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Abstract

We characterize the evolution of country export perforneameer the last five decades. Using the gravity
model of trade, we extract a measure of country export céfyaby industry which we use to evaluate
how absolute advantage changes over time for 135 indu&tri@@ countries. We alternatively use the
Balassa RCA index as a measure of comparative advantagel. d?dine analysis documents two em-
pirical regularities in country export behavior. One is @ggpecialization: in the typical country, export
success is concentrated in a handful of industries. Hypetalization is consistent with a heavy upper
tail in the distribution of absolute advantage across itrieswithin a country, which is well approxi-
mated by a generalized gamma distribution whose shapehike diath across countries and over time.
The second empirical regularity is a high rate of turnovea tountry’s top export industries. Churning
in top exports reflects mean reversion in a typical count@solute advantage, which we estimate to
be on the order of 30% per decade. Part Il of the analysis oesryperspecialization in exports with
high decay rates in export capability by modeling absoldigatage as a stochastic process. We specify
a generalized logistic diffusion for absolute advantage #ifiows for Brownian innovations (accounting
for surges in a country’s export prowess), a country-widelsastic trend (flexibly transforming absolute
into comparative advantage), and deterministic mean sewe(permitting export surges to be imperma-
nent). To gauge the fit of the model, we take the parametamaisd from the pooled time series and
project the cross-sectional distribution of absolute athge for each country in each year. Based on
just three global parameters, the simulated values magctrss-sectional distributions—which are not
targeted in the estimation—with considerable accuracy. résults provide an empirical road map for
dynamic theoretical models of the determinants of compearativantage.
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1 Introduction

Comparative advantage has made a comeback in international trade. Adigy laiatus during which the
Ricardian model was universally taught to undergraduates but rasetl/in quantitative research, the role of
comparative advantage in explaining trade flows is again at the centetufyinids resurgence is due in part
to the success of the Eaton and Kortum (2002) model (EK hereafteighwjives a probabilistic structure
to firm productivity and allows for settings with many countries and many gba@a the empirical side,
Costinot et al. (2012) uncover strong support for a multi-sector wersfcEK in cross-section data for
OECD countries. Another source of renewed interest in comparatixentatje comes from the dramatic
recent growth in North-South and South-South trade (Hanson 20129. efnerging-economy examples
of China and Mexico specializing in labor-intensive manufactures, Basmdl Indonesia concentrating in
agricultural commodities, and Peru and South Africa shipping out largatitjea of minerals give the
strong impression that resource and technology differences betvoesmtries have a prominent role in
determining current global trade flows.

In this paper, we characterize the evolution of country export advasiager the last five decades. Using
the gravity model of trade, we extract a measure of country exporbdapavhich we use to evaluate how
export performance changes over time for 135 industries in 90 coubeteseen 1962 and 2007. Distinct
from Costinot et al. (2012) and Levchenko and Zhang (2013), cavity-based approach does not use
industry production or price data to evaluate countries’ export prowestead, we rely on trade data only,
which allows us to impose less theoretical structure on the determinants qfdxaadeine industries at a fine
degree of disaggregation and over a long time span, and include bothao@minfg and non-manufacturing
sectors in our analysis. These features help in identifying the stable estdfioee underappreciated patterns
of export dynamics that we uncover.

The gravity model is consistent with a large class of trade models (Andé&th Anderson and van
Wincoop 2003, Arkolakis et al. 2012). These have in common an equilibrlationship in which bilat-
eral trade in a particular industry and year can be decomposed into tmgmoents (Anderson 2011): an
exporter-industry fixed effeatvhich captures the exporting country’s average export capability indars-
try; animporter-industry fixed effectvhich captures the importing country’s effective demand for foreign
goods in an industry; and aaxporter-importer componentvhich captures bilateral trade costs between
pairs of exporting and importing countries. We estimate these componentctoyear in our data, with

and without correcting for zero trade flofdn the EK model, the exporter-industry fixed effect is the prod-

Shikher (2011, 2012) expand EK to a multi-industry setting.
2See Silva and Tenreyro (2006), Helpman et al. (2008), Eaton et@12f2and Fally (2012) for alternative econometric
approaches to account for zero trade between countries.



uct of a country’s overall efficiency in producing goods and its ur@tpiction costs. In the Krugman (1980),
Heckscher-Ohlin (Deardorff 1998), Melitz (2003), and Andersod gan Wincoop (2003) models, which
also yield gravity specifications, the form of the exporter-industry corapbdiffers but its interpretation as
a country-industry’s export capability still applies. By taking the deviatiba country’s export capability
from the global mean for the industry, we obtain a measure of a counbytute advantage in an industry.
This definition is equivalent to a country’s share of world exports in ansig that we would obtain were
trade barriers in importing countries non-discriminating across expoiBgrfurther normalizing absolute
advantage by a country-wide term, we remove the effects of aggregatérggrowth, focusing attention
on how the ranking of a country’s export performance across indasthanges over time. We refer to
export capability after its double normalization by global-industry and cgumiie terms as a measure of
comparative advantage.

The aim of our analysis is to identify the dynamic empirical properties of atesahd comparative ad-
vantage that any theory of their determinants must explain. Though we meadivaapproach using EK, we

remain agnostic about the origins of a country’s export strength. Egppability may depend on the accu

mulation of ideas (Eaton and Kortum 1999), home-market effects (Krugrd@a), relative factor supplies
(Trefler 1995, Davis and Weinstein 2001, Romalis 2004, Bombardini 20&R), the interaction of industry
characteristics and country institutions (Levchenko 2007, Costinot, ZDO®at and Melitz 2012), or some
combination of these elements. Rather than search for cross-sectioratzs/af export capability, as in
Chor (2010), we seek the features of its distribution across countrgisstimnes, and time. For robustness,
we repeat the analysis by replacing our gravity-based measure aft @gpability with Balassa’s (1965)
index of revealed comparative advantage (RCA) and obtain similar reSMidurther restrict the period
to 1984 and later, when more detailed industry data are available. This nommt meriod allows us to
vary industry aggregation from two-digit to four-digit sectors, and wmdnstrate that our results are not a
byproduct of sector definitions.

After estimating country-industry export capabilities, our analysis pdsée two stages. First, we
document two strong empirical regularities in country export behaviorateaseemingly in opposition to
one another but whose synthesis reveals stable underlying patternguothi&on of export advantage. One
regularity is hyperspecialization in exportidgn any given year, exports in the typical country tend to be
highly concentrated in a small number of industries. Across the 90 couitrges data, the median share
for the single top good (out of 135) in a country’s total exports is 21%tHe top 3 goods is 45%, and for

the top 7 goods is 64%. Consistent with strong concentration, the crasstindlistribution of absolute

3See Easterly and Reshef (2010), Hanson (2012), and FreundexothR2013) for related findings.



advantage for a country in a given year is heavy tailed and approximatglydonal, with ratios of the
mean to the median of about 7. Strikingly, this approximation applies to counpréesatizing in distinct

types of goods and at diverse stages of economic development. TrssB&E&A index is similarly heavy
tailed.

Stability in the shape of the distribution of absolute advantage makes the secgidcal regular-
ity regarding exports all the more surprising: there is steady turnover guatiy’s top export products.
Among the goods that account for the top 5% of a country’s absolutersalye industries in a given year,
nearly 60% were not in the top 5% two decades earlier. Such churningssstent with mean reversion in
export superiority, which we confirm by regressing the change in atopindustry’s absolute advantage
on its initial value, obtaining decadal decay rates on the order of 25% to 3bB4se regressions control
for country-time fixed effects, and so may be interpreted as summarizinggsipation of comparative
advantage. The mutability of a country’s relative export capabilities isistemd with Bhagwati's (1994)
description of comparative advantage as “kaleidoscopic,” with the doménaha country’s top export
products often being short lived.

A concern about log normality in absolute advantage is whether it may beraduygi of the estimation
of the exporter-industry fixed effects. If these fixed effects varawomly around a common mean for
a country, they would be approximately normally distributed around a cdnsxgected value, making
absolute advantage tend toward log normality. Such logic, however, nestecexporter-industry fixed
effects having a common country mean. Our central focus is preciselgwmean export capability varies
across industries for a country and how this variation progressestiowver Incidental log normality—
resulting, say, from classical measurement error in trade data—would thegtlyn our decay regressions
mean reversion in log absolute advantage from one period to the next b@uohdre or less complete. Yet,
this is not what we find. Mean reversion is partial, with estimated annuaydates being similar whether
based on 5, 10, or 20-year changes. Moreover, subsequarissiacabsolute advantage preserve the shape
of its cross sectional distribution within a country. This subtle balance betmean reversion and random
innovation, which also holds for the RCA index, is highly suggestive of ehststic growth process at work
for individual industries.

In the second stage of our analysis, we seek to characterize the sioghasess that guides export
capability and thereby reconcile hyperspecialization in exports with meamsien in export advantage.
We specify a generalized logistic diffusion for absolute advantage thavsafior Brownian innovations
(accounting for surges in a country’s relative export prowesspumtty-wide stochastic trend (flexibly

transforming absolute into comparative advantage), and deterministic meamsioa (permitting export



surges to be impermanent). The generalized logistic diffusion that we gp@sithe generalized gamma as

a stationary distributiofl. The generalized gamma unifies the gamma and extreme-value families (Crooks
2010) and therefore flexibly nests many common distributions. To gaugettbktfie model, we take

the three global parameters estimated from the pooled cotintey seriesand project thecross-section
distribution of absolute advantage, which is not targeted in the estimationadbr@untry in each year.
Based on just these three parameters (and controlling for a countrystddeastic trend), the simulated
values match the cross-sectional distributions, country-by-countryparadd-by-period, with considerable
accuracy. The stochastic nature of absolute advantage implies that, etoamgnt in time, a country is
especially strong at exporting in only a few industries and that, over time,ttkisgth is temporary, with

the identity of top industries churning perpetually.

We then allow model parameters to vary by groups of countries and bg brdastry and estimate them
for varying levels of industry aggregation. The three parameters ofeherglized gamma govern the rate
at which the process reverts to the global long-run mean (the dissipatioongdarative advantage), the
degree of asymmetry in mean reversion from above versus below the theasti¢kiness of comparative
advantage), and the rate at which industries are reshuffled within thibulistn (the intensity of innovations
in comparative advantage). The first two parameters alone determineape shthe stationary cross
sectional distribution, with the third determining how quickly convergence tdahg-run distribution is
achieved. The intensity of innovations is stronger for developing thaddeeloped economies. Whereas
comparative advantage dissipates more quickly for manufacturing thaefiemanufacturing industries, it
is also relatively sticky for manufacturing, implying that industries reverarals the long-term mean more
slowly from a position of comparative advantage than from a position ofidésdage.

A growing literature, to which our work contributes, employs the gravity moflalade to estimate the
determinants of comparative advant&gén exercises based on cross-section data, Chor (2010) explores
whether the interaction of industry factor intensity with national charactesistio explain cross-industry
variation in export volume and Waugh (2010) identifies asymmetries in traste between rich and poor
countries that contribute to cross-country differences in income. Ircises using data for multiple years,
Fadinger and Fleiss (2011) find that the implied gap in countries’ exppelhtkities vis-a-vis the United
States closes as countries’ per capita GDP converges to U.S.earedd,. evchenko and Zhang (2013), who

calibrate the EK model to estimate overall sectoral efficiency levels by godintd that these efficiency

“Kotz et al. (1994) present properties of the generalized gamma dtatribCabral and Mata (2003) use the generalized gamma
distribution to study firm-size distributions. The finance literature consiaerigle family of stochastic asset price processes with
linear drift and power diffusion terms (see, e.g., Chan et al. 199hterest rate movements). Those specifications nest neither an
ordinary nor a generalized logistic diffusion.

50n changes in export diversification over time see see Imbs and Wa(2@03) and Cadot et al. (2011).

Related work on gravity and industry-level productivity includes Finiceliile(2009, 2013) and Kerr (2013).



levels converge across countries over time, weakening comparatigatade in the process.

Our approach differs from the literature in two notable respects. By singudunctional forms specific
to EK or other trade models, we free ourselves from having to use indpstduction data (which is
necessary to pin down model parameters) and are thus able to examineddantise sectors, including
non-manufacturing, at the finest level of industry disaggregationifgesswWe gain from this approach a
perspective on hyperspecialization in exporting and churning in topregpods that is less apparent in data
limited to manufacturing or based on more aggregate industry categories.séyentmwvever, the ability to
evaluate the welfare consequence of changes in comparative advéaddg Levchenko and Zhang 2013).
A second distinctive feature of our approach is that we treat exppdixity as being inherently dynamic.
Previous work tends to study comparative advantage by comparingedpstatic outcomes over time. We
turn the empirical approach around, and estimate the underlying stochastisg itself. The virtue is that
we can then predict the distribution of export advantage in the crossseetiich our estimator does not
target, and use the the cross-section projections as a check on thegooffit.

Section 2 of the paper presents a theoretical motivation for our gravitjfisagion. Section 3 describes
the data and our estimates of country export capabilities, and documentscaimeigularities regarding
comparative advantage, hyperspecialization in exporting and churnocayintries’ top export goods. Sec-
tion 4 describes a stochastic process that has a cross sectional distribrtigistent with hyperspecial-
ization and a drift consistent with turnover, and introduces a GMM estimatoletttify the fundamental

parameters. Section 5 presents the estimates and evaluates the fit of #ierdifBection 6 concludes.

2 Theoretical Motivation

In this section, we use the EK model to motivate our definitions of exportiityaand absolute advantage

and then describe our approach for extracting these values fromabigygnodel of trade.

2.1 Export capability and comparative advantage

In the EK model, an industry consists of many product varieties. The ptivity ¢ of a source country
firm that manufactures a variety in industrys determined by a random draw from a Fréchet distribution
with CDF F(q) = exp{—(q/gis)_ei} for ¢ > 0. Consumers, who have CES preferences over product

varieties within an industry, buy from the firm that is able to deliver a varietiga@alowest price. With firms

"Other related literature includes dynamic empirical analyses of the Hesk&hlin model that examine how trade flows
change in response to changes in country factor supplies (SchottR00tlis 2004) and work by Hausmann et al. (2007) on how
the composition of exports relates to the pace of economic growth.



pricing according to marginal cost, a higher productivity draw makes afiare likely to be the low-priced
supplier of a variety to a given market.

Comparative advantage stems from the position of the industry productisitybdtion, given bygis.
The position can differ across source countieand industries. In countries with a higheg, , firms
are more likely to have a higher productivity draw, creating cross-cpwatiation in the fraction of firms
that succeed within an industry in being low-cost suppliers to differestirtgtion market§. Consider the
many-industry version of the EK model in Costinot et al. (2012). Exportsdurce country to destination

countryd in industry: can be written as,

—0;
(wsTisd/gis>
Xisa = —5; HiYa, 1)

Zs’ (wS’TiS/d/gis/>

wherews is the unit production cost for countey 7,4 is the iceberg trade cost betweeandd in industry
i, i is the Cobb-Douglas share of expenditure on industayndYy; is total expenditure in country. Taking

logs of (1), we obtain a gravity equation for bilateral trade
In Xisqg = kis + mig — 0; In T4, (2)

wherek;; = 0 ln(ﬂis/ws) is source country’s log export capabilityin industryz, which is a function of the

country’s overall efficiency in the industry () and its unit production costsu¢), and

mig = In [Mz‘Yd/ P <ws/dis’d/qis/)€i:|

is the log ofeffective import demanily countryd in industry:, which depends on the country’s expenditure

on goods in the industry divided by an index of the toughness of competitidhd country in the industry.
Export capability is a function of a primitive country characteristic—the pasibioa country’s produc-

tivity distribution—and of endogenously determined unit production costsddes not yield a closed-form

solution for wages, we can therefore not solve for export capabilifexplicit functions of th@is's. Yet,

in a model with a single factor of production tlg%’s are the only country-specific variable for the in-

dustry (other than population and trade costs) that may determine factespmeaning that the,’'s are

implicit functions of these parameters. Our concept of export capabilitgan further be related to the

8The importance of the position of the productivity distribution for trade dejpén turn on the shape of the distribution, given
by 6;. Lower dispersion in productivity draws (a higher valuedgf elevates the role of the distribution’s position in determining
a country’s strength in an industry. These two features—the countosindposition parameter, and the industry dispersion
parametef;—pin down a country’s export capability. a



deeper origins of comparative advantage by modeling the country-igekmtcific Fréchet position param-
eterl;s = (gis)‘)i as the outcome of an exploration and innovation process, similar to EatonatuhK
(1999), a connection we sketch in Appendix D.

