary, in a star network, apart from these two equilibria, there can be a core-periphery

equilibrium where the star agent resides in the center while all the peripheral agents live in the

periphery. More generally, if we define the type of an agent by her position in the network, we

show that the number of equilibria is equal to the number of types plus one and we can give the

condition under which each equilibrium exists and is unique.

Furthermore, we show that the market equilibrium is not optimal because of social externalities.
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We determine the value of the subsidy to interactions that could support the first-best allocation as

an equilibrium, and show that interaction effort and the incentives for clustering are higher under

the subsidy program. We also look at a policy that subsidizes location in the geographical space

and discuss the possibility of subsidizing both social interactions and geographical locations.

Finally, to better understand the policy implications of the model, we interpret the network as

a labor-market network so that each visit (or interaction) to the center leads to an exchange of job

information. If we further assume that the more central positions in the network are occupied by

white workers while black workers are located in less central positions, our model can show that

the less central agents in the network (i.e. black workers who do not have an old-boy network)

will reside further away from jobs (i.e. the center) than more central agents (whites) and thus

will experience adverse labor-market outcomes. This provides a new explanation of the so-called

“spatial mismatch hypothesis” where distance to jobs is put forward as the main culprit for the

adverse labor-market outcomes of minority workers. We provide here a new mechanism by putting

forward the role of the social space (social mismatch) on the geographical space (spatial mismatch).

The paper is organized as follows. The next section highlights our contribution to the literature.

Section 3 presents the basic model of interaction with social and physical distance, and solves for

equilibrium interaction patterns. Section 4 extends the model to consider location choice and shows

that agents who are more central in the social network will tend to locate closer to the center of

interactions, ceteris paribus. Section 5 considers efficient interaction patterns and policies that will

support the optimum as an equilibrium. Section 6 discusses the implications of our model in terms

of black and white workers’ outcomes when each visit to the center leads to an exchange of job

information. Finally, Section 7 discusses our results and proposes some extensions.

2 Related literature

Our paper lies at the intersection of two different literatures. We would like to expose them in

order to highlight our contribution.

Urban economics and economics of agglomeration There is an important literature

in urban economics looking at how interactions between agents create agglomeration and city

centers.1 However, as stated in the Introduction, in most of these models, nonmarket interactions

are basically a black box. There are recent papers where the nonmarket interactions are modeled in

a more satisfactory way. Mossay and Picard (2011, 2012)2 propose interesting models in which each

1See Fujita and Thisse (2002) for a literature review.
2See also Picard and Tabuchi (2010).
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agent visits other agents so as to benefit from face-to-face communication and, as in our model, each

trip involves a cost which is proportional to distance. The models provide an interesting discussion

of spatial issues in terms of use of residential space and formation of neighborhoods and show

under which condition different types of city structure emerge. Their models are different to ours

since the network and its structure are not explicitly modeled. Furthermore, Ghiglino and Nocco

(2012) extend the standard economic geography model a la Krugman to incorporate conspicuous

consumption. In their model, agents are sensitive to comparisons within their own type group,

which depends on the network structure. They show that agglomeration patterns depend on the

network structure. Their model is quite different to ours and the networks considered are very

specific (complete, segregated or star networks).

Peer effects and social networks There is a growing interest in theoretical models of peer

effects and social networks (see e.g. Akerlof, 1997; Glaeser et al., 1996; Ballester et al., 2006;

Calvó-Armengol et al., 2009). However, there are very few papers that consider the interaction

of social and physical distance. Brueckner, Thisse and Zenou (2002), Helsley and Strange (2007),

Brueckner and Largey (2008) and Zenou (2013) are exceptions but, in these models, the social

network is not explicitly modeled.3 Schelling (1971) is clearly a seminal reference when discussing

social preferences and location. Shelling’s model shows that, even a mild preference for interacting

with people from the same community can lead to large differences in terms of location decision.

Indeed, his results suggest that total segregation persists even if most of the population is tolerant

about heterogeneous neighborhood composition.4 Our model is conceptually very different from

models a la Schelling since there is an explicit network structure and agents decide how much effort

to exert in interacting with others. Finally, Johnson and Gilles (2000) extend the Jackson and

Wolinsky (1996)’s connection model by introducing a cost of creating a link which is proportional

to the geographical distance between two individuals. The model is very different since there is no

location choice and no effort decision.5

To the best of our knowledge, our paper is the first one to provide a model that interacts the

location of an agent in a social network and her geographical location.6 It is also conceptually very

3See Ioannides (2012, Chap. 5) who reviews the literature on social interactions and urban economics.
4This framework has been modified and extended in different directions, exploring, in particular, the stability and

robustness of this extreme outcome (see, for example, Zhang, 2004 or Grauwin et al., 2012).
5Brueckner (2006) proposes a model where individuals in a friendship network decide how much effort to exert in

their relationships. The model is quite different since there is no location choice and the network is stochastically

formed.
6Recent empirical researches have shown that the link between these two spaces is quite strong, especially within

community groups (see e.g. Bayer et al., 2008; Hellerstein et al., 2011 and Patacchini and Zenou, 2012).
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different from models of social preferences and location a la Schelling. Thus, the paper provides a

first stab at a very important question in both social networks and urban economics.

3 Equilibrium interactions with exogenous location

3.1 The model

3.1.1 Locations and the social network

There are  agents in the economy. The geography consists of two locations, a center, where all

interactions occur, and a periphery. All agents are located in either the center or the periphery.

The distance between the center and the periphery is normalized to one. Thus, letting  represent

the location of agent , defined as her distance from the interaction center, we have  ∈ {0 1}∀ =
1 2  . In this section we assume that locations are exogenous; location choice is considered in

Section 4.

The social space is a network. A network  is a set of ex ante identical agents  = {1     },
 ≥ 2, and a set of links or direct connections between them. These connections influence the

benefit that an agent receives from interactions, in a manner that is made precise below. The

adjacency matrix G = [ ] keeps track of the direct connections in the network. By definition,

agents  and  are directly connected if and only if  = 1; otherwise,  = 0. We assume that if

 = 1, then  = 1, so the network is undirected.7 By convention,  = 0. G is thus a square

(0 1) symmetric matrix with zeros on its diagonal. The neighbors of an agent  in network  are

denoted by N. We have: N = {all | = 1}. The degree of a node  is the number of neighbors
that  has in the network, so that  = |N|.

3.1.2 Preferences

Consumers derive utility from a numeraire good  and interactions with others according to the

transferrable utility function

(v−i) =  + (v−i) (1)

where  is the number of visits (effort) that agent  makes to the center, v−i is the corresponding

vector of visits for the other −1 agents, and (v−i) is the subutility function of interactions.
Thus, utility depends on the visit choice of agent , the visit choices of other agents and on agent

’s position in the social network . We imagine that each visit results in one interaction, so that

7Our model can be extended to allow for directed networks (i.e. non-symmetric relationships) and weighted links

in a straightforward way.
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the aggregate number of visits is a measure of aggregate interactivity. For tractability, we assume

that the subutility function takes the linear quadratic form

(v−i) =  − 1
2
2 + 

X
=1

  (2)

where   0 and   0 (the roles of these parameters will become clear shortly). Equation (2)

imposes additional structure on the interdependence between agents; under (2) the utility of agent

 depends on her own visit choice and on the visit choices of the agents with whom she is directly

connected in the network, i.e., those for whom  = 1.

Agents located in the periphery must travel to the center to interact with others. Letting 

represent income and  represent marginal transport cost, budget balance implies that expenditure

on the numeraire is

 =  −  (3)

Using this expression to substitute for  in (1), and using (2), gives

(v−i) =  +  − 1
2
2 + 

X
=1

  (4)

where  = − . We assume   , so that   0, ∀ ∈ {0 1} and hence ∀ = 1 2 . Note
from (4) that utility is concave in own visits, 

2
2

= −1. Note also that the marginal utility of  is
increasing in the visits of another with whom  is directly connected, 2


= , for  = 1. Thus,

 and  are strategic complements from ’s perspective when  = 1. Each agent  chooses  to

maximize (4) taking the structure of the network and the visit choices of other agents as given.

Before analyzing this game, we introduce a useful measure of an agent’s importance in the social

network.

3.1.3 The Katz-Bonacich network centrality measure

There are many ways to measure the importance or centrality of an agent in a social network. For

example, degree centrality measures importance by the number of direct connections that an agent

has with all others, while closeness centrality measures importance by the average distance (in

terms of links in the network) between an agent and all others. See Wasserman and Faust (1994)

and Jackson (2008) for discussions of these, and many other, characteristics of social and economic

networks. The Katz-Bonacich centrality measure (due to Katz, 1953, and Bonacich, 1987), which

has proven to be extremely useful in game theoretic applications (Ballester et al., 2006), “presumes

that the power or prestige of a node is simply a weighted sum of the walks that emanate from it”

(Jackson, 2008, pp. 41).
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To formalize this measure, let G be the th power of G, with elements 
[]
 , where  is an

integer. The matrix G keeps track of the indirect connections in the network: 
[]
 ≥ 0 gives the

number of walks or paths of length  ≥ 1 from  to  in the network . In particular, G0 = I.

Consider the matrix M =
P+∞

=0 
G. The elements of this matrix,  =

P+∞
=0 


[]
 , count the

number of walks of all lengths from  to  in the network , where walks of length  are weighted

by . These expressions are well-defined for small enough values of .8 The parameter  is a decay

parameter that scales down the relative weight of longer walks. Note that, whenM is well-defined,

one can writeM−GM = I and henceM = [I−G]−1.9 The Katz-Bonacich centrality of agent ,
denoted, ( ) is equal to the sum of the elements of the th row of M:

 ( ) =

X
=1

 =

X
=1

+∞X
=0


[]
  (5)

The Katz-Bonacich centrality of any agent is zero when the network is empty. It is also zero for

 = 0, and is increasing and convex in  for   0. For future reference, it is convenient to note

that the (× 1) vector of Katz-Bonacich centralities can be written in matrix form as

b( ) =M1 = [I− G]−1 1 (6)

where 1 is the −dimensional vector of ones. We can also define the weighted Katz-Bonacich
centrality of agent  as:

( ) =

X
=1

+∞X
=0


[]
   (7)

8The matrix power series
+∞

=0 
G converges if and only if

kGk   = lim
→∞

inf
−1 = 1



where  is the radius of convergence and kGk is the “norm” of the matrix G. This norm is generally taken to be

the “spectral radius” of G, written (G) = max ||, where  is an eigenvalue of G. Thus, the matrix power series
converges, and M is well-defined, for (G)  1. Convergence of the matrix power series constructively establishes

the existence of the inverse [I− G]
−1
, where I is the identity matrix. The condition (G)  1 relates the payoff

function to the network topology. When this condition holds, the local payoff interdependence  is lower than the

inverse of the spectral radius of G, which is a measure of connectivity in the network. When this condition does not

hold, existence of equilibrium becomes an issue because the strategy space is unbounded (see Ballester et al., 2006).
9 Indeed, expanding the power series gives

