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each hold a unit share. Each shareholder is privately informed, yet uncertain,

about the raider’s ability to improve the value of the firm, whereas the raider

is uninformed. In the benchmark model of symmetric information, the raider

is unable to make a profit. As shown in Marquez and Yılmaz (2008), the same

obtains when the raider is facing only privately informed small shareholders. We

show, however, that the combination of dispersed private information on the

side of shareholders and the presence of a large shareholder can facilitate prof-

itable takeovers. More precisely, for any given information structure, the raider

can make a profit if the large shareholder holds a sufficiently large stake in the

company. In the unique equilibrium outcome, neither the probability of a suc-

cessful takeover nor the equilibrium price offer depend on the large shareholder’s

information. When the equilibrium price offer is positive, the large shareholder

tenders all of his shares regardless of his information. Finally, we show that the

same type of equilibria arise when there are several large shareholders, as long

as their total stake in the company is smaller than one-half.
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1. Introduction

The threat of a potential takeover should discipline an incumbent management to serve in

the best interest of the shareholders. If the incumbent management were to underperform, a

more efficient raider should take over the company and introduce a better management. This

reasoning fails, however, when the ownership of the company is widely dispersed. The impact

of each small shareholder on the outcome of the takeover attempt is negligible. Therefore,

if the price the raider offers is smaller than the post-takeover value of the shares, the small

shareholders who anticipate that the takeover should succeed hold onto their shares. This

causes the takeover attempt to fail. Hence, the raider has to offer at least the expectation of

the post-takeover value of the shares to succeed in his attempt, rendering successful takeovers

unprofitable. In the face of even a small cost the raider will not initiate a value-increasing

takeover, making the free-riding problem a fundamental source of inefficiency in the mar-

ket for corporate control (see Grossman and Hart (1980), Bagnoli and Lipman (1988) and

Harrington Jr and Prokop (1993)).

We explore the role of a minority large shareholder in takeover contests where the raider is

exposed to free-riding.1 Our main result shows that when a firm is owned by a large minority

shareholder and a large number of small shareholders, the presence of dispersed private in-

formation about the post-takeover value on the side of shareholders can enable the raider to

make a profit. The result is striking in light of the following two findings. We first show that

without any asymmetric information the raider makes no profits. That is, the mere presence

of a minority large shareholder is not sufficient to facilitate profitable takeovers and the free-

riding continues to be a detrimental friction in the market. Similarly, Marquez and Yılmaz

(2008) show in a model with only small shareholders and private information on the side

of the shareholders, that the raider’s inability to make a profit is exacerbated due to the

lemons problem arising from the asymmetry in information between the shareholders and

the raider. Hence, the existence of a large minority shareholder and the asymmetric and

dispersed information on the small shareholders’ side are crucial ingredients of our result.

In our model, the target firm is owned by one minority large shareholder and many small

shareholders. The results are shown to extend to the case of several minority shareholders

as long as in total they own a minority stake. With some probability, the state is low and

the value added from the takeover is zero. With the complementary probability, the state

is high and the value added is positive but only if the takeover is successful. The value of

the company is unchanged if the takeover fails. Each shareholder observes a private and

imperfectly informative signal about the state. The raider, who has no information about the

1 Holderness (2009) finds that in a representative sample of U.S. public firms ninety six percent of them
have a block holder who owns at least 5% of firm’s common stock.
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state of the world beyond the common prior, submits an unconditional offer for the equity

shares of the firm by specifying a price per share. Each small shareholder decides whether

to accept the offer and tender his share, or to reject the offer and keep the share. The large

shareholder, on the other hand, decides how many shares to tender. The takeover succeeds

only if the raider acquires at least half of all the shares.

We characterize the unique asymptotic equilibrium outcome of the tender game when

the number of shares goes to infinity. If the large shareholder’s stake is sufficiently high, the

equilibrium price is positive, the takeover succeeds with probability one, and the raider makes

strictly positive profits. The small shareholders use a specific threshold strategy which leaves

the large shareholder with only two options. Either he does not sell all his shares and the

takeover fails in the high state, or he sells everything and the takeover succeeds in the high

state with a positive probability. Opting for the lesser of two evils, the large shareholder sells

all his shares, and the raider acquires precisely half of the firm’s shares in the high state of

the world.

If the large shareholder is sufficiently large and sells all of his shares, the raider needs to

acquire only a small fraction of the company from the small shareholder for the takeover

to succeed. The key to our result is that he can buy the latter from the more pessimistic

shareholders, and everything from the large shareholder, by offering a low price. Asymmetric

information therefore diminishes the free-riding incentives of some of the small shareholders.

The low price in turn results in a profit from the large shareholders’ shares, but a loss from

the small shareholders’ shares due to the lemons problem. The larger is the stake held by the

large shareholder the smaller is the lemons problem related to the small shareholder, which

results in a higher profit for the raider. Finally, the large shareholder’s equilibrium behavior

is independent of his information. Therefore, his information structure has no effect on the

equilibrium price offer nor does his information on the probability of a successful takeover.