Any trade model that has a gravity structure will generate exporter-indiired effects and a reduced-
form expression for exporter capability. In the Armington (1969) modekg@plied by Anderson and van
Wincoop (2003), export capability is a country’s endowment of a getative to its remoteness from the
rest of the world. In Krugman (1980), export capability equals the nurmbearieties a country produces
in an industry times effective industry marginal production costs. In Meli@82, export capability is
analogous to that in Krugman adjusted by the Pareto lower bound forgingtiuin the industry, with the
added difference that bilateral trade is a function of both variable aad frade costs. And in a Heckscher-
Ohlin model (Deardorff 1998), export capability reflects the relative iz a country’s industry based
on factor endowments and sectoral factor intensities. The common fedtinese models is that export
capability is related to a country’s productive potential in an industry, estcated with resource supplies,
a home-market effect, or the distribution of firm-level productivity.

The principle of comparative advantage requires that a country-iydistxport capability/;; =
exp{k;s} be compared to both the same industry across countries and to other irdluétiiia the same
country. This double comparison of a country-industry’s export lbgipato other countries and other
industries is also at the core of measures of revealed comparativetagiwvgBalassa 1965) and recent im-
plementations of comparative advantage, as in Costinot et al. (2012¥ideéomwo exporters ands’ and

two industries andi’, and define geography-adjusted trade flows as

—0

Xisa = Xisa (Tis0)" = <w8/gis) “exp{mia}.

The correction of observed tradég;;,; by trade cost$r,~sd)9 removes the distortion that geography exerts
on export capability when trade flows are realifetlVhen compared to any countsf, countrys has a

comparative advantage in industryelative to industry’ if the following condition holds:

{zisd/)?is’d _ Kis/Kis’ > 1. (3)
Xi’sd/Xi’s’d Ki’S/Ki’s’

The comparison of a country-industry to the same industry in other sootggries makes the measure
independent of destination-market characteristi¢s because the standardizatiaf,, /X,»S/d removes the

destination-market term. In practice, a large number of industries andrisumakes it cumbersome to

This adjustment ignores any impact of trade costs on equilibrium fadtmEap..



conduct double comparisons of a country-indugtryo all other industries and all other countries. Our
gravity-based correction of trade flows for geographic frictionsgivge to a natural alternative summary

measure.

2.2 Estimating the gravity model

By allowing for measurement error in trade data or unobserved tratie easintroduce a disturbance term
into (2), converting itinto a regression model. With data on bilateral industdetflows for many importers
and exporters, we can obtain estimates of the exporter-industry and iminoiistry fixed effects via OLS.

The gravity model that we estimate is

In Xieqr = Kist + miar — bitDsar + €isdt, (4)

where we have added a time subsctjpte include dummy variables to measure exporter-industry#,gar
and importer-industry-yean,,; terms, D4, represents the determinants of bilateral trade costsegapd

is a residual that is mean independentff;. The variables we use to measure trade cbstg in (4) are
standard gravity covariates, which do not vary by industridowever, we do allow the coefficients on
these variables to differ by industry and by y&absent annual measures of industry-specific trade costs
for the full sample period, we model these costs via the interaction of colevey gravity variables and
time-and-industry-varying coefficients.

In the estimation, we exclude a constant term, include an exporter-indresirydummy for every ex-
porting country in each industry, and include an importer-industry-yeammay for every importing country
except for one, which we select to be the United States. The exportgstigg/ear dummies we estimate
thus equal

ki = kist + miust, )

wherek?:S is the estimated exporter-industry dummy for courstfiyp industryi and yeart, m;ys; is the
U.S. importer-industry-year fixed effect, akg; is the underlying log export capability. The estimator of
the exporter-industry variables is therefore meaningful only up to arstndnormalization.

The values that we will use for empirical analysis are the deviations of threated exporter-industry-

%These include log distance between the importer and exporter, the timedifée(and time difference squared) between the
importer and exporter, a contiguity dummy, a regional trade agreedwniny, a dummy for both countries being members of
GATT, a common official language dummy, a common prevalent lagguaammy, a colonial relationship dummy, a common
empire dummy, a common legal origin dummy, and a common curremyy.

we estimate (4) separately by industry and by year. Since the reggessahe same across industries for each bilateral pair,
there is no gain to pooling data across industries in the estimation, which kdipserthe number of parameters to be estimated in
each regression.



year dummies from the global industry means:
X 1 X
hist = k3% — < > kit (6)
s'=1

where the deviation removes the excluded importer-industry-year termelsasvany global industry-

specific term. This normalization obviates the need to account for worldwitlesiry TFP growth, demand
changes, or producer price index movements, allowing us to condugseaf comparative advantage with
trade data exclusively.

From this exercise, we take as a measuralsblute advantagef countrys’s industryz,

~ k‘QLS kis
Aist _ exp{kist} _ eXp{ 15t _ exp { t} ) (7)

5 S
exp {§ 5 k255 o {§ S0 ki)

By construction, this measure is unaffected by the choice of the omitted imjirdtestry-year fixed effect.
As the final equality in (7) shows, the measure is equivalent to the compasfsonderlying exporter
capability K;; to the geometric mean of exporter capability across countries in industry

There is some looseness in our measure of absolute advantage ANhases for country-industrys,
we say that its absolute advantage has risen even though it is only strictipatiies export capability has
increased relative to the global industry geometric mean. In truth, the gsuexiport capability may have
risen relative to some countries and fallen relative to others. Our motivatiarsing the deviation from the
geometric mean to define absolute advantage is twofold. One is that our statistieas the global industry
component of estimated export capability, making our measure immune to the dfisgiormalization in
the gravity estimation. Two is that removing the industry-year component seiaterally to specifying a
stochastic process for export capability. Rather than modeling expmaibigy itself, we model its devia-
tion from an industry trend, which simplifies the estimation by freeing us frommngao model the trend
component that will reflect global industry demand and supply. We egtahksmain regularities regarding
the cross section and the dynamics of exporter performance using @badlantagel;;; in Section 3. In
Section 4, we let the stochastic process that is consistent with the empigoédniges of absolute advan-
tage determine the remaining country-level standardization that transfiaisokite advantagd;; into a
measure of comparative advantage.

As is well known, the gravity model in (2) and (4) is inconsistent with thegmes of zero trade flows,
which are common in bilateral data. We recast EK to allow for zero tradellopiog the approach in Eaton

et al. (2012), who posit that in each industry in each country only a finitelb®r of firms make productivity

10



draws, meaning that in any realization of the data there may be no firms fnamirge that have sufficiently
high productivity to profitably supply destination markgin industryi. In their framework, the analogue
to equation (1) is an expression for the expected share of cosiimtrhe market for industry in countryd,

E [X;sa/X:4], which can be written as a multinomial logit. This approach, however, regjthie¢ one know
total expenditure in the destination markat;,;, including a country’s spending on its own goods. Since
total expenditure is unobserved in our data, we apply the independemndayant alternatives and specify
the dependent variable as the expectation for an exporting countars shtotal import purchases in the

destination market:
Xisd €xXp (kist - bitDisdt)

Zs’yéd Xis’d] B Zgﬁi €xp (kis’t - bitDz‘s’dt) '
We re-estimate exporter-industry-year fixed effects by applying multingpsieido-maximum likelihood
to (8)1?

Our baseline measure of absolute advantage relies on regressiohelstisates of exporter-industry-

E (8)

year fixed effects. Even when following the approach in Eaton et alAR@stimates of these fixed effects
may become imprecise when a country exports a good to only a few destin&®an alternative measure

of export performance, we use the Balassa (1965) measure ofeéwemmparative advantage, defined as,

RCASt — Zd Xisdt/ Zi’ Zd’ Xilsld/t

9)
Zi’ Zd Xi’sdt/ Es’ Zi’ Zd’ Xirstare

While the RCA index is ad hoc and does not correct for distortions in traesfintroduced by trade
costs or proximity to market demand, it has the appealing attribute of beind baledy on raw trade data.
Throughout our analysis we will employ the gravity-based measure altbsadvantage alongside the

Balassa RCA measure. Reassuringly, our results for the two measeiigsitarsimilar.

3 Data and Main Regularities

The data for our analysis are World Trade Flows from Feenstra et@05§2° which are based on SITC
revision 1 industries for 1962 to 1983 and SITC revision 2 industries 984 1and latet* We create a
consistent set of country aggregates in these data by maintaining as siitgleauntries that divide over

the sample perio#® To further maintain consistency in the countries present, we restrict thelesaonp

2\We thank Sebastian Sotelo for estimation code.

13We use a version of these data that have been extended to 2007 by Redestra and Gregory Wright.

14A further source of observed zero trade is that for 1984 and later tailanelustry trade flows are truncated below $100,000.

5These are the Czech Republic, the Russian Federation, and Yugos\eialso join East and West Germany, Belgium and
Luxembourg, and North and South Yemen.
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nations that trade in all years and that exceed a minimal size threshold, whias 116 country unit$.

The switch from SITC revision 1 to revision 2 in 1984 led to the creation of nmanmy industry categories.

To maintain a consistent set of SITC industries over the sample period, gregage industries from the
four-digit to three-digit level’ These aggregations and restrictions leave 135 industries in the data. In an
extension of our main results, we limit the sample to SITC revision 2 data for f@@&érd, alternatively
using two-digit (61 industries), three-digit (227 industries), or foigitd684 industries) sector definitions.

A further set of country restrictions are required to estimate importer apdrex fixed effects. For
coefficients on exporter-industry dummies to be comparable over time, thriesuthat import a good
must do so in all years. Imposing this restriction limits the sample to 46 importershabhgount for an
average of 92.5% of trade among the 116 country units. We also needfiuatezs ship to overlapping
groups of importing countries. As Abowd et al. (2002) show, such ectauiness assures that all exporter
fixed effects are separately identified from importer fixed eff&tEhis restriction leaves 90 exporters in the
sample that account for an average of 99.4% of trade among the 118yconits. Using our sample of 90
exporters, 46 importers, and 135 industries, we estimate the gravity eq@gtsaparately by industriyand

yeart and then extract absolute advantatye given by (7). Data on gravity variables are from CEPII.org.

3.1 Hyperspecialization in exporting

We first characterize export behavior in the cross section of industriesach country at a given moment

of time. For an initial take on the concentration of exports in leading produedabulate the share of

a country-industry’s exportX;; / (>, Xis) in the country’s total exports across the 135 industries. We
then average these shares across the current and preceding te/toysecount for measurement error and
cyclical fluctuations. IrFigure 1a, we display median export shares across the 90 countries in our sample
for the top export industry as well as the top three, top seven, and touladtiies, which roughly translate

into the top 1%, 3%, 5% and 10% of products.

For the typical country, a handful of industries dominate expSrt¥he median export share of just

18T his reporting restriction leaves 141 importers (97.7% of world trade)189 exporters (98.2% of world trade) and is roughly
equivalent to dropping small countries from the sample. For consisteterms of country size, we drop countries with fewer than
1 million inhabitants in 1985 (42 countries had 1985 population less than@30l@ had 250,000 to 500,000, and 9 had 500,000
to 1 million), which reduces the sample to 116 countries (97.4% of worle}rad

There are 226 three-digit SITC industries that appear in all yearshvalsizount for 97.6% of trade in 1962 and 93.7% in 2007.
Some three-digit industries frequently have their trade reported onlyeatbrdigit level (which accounts for the just reported
decline in trade shares for three-digit industries). We aggregate aa®e thdustries, creating 143 industry categories that are a
mix of SITC two and three-digit products. From this group we drop nawisted industries (postal packages, coins, gold bars, DC
current) and three industries that are always reported as one-digégedes in the US data. We further exclude oil and natural gas,
which in some years have estimated exporter-industry fixed effectarhatratic.

18Countries that export to mutually exclusive sets of destinations wouldllost as to separately identify the exporter fixed
effect from the importer fixed effects.

¥In analyses of developing-country trade, Easterly and Reshef Y2iiiment the tendency of a small number of bilateral-
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Figure 1:Concentration of Exports

(1a) All exporters (1b) LDC exporters
Median share of exports in top goods, all exporters Median share of exports in top goods, LDC exporters
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Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007.
Note Shares of industrys export value in country’s total export valueX ;. /(> ", Xi/,:). For the classification of less developed
countries (LDC) see Appendix E.

the top export good is 24% in 1972, which declines modestly over time to 2099®y. 20ver the full
period, the median export share of the top good averages 21%. Forptlteré® products, the median
export share declines slightly from the 1960s to the 1970s and then is &tabl¢he early 1980s onward
at approximately 42%. The median export shares of the top seven and fmwmducts display a similar
pattern, stabilizing by the early 1980s at around 62% and 77%, resggctihus, the bulk of a country’s
exports tend to be accounted for by the top 10% of its goodBigure 1b, we repeat the exercise, limiting
the sample to less developed countries (see Appendix E). The pattergsi@aimilar to those for all
countries, though median export shares for LDCs are modestly highex replorted quantiles.

One concern about using export shares to measure export caimenis that these values may be
distorted by demand conditions. Exports in some industries may be large singalydeethese industries
capture a relatively large share of global expenditure, leading the salmgtiiies to be top export industries
in all countries. In 2007, for instance, the top export industry in Great Brifaiance, Germany, Japan,
and Mexico is road vehicles. In the same year in Korea, Malaysia, the Rhégpraiwan, and the United
States the top industry is electric machinery. One would not want to condladethis fact that each of
these countries has an advantage in exporting one of these two products.

To control for variation in industry size that is associated with prefeignee turn to our measure of

industry relationships to dominate national exports and Freund and P{@@da) describe the prominent role of the largest few
firms in countries’ total foreign shipments.
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absolute advantage in (7) expressed in logaaks; = kis. As this value is the log industry export capabil-
ity in a country minus global mean log industry export capability, industryaattaristics that are common
across countries—including the state of global demand—are differentedo provide a sense of the iden-
tities of absolute-advantage goods and the magnitudes of their advantaggsw in Appendixiable Al

the top two products in terms of;; for 28 of the 90 exporting countries, using 1987 and 2007 as represen
tative years. To remove the effect of overall market size and thus nakes/comparable across countries,
we normalize log absolute advantage by its country mean, such that the \&ahapavt for country-industry
isisln A;s — (1/1) Z,ﬁ In Ay 5. The country normalization yields a double log difference—a country’s
log deviation from the global industry mean minus its average log deviatiossatbindustries—which is

a measure of comparative advantage.

There is considerable variation across countries in the top advantaggriaduIn 2007, comparative
advantage in Argentina is strongest in maize, in Brazil it is iron ore, in Gaitaslwheat, in Germany it is
road vehicles, in Indonesia it is rubber, in Japan it is telecommunicatiofsneent, in Poland it is furniture,
in Thailand it is rice, Turkey it is glassware, and in the United States it is otlesiort equipment (mainly
commercial aircraft). The implied magnitudes of these advantages are arordmong the 90 countries
in 2007, comparative advantage in the top product—i.e., the double logetiffer—is over 400 log points
in 76 of the cases. Further, the top industries in each country by ancclamgespond to those one associates
with national export advantages, suggesting that the observed rarddiegport capability are not simply a
byproduct of measurement error in trade values.