M = I+ G+
2
G
2
+ 

which implies,

GM = G+ 
2
G
2
+

3
G
3
+ 

Subtracting the latter from the former gives M−GM = I.
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where the weight attached to the walks from  to  is  . For any −dimensional vector α, the
matrix equivalent of (7) is given by:

b( ) =Mα = [I− G]−1α

3.2 Nash equilibrium visits and interactivity

The first-order condition for a maximum of (4) with respect to  gives the best-response function

∗ =  + 

X
=1


∗
 ∀ = 1 2  (8)

Thus, due to the linear quadratic form in (2), the optimal visit choice of agent  is a linear function

of the visit choices of the agents to whom  is directly connected in the network. In matrix form

the system in (8) becomes v = α+ Gv, where α is the (× 1) vector of the ’s. Solving for v
and using (6) gives the Nash equilibrium visit vector v∗:

v∗ = [I−G]−1α =Mα (9)

The Nash equilibrium visit choice of agent  is

∗ (x−i ) =
X

=1

 =

X
=1

+∞X
=0


[]
   (10)

where x−i is the vector of locations for the other −1 agents. The expression on the right in (10) is
the weighted Katz-Bonacich centrality of agent  defined in (7) above. This analysis is summarized

by the following proposition where (G) is the spectral radius of the adjacency matrix G:10

Proposition 1 (Equilibrium visits) For any network  and for sufficiently small , i.e. (G) 

1, there exists a unique, interior Nash equilibrium in visit choices in which the number of visits by

any agent  equals her weighted Katz-Bonacich centrality,

∗ (x−i ) = ( ) (11)

The Nash equilibrium number of visits ∗ (x−i ) depends on position in the social network

and geographic location. Proposition 1 implies that an agent who is more central in the social net-

work, as measured by her Katz-Bonacich centrality, will make more visits to the interaction center

in equilibrium. Intuitively, agents who are better connected have more to gain from interacting

with others and so exert higher interaction effort for any vector of geographic locations.

10All proofs can be found in the Appendix.
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We would like to see how the equilibrium number of visits ∗ (x−i ) varies with the different

parameters of the model. It is straightforward to verify that ∗ (x−i ) increases with  and

decreases with commuting costs . It is also straighforward to analyze the relationship between

∗ (x−i ) and the intensity of social interactions , which is also a measure of complementarity

in the network.11 We have the following the result.

Proposition 2 (Intensity of social interactions) Assume (G)  1. Then, for any net-

work, an increase in the intensity of social interactions  raises the equilibrium number of visits

∗ (x−i ) by any agent .

When there are a lot of synergies from social interactions, each agent finds it desirable to visit

the center more because the benefits are higher. The same intuition prevails for . On the contrary,

when commuting costs increase, then the number of visits to the center decreases.

Let us now analyze aggregate effects. From (10), ∗ (x−i ) is non-increasing in ,

∗ (1x−i )− ∗ (0x−i ) = − ≤ 0 (12)

since M is a non-negative matrix. Any agent for whom   0 will make more interaction

visits, or exert higher interaction effort, when located in the center rather than the periphery. In

fact, reflecting the complementarity in visit choices, the equilibrium visit choice of agent  is non-

increasing in the distance of any agent from the interaction center. Letting x−ik be the vector of

locations for all agents except  and , so x−i = (x−ik), we have

∗ ( (1x−ik)  )− ∗ ( (0x−ik)  ) = − ≤ 0 ∀ 6=  (13)

Let  ∗() represent the equilibrium aggregate level of visits, or, for simplicity, the equilibrium

aggregate level of interactions. From (10) and (7), we have

 ∗() =
=X
=1

∗ (x−i ) =
=X
=1

( ) (14)

Consider an alternative social network 0, 0 6=  such that for all , , 0 = 1 if  = 1. It is

conventional to refer to  and 0 as nested networks, and to denote their relationship as  ⊂ 0.

As discussed in Ballester et al. (2006), the network 0 has a denser structure of network links:

some agents who are not directly connected in  are directly connected in 0. Then, given the
11Recall that

2


=  for  = 1

10



complementarities in the network, it must be the case that equilibrium visits are weakly larger

for all agents, which implies  ∗(0)   ∗(). Similarly, (12) and (13) imply that  ∗() is non-

increasing in the distance of any agent from the interaction center. Thus, the more compact is

the spatial arrangement of agents, the greater is the level of aggregate interactions for any network

. Furthemore, because of local complementarities, denser networks also increase each bilateral

interaction between two individuals. This analysis is summarized in the following proposition:

Proposition 3 (Aggregate interactions) For sufficiently small , aggregate interactions as well

as the entire vector of individual interactions increase with the density of network links and decrease

with the distance of any agent from the interaction center.

This is an interesting result since it analyzes the relationship between network structure and

aggregate interactions as well as individual interactions. It says, for example, that a star-shaped

network will have fewer social interactions than a complete network because agents enjoy fewer

local complementarities in the former than in the latter.

3.3 Example

To illustrate the previous results, consider the following star-shaped social network  with three

agents (i.e.  = 3), where agent 1 holds a central position whereas agents 2 and 3 are peripherals:

t t t
2 1 3

Figure 1: A star network with 3 individuals

The adjacency matrix for this social network is given by:

G =

⎡⎢⎢⎣
0 1 1

1 0 0

1 0 0

⎤⎥⎥⎦ 
Its is a straightforward algebra exercise to compute the powers of this matrix, which are:

G2 =

⎡⎢⎢⎣
2 0 0

0 2−1 2−1

0 2−1 2−1

⎤⎥⎥⎦ and G2+1 =

⎡⎢⎢⎣
0 2 2

2 0 0

2 0 0

⎤⎥⎥⎦   ≥ 1

11



For instance, we deduce from G3 that there are exactly two walks of length three between agents 1

and 2, namely, 12→ 21→ 12 and 12→ 23→ 32. Obviously, there is no walk of this length (and,

in general, of odd length) from any agent to herself. It is easily verified that:

M = [I− G]−1 =
1

1− 22

⎡⎢⎢⎣
1  

 1− 2 2

 2 1− 2

⎤⎥⎥⎦
We can now compute the agents’ centrality measures using (11). We obtain:12⎡⎢⎢⎣

∗1
∗2
∗3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

1 ( )

2 ( )

3 ( )

⎤⎥⎥⎦ = 1

1− 22

⎡⎢⎢⎣
1 +  (2 + 3)

1 +
¡
1− 2

¢
2 + 23

1 + 22 +
¡
1− 2

¢
3

⎤⎥⎥⎦
Suppose now that, for exogenous reasons, individual 1 resides in the center, i.e., 1 = 0 while

individuals 2 and 3 live at the periphery, i.e., 2 = 3 = 1. This implies that 1 =  and

2 = 3 = −   0. Thus, we now have:⎡⎢⎢⎣
∗1
∗2
∗3

⎤⎥⎥⎦ = 1

1− 22

⎡⎢⎢⎣
+ 2 (− )

 (1 + )− 

 (1 + )− 

⎤⎥⎥⎦ (15)

It is easily verified that:13

∗1  ∗2 = ∗3

In that case, the effort exerted by agent 1, the most central player, is the highest one. As a result,

agents located closer to the center have higher centrality ( ) and thus higher effort (i.e. they

visit more often the center to interact with other people). Note that, in equilibrium, each agent ’s

effort is affected by the location of all other agents in the network but distant neighbors have less

impact due to the decay factor  in the Katz-Bonacich centrality.

The equilibrium aggregate level of interactions in a network is then given by:

 ∗() =
=X
=1

∗ =
(3 + 4)− 2 (1 + ) ¡

1− 22¢
Let us now illustrate Proposition 3. Consider the network described in Figure 1 and add one link

between individuals 2 and 3 so that we switch from a star-shaped network to a complete one.

12Note that this centrality measures are only well-defined when   1
√
2 or 2  12 (condition on the largest

eigenvalue).
13Observe that this inequality is true because we have assumed that   1

√
2 (this guarantees that the Katz-

Bonacich centrality is well-defined) and   .
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Suppose that we have the same geographical configuration, i.e. individual 1 resides in the center

while individuals 2 and 3 lives at the periphery, i.e., 1 =  and 2 = 3 = −   0.14 We easily

obtain:15 ⎡⎢⎢⎣
∗1
∗2
∗3

⎤⎥⎥⎦ = 1¡
1−  − 22¢

⎡⎢⎢⎣
 (1 + )− 2
 (1 + )− 

 (1 + )− 

⎤⎥⎥⎦
Not surprisingly, given that   05, ∗1  ∗2 = ∗3 since all individuals have the same position in

the social network but individual 1 has an “advantage” in the geographical space by locating in

the center. Total activity in this network, denoted by [+23], is then equal to:

 ∗([+23]) =
(3− 2) (1 + )

1− 22 − 
  ∗()

This confirms the fact that denser networks (complete networks) generate more aggregate and

bilateral activities than less dense networks (star networks).

4 Location choice

4.1 Model and subgame-perfect equilibrium

This section extends our model of social networks and interaction to allow agents to choose between

locating in the center and the periphery. We suppose that there is an exogenous cost differential

  0 associated with the central location. Assuming that the center has more economic activity

generally, this cost differential might arise from congestion effects or reflect a difference in location

land rent from competition among other activities for center locations. Agents choose locations to

maximize net utility, that is, utility from interactions minus the exogenous location cost, taking

the visits of other agents as given.

The timing is now as follows. In the first stage, agents decide where to locate ( = 0 or

 = 1) while, in the second stage they decide their optimal effort in the network. Thus, we look at

subgame-perfect equilibria. As usual, we solve the model backward. The second stage has already

been solved and Proposition 1 showed that, if (G)  1, the exists a unique effort level for each

individual  given by: ∗ (x−i ) = ( ). Using the best-response function (8), we can write

the equilibrium utility level of agent  as:

14This is just for the sake of illustrating Proposition 3. We will see below that such an equilibrium cannot exist in

a complete network.
15 It is easily verified that the condition on the largest eigenvalue is now given by:   12.
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∗ (
∗
 v

∗
−i) =  +

1

2
[∗ (x−i )]

2
=  +

1

2
[( )]

2 (16)

where ∗ (0x−i ) and 
∗
 (1x−i ) are the equilibrium effort of individual  if she lives in the center

and in the periphery, respectively. As a result, the equilibrium utility of each agent  is equal to

her income plus half of her equilibrium effort squared. We need now to solve the first stage of

the game, i.e. the location choice. What is complicated here is that the weighted Katz-Bonacich

centralities are endogenous equilibrium objects and thus one needs to know the equilibrium location

configuration in order to build the equilibrium.

Let us now characterize the equilibrium.