In addition to the above described results, our paper offers a novel methodology for study-

ing takeovers with a continuum of shareholders and asymmetric information. We introduce

an equilibrium concept in the spirit of the rational expectations equilibrium. Our equilibrium

concept differs from those commonly used in the literature on takeovers with atomistic share-

holders (for example, Grossman and Hart (1980) and Shleifer and Vishny (1986)). While the

standard models of takeovers with a continuum of shareholders assume that the probability

of success is one when exactly half of the shares are sold, we leave this probability to be

determined endogenously in equilibrium. Tirole (2010) proposed such an equilibrium con-

cept in a model of takeovers with complete information; see also Dekel and Wolinsky (2012)

for a model of takeover competition. We first extend this equilibrium concept to environ-

ments with incomplete and asymmetric information. Second, and more importantly, we show
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that our equilibrium concept captures the behavior present in the model with a large, albeit

finite, number of shares. In particular, we show that the outcomes of perfect Bayes-Nash

equilibria of the model with finitely many shares converge to an equilibrium outcome of the

continuum-shares model, as the number of shares goes to infinity. In other words, we provide

a micro-foundation for the model using standard equilibrium concepts. We believe that this

methodology provides a bridge between two different strands of the literature, and may prove

to be a useful device for future research.

1.1. Literature review In what follows we provide the related literature focusing on the

work closest to the main ingredients of our model. A more comprehensive review of literature

on takeovers can be found in Burkart and Panunzi (2006).

Grossman and Hart (1980) showed that in an environment where it is common knowledge

that the takeover would increase the value of the company the raider cannot make a profit,

if the takeover is to succeed with certainty, and will therefore not even start it if faced with

administrative costs. Bagnoli and Lipman (1988) studied the limit of the finite models as

the shareholders become smaller and smaller. They showed that when there is a large but

finite number of small shareholders, the takeover succeeds with a positive probability smaller

than one and the raider can make a profit, yet, this profit vanishes as the number of the

shareholders grows towards infinity. In our model, instead, positive profits persist even as the

number of small shareholders grows towards infinity. Therefore, in the presence of a small

cost of initiating a takeover in our model the raider can make a profit even if the majority

stake is widely dispersed.

Our incomplete information model builds on Marquez and Yılmaz (2008) who introduced

imperfect private information about the post-takeover value of the firm on the side of share-

holders. They show that such asymmetric information between the shareholders and the

raider causes a lemons problem in the market which exacerbates the raider’s inability to

make a profit. We introduce a minority large shareholder in the ownership structure of the

target company, and show that this allows the raider to make a profit.

One of the important assumptions in both papers is that the shareholders are privately

informed, while the raider is not. This can be thought of as a reduced-form of a model in

which the raider has some information, yet this information is public. Crucial is that the

shareholders have private information, in addition to the public information they share with

the raider, and that they are asymmetrically informed. For example, employees in the firm,

each of whom owns a very small number of shares, might know about the inner workings of the

company, such as its corporate culture, which might affect the post-takeover value of the firm.

Certainly the case in which the raider has some private information is also relevant. Indeed,
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our model serves as a building block for the analysis of such a signaling game, since our

analysis applies to characterizing the shareholders’ behavior after any price offer. For recent

work on signaling in corporate takeovers see Marquez and Yilmaz (2005), Burkart and Lee

(2010) and Ekmekci and Kos (2013).

Shleifer and Vishny (1986) consider a model with a large shareholder and a continuum

of small shareholders. In their model, the large shareholder is the raider, whereas in our

model the large shareholder is passive. They show that the raider makes strictly positive

profits, because he already owns a nontrivial share of the company and has strict incentives

to facilitate the takeover in order to increase the value of the shares he owned from the

start, even at the expense of a loss on the new shares he buys. Holmström and Nalebuff

(1992) study a complete-information model in which the firm is owned by several large

shareholders. They construct a particular type of equilibrium and show that the raider can

extract a significant part of the surplus when the number of shares goes to infinity, while the

number of shareholders and their relative position in the firm is held fixed. In their model,

unlike in ours, there are only large shareholders. Cornelli and Li (2002) analyze a setting with

finitely many risk arbitrageurs participating in a tendering game. The risk arbitrageurs in

their paper are similar to the large shareholders in our model. However, the takeover succeeds

only when the arbitrageurs collectively hold at least half of the shares. In our model, the large

shareholder does not have a controlling stake, yet takeovers can still be successful.

Burkart et al. (2006) analyze the effects of a minority shareholder in takeovers. They con-

sider a complete-information environment with a large minority shareholder, in which a suc-

cessful raider can extract private benefits at the expense of the share value. In their model the

large shareholder sells all the shares in equilibrium. Moreover, the large shareholder would

like to sell more shares conditional on the takeover succeeding, because of the inefficiency

of the post-takeover private-benefit extraction. In contrast, while the large shareholder does

sell all of his shares in our model, he would have preferred to keep them if this had no effect

on the success of the takeover. In the model of Burkart et al. (2006), the larger is the large

shareholder, the higher is the raider’s equilibrium price offer, and the lower his profits. We

find the opposite in our model, where the price is nonincreasing and the profits nondecreasing

functions of the large shareholder’s stake.