To characterize the full distribution of absolute advantage across irekifir a country, we next plot
the log number of a source countslg industries that have at least a given level of absolute advantage in a
yeart against that log absolute advantage léued;,; for industriesi. By design, the plot characterizes the
cumulative distribution of absolute advantage by country and by yearl{20@1, Luttmer 2007)Figure 2
shows the distribution plots of log absolute advantage for 12 countries in 20Idts for 28 countries in
1967, 1987 and 2007 are shown in AppenHigures Al, A2 andA3. The figures also graph the fit of
absolute advantage to a Pareto distribution and to a log normal distribution msixighum likelihood,
where each distribution is fit separately for each country in each yeah ¢hat the number of parameters
estimated equals the number of parameters for a distribitiommber of countriesc number of years).
We choose the Pareto and the log normal as comparison cases becaasge¢htbe standard options in the
literature on firm size (Sutton 1997). For the Pareto distribution, the cumelldistribution plot is linear in
the logs, whereas the log normal distribution generates a relationship tlaiciave to the origin. Relevant

to our later analysis, each is a special case of the generalized gamma tilistriba verify that the graphed
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Figure 2:Cumulative Probability Distribution of Absolute Advantage for Selec Countries in 2007
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Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007 and
CEPIl.org; MPML-estimated gravity measures of absolute advanigge (

Note The graphs show the frequency of industries (the cumulative piliipab — Fa(a) times the total number of industries
I = 135) on the vertical axis plotted against the level of absolute advantggech thatd;s; > a) on the horizontal axis. Both
axes have a log scale. The fitted Pareto and log normal distributionsdolusd advantagd,; are based on maximum likelihood
estimation by country in yeart = 2007.
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cross-sectional distributions are not a byproduct of specificatiam irestimating export capabilities from
the gravity model, we repeat the plots using the Balassa (1965) RCA indiéxswwilar results. And to
verify that the patterns we uncover are not a consequence of ayhitiarstry aggregations we construct
plots at the two, three, and four-digit level based on SITC revision 2idat@87 and 2007, again with
similar results®

The cumulative distribution plots clarify that the empirical distribution of abscdteantage is decid-
edly not Pareto. The log normal, in contrast, fits the data closely. The vibncfthe cumulative distri-
bution plots drawn for the data indicate that gains in absolute advantagé falbgressively more rapidly
as one moves up the rank order of absolute advantage, a feature¢ fabsethe scale-invariant Pareto but
characteristic of the log normal. This concavity could indicate limits on induspgresize associated with
resource depletion, congestion effects, or general diminishing retdimsugh the log normal is a rough
approximation, there are noticeable discrepancies between the fitted toglmbots and the raw data plots.
For some countries, we see that compared to the log normal the number sifieslin the upper tail drops
too fast (i.e., is more concave), relative to what the log normal distribution implidnese discrepancies
motivate our specification of a generalized logistic diffusion for absolutaradge in Section 4, which is
consistent with a generalized gamma distribution in the cross section.

Overall, we see that in any year countries have a strong export adeantpist a few industries, where
this pattern is stable both across countries and over time. Before examinitigi¢hseries of comparative
advantage in more detail, we consider whether log normality in absolute adeacald be merely inci-
dental. The exporter-industry fixed effects are estimated mean valuie$, hthe Central Limit Theorem
will converge to being normally distributed as the sample size becomes lagjdenial log normality in
absolute advantage could result if the estimated exporter-industry fifextsetaried randomly around a
common expected value for a given country. Our preferred view is tgatdomality in absolute advantage
results instead from differences in thredustry mean®f export capability by country, where these indus-
try means determine comparative advantage. Indeed, if absolute advalidagave a common expected
value across industries for each country there would be no basisrfgarative advantage at the industry
level. From the cross sectional distribution of absolute advantage aloweyar, one cannot differentiate
between random variation in industry fixed effects around a common meaadh exporter and variation
in each exporter’s industry means. Examining how absolute advantaggeshaver time will help resolve

this issue?!

2Each of these additional sets of results is available in an online appendix.

211t is worth noting that the hypothesis of incidental normality in the estimatedrépindustry fixed effects applies just as
readily to the estimated importer-industry fixed effects. As an instructieecese, we also constructed cumulative distribution plots,
analogous to those in Appendgigures Al, A2andA3, for the estimated importer-industry fixed effects, which involves plotting
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Figure 3:Absolute Advantage Transition Probabilities
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Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007.
Note The graphs show the percentiles of produsthat are currently among the top 5% of products, 20 years earlier.amgls is
restricted to products (country-industriés)with current absolute advantagg.: in the top five percentiles (— Fa(A;s¢) > .05),
and then grouped by frequencies of percentiles twenty years pri@revthe past percentile is— F4(Ais,:—20) Of the same
product (country-industryjs. For the classification of less developed countries (LDC) see Appendix E

3.2 The dissipation of comparative advantage

The distribution plots of absolute advantage give an impression of stabilitg. sirbng concavity in the
plots is present in all countries and in all years. Yet, this stability masks amasie industry churning in
the distribution of absolute advantage, which we investigate next. Initial meédef churning is evident in
AppendixTable Al. Between 1987 and 2007, Canada’s top good switches from sulfureatw@hina’s
from explosives (fireworks) to telecommunications equipment, Egypta frotton to crude fertilizers, In-
dia’s from tea to precious stones, Malaysia’s from rubber to radiosPthilgpine’s from vegetable oils to
office machines, and Romania’s from furniture to footwear. Of the 90 ¢éxtabrters, 70 exhibit a change in
the top comparative-advantage industry between 1987 and 2007. \Worewwst new top products in 2007
were not the number two product in 1987, but from lower down in the didgtdb. Churning thus appears
to be both pervasive and disruptive.

To characterize turnover in industry export advantage more completdiigime 3 we calculate the
fraction of top products in a given year that were also top products irique years. We identify for each

country in each year where in the distribution the top 5% of absolute-ady@aptaducts (in terms od,;)

exp {m.a: }, the exponentiated importer-industry fixed effect in equation (4),sacirdustries for each country in representative
years. The plots show little evidence of log normality for these values.rticpkar, the distribution of the exponentiated importer-
industry fixed effects are much less concave to the origin than log normalitid imply. These results are in the online appendix.
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were 20 years before, with the options being top 5% of products, nét héxt 25% or bottom 60%. We
then average across outcomes for the 90 exporters. The fraction B#qpoducts in a given year that
were also top 5% products two decades before ranges from a higwoiirdd002 to a low of 37% in 1997.
Averaging over all years, the share is 41%. There is thus nearly a G@#ce that a good in the top 5% in
terms of absolute advantage today was not in the top 5% two decades €anliaverage, 30% of new top
products come from the 85th to 95th percentiles, 16% come from the 60th tp&Stmtiles, and 13% come
from the bottom six deciles. Figures are similar when we limit the sample to justogévg economies.
Turnover in top export goods suggests that over time absolute advatitsigates—countries’ strong
sectors weaken and some weak sectors strengthen. To evaluate this img@arejave test for mean rever-

sion in log absolute advantage by estimating regressions of the form

In Ajs 10 — InAjsy = pln Ajsp + 05t + €4t (10)

In (10), the dependent variable is the ten-year change in log absolkdatade and the predictors are the
initial value of log absolute advantage and dummy variables for the couats$y;. Absolute advantage
represents the deviation in industry export capability for a country relédithe global mean. The inclusion
of country-year dummies introduces a further level of differencingiftbe country-year mean, so that the
regression in (10) evaluates the dynamics of comparative advantageoéfiicientp captures the fraction
of comparative advantage that dissipates over the time interval of ondajexther decaying towards a log
level of zero when currently above or strengthening towards a log ¢éwaero when currently below.

Table 1presents coefficient estimates for equation (10). The first two colurpostresults for all coun-
tries and industries, first for log absolute advantage in column 1 anderekieflog RCA index in column 2.
Subsequent pairs of columns show results separately for less developouatries and non-manufacturing
industries. Estimates fgr are uniformly negative and precisely estimated, consistent with meanievers
in comparative advantage. For the sample of all industries and counsiiesates forp in columns 1 and 2
are similar in value, equal te-0.24 when using log absolute advantage an@30 when using log RCA.
These magnitudes indicate that over the period of a decade the typicahecoutustry sees one-quarter
to three-tenths of its comparative advantage (or disadvantage) erodelumns 3 and 4 we present com-
parable results for the subsample of developing countries. Decay myiearao be larger for this group
of countries than worldwide average, indicating that in less developatbetes mean reversion in com-
parative advantage is more rapid. In columns 5 and 6 we present remudisly for non-manufacturing
industries, but all countries. For both measures of comparative adeadézay rates are larger in absolute

value for non-manufacturing industries (agriculture and mining), but iffiereince in decay rates between
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Table 1: DECAY REGRESSIONS FORCOMPARATIVE ADVANTAGE

Full sample LDC exporters Non-manufacturing
Exp. cap.k RCAIn X Exp. cap.k RCAIn X Exp. cap.k RCAIn X
1) 2 3 4 ®) (6)

Decay ratep -0.237 -0.300 -0.338 -0.352 -0.359 -0.315

(0.018y* (0.013)* (0.025)y* (0.015)* (0.025)* (0.013y*
Dissipation ratey 0.114 0.115 0.121 0.104 0.120 0.103

(0.007)> (0.004)* (0.007)y* (0.003)* (0.007)y* (0.004)*
Innov. intens.o? 0.476 0.618 0.683 0.836 0.741 0.737

(0.011y* (0.011)* (0.023y* (0.017y* (0.026)* (0.024)>
Obs. 66,276 67,901 39,937 41,103 30,942 32,390
Adj. R? 0.114 0.125 0.129 0.133 0.124 0.126
Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007 and

CEPIl.org.

Note Reported figures for five-year decadalized changes. Variabbe®BS-estimated gravity measures of export capabflity
by (5) and the log Balassa index of revealed comparative advahtafe: = In(Xist/ > Xisre)/ (i Xirse/ Doy Dowr Xirsit)-
OLS estimation of the decadal decay raticom

kist+10 — kist = pkist + 0it + 0st + Eist,

conditional on industry-year and source country-year effégtandds; for the full pooled sample (column 1-2) and subsamples
(columns 3-6). The implied dissipation rageand innovation intensity® are based on the decadal decay rate estipated

the estimated variance of the decay regression resigfubly (13). Less developed countries (LDC) as listed in Appendix E.
Nonmanufacturing merchandise spans SITC sector codes 0-4.a8dagrdors (reported below coefficients) foare clustered by
country and fom ando are calculated using the delta methdtljndicates significance at the 1% level.

non-manufacturing industries and the average industry is particulanhopred for the log absolute ad-
vantage measuré.

As an additional robustness check on the decay regressions, vgtimate (10) for the period 1984-
2007 using data from the SITC revision 2 sample. This allows us to perfegnessions for log absolute
advantage and the log RCA index at the two, three and four-digit levelulReme reported in Appendix
Table A2. Estimated decay rates are comparable to tho3alite 1. At the two-digit level (61 industries),
the decadal decay rate for absolute advantage using all countriescarstrias is 19%, at the three-digit
level (226 industries) it is 24%, and at the four-digit level (684 indus}rieis 37%. When using the log
RCA index, decay rates vary less across aggregation levels, ramgin@6% at the two-digit level to 32%
at the four-digit level. The similarity in decay rates across definitions of evatjye advantage and levels
of industry aggregation suggest that our results are neither merelyageméy econometric estimation nor
the consequence of arbitrary industry definitions.

Our finding that decay rates imply less than complete mean reversion is evigigaiost the log normal-

ity of absolute advantage being incidental. Suppose the cumulative distrilpltisnin Figure 2 reflected

22In the next section, we offer further interpretation of these results.
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random variation in log absolute advantage around a common expectedoradaeh country in each year,
due say to measurement error in trade data. Under the assumption that thisengent error was classi-
cal, all within-country variation in the exporter-industry fixed effects ladae the result of iid disturbances
that were uncorrelated across time. In the cross section, we wouldvelséng normal distribution for
absolute advantage—and possibly also for the RCA index—for eaclirgonreach year, with no temporal
connection between these distributions. When estimating the decay regriesél®), mean reversion in
absolute advantage would be complete, yielding a valyesgfual or close te-1. The coefficient estimates
in Table 1 are strongly inconsistent with such a pattern. Instead, as we documéntheeresults reveal
that the stable cross sectional distribution of absolute absolute and theathodustry export rankings are

intimately related phenomena.

3.3 Comparative advantage as a stochastic process

On its own, the finding that comparative advantage reverts to a long-term ismaainformative about the
cross sectional distributiof?. While mean reversion is consistent with a stationary cross sectional distri-
bution, mean reversion is also consistent with a non-ergodic distributiorc@mglstent with degenerate
comparative advantage that collapses at a long-term mean. Yet, the cbarbofanean reversion ifia-
ble 1 and temporal stability in the cumulative distribution plotsHigure 2 are strongly suggestive of a
balance between random innovations to export capability and the dissiptitese capabilities, a balance
characteristic of the class of stochastic processes that generate aasyatimss sectional distribution.

In exploring the dynamics of comparative advantage here and in Secjigre(Bmit ourselves to dif-
fusions: Markov processes for which all realizations of the randoralig are continuous functions of
time and past realizations. As a preliminary exercise, we exploit the factibatecay regression in (10)
is consistent with the discretized version of a commonly studied diffusion, thet€@n-Uhlenbeck (OU)
process. Suppose that comparative advantage, which we expras#iimious time asflis(t), follows an
OU process given by

_no?

din Ay(t) = = In Ags(t) dt + o dWA(t) (11)

whereW; (t) is a Wiener process that induces stochastic changes in comparativeesgpbal he parameter
n regulates the rate of convergence at which comparative advantagisray its global long-run mean
and the parameter scales time and therefore the Brownian innovatidﬁéif(t) in addition to regulating

the rate of convergenéé.Comparative advantage reflects a double normalization of export capakilty

ZThis point is analogous to critiques of using cross-country regresgidast for convergence in rates of economic growth (see
e.g. Quah 1996).
2*Among possible parametrizations of the OU process, we choose (tauge it is closely related to our later extension to
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the global industry-year and by the country-year. It is thereforerabta consider a global mean of one,
implying a global mean of zero fan Ais(t).

The OU process is the unique non-degenerate Markov process thatstationary normal distribution
(Karlin and Taylor 1981, ch. 15, proposition 52P)The OU process of log comparative advanthg.éis(t)
has therefore as its stationary distribution a log normal distribution of coniyem@dvantaged;(t). In
other words, if we observed comparative advantégeét) and plotted it with graphs like those Kigure 2,
we would find a log normal shape if and only if the underlying Markov pssa# log comparative advantage
In flis(t) is an OU process. IRigure 2, we only observe absolute advantage, however, so it remains for us
to relate the two cross sectional distributions of comparative and absoltgatade.

In (11), we refer to the parameteras therate of dissipationof comparative advantage because it
contributes to the speed with which log comparative advantage would collaps@egenerate level of
zero in all industries and all countries if there were no stochastic innogtibime parametrization in (11)
implies thatn alone determines the shape and heavy tail of the resulting stationary distrjbutie o is
irrelevant for the cross sectional distribution. Our parametrization is akinstandardization by which
is a normalized rate of dissipation that measures the “number” of typicaistamelard deviation) shocks
that dissipate per unit of time. We refer to the parameters theintensity of innovations Under our
parametrization of), o plays a dual role: on the one hand magnifying volatility by scaling up the Wiener
innovations and on the other hand contributing to the speed at which time ®lapgbe deterministic part
of the diffusion.