Define C as the set of central agents (i.e. all individuals who live in the center) and P as the

set of peripheral agents (i.e. all individuals who live in the periphery). If individual  resides in the

center ( = 0), her equilibrium utility is equal to:16

∗ (
∗
 (0x−i )v

∗
−i) =  +

1

2

⎡⎣ X
∈C−{}

+∞X
=0


[]
 +

X
∈P−{}

+∞X
=0


[]
 (− ) +

+∞X
=0


[]
 

⎤⎦2 − 

We have here decomposed the Katz-Bonacich centrality ( ) into self-loops ( =
P+∞

=0 

[]
 )

and non self-loops ( =
P+∞

=0 

[]
 ) and give different weights to these paths depending if agents

live in the center (weight ) or in the periphery (weight − ). Similarly, if individual  resides in

the periphery ( = 1), her equilibrium utility is equal to:

∗ (
∗
 (1x−i )v

∗
−i) = +

1

2

⎡⎣ X
∈C−{}

+∞X
=0


[]
 +

X
∈P−{}

+∞X
=0


[]
 (− ) +

+∞X
=0


[]
 (− )

⎤⎦2

As a result, individual  will live at  = 0 if and only if ∗ (
∗
 (0x−i )v

∗
−i)  ∗ (

∗
 (1x−i )v

∗
−i).

Denote by

[−] ( ) ≡ 

X
=1 6=

 = 
X

∈C−{}
 + 

X
∈P−{}



the weighted Katz-Bonacich centrality without self-loops and


(2)
 ≡

−
³

[−]
 ( )− 

P
∈P−{}

´
+

r³

[−]
 ( )− 

P
∈P−{}

´2
+ 2


(2− )

2− 

We have the following result:

16Observe that C−{} and P−{} denotes respectively the set of all central agents but  and the set of all peripheral
agents but .
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Proposition 4 (Characterization of equilibrium locations) Assume (G)  1. Then all

individuals  with a   
(2)
 will reside in the center of the city (i.e.  = 0) while all individuals

 with a   
(2)
 will live at the periphery of the city (i.e.  = 1). In other words, in equilibrium,

C = {all s for which   
(2)
 }

and

P = {all s for which   
(2)
 }

Figure 2 displays the equilibrium characterization of Proposition 4.

mii
(2)

(mii) – 2c

0

Center

Periphery

mii

– 2c

Figure 2: Characterization of equilibrium locations

Proposition 4 expresses the salient relationship between position in the social network and

geographic location. Remember that  =
P+∞

=0 

[]
 counts the number of paths in  starting

15



from  and ending at  (self-loops) where paths of length  are weighted by , and  6= =P+∞
=0 


[]
 counts the number of paths in  starting from  and ending at  6=  (non self-loops)

where paths of length  are weighted by . Remember also that the Katz-Bonacich centrality is:

 ( ) =  +
P

=1 6= while the weighted Katz-Bonacich centrality is given by:

( ) =  + 
X
∈C

 + (− )
X
∈P



where  =  if  lives in the center and  =  −  if  lives in the periphery. As a result, 

captures the centrality in the network of each individual . If participation in a social network

involves costly transportation, then agents who occupy more central positions in the social network

will have the most to gain from locating at the interaction center. In our model with two locations,

in equilibrium agents who are most central in the social network (higher ) will locate at the

interaction center, while agents who are less central in the social network (lower ) locate in the

periphery. There is, in effect, endogenous geographic separation by position in the social network.

We would now like to deal with the issues of existence and uniqueness of the subgame-perfect

equilibrium location-effort. For that, consider any network with  agents. Rank agents in the

network such that we start with agent 1 who has the highest centrality in the network, i.e. 11 =

max, then we have agent 2 who has the next highest centrality, etc. until we reach agent 

who has the lowest centrality in the network, i.e.  = min. Define each agent by her type,

where the type of an agent is her Katz-Bonacich centrality (or her ). Since two agents can have

the same centrality, there are  ≤  types in each network of  agents. Denote by

Φ() ≡  (2− ) ()
2 + 2

⎛⎝
X

=−{}


⎞⎠ (17)

where all the s and s are defined by the cells of the matrix M = [I− G]−1. We have the

following result where “equilibrium” means “Subgame-Perfect Nash equilibrium”:

Proposition 5 (Existence and uniqueness of equilibrium locations) Assume (G)  1 and

consider any network of  agents with  ≤  types. In any equilibrium, two agents with the

same Katz-Bonacich centrality have to reside in the same part of the city and agents with higher

Katz-Bonacich centrality cannot reside further away from the center than agents with lower Katz-

Bonacich centrality. Moreover, the number of equilibria is equal to the number of types of agents

plus one, i.e.  + 1.

If the number of types is the same as the number of agents, we can characterize the locational

(subgame-perfect) equilibria as follows:
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() If

2  ΦC()

there exists a unique Central equilibrium where all agents live in the center, i.e. C =  and

P = ∅.

() If

ΦC()  2  Φ
C(−1−1)− 22−1−1−1

there exists a unique Core-Periphery equilibrium such that C =  − {} and P = {}.

() If

ΦC(−1−1)− 22−1−1−1  2  ΦC(−2−2)− 22 (−2−1 +−2)−2−2

there exists a unique Core-Periphery equilibrium such that C =  − { − 1 } and P =

{− 1 }.

() If

ΦC(−2−2)−22 (−2−1 +−2)−2−2  2  ΦC(−3−3)−22
⎛⎝ X

∈P
−3

⎞⎠−3−3

there exists a unique Core-Periphery equilibrium such that C =  − { − 2  − 1 } and
P =  − {− 2 − 1 }.

() etc. until we arrive at agent 1 who has the highest centrality. Then,

() If

ΦC(11)− 22
⎛⎝ X

∈P−{1}
1

⎞⎠11  2

there exists a unique Peripheral equilibrium where all agents live in the periphery, i.e. C = ∅
and P =  .

If the number of types is less than the number of agents, then each step described above has to

be made by type and not by individual so that each subscript refers to types and not to individuals.

This proposition totally characterizes the (subgame-perfect Nash) equilibrium locations and

shows that there always exists a unique equilibrium within each interval. Interestingly, we could

characterize everything in terms of ΦC(), which is the “incentive function” when there is a

17



Central equilibrium, i.e. when all agents reside in the center of the city. Indeed, when, for all ,

ΦC()  2, all individuals live in the center and we have a unique Central equilibrium. Then,

when we start to move people from the center to the periphery, we need to change the weight in the

Katz-Bonacich centrality from  (when living in the center) to −  (when living in the periphery).
This corresponds to the terms of both the right-hand side and left-hand side of each inequality

since this is what is needed to be compensated for the agents living at the periphery of the city

compared to the Central equilibrium where these agents lived in the center. Interestingly, there

cannot be multiple equilibria within the same set of parameters.

Let us now perform a comparative statics exercise of the key parameters of the model.

Proposition 6 (Spatial concentration in the center) Assume (G)  1. A decrease in the

cost  of locating in the center, a decrease in marginal transport cost , or an increase in the intensity

of social interactions , will lead to more spatial concentration of agents in the center.

Proposition 6 states that a decrease in  will increase the number of agents living in the cen-

ter, which leads to more spatial concentration at the interaction center. An increase in marginal

transport cost , will have a similar impact. Finally, an increase in , the intensity of social inter-

actions, will also lead to more spatial concentration in the center. Indeed, when  increases, social

interactions become more valuable and, because it is costly to commute to the center from the

periphery, the spatial concentration at the interaction center increases. Therefore, this proposition

allows us to analyze how endogenous spatial location affects the contribution equilibrium efforts.

From Proposition 3, we know that aggregate interactions decrease with the distance of any agent

from the interaction center. As a result, when, for example,  decreases, more agent choose to

live in the center, which, in turn, increases social interactions in the network and thus equilibrium

efforts. It is thus interesting here to see how the geographical space affects the social space.

4.2 Examples

4.2.1 Star-shaped networks: two types of agents

Let us return to the network described in Figure 1. Remember from Section 3.3, that, if   1
√
2,

then

M = [I− G]−1 =
1

1− 22

⎡⎢⎢⎣
1  

 1− 2 2

 2 1− 2

⎤⎥⎥⎦ (18)
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In particular, this means that,

11 =
1

1− 22 and 22 = 33 =
1− 2

1− 22
We have the following result.

Proposition 7 (Locational equilibrium for a star-shaped network) Consider the star-shaped

network depicted in Figure 1 and assume that   1
√
2 = 0707.

() If

 
 (1− ) (1 + )2 [2− (1− ) ]

2
¡
1− 22¢2 (19)

there exists a unique Central equilibrium where all agents live in the center, i.e. C = {1 2 3}
and P = ∅.

() If

 (1− ) (1 + )2 [2− (1− ) ]

2
¡
1− 22¢2   

 [2 (1 + 2)−  (1 + 4)]

2
¡
1− 22¢2 (20)

there exists a unique Core-Periphery equilibrium where the star agent lives in the center while

the peripheral agents reside in the periphery, i.e. C = {1} and P = {2 3}.

() If

 
 [2 (1 + 2)−  (1 + 4)]

2
¡
1− 22¢2 (21)

there exists a unique Peripheral equilibrium where all agents live in the periphery, i.e. C = ∅
and P = {1 2 3}.

This proposition shows that, for the star-shaped network, there are only three types of equilibria

(i.e. number of types plus 1). It also shows the role of  and of  in the location decision process.

For fixed values of ,  and , when we increase , we switch from a central equilibrium to a core-

periphery equilibrium and then to peripheral equilibrium. Interestingly, for fixed values of ,  and

, when we decrease  we obtain the same types of result because an increase in  means that social

interactions are more valuable and thus tend to induce people to live to the center. The effect of

an increase of  is similar.

We can give some parameter values for which each condition is satisfied given that   0707.

For example, if we set  = 6,  = 1 and  = 02, then: () if   762, there exists a unique

Central equilibrium where C = {1 2 3} and P = ∅; () if 762    886, there is a unique

Core-Periphery equilibrium where C = {1} and P = {2 3}; () if   886, there exists a unique

Peripheral equilibrium where C = ∅ and P = {1 2 3}.
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In each case, we can calculate the equilibrium utility of each agent. For example, if we consider

the Central equilibrium, then the equilibrium utility of agent 1 is equal to:

∗1 (
∗
1(0 0 0 )v

∗
−1) =  +

2 (1 + 2)2

2
¡
1− 22¢2 − 

while the equilibrium utilities of agents 2 and 3 are given by

∗2 (
∗
2(0 0 0 )v

∗
−2) = ∗3 (

∗
3(0 0 0 )v

∗
−3) =  +

2 (1 + )2

2
¡
1− 22¢2 − 

Not surprisingly, agent 1, who is the most central agent in the network, provides a higher effort

and thus has a higher utility than the two other agents. At the other extreme, if there is a

Peripheral equilibrium, then, to calculate the equilibrium utilities of all agents, one needs to replace

2 by (− )2 and to remove the cost  in the expressions above. Finally, in the Core-Periphery

equilibrium, C = {1} and P = {2 3}, we obtain:17

∗1 (
∗
1(0 1 1 )v

∗
−1) =  +

[2 (− )  + ]2

2
¡
1− 22¢2 − 

∗2 (
∗
2(1 0 1 )v

∗
−2) = ∗3 (

∗
3(1 0 1 )v

∗
−3) =  +

( − + )2

2
¡
1− 22¢2

It is easily verified that all agents would be better off by living in the center if the cost  is not too

large. This result can clearly be generalized for a star network with  agents where there will be 3

types of equilibria as in Proposition 7.