To connect the continuous-time OU process in (11) to our decay régneiss(10), we use the fact
that the discrete-time process that results from sampling from an OU gratadixed time intervaA is a
Gaussian first-order autoregressive process with autoregrgssameteexp{—no2A/2} and innovation
variance(l — exp{—no2A})/n (Ait-Sahalia et al. 2010, Example 1) Applying this insight to the first-

difference equation above, we obtain our decay regression:

In Ajs(t + A) —In Ais(t) = pln Ajs(t) + 05(t) + €45(t, t+A), (12)

a generalized logistic diffusion and because it clarifies that the parameéserrelevant for the cross sectional distribution. We
deliberately specify parametejsando that are invariant over time, industry and country and will explore thelgess of fit under
that restriction.

The Ornstein-Uhlenbeck process is a continuous-time analogue to armeating AR(1) process in discrete time. It is a
baseline stochastic process in the natural sciences and financeg(Ségseek 1977, Chan et al. 1992).

%Concretely,In A5 (t +A) = exp{—no2A/2} In Ais(t) + eise(t,t + A) for a disturbances;q (¢, t +A) ~ N(0,[1 —
exp{—no’A}]/n).
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implying reduced-form expressions for the decay parameter
p=—(1—exp{—no’A/2}) <0

and the unobserved fixed effet(t) = In Zs(t+A) — (1+p) In Z,(t), where the residual;s; (¢, ¢+ A)

is normally distributed with mean zero and variari@ée— exp{—no2A})/n. An OU process withp €
(0,1) generates a log normal stationary distribution of absolute advantage irosgesaction, with a shape
parameter of /n and a mean of zero.

The estimated dissipation coefficiemis a function both of the dissipation rateand the intensity of
innovationso and therefore may vary across samples because either or both of éneseefers vary. This
distinction is important becaugemay change even though the heavy tail of the distribution of comparative
advantage does not. From OLS estimation of the decay regression invEl23n obtain estimates gfand

o2 using the solutions,

1—(1+p)?
n o= =
S
~9 A\ —2
o2 — $ In (14 p) ’ (13)

where) is the estimated decay rate agtdis the estimated variance of the decay regression residual.
Table 1 shows estimates of and o2 implied by the decay regression results, with standard errors
obtained using the delta method. Across samples, the estimateasied on log absolute advantage is very
similar to that based on the log RCA index, implying that the two measures of catiyvgaadvantage have
a cross sectional distribution of similar shape. Patterns of interest embegewe comparg ando? across
subsamples.
First, consider the subsample of developing economies in columns 3 anthdlefl and compare the
estimates to those for the average country in the full sample (columns 1 aiti@)arger estimates of
in absolute value imply that mean reversion is more rapid in the developindrgauroup. However, this
result is silent about any underlying country differences in the cresamal distribution of comparative
advantage. We see that the estimated dissipatiom ateong developing countries is not markedly different
from that in the average country; in fact the@stimates are not statistically significantly different from each
other for the exporter capability measureThis similarity in the estimated dissipation ragéndicates that
comparative advantage is similarly heavy-tailed in the group of developungtiges as in the sample of all
countries. The faster reduced-form decay yater developing countries results mainly from their having

a larger intensity of innovations. In other words, a typical comparative-advantage innovation (a one-
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standard-deviation shock) in a developing country dissipates at rotlghkame rate as in an industrialized
country but the typical innovation is larger in a developing country.

Second, we can compare non-manufacturing industries in columns 5 anith® awerage industry in
columns 1 and 2. Whereas non-manufacturing industries differ coabigerom the average industry in
measured decay ratgsthere is no such marked difference in the estimated dissipationyates either
measure of comparative advantage, the dissipatiomyritenore similar between a non-manufacturing in-
dustry and the average industry than the measured decay natedd appear. This implies that comparative
advantage is similarly heavy-tailed among non-manufacturing industries as gathple of all industries.
However, the intensity of innovations is much larger in non-manufacturingsiniés than in the average
industry, perhaps due to higher volatility in commodity output or commodity pritleese nuances regard-
ing the implied shape of, and the convergence speed towards, theectesal distribution of comparative
advantage are not apparent when one focuses only on the reflunedecay rates themselves.

Finally, we compare results across two, three, and four-digit industridppendix Table A2 for the
subperiod 1984-2007 when a more detailed industry classification be@aitable. Whereas reduced-
form decay rateg increase in magnitude as one goes from the two to four-digit level, dissipatiesy,
tend to move in the opposite direction and fall as one goes from the moregaggite the more detailed
industry classification. For the exporter capability measure of compaeatixantage, the drop ipbetween
the two and the four-digit level is not statistically significant in the full sampliedfistries and countries—
indicating intuitively that the shape of the cross sectional distribution of ceetipa advantage remains
similar at varying levels of industry aggregati®hThe difference in reduced-form decay rateis largely
driven by a larger intensity of innovatiomsamong the more narrowly defined industries at the four-digit
level.

The diffusion model in (11) and its discrete analogue in (12) reveal @ c@®nection between hyperspe-
cialization in exporting and churning in industry export ranks. Randorovations in absolute advantage
cause industries to alternate places in the cross sectional distribution o&raiive advantage for a coun-
try, while the dissipation of absolute advantage creates a stable, headydiati#bution of export prowess.
Having established a connection between hyperspecialization and indstryng, we turn next to a more

rigorous analysis of its origins.

?In the subsamples of less developed countries and non-manufacnaimgries, however, the dissipation rategall more
pronounced as one goes from the more aggregate to the more detaistiyraassification. Those findings imply that, in those
subsamples, the cross sectional distribution of comparative advastagee widely dispersed and thus more heavy tailed for the
more detailed industry classification. Intuitively, at finer levels of agafieg, the few top industries carry more weight.
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4 The Diffusion of Comparative Advantage

We now search in a more general setting for a parsimonious stochastesprit@t characterizes the dy-
namics of comparative advantage. In Figure 2, the cross-sectiondbutigtns of absolute advantage drift
rightward perpetually, implying that absolute advantage is not stationaryevs, the cross-sectional dis-
tributions preserve their shape over time. We therefore consider absoludmtage as a proportionally
scaled outcome of an underlying stationary and ergodic variable: cotiyeagavantage. One candidate
stationary and ergodic variable is the Balassa RCA index because it reraspecific type of country-

wide trend. Instead of limiting ourselves to a narrowly imposed form, we spgeifieralized comparative

advantagen continuous time as

(14)

where A;4(t) is observed absolute advantage &hdt) is an unobserved country-wide stochastic trend. It
follows directly that this measure satisfies the properties of the comparatiemtage statistic in (3) that
compares individual country and industry pairs.

To find a well-defined stochastic process that is consistent with the clgushabsolute advantage over
time and with heavy tails in the cross section, we implement a generalized logistisialiffof comparative
advantageflis(t), which has a generalized gamma as its stationary distribution. Comparatavetage in
the cross section is then denoted with, and understood to have a time-invariant distribution. Absolute
advantaged;;(t), in contrast, has a trend-scaled generalized gamma as its cross-setisoitaition, with
stable shape but moving position as in Figuré 2.

The attractive feature of the generalized gamma is that it nests many distrgbati@pecial or limiting
cases, making the diffusion we employ flexible in hature. We construct a @stivhator by working with a
mirror diffusion, which is related to the generalized logistic diffusion throaglinvertible transformation.
Our estimator uses the conditional moments of the mirror diffusion and acconesaithe fact that we
observe absolute advantage only at discrete points in time. After estimatingthastic process from the
time series of absolute advantage in Section 5, we explore how well the implisglsectional distribution

fits the actual cross-section data, which we do not target in estimation.

%|n log terms, the non-stationary trend becomes an additive comporentdhtinually shifts the stationary distribution of
comparative advantaghi A;s(¢) = In Z,(t) + In Ass.
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4.1 Generalized logistic diffusion

The regularities in Section 3.1 indicate that the log normal distribution is a pladshishmark distribution
for the cross section of absolute advant&y@ut the graphs irFigure 2 (and their companion graphs in
Figures AlthroughA3) also suggest that for many countries and years, the number of indusitojes off
faster or more slowly in the upper tail than the log normal distribution can capie require a distribution
that generates kurtosis that is not simply a function of the lower-order msmeswould be the case in
the two-parameter log normal. The generalized gamma distribution, which uhifigmmma and extreme-
value distributions as well as many other distributions (Crooks 2010)rsoffecandidate famil§? Our
implementation of the generalized gamma uses three parameters, as in St23y{196

In a cross section of the data, after arbitrarily much time has passed, fhesprbrelevant generalized

gamma probability density function for a realizatién of the random variable comparative advantaige

- pr—1 - é
Ajs Ajs o
- exp — | — for a;s >0, 15
( 0 ) p{ < 0 ) } (15)

wherel'(-) denotes the gamma function a(ﬁj Kk, ¢) are real parameters withx > 0.32 The generalized

is given by:

gamma nests as special cases, among several others, the ordinary gatrimaion for¢ = 1 and the log
normal or Pareto distributions whentends to zerd® The parameter restriction = 1 clarifies that the
generalized gamma distribution results when one takes an ordinary gammaitistrbriable and raises it
to a finite powerl /¢. The exponentiated random variable is then generalized gamma distribureesiylta
that points to a candidate stochastic process that has a stationary gedegalimma distribution. The

ordinarylogistic diffusion a widely used stochastic process, generates an ordinary gamma as it@sfatio

29A log normal distribution also approximates the firm size distribution redsipnveell (Sutton 1997). For the United States,
Axtell (2001) argues that a Pareto distribution offers a tight fit to firmsstagt also documents that, in the upper and lower tails
of the cumulative distribution, the data exhibit curvature consistent with adomal distribution and at variance with a Pareto
distribution.

3%n their analysis of the firm size distribution by age, Cabral and Mata (288® use a version of the generalized gamma
distribution with a support bounded below by zero and document a good fi

31n the original Amoroso (1925) formulationthe generalized gamma digtoib has four parameters. One of the four parameters
is the lower bound of the support. However, our measure of absoluéatdjed ;s can be arbitrarily close to zero by construction
(because the exporter-industry fixed effect in gravity estimation is oended below so that by (7pg A;s can be negative and
arbitrarily small). As a consequence, the lower bound of the suppatdsiz our application. This reduces the relevant generalized
gamma distribution to a three-parameter function.

%2\We do not restrict) to be strictly positive (as do e.g. Kotz et al. 1994, ch. 17). We aliaw take any real value (see Crooks
2010), including a strictly negative for a generalized inverse gamma distribution. Crooks (2010) showshisageneralized
gamma distribution (Amoroso distribution) nests the gamma, inverse gaRréthet, Weibull and numerous other distributions as
special cases and yields the normal, log normal and Pareto distribusidinsiting cases.

33As ¢ goes to zero, it depends on the limiting behaviorofhether a log normal distribution or a Pareto distribution results
(Crooks 2010, Table 1).
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distribution (Leigh 1968). By extension, tlyeneralizedogistic diffusion has ayeneralizedyamma as its

stationary distribution.

Lemma 1. The generalized logistic diffusion

dt + o W (1) (16)

d1A4is (t) 02 [1 —n Ais (t)¢ -1
Ais(t) 2

for real parameters), ¢, o has a stationary distribution that is generalized gamma with a probability density
Jalas; 0, k, ¢) given by(15), for A;, (understood to have a time-invariant cross sectional distribution) and
the real parameters

6= (¢>/m)""">0 and xk=1/6°>0.

A non-degenerate stationary distribution exists only if 0.

Proof. See Appendix A. O

The term(c2/2)[1 — n{A;s(t)® — 1}/¢] in (16) is a deterministic drift that regulates the relative change in
comparative advantageid, (¢)/A;(t). The variabIeI/Vi;i (t) is the Wiener process. The generalized logistic
diffusion nests the Ornstein-Uhlenbeck process+ 0), leading to a log normal distribution in the cross
section. In the estimation, we will impose the condition that 0.34

The deterministic drift involves two types of components: constant parasrn(gter, o) on the one hand,
and a level-dependent componehg(t)¢ on the other hand, whetgis the elasticity of the mean reversion
with respect to the current level of absolute advantage. Weyctik level elasticity of dissipatianThe
ordinary logistic diffusion has a unitary level elasticity of dissipatign= 1). In our benchmark case of the
OU process¢ — 0), the relative change in absolute advantage is neutral with respect torteatdevel. If
¢ > 0, then the level-dependent drift componeh;(t)¢’ leads to a faster than neutral mean reversion from
above than from below the mean, indicating that the loss of absolute adedataty to occur more rapidly
than elimination of absolute disadvantage. Conversely,4f 0 then mean reversion tends to occur more
slowly from above than below the long-run mean, indicating that absolutenéatye is sticky. Only in the
level neutral case af — 0 is the rate of mean reversion from above and below the mean the same.

The parameterg ando in the generalized logistic diffusion in (16) inherit their interpretations froen th
OU process in (11) as the rate of dissipation and the intensity of innovatiesysectively. The intensity
of innovationss again plays a dual role: on the one hand magnifying volatility by scaling up fleea

innovations and on the other hand regulating how fast time elapses in thenohéséic part of the diffusion.

34t  where negative, comparative advantage would collapse over tinge<406 or explode forp > 0.
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This dual role now guarantees that the diffusion will have a non-degenstationary distribution. Scaling
the deterministic part of the diffusion hy? /2 ensures that stochastic deviations of comparative advantage
from the long-run mean do not persist and that dissipation occurs etehethe right speed to offset the
unbounded random walk that the Wiener process would otherwise ificlueach country-industry.

Under the generalized logistic diffusion, the dissipation ratnd dissipation elasticity jointly de-
termine the heavy tail of the cross sectional distribution of comparativengatya, with the intensity of
innovationss determining the speed of convergence to this distribution but having ntt efidts shape.

For subsequent derivations, it is convenient to restate the generlgstic diffusion (16) more com-
pactly in terms of log changes as,

o’ A ()?

din Ay (1) = "2 gb_l dt + o dWA(),

which follows from (16) by 1b’s lemma.

4.2 The cross sectional distributions of comparative and almdute advantage

If comparative advantagéis(t) follows a generalized logistic diffusion by (16), then the stationary dis-
tribution of comparative advantage is a generalized gamma distribution witlitydéts) and parameters
6= (62/n)"/? > 0andk = 1/6° > 0 by Lemma 1. From this stationary distribution of comparative ad-
vantaged;, (t), we can infer the cross distribution of absolute advant&gé). Note that, by definition (14),
absolute advantage is not necessarily stationary because the stochastimay not be stationary.

Absolute advantage is related to comparative advantage through a cauieénstochastic trend by
definition (14). Plugging this definition into (15), we can infer that the pbditg density of absolute

advantage must be proportional to

. a; o @i ’
i 0, 2(0), 1,0) (ézs@)) U (éZs@))

It follows from this proportionality that the probability density of absoluteattage must be a generalized

gamma distribution witt#,(t) = §Z,(t) > 0, which is time varying because of the stochastic tréi(t).

We summarize these results in a lemma.

Lemma 2. If comparative advantagél-s(t) follows a generalized logistic diffusion

A 2 4. ¢ _ "
dln A;(t) = —”;A”(t;l dt + o dWA (D) (17)
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with real parameters;, o, ¢ (n > 0), then the stationary distribution of comparative advantafg@(t) is

generalized gamma with the CDF

FA(&’LS? év ¢a K) = G

whereG|z; k| = vz (k;x)/T'(k) is the ratio of the lower incomplete gamma function and the gamma func-

tion, and the cross sectional distribution of absolute advantagét) is generalized gamma with the CDF

(ejzi>>¢;"“]

FA(ais; Hs(t)v ¢a K‘) =G

for the strictly positive parameters
n__ 2 1/¢ ) o Ao
0=(%/n)"", 6,(t)=0Z,(t) and x=1/6°.