4.2.2 Complete networks: One type of agent

Let us now consider a complete network and, as in the previous section, set  = 3 (the generalization

to  agents is straightforward). If   12, then

M = [I− G]−1 =
1

1−  − 22

⎡⎢⎢⎣
1−   

 1−  

  1− 

⎤⎥⎥⎦ (22)

We have the following result.

17 Inside the utility function, the equilibrium effort ∗ (x−i ) is written such that the first element in the

parenthesis is the location of agent  while the other elements are the locations of all other agents by increasing

numbering order, starting from agent 1 if 1 6= . For example, for the star network with three agents, ∗1(0 1 1 ) is

the equilibium effort of agent 1 (the star) for the Core-Periphery equilibrium C = {1} and P = {2 3} since 1 = 0

and 2 = 3 = 1 while 
∗
2(1 0 1 ) is the equilibium effort of agent 2 (peripheral agent) for the same Core-Periphery

equilibrium.
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Proposition 8 (Locational equilibrium for a complete network) Consider the complete net-

work with 3 agents and assume that   12.

() If

 
 (1− )2 (2+ 4− )

2
¡
1−  − 22¢2

there exists a unique Central equilibrium where all agents live in the center, i.e. C = {1 2 3}
and P = ∅.

() If

 
 (1− )2 (2+ 4− )

2
¡
1−  − 22¢2

there exists a unique Peripheral equilibrium where all agents live in the periphery, i.e. C = ∅
and P = {1 2 3}.

This proposition completely characterizes the equilibrium configuration for a complete network.

As showed in Proposition 5, there are no multiple equilibria and no core-periphery equilibrium. We

can give parameter values for which each condition is satisfied given that   05. For example,

if take exactly the same parameters as for the star network, i.e.  = 6,  = 1 and  = 02, then:

() if   2161, there exists a unique Central equilibrium where C = {1 2 3} and P = ∅; () if

  2161, there exists a unique Peripheral equilibrium where C = ∅ and P = {1 2 3}.
It is straightforward to generalize this result for a complete network with  agents but also for

any regular network. Using the argument of the proof, we can state that, for any regular network

(i.e. each agent has the same number of links) with  agents, only two equilibria will emerge:

the Central and the Peripheral equilibrium. If  is low enough, there will be a unique Central

equilibrium while, if  is high enough, there will be a unique Peripheral equilibrium.

Observe that when we compare the star network and the complete network with 3 agents, we

see that there is much more clustering in the center for the latter than for the former. Indeed, if

we again consider the parameters  = 6,  = 1 and  = 02, then when 886    2161, all the 3

agents live in the center in the complete network while they all reside in the periphery in the star

network. This is because there are much more interactions in the complete than in the star social

network because, in the former, everybody interact directly with everybody while, in the latter,

agents 1 and 2 interact directly with the star (agent 1) but only indirectly with each other. This is

in fact a general result, which is straightforward to prove, which says that the networks that favor

more interactions will have more clustering in the center than those that induce less interactions.
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4.2.3 Networks with three types of agents

Let us finally consider a network where there are three types of agents so that there are richer

equilibrium configurations: individual 1 has 3 links {12 13 14}, individual 2 and 3 have two links
each {21 23 31 32} and individual 4 has one link {41}. There are thus three types of agents: type
1 (agent 1), type 2 (agents 2 and 3) and type 3 (agent 4). This network is depicted in Figure 3:

2

1

3
4

Figure 3: Network with three types of agents

The adjacency matrix is given by:

G =

⎡⎢⎢⎢⎢⎢⎣
0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎦
If   046 (the largest eigenvalue is 217), then

M = [I− G]−1 =

⎡⎢⎢⎢⎢⎢⎣
1−

1−−32+3


1−−32+3


1−−32+3
(1−)

1−−32+3


1−−32+3
1−22

1−42−23+4
+2−3

1−42−23+4
2

1−−32+3


1−−32+3
+2−3

1−42−23+4
1−22

1−42−23+4
2

1−−32+3
(1−)

1−−32+3
2

1−−32+3
2

1−−32+3
1−−22

1−−32+3

⎤⎥⎥⎥⎥⎥⎦ (23)

Define

Φ() ≡  (2− ) ()
2 + 2

⎛⎝
X

∈−{}


⎞⎠

where  = {1 2 3 4} and the s and s are defined in (23). We have the following result:

Proposition 9 (Locational equilibrium for the network in Figure 3) Consider the network

described in Figure 3 and assume that   046.

22



() If

2  ΦC(44)

there exists a unique Central equilibrium where all agents live in the center, i.e. C = {1 2 3 4}
and P = ∅.

() If

ΦC(44)  2  Φ
C(33)− 223433

there exists a unique Core-Periphery equilibrium such that C = {1 2 3} and P = {4}.

() If

ΦC(33)− 223433  2  Φ
C(11)− 22 (12 +13 +14)11

there exists a unique Core-Periphery equilibrium such that C = {1} and P = {2 3 4}.

() If

ΦC(11)− 22 (12 +13 +14)11  2

there exists a unique Peripheral equilibrium where all agents live in the periphery, i.e. C = ∅
and P = {1 2 3 4}.

This proposition is a direct application of Proposition 5 and confirms the fact that the number

of equilibria is always equal to the number of types of agents plus 1 and that there cannot exist

a Core-Periphery equilibrium such that two identical agents live in different parts of the city, e.g.

C = {1 2} and P = {3 4}. It is also easy to find values for ,  and  (for   046) such that all

these conditions hold for a given .

5 Welfare analysis and subsidy policies

5.1 Exogenous locations

Consider first the case when location choices are exogenous as in Section 3 so that we study welfare

policies for a given equilibrium locational configuration.

5.1.1 First-best analysis

We would like to see if the equilibrium outcomes are efficient in terms of social interactions. For

that, the planner chooses 1   to maximize total welfare, that is:
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max
1

W = max
1

=X
=1

(v−i)

= max
1

⎧⎨⎩
=X
=1

∙
 +  − 1

2
2

¸
+ 

=X
=1

X
=1



⎫⎬⎭
First-order condition gives for each  = 1  :18

 −  + 
X


 + 
X


 = 0

which implies that (since  = ):
19

 =  + 2
X


 (24)

Using (8), we easily see that:

 = ∗ + 
X


 (25)

where ∗ is the Nash equilibrium number of visits given in (8). This means that there are too few

visits at the Nash equilibrium as compared to the social optimum outcome. Equilibrium interaction

effort is too low because each agent ignores the positive impact of a visit on the visit choices of

others, that is, each agent ignores the positive externality arising from complementarity in visit

choices. As a result, the market equilibrium is not efficient and the planner would like to subsidize

visits to the interaction center.

5.1.2 Subsidizing social interactions

Letting 
 denote the optimal subsidy to per visit, comparison of (24) and (25) implies:


 = 

X


 (26)

or in matrix form

S = Gv

18 It is easily checked that there is a unique maximum for each .
19The superscript  refers to the “social optimum” outcome while a star refers to the “Nash equilibrium” outcome.
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If we add one stage before the visit game is played, the planner will announce the optimal subsidy


 to each agent  such that:

 =  +
¡
 + 



¢
 − 1

2
2 + 

X




=  +  − 1
2
2 + 2

X




By doing so, the planner will restore the first best. Observe that the optimal subsidy is such that

v = (I− G)−1
¡
 + 



¢
1

= (I− 2G)−1α

where α =(1  )
T, which means that

 =

X
=1

+∞X
=0


[]


¡
 + 

¢
=

X
=1

+∞X
=0

2
[]
 

and thus


 =  +

1

2

£
+( )

¤2
=  +

1

2
[(2 )]

2

In particular, the optimal subsidy is given by:


 = 

X




 = 

X
=1

X
=1

+∞X
=0

2
[]

  (27)

What is interesting here is that the planner will give a larger subsidy to more central agents in the

social network. Let us summarize our results by the following proposition.

Proposition 10 (Optimal level of social interactions) The Nash equilibrium outcome in terms

of social interactions is not efficient since there are too few social interactions. If the planner pro-

poses a subsidy 
 = 

P
  to each individual , then the first-best outcome can be restored. In

that case, it is optimal for the planner to give higher subsidies to more central agents in the social

network.

5.2 Endogenous locations

As in Section 4, assume now that agents can choose where to locate.

25



5.2.1 Effort (number of visits) subsidies

Assume that the planner cannot control location but only effort. In that case, in the second stage,

she will choose a higher level of effort given by

 =

X
=1

+∞X
=0

2
[]
  (28)

and then let the agents choose their location. In other words, the timing is as follows: First, agents

choose their location in the city between the center and the periphery and then the government

choose effort. The second stage is solved as above and the optimal effort is given by (28). By

plugging back this effort into the utility function, we obtain the following equilibrium optimal

utility of each agent  if she lives in the center ( = 0):


 (

∗
 (0x−i )v

∗
−i) = +

1

2

⎡⎣ X
∈C−{}

+∞X
=0

2
[]
 +

X
∈P−{}

+∞X
=0

2
[]
 (− ) +

+∞X
=0

2
[]
 

⎤⎦2−
(29)

Similarly, if individual  resides in the periphery ( = 1), her equilibrium optimal utility is equal

to:


 (

∗
 (1x−i )v

∗
−i) = +

1

2

⎡⎣ X
∈C−{}

+∞X
=0

2
[]
 +

X
∈P−{}

+∞X
=0

2
[]
 (− ) +

+∞X
=0

2
[]
 (− )

⎤⎦2
(30)

We can characterize the equilibrium location and it is clear that more agents will live in the center

compared to the case where they choose themselves their own effort.

Furthermore, if we investigate a constrained efficient allocation in which the planner can sub-

sidize interactions (i.e., provide a subsidy of 
 per visit by agent ) but cannot directly control

location choices, then more agents will live in the center compared to the case without subsidies. In-

deed, since all agents devote more effort to interacting with others under the subsidy program (26),

the incentives for clustering must be stronger under that allocation than in the Subgame-Perfect

Nash equilibrium.

To see that, we can calculate the “incentive” function Φ(), which is now given by:

Φ() = 4 (2− ) ()
2 + 8

⎡⎣ X
∈C−{}

 + (− )
X

∈P−{}


⎤⎦ (31)

= 4Φ()

where Φ() is given by (42) and is calculated when agents chose both location and effort.

Remember that this function determines the location decision of each individual . Given an
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equilibrium configuration  = CP, if Φ()  2, individual  resides in the center while, if

Φ()  2, she will reside in the periphery. It is straightforward to write the equivalent of

Proposition 5 in the case when the planner chooses effort by only changing the value Φ(),

given in (17), to a new value equal to:

Φ() = 4 (2− ) ()
2 + 8

⎛⎝
X

=−{}


⎞⎠ = 4Φ
()

Since Φ()  Φ
(), it is then straightforward to write the following proposition:

Proposition 11 (Equilibrium versus optimal location choices) If the planner proposes a per

visit subsidy 
 to each individual , then, compared to the Subgame-Perfect Nash equilibrium lo-

cation choices, more agents live in the center.

To illustrate this proposition, take again the star network described in Figure 1. We easily

obtain:

Proposition 12 (Subsidizing effort in a star-shaped network) Consider the star-shaped net-

work depicted in Figure 1 and assume that   1
¡
2
√
2
¢
= 035 and that the planner chooses (or

subsidizes) agents’ effort.

() If

 
2 (1− ) (1 + )2 [2− (1− ) ]¡

1− 22¢2 (32)

there exists a unique Central equilibrium where all agents live in the center, i.e. C = {1 2 3}
and P = ∅.

() If

2 (1− ) (1 + )2 [2− (1− ) ]¡
1− 22¢2   

2 [2 (1 + 2)−  (1 + 4)]¡
1− 22¢2 (33)

there exists a unique Core-Periphery equilibrium where the star agent lives in the center while

the peripheral agents reside in the periphery, i.e. C = {1} and P = {2 3}.

() If

 
2 [2 (1 + 2)−  (1 + 4)]¡

1− 22¢2 (34)
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Let us illustrate Proposition 11. If

 (1− ) (1 + )2 [2− (1− ) ]

2
¡
1− 22¢2   

2 (1− ) (1 + )2 [2− (1− ) ]¡
1− 22¢2

then agents 1, 2 and 3 live in the center when the planner chooses effort (Proposition 12) whereas

agent 1 lives in the center while agents 2 and 3 reside in the periphery when agents choose effort

(Proposition 7). Since the sum of utilities of all agents is the sum of their Katz-Bonacich centralities

weighted by  for those who reside in the center and by −  for those who reside in the periphery,
then total welfare is higher when the planner subsidizes effort.

Similarly, if

 [2 (1 + 2)−  (1 + 4)]

2
¡
1− 22¢2   

2 [2 (1 + 2)−  (1 + 4)]¡
1− 22¢2

then agents 1 lives in the center while agents 2 and 3 reside in the periphery when the planner

chooses effort (Proposition 12) whereas all agents live in the periphery when agents choose effort

(Proposition 7). The total is also clearly higher when agents’ effort is subsidized. As a result, when

the planner chooses (or subsidizes) effort, then agents tend to concentrate more in the center of the

city than when she don’t.

5.2.2 Location subsidies

Let us now consider a model where the planner subsidizes location but not effort. Since there are

more interactions when agents live in the center and since interactions increase utility, then the

planner could subsidize the location cost  in the center.20 In other words, she can give a per-cost

subsidy  so that the cost of locating in the center would be (1− )  instead of . The timing

is now as follows. In the first stage, the planner announces the subsidy to agents locating in the

center. In the second stage, agents decide where to locate while, in the last stage, their decide their

effort level. As for the subsidy effort, this will clearly generate more clustering in the center but

the mechanism is different since, in the latter, the effect is direct while, in the former, it is indirect.

In that case, equilibrium efforts will still be determined by (11) while location decisions will be

characterized by Proposition 5 where  has to be replaced by (1− ) .

In this model, it is clear that, if the planner wants to reach the first best in terms of location,

she will subsidize  so that all agents will live in the center. This maximizes aggregate interactions

and thus total welfare. For example, in the case of the star network described in Figure 1, we

20 It is easily verified that a policy that subsidizes  (marginal transport cost) is equivalent to a policy that subsidizes

. Therefore, we focus our analysis on a subsidy of .
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have shown that if  = 6,  = 1 and  = 02, then: () if   762, there exists a unique Central

equilibrium; () if 762    886, there is a unique Core-Periphery equilibrium; () if   886,

there exists a unique Peripheral equilibrium. As a result, if, for all agents, (1− )  ≤ 762, which
is equivalent to  ≥ 1− (762), then the first best is reached and all workers reside in the center.
For example, if  = 20, then planner needs to subsidize 619 percent of the cost of living in the

center of all agents. Interestingly, this result depends on the network structure. For the complete

network with 3 agents, we have seen that, with exactly the same parameters,  = 6,  = 1 and

 = 02, then: () if   2161, there exists a unique Central equilibrium; () if   2161, there

exists a unique Peripheral equilibrium. In that case, we need to subsidize  ≥ 1−(2161)  percent
of  for all agents to reach the first best. Thus, for the complete network, if  = 20, the planner

does not need to subsidy any worker to reach the first best in efforts since 20  2161. Using this

reasoning and looking at Proposition 5, the optimal subsidy for any network with  agents is given

by:

  1− Φ
C()

2
(35)

where, from (17), we have:

Φ() ≡  (2− ) ()
2 + 2

⎛⎝
X

=−{}


⎞⎠ (36)

Observe that equation (35) gives the subsidy for the agent  who has the lowest centrality in

the network. Indeed, if the planner gives a −subsidy of 1− £ΦC()2
¤
to all agents, the first

best will be reached since all individuals will be induced to reside in the center. This is clearly

a sufficient condition. The planner could also discriminate between agents and gives a different

subsidy to each agent so that the higher is the centrality of an agent in a network, the lower is the

subsidy. In that case, the subsidy to be given to each agent  will be equal to:

  1− Φ
C()

2
(37)

for all  = 1  , where ΦC() is defined by (17).

Observe also that if ΦC()  2, meaning that 1− ΦC()
2

 0, the condition (35) is always

satisfied. This is because, in this case, we do not need to subsidize any worker to obtain a Central

equilibrium because ΦC()  2 is precisely the condition for which a Central equilibrium exists

and is unique (see Proposition 5()). Assuming that, when a worker is indifferent between residing

in the center and the periphery, she always chooses to live in the center,21 then the subsidy (37)

can be written as:

 = max

½
0 1− Φ

C()

2

¾
(38)

21This assumption is made for the sake of the presentation. We could clearly no assume it and, instead, have a
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5.2.3 Effort versus location subsidy

Let us now study both the effort and location subsidies. We have seen that if the planner only

subsidizes effort, then the optimal subsidy is given by (27), that is

 = 

X
=1

X
=1

+∞X
=0

2
[]

 

This optimal subsidy clearly depends on agents’ locations. As a result, the first best when both

locations and efforts are taken into account should be when the effort subsidy is 
 and all agents

live in the center. The timing is now as follows: First, the planner announces the location and the

effort subsidies. Second, agents choose their location. Third, agents choose efforts.

DenoteM = (I− 2G)−1 so that the element of the th and th ofM is 
 .
22 Then, using

the same reasoning as above, the location subsidy and the effort subsidy that guarantee that the

first best (when both locations and efforts are taken into account) is achieved is determined in the

following proposition:

Proposition 13 (First best with effort and location subsidies) Assume 2(G)  1 and

consider any network of  agents. If the location subsidy and the effort subsidy for each agent

 are such that ⎧⎨⎩  = max
n
0 1− 2ΦC(

)



o

 = 

P
=1

P
=1

P+∞
=0 2


[]



then all agents live in the center and provide optimal interaction efforts (number of visits) and

therefore the first best is achieved.

This proposition implies that, to reach the first best, it is optimal for the the planner to give

higher effort subsidies but lower location subsidies to more central agents in the social network.

If we consider the star network of Figure 1, it is readily verified that, if   1
¡
2
√
2
¢
= 035,

subsidy equal to:



 = max


0 1− ΦC()

2
+ 


where  is very small.
22Remember that, when the per-effort subsidy  is given to each agent , she provides an optimal effort 


 , which

is defined by:

v

= (I− 2G)−1 =M


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then, if all agents live in the center (i.e. 1 = 2 = 3 = ), we have:

Mα = (I− 2G)−1α = ¡
1− 82¢

⎛⎜⎜⎝
1 + 4

1 + 2

1 + 2

⎞⎟⎟⎠
so that ⎛⎜⎜⎝

1

2

3

⎞⎟⎟⎠ =
¡

1− 82¢
⎛⎜⎜⎝
1 + 4

1 + 2

1 + 2

⎞⎟⎟⎠
Since the optimal effort subsidy for each agent  is given by:


 = 

X






or in matrix form

S = Gv

We have


1 = 

¡
2 + 3

¢
= 2

µ
1 + 2

1− 82
¶


2 = 

3 =  1 = 

µ
1 + 4

1− 82
¶

Not surprisingly, the planner gives more effort subsidy to more central agents since 
1  

2 .

Now, let us calculate the location subsidy. The matrix M is given by

M = (I− 2G)−1= 1¡
1− 82¢

⎛⎜⎜⎝
1 2 2

2 1− 42 42

2 42 1− 42

⎞⎟⎟⎠
As a result,

Φ(
11) =  (2− )

¡

11

¢2
+ 2

¡

12 +

13

¢

11

=
 [2 (1 + 4)− ]¡

1− 82¢2
Thus, the subsidy given to agent 1 is equal to:

1 = max

(
0 1−  [2 (1 + 4)− ]

2
¡
1− 82¢2

)
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Simarly, we have:

Φ(
22) = Φ(

33) =  (2− )
¡

22

¢2
+ 2

¡

21 +

23

¢

22

=

¡
1− 42¢ (1 + 2) [2−  (1− 2)]¡

1− 82¢2
Thus, the subsidy 2 = 3 to give to agents 2 and 3 is:

2 = max

(
0 1− 

¡
1− 42¢ (1 + 2) [2−  (1− 2)]

2
¡
1− 82¢2

)

As expected, it is easily verified that 1  2 , i.e. the planner gives less location subsidy to more

central agents.

Take again  = 6,  = 1 and  = 02, then the planner needs to give the following subsidies:


1 = 494 and 

2 = 
3 = 318

and

1 = max

½
0 1− 2228



¾
and 2 = 3 = max

½
0 1− 1450



¾
to reach the first best. If, for example,  = 20, then the planner does not need to subsidize agent 1

but need to subsidy 275 percent of the location cost  to live in the center for agents 2 and 3.