Proof. Derivations above establish that the cross sectional distributions ageadjigad gamma. The cumu-

lative distribution functions follow from Kotz et al. (1994, Ch. 17, Section)3 Ol

The graphs irFigure 2 plot the frequency of industries, that is the probability- F'4(a; 65(t), ¢, k)
times the total number of industries £ 135), on the vertical axis against the level of absolute advantage
a (such thatA > a) on the horizontal axis. Both axes have a log scale. Lemma 2 clarifies tloainéryg-
wide stochastic trend(t) shifts log absolute advantage in the graph horizontally but the shape related
parameterg andx are not country specific if comparative advantage follows a diffusion avdtbmmon set
of three deep paramete@sn, ¢ worldwide.

Finally, as a prelude to the GMM estimation we note that/tile raw moments of the ratios /0;(t)

o) | ==((5) )=

and identical because bof;, /0,(t)]}/¢ and|a;,/0]'/¢ have the same standard gamma distribution (Kotz

anda;, /0 are

et al. 1994, Ch. 17, Section 8.7), whdr¢) denotes the gamma function. As a consequence, the raw
moments of absolute advantadg are scaled by a country-specific time-varying facto(t)” whereas the
raw moments of comparative advantage are constant over time if compa@yietage follows a diffusion

with three constant deep paramet@rs, o:

B () 2:(07) = Zu(0) - B[] = 2,0 - 07 29,
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By Lemma 2, the median of comparative advantagesis= (G—![.5; x])'/¢. A measure of concentration
in the right tail is the ratio of the mean and the mediameén/median ratip which is independent df and

equals
I'(k+1/¢)/T(x)

Mean/median ratio= (G5 R

(18)

We report this measure of concentration with our estimates to characterizarttadure of the stationary

distribution.

4.3 Implementation

The generalized logistic diffusion model (16) has no known closed foammsition density whe # 0.

We therefore cannot evaluate the likelihood of the observed data andtqagrform maximum likelihood
estimation. However, an attractive feature of the generalized logistic idiffiss that it can be transformed

into a diffusion that belongs to the Pearson-Wong family, for which cldsad- solutions of the condi-
tional moments exist® We construct a consistent GMM estimator based on the conditional moments of a
transformation of comparative advantage, using results from FormaS@nesen (2008).

Our model depends implicitly on the unobserved stochastic tref¥d. We use a closed form expression
for the mean of a log-gamma distribution to identify and concentrate out this. tFeme given country and
year, the cross-section of the data across industries has a genegalimeth distribution. The mean of the
log of this distribution can be calculated explicitly as a function of the modelnpeters, enabling us to
identify the trend from the relation tht,[In A;(t)] = Ey[In A;(t)] — In Z,(t) by definition (14). We
adopt the convention that the expectations oper&tgr| denotes the conditional expectation for source

countrys at timet. This result is summarized in the following proposition:

Proposition 1. If comparative advantagélis(t) follows the generalized logistic diffusidi6) with real
parametersn, o, ¢ (n > 0), then the country specific stochastic trefd(¢) is recovered from the first

moment of the logarithm of absolute advantage as:

Zu(t) = exp {Est[ln Asu(t)] — In(¢?/n) + F’(;z/ ¢*)/T(n/d?) } (19)
wherel” (k) /T'(x) is the digamma function.
Proof. See Appendix B. O

3pearson (1895) first studied the family of distributions now called Peafistributions. Wong (1964) showed that the Pearson
distributions are stationary distributions of a specific class of stochastiegses, for which conditional moments exist in closed
form.
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This proposition implies that for any GMM estimator, we can concentrate owttahastic trend in
absolute advantage and work with an estimate of comparative advantagiydit@oncretely, we obtain

detrended data based on the sample analog of equation (19):

1 n(2 / 2 2
AgMM(t) = exp lnA,-S(t) o }jz;lnAjs(t) _|_1 (¢ /77) +T ((Z/gb )/F(W/¢ ) (20)

Detrending absolute advantage to arrive at an estimate of comparataetage completes the first step in
implementing model (16).

Next, we perform a change of variable to recast our model as a Pedfsog diffusion. Rewriting
our model as a member of the Pearson-Wong family allows us to apply resulisssiek and Sgrensen
(1999) and construct closed-form expressions for the conditionalents of comparative advantage. This
approach, introduced by Forman and Sgrensen (2008), enablessisiate the model using GMRA.The
following proposition presents an invertible transformation of comparativarstage that makes estimation

possible.

Proposition 2. If comparative advantagélis(t) follows the generalized logistic diffusidi6) with real

parameters;, o, ¢ (n > 0), then:

1. The transformed variable
Bis(t) = [As(t)™* = 1]/9 (21)

follows the diffusion

A 0'2

ABia(t) = ~ % (1 6%) Bislt) — 8] d + o[ 62 Bis(1)2 + 20Bus(t) + 1dW ().

and belongs to the Pearson-Wong family.

2. For any timet, time intervalA > 0, and integem < M < n/¢?, then-th conditional moment of the

transformed proceséis (t) satisfies the recursive condition:

E|Bis(t + A)"

Bis(t) = b} = exp {—anA) Zn: nn,mbm—nzl TnmE [E’is(t + AT ‘Bis(t) - b}
m=0 m=0
(22)

where the coefficients, andr,, ,, (n,m =1,..., M) are defined in Appendix C.

3More generally, our approach fits into the general framework ofiptied-based estimating functions reviewed in Sgrensen
(2011) and discussed in Bibby et al. (2010). These techniques femregreviously applied in biostatistics (e.g., Forman and
Sgrensen 2013) and finance (e.g., Lunde and Brix 2013).
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Proof. See Appendix C. O

Transformation (21) converts the diffusion of comparative advanxhg(e) into a mirror specification
that has closed form conditional moments. This central result enablecargstyuct a GMM estimator.
Consider time series observations 18y, (¢) at timest1, . . ., t7. By equation (22) in Proposition 2, we
can calculate a closed form for the conditional moments of the transfornfedidif at timet.- conditional
on the information set at timg_;. We then compute the forecast error based on using these conditional
moments to forecast the-th power OfBis(tT) with time ¢._; information. These forecast errors must
be uncorrelated with any function of paégs(tT_l). We can therefore construct a GMM criterion for
estimation.

Denote the forecast error with

Uis(m7t7—17t7) = Bis(t’r)m —-E |:B’LS( )

Bis(tr— )}.

This random variable represents an unpredictable innovation imttie power OfBZ-S(tT). As a result,
Uis(m,t-_1,t;) is uncorrelated with any measurable transformatioﬁ?@(tT_l). A GMM criterion func-

tion based on these forecast errors is

T
gis(¢,m,0%) = —— Z [h1(Bis(tr—1))Uis(Lytr—1,t7), «« o har (Bis(tr—1))Uss (M, tr—1, 7))
T=2

where eacth,,, is a row vector of measurable functions specifying instruments forittie moment condi-
tion. This criterion function is mean zero due to the orthogonality between thedst errors and the time
t-—1 instruments. Implementing GMM requires a choice of instruments. Computationalderations
lead us to choose polynomial vector instruments of the fppBi,(t)) = (1, Bis(t), ..., Bis(t)X 1) to
constructK instruments for each of th&/ moments that we include in our GMM criteriéh.

For observations frond industries acrosS§ source countries, our GMM estimator solves the minimiza-

tion problem

(¢",n",0%*) = arg min ( SZZQZS ¢,n,0 ) W(;,ZZ%(@S,%U%)

(¢m,02)

for a given weighting matrixV’.

$"\We work with a sub-optimal estimator because the optimal-instrument GMikha&®r considered by Forman and Sgrensen
(2008) requires the inversion of a matrix for each observation. Givetarge sample, this task is numerically expensive. Moreover,
our ultimate GMM obijective is ill-conditioned and optimization to find our estimates g, ando? requires the use of an expensive
global numerical optimization algorithm. For these computational cosceersacrifice efficiency and use sub-optimal instruments.
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We evaluate this objective function at valuestof;, anda? by detrending the data to obtaitf? (t)
from equation (20), transforming these variables into their mirror variaBfe¥ (t) = [AGMM (1)=¢ —
1]/¢, and using equation (22) to compute forecast errors. Then, we dal¢tblaGMM criterion function
for each industry and country pair by multiplying these forecast errgrindtruments constructed from
BSGMM (1), and finally sum over industries and countries to arrive at the value @kl objective.

For estimation we use two conditional moments and three instruments, leaving usiXv@uations
for three parameters. Being overidentified, we adopt a two-step estim@morthe first step we com-
pute an identity weighting matrix, which provides us with a consistent initial estim@e.the second
step we update the weighting matrix to an estimate of the optimal weighting matrix by sBfting=
(1/15)3°, 3, gis(0,m,02)gis(6,m, 0%)’, which is calculated at the parameter value from the first step.
Forman and Sgrensen (2008) establish asymptoti#s-asco.3® We impose the constraints that> 0 and
o2 > 0 by reparameterizing the model in termslof; > —oco andIn(o?) > —oo, and use the delta method

to calculate standard errors for functions of the transformed parameters

5 Estimates

Following the GMM procedure described in Section 4.3, we proceed to estthaggarameters for the
global diffusion of comparative advantage &, ¢). It is worthy of note that, subject to a country-specific
stochastic trend, we are attempting to describe the global evolution of cdampaaevantage using just
three time-invariant parameters, which by implication must apply to all industrie$i sountries and in
all time periods. This approach contrasts sharply with our initial descriptieecise inFigure 2, which
fits cumulative distribution plots to the log normal based on distribution paramesémsated separately
for each country and each yediable 2 presents the estimation results. To verify that the results are not a
byproduct of specification error in estimating export capabilities from theity model, we also perform
GMM estimation using the Balassa (1965) RCA index.

The magnitude of the estimate gfwhich captures the dissipation of comparative advantage, is some-
what difficult to evaluate on its own. In its combination with the level elasticity ofigeione, n controls
both the magnitude of the long-run mean and the curvature of the cragsasddistribution. The sign of

¢ captures the stickiness of comparative advantage. The parameter esfimaserobustly negative (and

380ur estimator would also fit into the standard GMM framework of Hans882), which establishes consistency and asymp-
totic normality of our estimator for the produéS — oco. Given the dynamic nature of our times series exercise, we base the
GMM weighting matrix and computations of standard errors on the asymptatiderI” — oco. Results under the alternative
asymptotics of S — oo are available from the authors upon request; those asymptotics tend to lead stable estimates across
specifications.
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Table 2: GMM ESTIMATES OF COMPARATIVE ADVANTAGE DIFFUSION

Full sample Subsamples: Absolute advantdge
Abs. adv. Rev. adv. Exporter countries Sectors
A X LDC  Non-LDC Manuf.  Nonmanf.
@) 2 3 4 ®) (6)
Estimated Generalized Logistic Diffusion Parameters
Dissipation rate) 0.178 0.190 0.163 0.25 0.309 0.151
(0.003)** (.002)* (0.003y**  (0.006)** (0.009y**  (0.003)**
Intensity of innovations 1.913 1.189 2.115 1.274 1.454 2.211
(0.023)** (.026)* (0.028y**  (0.03y** (0.025y**  (0.034)**
Level elast. of dissipation -.006 -.030 -.008 -.008 -.032 -.004
(0.004) (.004)* (0.005) (0.008) (0.012)* (0.005)
Implied Parameters
Log gen. gamma scala 6 1,349.4 177.8 1,027.6 968.3 181.7 2,152.5
(1150.869) (28.6) (824.427)  (1154.036) (91.335)  (3008.804)
Log gen. gamma shape 8.425 5.349 7.920 8.165 5.736 9.053
(1.380)** (0.226)* (1.286y**  (1.910y** (0.755y**  (2.290y**
Mean/median ratio 17.350 16.615 22.580 7.601 5.455 28.340
Obs. 447,560 459,680 287,730 159,840 225,130 222,430
Root mean sq. forecast error 1.433 1.090 1.587 1.082 1.132 1.650
Min. GMM obj. (x 1,000) 8.585 0.012 14.348 12.798 5.147 16.390

Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007 and
CEPIl.org; MPML-estimated gravity measures of absolute advanige ( R
Note GMM estimation of the generalized logistic diffusion of comparative athg®A;, (t),

2 A ($)® — i
_%% dt + o AW/ (t),

using annual absolute advantage measdre§) = Ais(t)Zs(t) on the full pooled sample (column 1) and subsamples (columns 3-
6), and using the Balassa index of revealed comparative advat?&gge: (Xist/ D0 Xisrt) (O Xirst/ Do 2ogr Xirsrt)
instead of absolute advantage (column 2). Parametersp are estimated under the restrictidng;, In % > —oo for the mirror
Pearson (1895) diffusion of (21), while concentrating out counpsesic trendsZ,(¢t). The implied parameters are inferred as

6 = (¢%/n)'/?, k = 1/6%and the mean/median ratio is given by (18). Less developed countf) (s listed in Appendix E.
The manufacturing sector spans SITC one-digit codes 5-8, the muiatduring merchandise sector codes 0-4. Standard errors in
parentheses’ marks significance at five arid at one percent level. Standard errors of transformed and impliesheders are
computed using the delta method.

d lIl Aqg (t) =
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precisely estimated), so we reject log normality in favor of the generalizexingedistribution. Negativity

in ¢ implies that comparative advantage reverts to the long-run mean more slowlyafsove than from
below. However, the value af is not far from zero, suggesting that in practice deviations in comparative
advantage from log normality may be modest, as the plofsgare 2 suggest.

The parameter regulates the intensity of innovations and captures both the volatility of the Wiene
innovations to comparative advantage and the a speed of convergetimdeterministic decay. This dual
role binds the parameter estimatesato a level precisely such that a non-degenerate stationary distribution
exists. The intensity of innovations therefore does not play a role in detiegrilne cross-sectional distribu-
tion’s shape. That job is performed byandé, which exclusively depend omand¢, so we are effectively
describing the shape of the cross-sectional distribution with just two paeesne

The parameterg and ¢ together imply a shape of the distribution with a strong concentration of ab-
solute and comparative advantage in the upper tail. The mean exceeds tlaa mea factor of more
than seven, both among developing and industrialized countries. Thislemaide concentration is mainly
driven by industries in the non-manufacturing merchandise sector, velttuibit a mean/median ratio of
more than eight (column 6), whereas the ratio is less than four for industritbe manufacturing sector
(column 5). When we use the Balassa (1965) RCA index, the mean/mediammtahan doubles to 16
(column 2). One interpretation of the greater concentration in revealedasatiye advantage relative to
our geography-adjusted absolute advantage measure is that ggoggiafibrces comparative advantage by
making countries appear overspecialized in the goods in which their undpdgivantage is strong.

In Appendix Table A3 (to be included) we repeat the GMM proceduregudata for the post-1984
period on SITC revision 2 industries at the two, three, or four-digit [eWeé results are largely in line with
those inTable 2. Estimates of the dissipation rajeare slightly larger for the post-1984 period than for the
full sample period, and, similar to what we found in the decay regressiorable 1, become larger as one
moves from higher to lower levels of industry disaggregation. Estimates efak#city of dissipatior are
negative in all cases except one—when we measure export prosiegdag absolute advantage (based on
the gravity fixed effects) at the four-digit SITC level. As mentioned in Sec8d, with nearly 700 four-
digit SITC rev. 2 industries we frequently have few destination marketexyrter-industry with which to
estimate the gravity fixed effects, contributing to noise in the estimated expuliestry coefficients.

The parameters themselves give no indication of the fit of the model. To &vditjave exploit the
fact that our GMM estimation targets exclusively the diffusion of compagativantage—that is, the time
series behavior for country-industries—and not its cross-sectiama@rdion. Thus, the cross sectional

distribution of comparative advantage for a given country at a given mbmdime provides a means of
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validating our estimation procedure. For each country in each year,ojgxpthe cross sectional distribution
of comparative advantage implied by the parameters estimated from the diffuasiocompare it to the
distribution based on the raw data.

To implement our validation exercise, we need a measurg fin equation (14), whose value depends
on Z, the country-specific stochastic trend, which is unobserved. The fdlestochastic trend in the
diffusion is to account for horizontal shift in the distribution of log absoldvantage, which may result
from country-specific technological progress, factor accumulatioather sources of aggregate growth. In
the estimation, we concentrate dti} by exploiting the fact that botH,.; and A;; have generalized gamma
distributions, allowing us to obtain closed-form solutions for their means, wismates the value of the
stochastic trend. To obtain an empirical estimat& gfat a given moment in time we apply equation (19),
which defines the variable as the difference between the mean log valig; @hd the expected value of
a log gamma distributed variable (which is a functionmodnd ¢). With estimated realizations for each
country in each year af,, in hand, we compute realized values fbg,, for each country-industry in each
year.

To gauge the goodness of fit of our specification, we first plot our ureasf absolute advantagg;.

To do so, following the earlier exercise Figure 2, we rank order the data and plot for each country-
industry observation the level of absolute advantage (in log units) agh@kig number of industries with
absolute advantage greater than this value (which is given by the log ahones the empirical CDF).
To obtain the simulated distribution resulting from the parameter estimates, we @lgiotial diffusion’s
implied stationary distribution for the same series. The diffusion implied valiesarstructed, for each
level of A;4, by evaluating the log of one minus the predicted generalized gamma CDE at Aist/Zst.
The implied distribution thus uses the global diffusion parameter estimates aasviled! identified country-
specific trendZ;.

Figure 4 compares plots of the actual data against the diffusion implied plots for éauntiges in three
years, 1967, 1987, 200Figures A7, ABandA9 in the Appendix present plots for the same 28 countries
in 1967, 1987 and 2007 as shownRigures Al, A2 andA3 before. WhileFigures Al throughA3 de-
picted Pareto and log normal maximum likelihood estimates of each individuatrg@ucross sectional
distribution by year (such that the number of parameters estimated equaledntiber of parameters for
a distributionx number of countriesx number of years), our exercise now is vastly more parsimonious
and based on a fit of the time-series evolution, not the observed cidgmseFigure 4 andFigures A7
throughA9 present the same, horizontally shifting but identically shaped, single-seas®nal distribution,

as implied by the two shape relevant parameter estimates (out of the three ttéit)ttie global diffusion
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Figure 4: Global Diffusion Implied and Observed Cumulative Probability Distributio ns of Absolute
Advantage for Select Countries in 1967, 1987 and 2007

Brazil 1967 Brazil 1987 Brazil 2007
128 1284 128
64 64-1 64
g 32 g 32 324
é 16 g 16 16
5 5 5
5 81 5 8 5 s
z g 2
E E E
2 4 2 4 2 4
21 2 24
1 14 1
dl ‘1 1 10 l(‘]O dl ‘1 1 160 01 1 1 1‘0 l(‘]O
Absolute Advantage Absolute Advantage Absolute Advantage
—— Data —— FitImplied by Global Diffusion —— Data —— FitImplied by Global Diffusion —— Data —— FitImplied by Global Diffusion
China 1967 China 1987 China 2007
1284 —_— 128 © =8 1284 o o
64 64- 644
g 329 8 324 224
2 16 g 164 164
5 5 5
FER FERS 3z 8y
£ g g
Z 4 Z 4 2 4
24 21 24
14 14 14
dl 1 10 160 dl ‘l ‘1 l‘U 160 dl 1 1 1‘0 100
Absolute Advantage Absolute Advantage Absolute Advantage
[—=— pata_—+— Fit implied by Global Diffusion [—=— pata_—=— Fitimplied by Global Diffusion [—=— pata_—=— Fitimplied by Global Diffusion |
Germany 1967 Germany 1987 Germany 2007
128 1284 128
64 64+ 64
g 329 8 324 224
£ 164 g 164 164
5 5 5
FER FER 3 8y
£ g g
Z 4 Z 4 2 4
2 21 2
B T T T B T T T 11 T T T
01 1 1 10 100 01 1 1 10 100 01 1 1 10 100
Absolute Advantage Absolute Advantage Absolute Advantage
\+ Data —— Fit Implied by Global Diffusion \ \+ Data —=— Fit Implied by Global Diffusion \ \—o— Data —=— Fit Implied by Global Diffusion \
United States 1967 United States 1987 United States 2007
128 1284 128
64 64+ 64
g 329 8 324 g 32
2 16 g 164 g 164
5 5 5
5 8] 5 8 5 8
2 2 2
] g g
2 4 2 4 R
2 24 2
B T T T T T B T T T T T 11 T T T T
01 1 1 10 100 01 1 1 10 100 01 1 1 10 100
Absolute Advantage Absolute Advantage Absolute Advantage
[—=— pata_—=— Fit implied by Global Diffusion | [—=— pata_—=— Fitimpiied by Global Difusion | [—=— Dpata_—=— Fitimplied by Global Diffusion |

Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007 and
CEPIl.org; gravity-based measures of absolute advantage (7).

Note The graphs show the observed and predicted frequency of indu@treecumulative probability — F4(a) times the total
number of industried = 135) on the vertical axis plotted against the level of absolute advantggech that4;;; > a) on

the horizontal axis. Both axes have a log scale. The predicted freigseare based on the GMM estimates of the comparative
advantage diffusion (17) in Table 2 (parameteendphi in column 1) and the inferred country-specific stochastic trend conmpone
In Z5; from (19), which horizontally shifts the distributions but does not affeeir shape.
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for all country-industries and years. The country-specific trBpderms shift the implied stationary distri-
bution horizontally, and we cut the depicted part of that single distributitimegbwer and upper bounds of
the specific country’s observed support in a given year to clarify the fi

Considering that the shape of the distribution effectively depends ortwalgarameters for all country-
industries and years, the simulated distributions fit the actual data remarkealblyThere are important
differences between the actual and predicted plots in only a few coualrika few years, including China
in 1987, Russia in 1987 and 2007, Taiwan in 1987, and Vietnam in 198ZG0W Three of these four cases
involve countries undergoing a transition away from central planningqhduhe designated time period,
suggesting periods of economic tumult.

There are some telling discrepancies between the actual and diffusion irpjpdisdthat are worthy
of further investigation. First, for some countries the upper tail of the digtdb in the actual data plots
falls off more quickly than the predicted stationary distribution would imply. Thiggests that for some
countries comparative advantage is relatively sticky (i.e., the true valdefof these countries may be
larger in absolute value than that showrTable 2). However, a handful of countries in East and Southeast
Asia—China, Japan, Korea Rep., Malaysia, Taiwan, and Vietham—shoepfiusite pattern. They exhibit
less concavity in the data than in the diffusion implied distribution, revealing tes$gess in comparative
advantage than the predicted stationary CDF would indicate, consistent witied is smaller in absolute
value than inTable 2 or even positive. What remains unclear is whether these differencesaardiss
countries are associated with the countries or with particular industries ia thestries, an issue we will
explore in upcoming work.

Future empirical analysis in this paper will account for the following exterssio

1. We will use our estimates of the parameters of the generalized gamma distrititsimulate a
multi-sector version of the EK model. First, we will use the generalized gamman&rafe location
parameters of the Fréchet distribution for firm productivity in each inglwstd in each country. We
will then combine these location parameters with values for preference emadolegy parameters
taken from the trade literature to simulate a global general equilibrium, whiddhsygegravity equa-
tion. Finally, we will add randomly generated noise to the “true” trade valudsagply the gravity
model to estimate exporter-industry fixed effects on the simulated data ples Bgisomparing these
gravity estimates to our underlying generalized gamma draws of the locatiametars, we can as-
sess the extent to which measurement error in trade data contaminates suremesnt of country

export prowess.
2. We will examine alternative measures of the goodness of fit of the glezeat logistic diffusion by (a)
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plotting observed quantiles for absolute advantage against predictetilegifor absolute advantage,
and (b) restricting the estimation to the latter half of the sample period and ussg ékgmates to

simulate distributions for the first half of the sample period.

3. We will examine the robustness of our results to (a) using MPML-basetiages of gravity fixed
effects that account for zero flows, and (b) excluding industries (snairelectronics, electrical ma-
chinery, transportation equipment, apparel, and footwear) in which igbobduction networks figure

prominently and in which domestic value added accounts for a relatively shaaél 8f gross exports.

4. We will derive the exact discrete-time process that results from sanfpdimgour generalized logistic
diffusion at a fixed time interval and compute the precise decadal evanescence rate#0bd and
A = 10 using the according generalized autoregressive parameter functioa eXact discrete-time
process and evaluateat three percentiles of comparative advantage for the pooled sampldl as we

by country and sector.

5. We will re-estimate the GMM specification by explicitly allowing the absolute athge measures
A, to be aggregates of trade events between the discrete points of obseSatensen (2011),

beyond our current implementation of discrete-time trade events.

6 Conclusion

Two salient facts about comparative advantage arise from our inviéstigat trade flows among a large
set of countries and industries over more than four decades: Whilg at@ment of time countries exhibit
hyperspecialization in only a few industries, the deviation in comparativeradge from its long-run global
mean dissipates at a brisk rate, of one-quarter to one-third over aedethid impermanence implies that
the identity of the industries in which a country currently specializes chargyesderably over time. Within
two decades, a country’s rising industries replace on average thiesetap five initial industries in terms
of absolute advantage.

We specify a parsimonious stochastic process for comparative adeamitéigonly three parameters by
generalizing the two-parameter logistic diffusion. The generalized logisfigsibih is consistent with both
hyperspecialization in the cross section and perpetual churning in igdagiort ranks. We additionally
allow for a country-specific stochastic trend whose removal translasesuab advantage into comparative
advantage and estimate the global parameters of the generalized logistiodifiging a recently developed

GMM estimator for a well-defined mirror process. In this novel approaetestimate the stochastic process
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itself, rather than the repeated cross sections, and then use the two timanhdifusion parameters
that determine the shape of the cross-sectional distribution to assessoftiiditpredicted cross-sectional
distribution across countries and over time. Even though our estimator doesget the cross sections—
but rather the annual diffusion—we find that the shape of the predit&idrsary cross section tightly
matches the shape and curvature of the observed cross-sectionbiiticsis for the bulk of countries and
years.

The exercises in this paper deliberately set aside questions about fiee degin of comparative advan-
tage and aim instead to characterize the empirical evolution of comparati@atade in a typical country-

industry. In future research, we plan to explore natural follow-ustiols.

1. We plan a systematic account of the country-industries whose evolwias dhe global diffusion
in the sense that their rapid success or decline over time beats the oddssandsdide a confidence
bound of the likely evolution under the specified generalized logistic diffusionce the outside-
the-odds successes and failures are accounted for, we can aslentheir subsequent performance
remained outside the odds and what known market-driven forces ermoent interventions may
account for their beating the odds. In this context, we can explore thicsdof a Lévy jump process
to our generalized logistic diffusion, generating a stationary distribution vatblosed form, while
restricting parameters so that the implied stationary distribution approximatesribeatjized gamma
arbitrarily closely. The resulting stochastic process can potentially expkiembiution of individual

country-industries more completely.

2. We plan to bring firm-level evidence on the employment and sales coatientamong exporting and
non-exporting firms in select countries to the project and thus complemeseotor-level evidence
with recent advances in firm-level theories of international trade. Ciesrfor which we have access
to firm-level data include Brazil, Germany and Sweden. Firms might withstastdrdevel dissipa-
tion of comparative advantage by expanding their product scopesasowors or, alternatively, might
be subject to similar rates of dissipation as their home sector. Firm-level egid=am sharpen our
understanding of how the ongoing process of innovation in manufactunthugtries and exploration

in non-manufacturing industries contribute to hyperspecialization andtiydtisurning.

39



Appendix

A Generalized Logistic Diffusion: Proof of Lemma 1

The ordinary gamma distribution arises as the stationary distribution of theastixzlogistic equation

(Leigh 1968). We generalize this ordinary logistic diffusion to yield a galiwed gamma distribution as
the stationary distribution in the cross section. Note that the generalized-@ithrameter) gamma distribu-
tion relates to the ordinary (two-parameter) gamma distribution through a poaveformation. Take an
ordinary gamma distributed random variaBewith two parameter8, > 0 and the density function

fx(z;0,k) = F(lm);_ (%)Kil exp {—%} for x> 0. (A1)

Then the transformed variablé = X1/¢ has a generalized gamma distribution under the accompanying
parameter transformatigh= 6'/¢ because

fA(a;é7H7¢) = %PI‘(

A<w = LPex <0

= &Pr(X <a®) = fx(a%0% k) - |pa®|

_ a1 o] fa® rl a® 1 o [a ot AN
- Tl (5) el w5l G) o G) )

which is equivalent to the generalized gamma probability density function (@%greI'(-) denotes the
gamma function and, «, ¢ are the three parameters of the generalized gamma distribution in our context
(a > 0 can be arbitrarily close to zero).

The ordinary logistic diffusion of a variabl¥ follows the stochastic process

dX () = [a— BX ()] X(¢)dt + 5 X (t)dW(t)  for X(t) >0, (A.2)

wherea, 3,5 > 0 are parameterg,denotes timelV (¢) is the Wiener process (standard Brownian motion)
and a reflection ensures thdtt) > 0. The stationary distribution of this process (the limiting distribution
of X = X (o00) = limy_, X (¢)) is known to be an ordinary gamma distribution (Leigh 1968):

_ 1 |1 /z\s—-1 T
(@ 0.m) = g5 9_‘ (5) exp{—g} for x>0, (A.3)
asin (A.1) with
) = &%/(28) >0, (A.4)
kK = 2a/d?—1>0

under the restrictioa: > 52/2. The ordinary logistic diffusion can also be expressed in terms of infinitesi-
mal parameters as

dX (1) = ux (X () dt + ox (X () dW(t)  for X(t) >0,

where
px(X)=(a—-FX)X and o%(X)=3a%X2
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Now consider the diffusion of the transformed variallig) = X (¢)/¢. In general, a strictly monotone
transformationd = g(X) of a diffusion X is a diffusion with infinitesimal parameters

pa(4) = 504 (X)g"(X) + ux(X)g/(X) and o4(4) = 0% (X)(X)?

(see Karlin and Taylor 1981, Section 15.2, Theorem 2.1). Applying thisigé result to the specific mono-
tone transformationl = X'/¢ yields thegeneralized logistic diffusion

dA(t) = [a . 5A(t)ﬂ A dt + oA AW () for  A(t) > 0. (A.5)

with the parameters

|

_[1-¢6* a
At
The term—3A(t)? now involves a power function and the parameters of the generalized lagjitision
collapse to the parameters of the ordinary logistic diffusionffer 1.
We infer that the stationary distribution df(co) = lim;_,, A(¢) is a generalized gamma distribution
by (15) and by the derivations above:

(A.6)

, o=

ol Q

A 1 ol fa -1 a\?
fala;0,k,0¢) = @ i <é) exp {— (é) } for =z >0,
with
) = 8 =[5%/2B))"° =[50/ (28))/* > 0,
ko= 2a/5%—1=2a/c*—1]/¢ >0 (A7)

by (A.4) and (A.6).

Existence of a non-degenerate stationary distribution djth > 0 circumscribes how the parameters
of the diffusiona, 3, o and¢ must relate to each other. A strictly positi#émplies that signs) = sign(¢).
Second, a strictly positive implies that sigfa — 02/2) = sign(¢). The latter condition is closely related
to the requirement that absolute advantage neither collapse nor exgltdelevel elasticity of dissipation
¢ is strictly positive ¢ > 0) then, for the stationary probability densify (-) to be non-degenerate, the
offsetting constant drift parameter needs to strictly exceed the variance of the stochastic innovations:
a € (02/2,00). Otherwise absolute advantage would “collapse” as arbitrarily much timegdssplying
industries die out. 1f < 0 then the offsetting positive drift parameiemeeds to be strictly less than the
variance of the stochastic innovatiors: (—oo, 02 /2); otherwise absolute advantage would explode.