Consider now the complete network with the three agents residing in the center. It is easily

verified that, if   025,


1 = 

2 = 
3 =  =

2 (1 + 2)¡
1− 2 − 82¢

1 = 2 = 3 =  = max

(
0 1−  (1− 2) [2 (1 + 2)−  (1− 2)]

2
¡
1− 2 − 82¢2

)
If we take the same parameter values,  = 6,  = 1 and  = 02, then  = 12 and

 = max

½
0 1− 1736



¾
If we compare the two networks, it easily verified that the planner needs to subsidize much more

the social effort of all agents in the complete network (there are more network externalities in the

complete network compared to the star network) while, for a given  and for location subsidies, she

needs to subsidize less agent 1 but more agents 2 and 3 in the star network. In terms of network

design, this means that the planner would not always like to choose the complete network, even

though it is the network that generates most interactions among all possible networks. The optimal

network will clearly depend on parameters values and will be, in general, difficult to determine.
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6 Spatial mismatch and policy issues

There is an important literature in urban economics showing that, in the United States, distance

to jobs is harmful to workers, in particular, black workers. This is known as the “spatial mismatch

hypothesis”. Indeed, first formulated by Kain (1968), the spatial mismatch hypothesis states that,

residing in urban segregated areas distant from and poorly connected to major centres of employ-

ment growth, black workers face strong geographic barriers to finding and keeping well-paid jobs.

In the US context, where jobs have been decentralized and blacks have stayed in the central parts

of cities, the main conclusion of the spatial mismatch hypothesis is that distance to jobs is the

main cause of their high unemployment rates. Since Kain’s study, hundreds of others have been

conducted trying to test the spatial mismatch hypothesis (see, in particular, the literature sur-

veys by Ihlanfeldt and Sjoquist, 1998; Ihlanfeldt, 2006; Gobillon et al., 2007; Zenou, 2008). The

usual approach is to relate a measure of labor-market outcomes, typically employment or earn-

ings, to another measure of job access, typically some index that captures the distance between

residences and centres of employment. The general conclusions are: () poor job access indeed

worsens labor-market outcomes, () black and Hispanic workers have worse access to jobs than

white workers, and () racial differences in job access can explain between one-third and one-half

of racial differences in employment. Interpret the model in terms of black and white workers.

Our model can shed new light on the “spatial mismatch hypothesis” debate by putting forward

the importance of, not only the geographical space (distance to jobs), but also the social space in

explaining the adverse labor-market outcomes of black workers.

Let us interpret our model in the following way. There are two locations, a center, where all

jobs are located and all interactions take place, and a periphery.23 Here an interaction between

two individuals means that they exchange job information with each other and thus each visit to

the center implies a job-information exchange with someone. As above,  is the number of visits

that individual  makes to the center in order to obtain information about jobs and each visit

results in one interaction. We do not explicitly model the labor market. We just assume that the

higher is the number and quality24 of interactions, the higher is the quality of job information and

the higher is the probability of being employed.25 In other words, each time a person goes to the

center, she interacts with someone and obtains a piece of job information, which is proportional to

23Observe that, in the context of real-world cities, the center does not necessarily mean the physical center of the

city but the place where jobs and interactions take place.
24 In equilibrium, more central workers provide higher quality job information because they interact more with

others than less central workers.
25This is the basic idea behind most network models of the labor market such as Calvó-Armengol (2004), Calvó-

Armengol and Jackson (2004), Calvó-Armengol and Zenou (2005) and Ioannides and Soetevent (2006).
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the network centrality of the individual she meets. This leads to a positive relationship between

, the individual number of visits to the center, and , the employment rate of each individual

. Underlying this idea is some form of information imperfection in which networks serve at least

partially to mitigate these imperfections.26

There are two types of workers: black and white individuals. The only difference between

black and white workers is their position in the network. We assume that whites have a more

central position (in terms of Katz-Bonacich centrality) in the network than blacks. This captures

the idea of the “old boy network” where whites grew up together, went through school together,

socialized together during adolescence and early adulthood, and entered the labor force together

(Wial, 1991).27 There is strong evidence that indicates that labor-market networks are partly race

based, operating more strongly within than across races (Ioannides and Loury, 2004; Hellerstein

et al., 2011) and that the social network of black workers is of lower quality than that of whites

(Frijters et. al., 2005; Fernandez and Fernandez-Mateo, 2006; Battu et al., 2011).

To understand the interpretation of the current model, consider the network with three types

of agents displayed in Figure 3 and assume that individuals 1, 2 and 3 are white workers while

individual 4 is a black worker. We have shown in Section 4.2.3 that if

ΦC(44)  2  Φ
C(33)− 223433

there exists a unique Core-Periphery equilibrium such that C = {1 2 3} and P = {4}. In the
labor-market interpretation of this model, white workers will experience a higher employment rate

than the black worker because they will have much more information about jobs. In other words,

the white workers, especially individual 1, will interact much more with other workers than the

black worker because the latter will visit less often the center and will gather little information

about jobs. In this model, it is assumed that any worker  can give information about job but the

quality of information she gives is proportional her , the number of visits she makes to the center

or equivalently the number of interactions she has with others. As stated above, the employment

probability of each worker is then proportional to the information she has gathered in equilibrium.

In this interpretation of the model, we have shown that black workers make less visits to the

center (Proposition 1) and thus interact less with other workers in the network, in particular, with

very central agents than whites. We have also shown that black workers will choose to locate

further away from jobs than white workers (Proposition 5) precisely because they interact less with

26See Ioannides and Loury (2004) and Topa (2011) for a review of the evidence on labor market networks.
27Calvó-Armengol and Jackson (2004) show that an equilibrium with a clustering of workers with the same status

is likely to emerge since, in the long run (i.e. steady state), employed workers tend to be friends with employed

workers. In this model, if because of some initial condition some black workers are unemployed, then in steady-state

they will still be unemployed because both their strong and weak ties will also be unemployed.
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central workers. At the extreme, we could have an equilibrium where all white workers live in the

center while all black workers reside in the periphery (as in the example above where C = {1 2 3}
and P = {4}). This would imply that whites will interact with others much more than blacks and
that whites will interact more with whites (since they will have a very high effort  in equilibrium)

than with blacks. Blacks will just interact less and thus will have much less information about

jobs. This will clearly have dramatic consequences in the labor market and will explain why black

workers experience a lower employment rate than white workers. Indeed, less central agents in the

network (i.e. black workers who do not have an old-boy network) will reside further away from jobs

(i.e. in the periphery) than more central agents (whites) and thus will have adverse labor-market

outcomes. In other words, the lack of good job contacts would be here a structural consequence of

the social isolation of inner-city neighborhoods.28 Importantly, the causality goes from the social

space to the geographical space so that it is the social mismatch (i.e. their “bad” location in the

social network) of black workers that leads to their spatial mismatch (i.e. their “bad” location in

the geographical space). Observe that the network structure is crucial in our model. For example,

in a complete network (or any regular network), there will be no effect since black and white workers

will be totally identical. As a result, the more the network is heterogenous and asymmetric, the

worse are the labor-market outcomes for black workers.29

Interestingly, Zenou (2013) has developed a model where the causality goes the other way

around. In his model, which is quite different since the labor market is explicitly model but the

social network is just captured by dyads, it is the spatial mismatch of black workers (due to housing

discrimination) that leads to their social mismatch (i.e. less interaction with white weak ties) and

thus their adverse labor-market outcomes.

For the policy implications of each model, it is crucial to know the sense of causality. If, as in

Zenou (2013), it is the geographical space that causes the social mismatch of black workers, then

the policies should focus on workers’ geographical location, as in the spatial mismatch literature. In

that case, neighborhood regeneration policies would be the right tool to use. Such policies have been

implemented in the US and in Europe through the enterprise zone programs and the empowerment

zone programs (e.g. Papke, 1994; Bondonio and Greenbaum, 2007; Ham et al., 2011; Busso et al.,

28Observe that we interpret here the “periphery” location of our model as an “inner-city neighborhood” because

what characterizes the latter is not its location in the city but the fact that it is disconnected (or badly connected)

from job centers.
29There is evidence showing that, though networks are a popular method of finding a job for the ethnic minorities,

they are not necessarily the most effective in terms of gaining employment (Frijters et al., 2005; Fernandez and

Fernandez-Mateo, 2006; Battu et al., 2011). Our labor-network model could explain this fact since minority workers

tend to have less central positions in the network and tend to interact less with white workers (who have more central

positions) because they live further away from interaction centers.
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2012). The enterprise zone policy consists in designating a specific urban (or rural) area, which

is depressed, and targeting it for economic development through government-provided subsidies to

labor and capital. The aim of the empowerment zone program is to revitalize distressed urban

communities and it represents a nexus between social welfare policy and economic development

efforts. By implementing these types of policies, one brings jobs to people and thus facilitates the

flows of job information in depressed neighborhoods. Another way of reducing the spatial mismatch

of black workers would be to implement a transportation policy that subsidizes workers’ commuting

costs (Pugh, 1998). In the United States, a number of states and counties have used welfare block

grants and other federal funds to support urban transportation services for welfare recipients. For

example, programs helping job takers (especially African Americans) obtain a used car — a secured

loan for purchase, a leasing scheme, a revolving credit arrangement — may offer real promise and

help low-skill workers obtain a job by commuting to the center where jobs are located.

If, on the contrary, as in the current model, it is the social space that causes the spatial

mismatch of black workers, then the policies should focus on workers’ social isolation. Policies

that promote social integration and thus increase the interracial interactions between black and

white workers would also have positive effects on the labor-market outcomes of minority workers.

Such policies, like the Moving to Opportunity (MTO) programs (Katz et al., 2001; Rosenbaum and

Harris, 2001; Kling et al., 2005), have been implemented in the United States. By giving housing

assistance to low-income families, the MTO programs help them relocate to better and richer

neighborhoods. For example, Rosenbaum and Harris (2001) show that: “After moving to their

new neighborhoods, the Section 8 respondents (treated group) were far more likely to be actively

participating in the labor force (i.e. working or looking for a job), while for MTO respondents, a

statistically significant increase is evident only for employment per se.” Another way of reducing

the unemployment rate of minorities in the context of our model is to observe that institutional

connections can be engineered to create connections between job seekers and employers in ways

that parallel social network processes. For example, scholars like Granovetter (1979) and Wilson

(1996) have called for poverty reduction programs to “create connections” between employers and

poor and disadvantaged job seekers.

This is ultimately an empirical question of causality − whether people that are central in the
network move to the city, or do people that are less connected move to the city and then become

more central. Such an empirical test is crucial but one would need either a natural experiment

with an exogenous shock or convincing instruments to break the sense of causality. In the labor-

market interpretation, the key issues is whether black workers first choose to live in geographically

isolated neighborhoods (or are forced to live there because of housing discrimination) and then

become isolated in the social space because of the lack of contacts with white workers, or do black
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workers mainly prefer to interact with other black individuals and as a consequence locate in areas

where few whites live, which are isolated from jobs. In any case, we believe that the social and

the geographical space are intimately related and policies should take into account both of them if

they want to be successful.

Finally, using the current model, one could also examine the role of the network structure of the

labor-market outcomes of black workers. We have seen that labor-market networks are partly race

based, operating more strongly within than across races (Ioannides and Loury, 2004; Hellerstein et

al., 2011) and that more regular social networks lead to less geographical segregation and better

labor-market outcomes for black workers. Are social networks regular or very asymmetric? How

do black and white workers interact in a network? Our welfare analysis developed in Section 5 will

also be useful. In Section 5.2.3, we have seen that there is a trade off between subsidizing effort

(or the number of visits to the center) and location (or the transportation cost ). In terms of the

policies discussed above, subsidizing effort in the social space or location in the geographical space

will be equivalent to the MTO programs in the sense that it favors interactions between people by

locating them close to each other.

7 Concluding remarks

This paper provides what we believe to be the first analysis of the interaction between position in

a social network and position in a geographic space, or between social and physical distance. We

have developed a model in which agents who are more central in a social network, or are located

closer to an interaction center, choose higher levels of interaction effort in equilibrium. As a result,

the level of interactivity in the economy as a whole rises with density of links in the social network

and with the degree to which agents are clustered in physical space. When agents can choose

geographic locations, there is a tendency for those who are more central in the social network to

locate closer to the interaction center.

There are many potential extensions and applications of the work described here. First, we have

assumed that all interactions occur at a single, exogenous interaction center. In reality, interactions

in cities occur at many sites, and whether a site becomes a focal point for interactions is of course

endogenous. As in all models of complementarity, there is an interesting coordination problem in

the endogenous determination of the location of an interaction center in this model.

Second, we have developed a model where efforts are strategic complements, i.e.   0. It would

be interesting to assume instead that efforts are strategic substitutes, i.e.   0 (as in Bramoullé

and Kranton, 2007), or, following Bramoullé et al. (2012), extend parts of the analysis to allow for

a larger set of parameters (i.e. the entire range of ). The analysis would certainly be much more
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complicated since some agents will free ride on others and provide zero effort. The interpretation

of the results will also be different.

Finally, in the present paper, we focus on fixed networks. Where we live crucially determines

whom we interact with and indeed a main attraction of big cities is that they provide more oppor-

tunities to meet new people. So network endogeneity could be an important feature of the interplay

between social networks and geographic locations. As a result, it would be interesting to extend

the model to have an endogenous network formation. We believe that it will be very difficult to

obtain clear-cut results since it is well-known that there are combinatorial (coordination) equilib-

rium multiplicity in standard network-formation models (see e.g. Jackson and Wolinsky, 1996).

Here agents also choose effort and location so coordination problems will even be more severe. One

possible way out could be to use the Cabrales et al. (2011) approach where network formation is

not the result of an earmarked socialization process so that there is a generic socialization effort.

Another way out would be to use the dynamic model of König et al. (2012) where, at each period

of time, one agent is chosen at random to form a link with others. It is clear that endogeneizing

the structure of the network would be a very difficult task given that agents also choose effort and

location. We leave this at a future research area.
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Appendix

Proof of Proposition 2. Observe that this game is a potential game (as defined by Monderer

and Shapley, 1996)30 with potential function:31

 (v ) =

X
=1

(vg)− 

2

X
=1

X
=1



=

X
=1

 − 1
2

X
=1

2 +


2

X
=1

X
=1

 

or in matrix form:

 (v ) = v>1−1
2
v>v + v>



2
Gv

= v>1−1
2
v> (I−G)v

It is well-known (see e.g., Monderer and Shapley, 1996) that solutions of the programmaxv  (v )

are a subset of the set of Nash equilibria. This program has a unique interior solution if the potential

function  (v ) is strictly concave on the relevant domain. The Hessian matrix of  (v ) is

easily computed to be − (I−G). The matrix I−G is positive definite if for all non-zero v

v> (I−G)v  0⇔  

µ
v>Gv
v>v

¶−1


By the Rayleigh-Ritz theorem, we have (G) = supv 6=0
³
v>Gv
v>v

´
. Thus a necessary and sufficient

condition for having a strict concave potential is that (G)  1, as stated in the Proposition.

Proof of Proposition 4. Define C as the set of all central agents (i.e. all individuals who
live in the center) and P as the set of all peripheral agents (i.e. all individuals who live in the

periphery). Observe that C − {} and P − {} denotes respectively the set of all central agents but
 and the set of all peripheral agents but . The condition for which, a given  prefers to live in the

30A game is a potential game if there is a function  :  → R such that, for each  ∈  , for each − ∈ −, and

for each   ∈ ,

( −)− ( −) =  ( −)−  ( −)

31Here the potential  (v ) is constructed by taking the sum of all utilities, a sum that is corrected by a term

which takes into account the network externalities exerted by each player .

45



center is:
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where the expression on the left-hand side of the inequality is the utility of  if she resides in

the center while the expression on the right-hand side of the inequality is the utility of  if she

resides in the periphery. Indeed, given P and C, an individual ’s utility is her income  plus her
Katz-Bonacich centrality squared minus  if she lives in the center ( = 0) and minus zero if she

resides in the periphery ( = 1). The difficulty here is to calculate the Katz-Bonacich centrality

of individual . If she decides to reside in the center (resp. the periphery), then the total number

of people living in the center is composed of all individuals  6=  living in the center, i.e. the

cardinal of the set C − {}, plus individual  (resp. without individual ) while the total number of
people living in the periphery is composed of all individuals  6=  living in the periphery, i.e. the

cardinal of the set P − {}, (resp. plus individual ). To calculate the Katz-Bonacich centrality of
all these agents, we proceed as follows. For all individuals  6=  living in the center (resp. in the

periphery), we calculate all the paths that are not self-looped (i.e. the off diagonals of the matrices

G = [
[1]
 ] ≡ [ ], G2 = [

[2]
 ], etc.) and we weigh them by  (resp. by − ). For individual , we

take the self-loop paths (i.e. the diagonals of the matrices G = [
[1]
 ] ≡ [ ], G2 = [

[2]
 ], etc.) and

we weigh them by  if she lives in the center and by −  if she resides in the periphery.

Denote by

(P C) = 

+∞X
=0


[]
 + 

X
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X
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+∞X
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X
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The inequality (39) is then equivalent to:

[(P C)]2 − 2 ≥
"
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+∞X
=0
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#2
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P
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P
∈P−{} and since  =

P+∞
=0 
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is equivalent to:

Φ() ≡  (2− ) ()
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To summarize, taking as given P and C, any individual  for which Φ() ≥ 2 will reside in the
center while any individual  for which Φ() ≤ 2 will reside in the periphery. Let us study

Φ() − 2, which is a second-degree equation. We know that   , which implies that 2  .

This means that Φ() − 2 is a convex function with Φ(0) − 2 = −2. The discriminant of
Φ()− 2 is given by:

∆ = 42

⎡⎣⎛⎝
X
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X
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

⎞⎠2

+
2


(2− )

⎤⎦
There are two roots that are given by:


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−2
³
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P
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´
−
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∆
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
(2)
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−2
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´
+
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It is clear that 
(1)
  0 and 

(2)
  0. Figure 2 describes the equilibrium configuration. All

individuals  with a   
(2)
 will reside in the center of the city (i.e.  = 0) while all individuals

 with a   
(2)
 will live at the periphery of the city (i.e.  = 1).

Proof of Proposition 5.

First, remember that ΦC() is defined by (17), i.e.

Φ() ≡  (2− ) ()
2 + 2

⎛⎝
X

∈−{}


⎞⎠ (41)

since C =  . From the proof of Proposition 4, remember also that Φ() is defined by (40), that

is:

Φ() ≡  (2− ) ()
2 + 2

⎛⎝
X

∈C−{}
 + (− )

X
∈P−{}



⎞⎠ (42)

We have added the superscript  to show which type of equilibrium we are considering. For example,

 = C when C =  and P = ∅ while  = P when C = ∅ and P =  .

Let us first show that, in any equilibrium, agents of the same type (i.e. with the same Katz-

Bonacich centrality) have to reside in the same part of the city, i.e. either at  = 0 or at  = 1.

Assume, on the contrary, that two agents with the same centrality reside in different parts of

the city, i.e., agent  resides at  = 0 (center) while agent 0 resides at  = 1 (periphery) with
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 = 00 and  = 0 , ∀. For this to be an equilibrium, it has to be that ΦCP()  2

and ΦCP(00)  2, which implies that ΦCP()  Φ
CP(00). Using (40), this inequality is

equivalent to:

 (2− ) ()
2 + 2

⎛⎝
X

∈C−{}
 + (− )

X
∈P−{}



⎞⎠

  (2− ) (00)
2 + 2

⎛⎝
X

∈C−{0}
0 + (− )

X
∈P−{0}

0

⎞⎠00

Since  = 00 , this can be written as


X

∈C−{}
 + (− )

X
∈P−{}

  
X

∈C−{0}
0 + (− )

X
∈P−{0}

0

Since
P

∈C−{} =
P

∈C−{0}0 and
P

∈P−{} =
P

∈P−{0}0 , this inequality is equiv-

alent to:

−
X

∈P−{}
  0

which is clearly impossible.

Given these results, we will now determine the equilibria by construction, starting from an

equilibrium where all individuals live in the center and then looking at equilibrium where, one by

one, we move agents from the center to the periphery, starting with agents who have the lowest

centrality in the network, that is agent .

let us consider the case when the number of types is the same as the number of agents.

() Let us start with the Central equilibrium where all agents locate in the center, i.e. C = 

and P = ∅. Since Φ() is increasing in  and since  = min, we only need to impose

that

ΦC()  2

where C =  .

Let us now move one agent at a time by always taking the agent with the lowest centrality in

the center and moving her to the periphery. If two agents have the same centrality, then we have

to move them together because, below, we show that there cannot be an equilibrium for which

two identical agents live in different parts of the city. We also show below that there cannot be

other equilibria, i.e. it is not possible to have an agent in the periphery that has a strictly higher

centrality than an agent in the center.
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() Let us thus move agent  from the center to the periphery to obtain the Core-Periphery

with C =  − {} and P = {} that we denote CP1. First, observe that

ΦCP1(−1−1) =  (2− ) (−1−1)
2 + 2

⎛⎝
X

∈C−{−1}
−1 + (− )

X
∈P−{−1}

−1

⎞⎠−1−1

=  (2− ) (−1−1)2 + 2

⎛⎝
X

∈−{−1}
−1 − −1 + (− )−1

⎞⎠−1−1

=  (2− ) (−1−1)2 + 2

⎛⎝
X

∈−{−1}
−1

⎞⎠−1−1 − 22−1−1−1

= ΦC(−1−1)− 22−1−1−1

and

ΦCP1() =  (2− ) ()
2 + 2

⎛⎝
X

∈C−{}
 + (− )

X
∈P−{}



⎞⎠

=  (2− ) ()
2 + 2

⎛⎝
X

∈−{}


⎞⎠

= ΦC()

We have thus shown that

ΦCP1(−1−1) = ΦC(−1−1)− 22−1−1−1 and ΦCP1() = Φ
C()

This is because when we move agent  from the center to the periphery, her weight changes from

 to − . If we compare Φ(), given by (17), and Φ
CP1(−1−1) given by (40) for  = CP1

and  =  − 1, we see that the only difference is the weight − given to agent  who now lives in
the periphery. Quite naturally, when we compare ΦCP1() and Φ

C(), there is no difference

because we only look at non self-loops.