Our preferred parametrization (16) of the generalized logistic diffusideimma 1 is

dt + o dWA (1)

~

dAis(t) _ o® | Au(t)? -1
Auty 2| "

T2 ¢

for real parameters, ¢, 0. That parametrization can be related back to the parameters in (A.5) by setting
a = (6%/2) + B and B = no?/(2¢). In this simplified formulation, the no-collapse and no-explosion
conditions are satisfied for the single restriction that 0. The reformulation in (16) also clarifies that one
can view our generalization of the drift tefid;, (1) — 1]/¢ as a conventional Box-Cox transformation of
Ay(t) to model the level dependence.
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The non-degenerate stationary distribution accommodates both the log raominthle Pareto distribu-
tion as limiting cases. Whesn — 0, botha and 5 tend to infinity; if 8 did not tend to infinity, a drifting
random walk would result in the limit. A stationary log normal distribution requited o/3 — 1, so
a — oo at the same rate with — oo as¢ — 0. For existence of a non-degenerate stationary distribution,
in the benchmark case with — 0 we needl/a — 0 for the limiting distribution to be log normal. In
contrast, a stationary Pareto distribution with shape pararpeteuld require thaty = (2 — p)o?/2 as
¢ — 0 (see e.g. Crooks 2010, Table 1; proofs are also available from therawthon request).

B Trend Identification: Proof of Proposition 1

First, consider a random variabfé which has a gamma distribution with scale paramétand shape
parametek. For any powen € N we have

E[ln(X")] = /0 h In(a") (H);

n oo

= nln0+/ In(2)2" e ?dz
) fy
n 0 [

= nlnf+ ——— “le*d

i +F(/-f)@/{/o <

(k)

= nln@—#—nr(m)

wherel”(x)/T'(k) is the digamma function.

From Appendix A (Lemma 1) we know that raising a gamma random variable faothier1/¢ creates
a generalized gamma random variab{é/? with shape parameters and ¢ and scale parametét/?.
Therefore
In(0) + I'(x) /T ()

¢

This result allows us to identify the country specific stochastic tr€n@ ).

Forflis(t) has a generalized gamma distribution acridss any givens andt with shape parametets
andn/¢* and scale parametép?/n)'/? we have

Est [ln flis(t)} L ”;ZM/ L(n/¢)

From definition (14) andi,,(t) = Ay (t)/Z,(t) we can infer thaE[In A;,(t)] = Eg[In As(t)] — In Z4(2).

Re-arranging and using the previous resultifin A;,(t) | s, t] gives

In(¢?/n) +T'(n/¢*)/T(n/?) }
o

E [In(x"/%)] = ;E In X] =

@wzm{MM%w%

as stated in the text.
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C Pearson-Wong Process: Proof of Proposition 2

For a random variabl& with a standard logistic diffusion (the = 1 case), the Bernoulli transformation
1/X maps the diffusion into the Pearson-Wong family (see e.g. Prajneshu D68Ais 1989). We follow
up on that transformation with an additional Box-Cox transformation antyﬁg( ) = [Ais(t)? — 1]/

to comparative advantage, as stated in (21). DeWr%(t = —WA( ). ThenA;.® = ¢Bi,(t) + 1 and, by
Ito’s lemma,

dgis(t) — d(‘W)

= —Ai ()7 dA (1) + %((;5 + 1) A (£) 7?7 2(d Az (¢))?
= — A )0t (722 (1 —n Ais(t;j _ 1) Ais(t) dt + oAy () dWié(t)
+ %w 1) Asy(£) 0202 sy (1)2 ol
2T . R N 2 R

= -5 (1 + Z) Ay ()77 - Z] At — oA (6) 0 AWL(1) + T (¢ + DA () b
= -2 [(2-6) Autoe - 1) et - wdut e awicy
_ P [(n 5 o 5 B
= % |(5¢) @But)+ 1)~ 2| i+ o(6Bi(t) + 1) AW ()

2 ) . - )
= 3 _(77 — ¢?) Bis(t) — ¢] dt + U\/¢23is(t)2 +20Bis(t) + 1AW (1).

The mirror diffusionBiS(t) is therefore a Pearson-Wong diffusion of the form:

dBi(t) = —a(Bis(t) — B)dt +\/24(aBis (1) + bBis(t) + ) dWE (1)

whereq = (1 — ¢*)0*/2, B = 0°$/(29), a = ¢°0%/(29), b = ¢ /q, andc = o? /(2q).

To construct a GMM estimator based on this Pearson-Wong representegi@pply results in Forman
and Sgrensen (2008) to construct closed form expressions footigitional moments of the transformed
data and then use these moment conditions for estimation. This technique melesamnvenient structure
of the Pearson-Wong class and a general result in Kessler ands8ar@®99) on calculating conditional
moments of diffusion processes using the eigenfunctions and eigenwdlties diffusion’s infinitesimal
generatop?

A Pearson-Wong diffusion’s drift term is affine and its dispersion termuigdratic. Its infinitesimal
generator must therefore map polynomials to equal or lower order polyteonfia a result, solving for
eigenfunctions and eigenvalues amounts to matching coefficients on polytemms. This key observation
allows us to estimate the mirror diffusion of the generalized logistic diffusion e to recover the
generalized logistic diffusion’s parameters.

%For a diffusion
dX (1) = px (X (1)) dt + ox (X (t)) dW X (t)
the infinitesimal generator is the operator on twice continuously differéatfabctionsf defined byA(f)(x) = pux(z)d/dx +
%ax (x)* d?/dx?. An eigenfunction with associated eigenvalue 0 is any function’ in the domain of4 satisfyingAh = Ah.
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Given an eigenfunction and eigenvalue pdit, \,) of the infinitesimal generator aB;,(t), we can
follow Kessler and Sgrensen (1999) and calculate the conditional morfniret @genfunction:

E [ Bis(t + A) | Bis(t) | = exp At} h(Bis(1)). (C.8)

Since we can solve for polynomial eigenfunctions of the infinitesimal gémredd B;(¢) by matching
coefficients, this results delivers closed form expressions for thdittmmal moments of the mirror diffusion
for Bis(t).

To construct the coefficients of these eigen-polynomials, it is usefulnsider the case of a general
Pearson-Wong diffusiotX (¢). The stochastic differential equation governing the evolutiotX ¢f) must
take the form:

dX(t) = —q(X(t) — X) + /2(aX (1) + bX (t) + )T (k) /T (k) dW X (1).

A polynomialp, (z) = > _, mmaz™ is an eigenfunction of the infinitesimal generator of this diffusion if
there is some associated eigenvalye# 0 such that

n n n
- X) Z 7rn7mm:cm_1 + 9(ax2 + bz + ¢) Z Tn,mm(m — 1)gcm_2 =\, Z TonmT

m=2

We now need to match coefficients on terms.

From thez™ term, we must havg,, = —n[l — (n — 1)a]q. Next, normalize the polynomials by setting
Tm,m = 1 and definer,, ,,+1 = 0. Then matching coefficients to find the lower order terms amounts to
backward recursion from this terminal condition using the equation

Tn,m =

b k.
miﬂﬂn’mﬂ + miﬂmmﬁ (C.9)
Am — Ap m — Gn
with a,,, = m[l — (m — 1)alq, by, = m[X + (m — 1)b]q, andc,, = m(m — 1)cq. Focusing on polynomials
with order ofn < (1 4 1/a)/2 is sufficient to ensure that,, # a,, and avoid division by zero.
Using the normalization that, ,, = 1, equation (C.8) implies a recursive condition for these conditional
moments:

E[X(t+A)")|X(t) = 2] = exp{—anA} Y mpma™ Z TnmB [X(t+A)™|X(t) = 2].

We are guaranteed that these moments exist if we restrict ourselves tethé fir (1 4+ 1/a)/2 moments.
To arrive at the result in the second part of Proposition 2, set thenedeas as;, = o2(n — ¢2)/2,
Xo=¢/(n—¢?),as = ¢*/(n — ¢?), bs = 2¢/(n — ¢?), andcs = 1/(n — ¢*). From these parameters,
we can construct eigenvalues and their associated eigenfunctionghesiegursive condition (C.9). These

coefficients correspond to those reported in equation (22).
In practice, it is useful to work with a matrix characterization of these momamtitions by stacking
the first V- moments in a vector;(t):

B [Yio(t + A) | Bis(t) | = AA) T Vi (1) (C.10)
with Yis(t) = (1, Bis(t), ..., Bis(t)M) and the matriced (t) = diagle %, e 92t .. e~omt) andIl =
(m1, 72, ar), whereyrm = (Tm,0s- -+ s Tmm, 0,...,0) foreachm = 1,..., M. In ourimplementation
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of the GMM criterion function based on forecast errors, we work withfdrecast errors of the linear
combinationII - Y;4(¢) instead of the forecast errors f,(¢). Either estimator is numerically equivalent
since the matridl is triangular by construction, and therefore invertible.

D Connection to Endogenous Growth Theory

Eaton and Kortum (1999, 2010) provide a stochastic foundation fahetéistributed productivity. Their
fundamental unit of analysis is an idea for a new variety. An idea is a bhtdpmproduce a variety of good

1 with efficiencyq (in a source country). Efficiency is the amount of output that can be produced with
a unit of input when the idea is realized, and this efficiency is common to afitdea where the variety
based on the idea is manufactured. Suppose an idea’s efficjesape realization of a random variable
@ drawn independently from a Pareto distribution with shape pararfieterd location parameter (lower
bound)g.40 Suppose further that ideas for godarrive in continuous time at momentaccording to a

(non-homogeneous) Poisson process with a time-dependent rate fraraorenalized t(ﬁ_eiRis(t). In
Eaton and Kortum (2010, ch. 4), the rate parameter is a deterministic futmmtinuous time. In future
empirical implementation, we can also specify a stochastic process for thearar@eter, giving rise to a
Cox process for idea generation.

In this setup, the arrival rate of ideas with an efficiency of at I64&} > ¢) is G~ R;s(t). If there is no
forgetting, then the measure of idéBg(¢) expands continuously and, at a momerit will have reached a
level .

Tyo(t) = / R(r)dr.
—o
As a consequence, at mometie number of ideas about gopdith efficiencyQ > ¢ is distributed Poisson
with parameter;—%T;,(t). Moreover, the productivity = max{3} of the most efficient idea at moment
t has an extreme value Fréchet distribution with the cumulative distribution fungtidg; T;s(t), 6;) =
exp{—T;s(t) ¢~ %}, whereT;(t) = gis(t)ei (Eaton and Kortum 2010, ch. 4). In Section 2 we suppressed
time dependency ojl.s to simplify notation.

Similar to Grossman and Helpman (1991), we can specify a basic differeqgtiation for the generation

of new ideas:
dTiS(t) = Rjs (t) = giS(t))‘iS(t)XLiS(t)7 (D-ll)

where¢;s(t) is research productivity in country-industiy, including the efficiency of exploration in the
non-manufacturing sector and the efficiency of innovation in manufagukia(t) = L (t)/Lis(t) is the
fraction of employment in country-industfy devoted to research (exploration or innovation), the parameter
x € (0,1) reflects diminishing returns to scale (wherea$ = 1 in Grossman and Helpman 1991) and
L;s(t) is total employment in country-industiy at moment.

The economic value of an idea in source countiy the expected profit;;(¢) from its global expected
sales in industry. Given the independence of efficiency draws, the expected prgfit) is equal to the
total profitlls(¢) generated in source countslg industry: relative to the current measure of idégs(t):

IL(t)  6:;Xis(t) & ws(t)LE(D)
Tis(t)  Tis(t) — 1-06 Tis(t)

Wis(t) =

whereX;,(t) = >, Xisq(t) are global sales (exporEd,;ﬁS X;sar plus domestic sale¥ ;) andd; is the

“The Pareto CDF i$ — ((j/g“)‘gi. Eaton and Kortum (1999) speak of the “quality of an idea” when thesr tefits efficiency.
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fraction of industry-wide profits in industry-wide sales (for a relatedvaéion see Eaton and Kortum 2010,
ch. 7). Industry-wide expected profits vary by the type of competitiondddmonopolistic competition,
a CES elasticity of substitution in demang and the Pareto shape parameter of efficiehaynply §; =
(o0; — 1)/[0;04] (Eaton and Kortum 2010, ch. 5). The final step follows because the Wwalgof labor
employed in production must be equal to the sales not paid out as ptefit9Z% (t) = (1 — §;) Xis(t).

In equilibrium, the CES demand system implies a well defined price idjéX for the economy as a
whole, so the real value of the idea at any future dai®m;s(7)/Ps(7) and, for a fixed interest rate the
real net present value of the idea at momeist

Vis(t) > is(T)
= /t exp{—r(r — D) 2 o

The exact price indexes in a multi-industry and multi-country equilibrium remabetderived (a single-
industry equilibrium is derived in Eaton and Kortum 2010, ch. 5 and 6)lldstrate the optimality condition
driving endogenous growth, we can consiffen(t) as given but we note that it will be a function Bf;(¢)
in general.

Each idea has a nominal valuelgf(¢), so the total value of research outpugig(t) \is(t)X L;s(t) Vis(t)
at moment, and the marginal product of engaging an additional worker in relSeaye; s (t) \is ()X~ Vs (t).
A labor market equilibrium with some research therefore requires that

Xé-is (t)vis (t) ) ﬁ )

Ws

XeisONis (X Wis(t) =ws = N\is(t) = (

The exploration of new ideas in non-manufacturing and the innovationoolugts in manufacturing there-
fore follow the differential equation

by (D.11). The nominal value of an id&&;(¢) is a function ofT4(¢) in general, so this is a non-degenerate
differential equation. Eaton and Kortum (2010, ch. 7) derive a balhmgowth path for the economy in
the single-industry case. By making research product#it{t) stochastic, we can generate a stochastic
differential equation for the measure of ideBs(t) and thus the Fréchet productivity positign (t) =

T;s ()95

E Classifications and Additional Evidence

In this appendix, we report country and industry classifications, asasweltiditional evidence to complement
the reported findings in the text.

E.1 Classifications

Our empirical analysis requires a time-invariant definition of less developedtries (LDC) and industri-
alized countries (non-LDC). Given our data time span of more then fazad#s (1962-2007), we classify
the 90 economies, for which we obtain exporter capability estimates, by thaiveestatus over the entire
sample period.
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In our classification, there are 2n-LDC Australia, Austria, Belgium-Luxembourg, Canada, China
Hong Kong SAR, Denmark, Finland, France, Germany, Greece,Irelsta!|, Italy, Japan, Kuwait, Nether-
lands, New Zealand, Norway, Oman, Portugal, Saudi Arabia, Singg&main, Sweden, Switzerland, Trini-
dad and Tobago, United Kingdom, United States.

The remaining 62 countries atd®C: Algeria, Argentina, Bolivia, Brazil, Bulgaria, Cameroon, Chile,
China, Colombia, Costa Rica, Cote d’'lvoire, Cuba, Czech Rep., Dominiean Ecuador, Egypt, El Sal-
vador, Ethiopia, Ghana, Guatemala, Honduras, Hungary, Indianési®, Iran, Jamaica, Jordan, Kenya,
Lebanon, Libya, Madagascar, Malaysia, Mauritius, Mexico, Morotéganmar, Nicaragua, Nigeria, Pak-
istan, Panama, Paraguay, Peru, Philippines, Poland, Korea Rep., RpRassian Federation, Senegal,
South Africa, Sri Lanka, Syria, Taiwan, Thailand, Tunisia, Turkegabida, United Rep. of Tanzania,
Uruguay, Venezuela, Vietnam, Yugoslavia, Zambia.