We need to show that ΦCP1(−1−1)  2 and ΦCP1()  2. This is equivalent to

ΦC(−1−1)− 22−1−1−1  2 and ΦC()  2

which is equivalent to

ΦC()  2  Φ
C(−1−1)− 22−1−1−1

() From the previous equilibrium, let us now move agent − 1 from the center to the periphery

to obtain the Core-Periphery with C =  − { − 1 } and P = { − 1 } that we denote CP2.
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First, observe that

ΦCP2(−2−2) = ΦC(−2−2)− 22 (−2−1 +−2)−2−2

and

ΦCP2(−1−1) = ΦC(−1−1)− 22−1−1−1

We need to show that ΦCP2(−2−2)  2 and ΦCP2(−1−1)  2. This is equivalent to

ΦC(−2−2)− 22 (−2−1 +−2)−2−2  2 and ΦC(−1−1)− 22−1−1−1  2

This is equivalent to

ΦC(−1−1)− 22−1−1−1  2  ΦC(−2−2)− 22 (−2−1 +−2)−2−2

() From the previous equilibrium, let us now move agent − 2 from the center to the periphery

to obtain the Core-Periphery with C =  − { − 2  − 1 } and P = { − 2  − 1 } that we
denote CP3. First, observe that

ΦCP3(−3−3) = ΦC(−3−3)− 22 (−3−2 +−3−1 +−3)−3−3

and

ΦCP3(−2−2) = ΦC(−2−2)− 22 (−2−1 +−2)−2−2

We need to show that ΦCP3(−3−3)  2 and ΦCP3(−2−2)  2. This is equivalent to

ΦC(−3−3)− 22 (−3−2 +−3−1 +−3)−3−3  2

and

ΦC(−2−2)− 22 (−2−1 +−2)−2−2  2

which is equivalent to

ΦC(−2−2)−22 (−2−1 +−2)−2−2  2  ΦC(−3−3)−22
⎛⎝ X

∈P
−3

⎞⎠−3−3

where P = {− 2 − 1 }.
() We can continue like that until we reach a Peripheral equilibrium with C = ∅ and P =  .

() From the previous equilibrium (i.e., C = {1} and P =  − {1}), let us finally move agent
1 from the center to the periphery to obtain the Peripheral equilibrium with C = ∅ and P =  .

Observe that

ΦP(11) = Φ
C(11)− 22

⎛⎝ X
∈P−{1}

1

⎞⎠11
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We need to show that ΦP(11)  2. This is equivalent to

ΦC(11)− 22
⎛⎝ X

∈P−{1}
1

⎞⎠11  2

Since all the conditions are mutually exclusive, we have shown that, for each condition, there exists

a unique corresponding equilibrium as defined in the Proposition. One can always find a set of

parameters , , , and  that satisfies each condition. We give some examples in Section 4.2.

If the number of types is less than the number of agents, then each step described above has to

be made by type and not by individual. The conditions on parametrs will be exactly the same.

Let us show that it is not possible to have any other equilibrium such that an agent who resides

in the periphery has a higher centrality than an agent who lives in the center. Without loss of gen-

erality, take the Core-periphery equilibrium CP3, described in (), where C =  −{−2 −1 }
and P = {−2 −1 }. Is it possible to have an equilibrium where C =  −{−3 −1 } and
P = {−3 −1 }? For this equilibrium to be true, it has to be (at least) that ΦCP3(−3−3)  2

and ΦCP3(−2−2)  2, which implies that ΦCP3(−2−2)  ΦCP3(−3−3). Using (40), it is

easily verified that ΦCP3() is increasing in . But since, by definition, −3−3  −2−2,

which implies that ΦCP3(−2−2)  ΦCP3(−3−3), a contradiction. This reasoning can be

applied to any equilibrium.

Let us finally show that the number of equilibria is equal to the number of types of agents plus

one (the type of each agent is defined by her Katz-Bonacich centrality). Denote the number of

types of agents by  ≤ . Since we have shown that, in any equilibrium, two identical agents (i.e.

with the same Katz-Bonacich centrality) have to reside in the same part of the city, it has to be

that the number of Core-Periphery equilibria is equal to  − 1. If we add the Central equilibrium
and the Peripheral equilibrium, then the number of all equilibria is equal to  + 1.

Proof of Proposition 6. Remember from the proof of Proposition 4 that 
(2)
 is defined by

Λ( ) ≡ Φ()− 2, which is given by (40) or

Λ( ) ≡  (2− ) ()
2 + 2

⎛⎝
X

∈C−{}
 + (− )

X
∈P−{}



⎞⎠ − 2 = 0

Let us differentiate 
(2)
 with respect to . It is straightforward to see that:


(2)



 0

which means that when  increases, 
(2)
 rises. Thus, the set P increases and more people live in

the periphery.
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Let us differentiate 
(2)
 with respect to . For that, let us differentiate Λ( ). We obtain


(2)



= −

2 (− ) ()
2 + 2

P
∈C−{} + 2 (− 2)

P
∈P−{}

2 (2− ) + 2
P

∈C−{} + (− )
P

∈P−{}
 0

Let us finally differentiate 
(2)
 with respect to . First, let us write Λ( ) in terms of  by

noticing that  =
P+∞

=0 

[]
 and  6= =

P+∞
=0 


[]
 . We have:

Φ() ≡  (2− )

Ã
+∞X
=0


[]


!2
+ 2

⎛⎝
X

∈C−{}

+∞X
=0


[]
 + (− )

X
∈P−{}

+∞X
=0


[]


⎞⎠ +∞X
=0


[]


−2

This implies that

Λ0( ) = 2 (2− )

Ã
+∞X
=0

−1[]

!

+2

⎛⎝
X

∈C−{}

+∞X
=0

−1[] + (− )
X

∈P−{}

+∞X
=0

−1[]

⎞⎠ +∞X
=0


[]


+2

⎛⎝
X

∈C−{}

+∞X
=0


[]
 + (− )

X
∈P−{}

+∞X
=0


[]


⎞⎠ +∞X
=0

−1[]

Since G and all its powers are positive matrices, and the coefficients  increase with , it imme-

diately follows that the infinite series result in a matrix with all entries larger or equal than the

infinite series with the initial value of . As a result, Λ0( )  0.

Let us now totally differentiate Λ( ) . We obtain:


(2)



= − Λ0( )

2 (2− ) + 2
P

∈C−{} + (− )
P

∈P−{}
 0

Proof of Proposition 7.

From Proposition 5, we know that more central agents (here agent 1) cannot locate further

away from the center than less central agents (here agents 2 and 3) and that agents 2 and 3 have

to live in the same part of the city, which implies that, for example, a Core-Periphery equilibrium

where C = {1 2} and P = {3} cannot exist. As a result, there will only exist 3 equilibria.
() Let us first show under which condition there exists a unique central equilibrium for which

all individuals live in the center, i.e. C = {1 2 3} and P = ∅.
Using Proposition 5, we only need to show that Φ(33)  2. Using (41), we have:

Φ(33) =  (2− ) (33)
2 + 2 (31 +32)33
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Using (18), we obtain:

Φ(33) =  (2− )

µ
1− 2

1− 22
¶2
+ 2

µ


1− 22 +
2

1− 22
¶µ

1− 2

1− 22
¶

=
 (1− ) (1 + )2 [2− (1− ) ]¡

1− 22¢2
As a result, the condition Φ(33)  2 is equivalent to

 
 (1− ) (1 + )2 [2− (1− ) ]

2
¡
1− 22¢2

() Let us now show that there exists a core-periphery equilibrium for which individuals 1 lives in the

center while individuals 2 and 3 reside in the periphery. This means that C = {1} while P = {2 3}.
Using Proposition 5, the condition for the core-periphery equilibrium C = {1}, P = {2 3} to exist
and to be unique is given by:

ΦC(22)  2  Φ
C(11)− 22 (12 +13)11

Since ΦC(33) = Φ
C(22), the value of Φ

C(33) is given above. Let us determine Φ
C(11) −

22 (12 +13)11. Using (41), we have:

Φ(11) =  (2− ) (11)
2 + 2

⎛⎝
X

=−{1}
1

⎞⎠11

=  (2− ) (11)
2 + 2 (12 +13)11

Using (18), we obtain:

Φ(11) =  (2− )

µ
1

1− 22
¶2
+ 4

µ


1− 22
¶µ

1

1− 22
¶

=
 [2 (1 + 2)− ]¡

1− 22¢2
and thus

ΦC(11)− 22 (12 +13)11 =
 [2 (1 + 2)− ]¡

1− 22¢2 − 22
µ

2

1− 22
¶µ

1

1− 22
¶

(43)

=
 [2 (1 + 2)−  (1 + 4)]¡

1− 22¢2
As a result, the condition ΦC(33)  2  Φ

C(11)− 22 (12 +13)11 can be written as:

 (1− ) (1 + )2 [2− (1− ) ]

2
¡
1− 22¢2   

 [2 (1 + 2)−  (1 + 4)]

2
¡
1− 22¢2
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() Let us finally show that there exists a unique peripheral equilibrium for which all individuals

live in the center, i.e. C = ∅ and P = {1 2 3}. Using Proposition 5, the condition is

ΦC(11)− 22 (12 +13)11  2

which, using (43), is equivalent to

 
 [2 (1 + 2)−  (1 + 4)]

2
¡
1− 22¢2

We have thus proven all the statements made in the Proposition.

Proof of Proposition 8.

From Proposition 5, we know that identical agents have to live in the same part of the city.

In the complete network, this implies that cannot be a Core-Periphery equilibrium and thus there

must only be two equilibria.

() Let us first show that there exists a unique central equilibrium for which all individuals live

in the center. This means that C = {1 2 3} while P = ∅. Using Proposition 5, we need to show
that Φ(33)  2. Using (41), we have:

Φ(33) =  (2− ) (33)
2 + 2 (31 +32)33

Using (22), we have:

Φ(33) =
 (1− )2 (2+ 4− )¡

1−  − 22¢2
The condition Φ(33)  2 can thus be written as

 
 (1− )2 (2+ 4− )

2
¡
1−  − 22¢2

() Let us now show that there exists a unique peripheral equilibrium for which all individuals

live in the periphery. This means that P = {1 2 3} while C = ∅. Using Proposition 5, the condition
is

 
 (1− )2 (2+ 4− )

2
¡
1−  − 22¢2

and the result is proven.

Proof of Proposition 9.

Apply Proposition 5 to this network and the results follows.
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