We split the industries in our sample by broad sector. The manufacturitgy sedudes all industries
with an SITC one-digit code between 5 and 8. The non-manufacturingharedise sector includes indus-
tries in the agricultural sector as well industries in the mining and extractidorseand spans the SITC
one-digit codes from O to 4.

E.2 Additional evidence

Table Al shows the top two products in terms of normalized log absolute advahtatye for 28 of the
90 exporting countries, using 1987 and 2007 as representative yeaobtain a measure of comparative
advantage, we normalize log absolute advantage by its country meal;; — (1/1) Zf, In Ay g The
country normalization of log absolute advantagél;.; results in a double log difference of export capability
k;ss—a country’s log deviation from the global industry mean in export capabilityus its average log
deviation across all industries.

Table A2 presents estimates of the decay equation (10) for the period 1984-2b@ydata from the
SITC revision 2 sample. This recent sample allows us to perform regnsgsiolog absolute advantage and
the log RCA index at the two, three and four-digit level. Estimated decay aatdesomparable to those in
Table 1, which uses data for the full period 1962-2007 at the level of 135 SMi€e-digit industries.

Figures Al, A2andA3 extendFigure 2 in the text and plot, for 28 countries in 1967, 1987 and 2007,
the log number of a source countgls industries that have at least a given level of absolute advantage
in yeart against that log absolute advantage lawell;.; for industriesi. The figures also graph the fit
of absolute advantage in the cross section to a Pareto distribution and to artogl mlistribution using
maximum likelihood, where each cross sectional distribution is fit separatebath country in each year
(such that the number of parameters estimated equals the number of pasdoredatistributionx number
of countriesx number of years).

To verify that the graphed cross sectional distributionBigures A1, A2 andA3 are not a byproduct
of specification error in estimating export capabilities from the gravity modekepeat the plots using the
revealed comparative advantage index by Balassa (196gures A4, A5 and A6 plot, for the same 28
countries in 1967, 1987 and 2007, the log number of a source cosfatigdustries that have at least a
given level of revealed comparative advantade,/ > -, Xis)/ (> . Xis/ D i >y Xirs) in yeart against
that comparative advantage level for industrie¥he figures also graph the fit of the revealed comparative
advantage index in the cross section to a log normal distribution using maximuidib@ separately for
each country in each year.

Figures A7, A8andA9 extendFigure 4 in the text and plot, for 28 countries in 1967, 1987 and 2007, the
observed log number of a source courtiy/industries that have at least a given level of absolute advantage
in yeart against that log absolute advantage ldweli;.; for industriesi. This raw data plot is identical
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Table Al:Top Two Industries by Normalized Absolute Advantage

Country 1987 2007 Country 1987 2007
Argentina Maize, unmilled 5.13 Maize, unmilled 5.50 Mexico Sulphur 3.73 IcolAolic beverages 3.97
Animal feed 3.88 Oil seed 461 Crude minerals 3.26 Office machines .82 3
Australia Wool 4.15 Cheese & curd 3.25 Peru Metal ores & conctr. 4 4.2 Metal ores & conctr. 6.25
Jute 3.83 Fresh meat 3.20 Animal feed 4.03 Coffee 4.60
Brazil Coffee 3.34 Iron ore 5.18 Philippines Vegetable oils & fats  3.81  ffic®machines 441
Iron ore 3.21 Fresh meat 4.42 Pres. fruits & nuts 3.50 Electric maghin 3.51
Canada Sulphur 4.04 Wheat, unmilled 5.13 Poland Barley, unmilled 5.68 urnitére 3.07
Pulp & waste paper 3.36 Sulphur 3.31 Sulphur 3.35 Glassware 2.74
China Explosives 7.05 Sound/video recorders 4.93 Korea Rep.  ioRaxkivers 5.51 Television receivers 6.06
Jute 4.24 Radio receivers 4.65 Television receivers 5.37 Telecemumipment  5.11
Czech Rep. Glassware 4.05 Glassware 4.17 Romania Furniture 3.55 ootwear 3.49
Prep. cereal & flour 3.68 Road vehicles 3.58 Fertilizers, manuf. 3 2.7 Silk 3.15
Egypt Cotton 4.52 Fertilizers, crude 4.45 Russia Pulp & waste paper 6 5.1 Animal oils & fats 8.32
Textile yarn, fabrics 2.90 Rice 3.91 Radioactive material 5.02 Fertdjzaanuf. 4.54
France Electric machinery 3.44 Oth. transport eqpmt. 331 SouthaAfric Stone, sand & gravel  3.92 Iron & steel 4.17
Alcoholic beverages 3.39 Alcoholic beverages 3.15 Radioactive ialter 3.65 Fresh fruits & nuts 3.47
Germany Road vehicles 3.95 Road vehicles 3.10 Taiwan Explosives 41 4. Television receivers 5.18
General machinery 3.89 Metalworking machinery  2.70 Footwear 9 4.3 Office machines 5.01
Hungary Margarine 3.19 Telecomm. equipment 4.15 Thailand Rice 1 4.8 Rice 492
Fresh meat 2.76 Office machines 4.08 Fresh vegetables 4.08 Nahlvar 4.50
India Tea 4.20 Precious stones 3.86 Turkey Fresh vegetables 3.48 lassware 3.30
Leather 3.90 Rice 3.61 Tobacco unmanuf. 3.41 Textile yarn, fabrics 3.20
Indonesia Natural rubber 5.10 Natural rubber 5.26 United States ceOiffachines 3.96 Oth. transport eqpmt. 3.46
Improved wood 4.74 Sound/video recorders 4.90 Oth. transpprheq 3.25 Photographic supplies 2.60
Japan Sound/video recorders  6.28 Sound/video recorders 5.90 itedWingd. Measuring instrmnts.  3.20 Alcoholic beverages 3.26
Road vehicles 6.08 Road vehicles 5.63 Office machines 3.15 Pheutiead prod. 3.12
Malaysia Natural rubber 6.19 Radio receivers 5.78 Vietnam Cereals® flour 5.34 Animal oils & fats 10.31
Vegetable oils & fats 4.85 Sound/video recorders 5.03 Jute 5.14 Faotwe 7.02

Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007.
Note Top two industries for 28 of the 90 countries in 1987 and 2007 in termsmhalized log absolute advantage, relative to the country meat;.; — (1/1) Zi[, In Ajrg.



Table A2: DECAY REGRESSIONS FORCOMPARATIVE ADVANTAGE AT VARYING LEVELS OFINDUSTRY

AGGREGATION

Exporter capabilityt Balassa RCAn X
SITC aggregate 4 digit 3 digit 2 digit 4 digit 3 digit 2 digit
@) 2 3 4 5) (6)
Panel A: Full sample
Decay ratep -0.365 -0.241 -0.188 -0.323 -0.288 -0.256
(0.034y* (0.021y* (0.020y* (0.014y* (0.014y* (0.015y*
Dissipation rate) 0.119 0.122 0.125 0.113 0.130 0.157
(0.009y* (0.009y* (0.012y* (0.004y* (0.005)* (0.008)*
Innovation intensity2 0.766 0.451 0.333 0.693 0.523 0.377
(0.035y* (0.012y* (0.008y* (0.013y* (0.010y* (0.008y*
Obs. 142,664 61,280 19,815 146,644 61,577 19,815
Adj. R? 0.142 0.142 0.160 0.121 0.129 0.132
Panel B: LDC exporters
Decay ratep -0.503 -0.326 -0.236 -0.369 -0.336 -0.296
(0.045y* (0.032y* (0.028y* (0.017y* (0.016)* (0.016y*
Dissipation rate) 0.113 0.122 0.121 0.099 0.115 0.138
(0.007y* (0.010y* (0.013y* (0.004y* (0.005y* (0.007y*
Innovation intensity? 1.235 0.646 0.446 0.927 0.711 0.508
(0.086)* (0.027y* (0.016y* (0.022y* (0.016)* (0.012y*
Obs. 79,325 37,918 13,167 81,963 38,095 13,167
Adj. R? 0.168 0.156 0.165 0.132 0.136 0.137
Panel C: Non-manufacturing industries
Decay ratep -0.530 -0.309 -0.251 -0.334 -0.287 -0.257
(0.046)* (0.027y* (0.026y* (0.015y* (0.015y* (0.015y*
Dissipation rate) 0.095 0.111 0.146 0.086 0.114 0.157
(0.005y* (0.008y* (0.013y* (0.003y* (0.005y* (0.008)*
Innovation intensityy? 1.591 0.665 0.397 0.945 0.597 0.379
(0.118y* (0.024y* (0.014y* (0.019y* (0.013y* (0.009y
Obs. 37,645 17,985 7,482 40,472 18,236 7,482
Adj. R? 0.176 0.133 0.133 0.124 0.140 0.164

Source WTF (Feenstra et al. 2005, updated through 2008) for two-digit (Bastries), three-digit (227 industries), and four-digit
(684 industries) sector definitions from 1984-2007, and CEPIl.org.

Note Reported figures for five-year decadalized changes. Variabde®BB-estimated gravity measures of export capability
by (5) and the log Balassa index of revealed comparative advahtage, = In(Xse/ S, Xiare) /(X Xirar/ S0 S0 Xirart)-
OLS estimation of the decadal decay rattom

kis,t+10 — Kkist = pkist + it + Ost + Eist,

conditional on industry-year and source country-year effégtand d,, for the full pooled sample (panel A) and subsamples
(panels B and C). The implied dissipation ratand innovation intensity? are based on the decadal decay rate estimaied

the estimated variance of the decay regression resigfubly (13). Less developed countries (LDC) as listed in Appendix E.
Nonmanufacturing merchandise spans SITC sector codes 0-4.a8fagrdors (reported below coefficients) foare clustered by
country and fom ando are calculated using the delta methdtjndicates significance at the 1% level.
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to that inFigures Al throughA3 and shown for the same 28 countries and years as before. In addition,
Figures A7 through A9 now plot the implied stationary distribution based on the time series diffusion
estimates in Table 2 for the full sample (column 1), using the estimates of the tywe stlavant global
diffusion parametersy(and¢), which determine the curvature of the implied single stationary distribution
of comparative advantagé;,; (throughx and¢), and the recovered estimates of the unknown country-wide
stochastic trend¥;, which determine the horizontal position of the stationary distribution of ebser
absolute advantagé;;.
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Figure Al:Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1967

Argentina Australia Brazil Canada China Czech Rep.
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South Africa
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United Kingdom United States

Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007 and CEPIl.org; MRddlimated gravity measures
of absolute advantage (7).

Note The graphs show the frequency of industries (the cumulative pildipab — F4 (a) times the total number of industrids= 135) on the vertical axis plotted against the
level of absolute advantage(such thatd;.; > a) on the horizontal axis. Both axes have a log scale. The fitted Paretognddmal distributions for absolute advantadig .
are based on maximum likelihood estimation by countiy yeart = 1967.
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Figure A2: Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1987

Czech Rep.
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Mexico
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Thailand

South Africa

Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007 and CEPIl.org; MRddlimated gravity measures

of absolute advantage (7).
Note The graphs show the frequency of industries (the cumulative pildipab — F4 (a) times the total number of industrids= 135) on the vertical axis plotted against the

level of absolute advantage(such thatd;.; > a) on the horizontal axis. Both axes have a log scale. The fitted Paretognddmal distributions for absolute advantadig .
are based on maximum likelihood estimation by countiy yeart = 1987.
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Figure A3: Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 2007
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Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007 and CEPIl.org; MRddilimated gravity measures
of absolute advantage (7).

Note The graphs show the frequency of industries (the cumulative pilipab — F4 (a) times the total number of industrigs= 135) on the vertical axis plotted against the
level of absolute advantage(such thatd;;: > a) on the horizontal axis. Both axes have a log scale. The fitted Pareto@ndimal distributions for absolute advantagg:
are based on maximum likelihood estimation by coustiy yeart = 2007.
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Figure A4:Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1967

Argentina Australia Brazil Canada China

Czech Rep. Egypt

Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007.
Note The graphs show the frequency of industries (the cumulative pilttlgab — F; (£) times the total number of industrids= 135) on the vertical axis plotted against the

Balassa index of revealed comparative advantsige (X;,/ Yoo X))/ oy Xirs/ > Do Xirer) On the horizontal axis. Both axes have a log scale. The fitted log normal
distribution is based on maximum likelihood estimation by coustityyeart = 1967.
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Figure A5: Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1987

Argentina Australia Brazil Canada China Czech Rep. Egypt

Hungary

United Kingdom

Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007.
Note The graphs show the frequency of industries (the cumulative pilttlgab — F; (£) times the total number of industrids= 135) on the vertical axis plotted against the

Balassa index of revealed comparative advantsige (X;,/ Yoo X))/ oy Xirs/ > Do Xirer) On the horizontal axis. Both axes have a log scale. The fitted log normal
distribution is based on maximum likelihood estimation by coustityyeart = 1987.
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Figure A6: Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 2007

Argentina Australia Brazil Canada China

Czech Rep. Egypt

Romania Russia

Vietnam

Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007.
Note The graphs show the frequency of industries (the cumulative pilttlgab — F; (£) times the total number of industrids= 135) on the vertical axis plotted against the

Balassa index of revealed comparative advantsige (X;,/ Yoo X))/ oy Xirs/ > Do Xirer) On the horizontal axis. Both axes have a log scale. The fitted log normal
distribution is based on maximum likelihood estimation by coustityyeart = 2007.



A

Figure A7:Global Diffusion Implied and Observed Cumulative Probability Distributio ns of Absolute Advantage in 1967
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Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007 and CEPII.org;ityrédased measures of absolute
advantage (7).

Note The graphs show the observed and predicted frequency of indu@treecumulative probability — F4(a) times the total number of industrids= 135) on the vertical
axis plotted against the level of absolute advantagguch thatd;.: > a) on the horizontal axis, for the year= 1967. Both axes have a log scale. The predicted frequencies
are based on the GMM estimates of the comparative advantage diffdstpm(Table 2 (parametersandphi in column 1) and the inferred country-specific stochastic trend
componentn Z,; from (19), which horizontally shifts the distributions but does not affeetr shape.
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Figure A8:Global Diffusion Implied and Observed Cumulative Probability Distributio ns of Absolute Advantage in 1987
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Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007 and CEPII.org;ityrédased measures of absolute
advantage (7).

Note The graphs show the observed and predicted frequency of indu@treecumulative probability — F4(a) times the total number of industrids= 135) on the vertical
axis plotted against the level of absolute advanta@guch thatd;.: > a) on the horizontal axis, for the year= 1987. Both axes have a log scale. The predicted frequencies
are based on the GMM estimates of the comparative advantage diffdstpm(Table 2 (parametersandphi in column 1) and the inferred country-specific stochastic trend
componentn Z,; from (19), which horizontally shifts the distributions but does not affeetr shape.
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Figure A9:Global Diffusion Implied and Observed Cumulative Probability Distributio ns of Absolute Advantage in 2007
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Source WTF (Feenstra et al. 2005, updated through 2008) for 135 timeistensindustries in 90 countries from 1962-2007 and CEPII.org;ityrédased measures of absolute
advantage (7).

Note The graphs show the observed and predicted frequency of indu@treecumulative probability — F4(a) times the total number of industrids= 135) on the vertical
axis plotted against the level of absolute advantagguch thatd;,: > a) on the horizontal axis, for the year= 2007. Both axes have a log scale. The predicted frequencies
are based on the GMM estimates of the comparative advantage diffdstpm(Table 2 (parametersandphi in column 1) and the inferred country-specific stochastic trend
componentn Z,; from (19), which horizontally shifts the distributions but does not affeetr shape.
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