Other mechanisms have been proposed to overcome the free-riding problem. Dilution

(Grossman and Hart (1980)), squeeze-outs (Yarrow (1985), Amihud et al. (2004)), and debt

financing (Müller and Panunzi (2004)) all reduce the post-takeover value of the shares that

a minority shareholder holds, creating pressure on him to tender. However, such mecha-

nisms also create a conflict between minority shareholder protection and efficiency. Since

this conflict does not arise in our model, we interpret our result as suggesting that minority
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shareholder protection can occur with efficient takeovers. Another distinct solution proposed

elsewhere is for the raider to secretly acquire a stake in the company before the takeover

attempt (Shleifer and Vishny (1986), Chowdhry and Jegadeesh (1994)). Whether such ac-

quisitions can take place depends on the depth of the market and the regulatory disclo-

sure requirements. In fact, Betton et al. (2009) provide empirical evidence that raiders rarely

have a toehold in a company that they are taking over. Finally, private benefits may facilitate

takeovers (Grossman and Hart (1980), Bagnoli and Lipman (1988) and Marquez and Yılmaz

(2008)). In the latter models, unlike in ours, the raider does not make any profit on the shares

he acquires from the shareholders.

Bagnoli and Lipman (1988) show that a mechanism which specifies that the raider pays

a certain price per share if and only if all the shares are tendered can extract almost full

surplus from the takeover by making every share pivotal. The authors themselves note that

such offers are not observed because they are highly impractical. Even if a single shareholder

were to fail to respond to the offer for some external reasons, the takeover would fail.

In a representative sample of U.S. public firms Holderness (2009) finds that ninety six

percent of them have a block holder who owns at least 5% of firm’s common stock. Further

empirical support for the importance of considering large shareholders in takeovers is provided

by Gadhoum et al. (2005). In our model, the large shareholder is a passive shareholder, i.e.,

he does not counter-bid the raider and try to undertake a takeover himself. Possible reasons

for such a passive role for the shareholder are that he may be financially constrained, he

may lack managerial skills, or he may be prohibited from such an action; for example, in

the case of pension funds. See Burkart et al. (2006) for more details about (i) the empirical

evidence that the ownership structure we consider is a widely observed one, and (ii) support

of considering a passive minority shareholder.

An important factor contributing to large shareholder formation is hedge fund activism.

Some recent and ever-expanding research explores the consequences of hedge fund activism.

Empirical evidence shows that the primary source of positive returns from hedge fund ac-

tivism is through the takeover premium which such funds get from the acquisition of the

target firm (Brav et al. (2008), Brav et al. (2010) and Greenwood and Schor (2009)). Our

results suggest that when a hedge fund becomes a minority large shareholder, this can help

facilitate an efficient takeover, thereby serving as a powerful incentive to the incumbent man-

agement. Moreover, our finding that the large shareholder’s information is not reflected in the

likelihood of a successful takeover suggests that hedge funds need not have any firm-specific

information in order to profit from takeovers.
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2. The Model

A firm consists of a continuum of shares of measure 1, represented by the interval [0, 1].

A mass of 1 − x shares is held by a continuum of small shareholders of size 1 − x, each of

which holds a single share, and a mass x of the shares is held by a large shareholder. The

large shareholder is not, however, large enough to facilitate the takeover by selling all of his

shares, i.e. x < 1/2. A raider wishes to take over the company, with the intention to run it.

He needs to acquire at least 1/2 of the shares to successfully take over the company.

Under the current management the value of the company is normalized to 0. After a

successful takeover, however, the value of the company depends on the state of the world

ω, where ω ∈ {l, h}. In the low state of the world (ω = l) the post-take over value of the

company is 0 while in the high state (ω = h) the value of the company is 1, if the takeover

succeeds. The common prior assigns the probability λ ∈ (0, 1) to ω = h.

Each small shareholder observes a signal drawn from a conditionally i.i.d. F (s|ω) with

support S := [0, 1], and with the density function f(s|ω), where ω is the true state of the

world. Large shareholder observes a signal s ∈ S := [0, 1] drawn from distribution H(s|ω),

with the density h(s|ω). The large shareholder’s signal is conditionally independent of the

small shareholders’ signals. We assume that the weak monotone likelihood ratio property

(MLRP) holds for the shareholders’ signal distributions, i.e., f(s|h)
f(s|l)

and h(s|h)
h(s|l)

are nondecreasing

on the interval [0, 1]. The general formulation with the weak version of the MLRP allows us to

consider both the case of symmetric information, f(s|h)
f(s|l)

= 1 for all s, as well as the asymmetric

information with the strict MLRP within the generally specified model.

The takeover proceeds as follows. The raider offers an unconditional price offer p ∈ [0,∞).

After the price offer p ≥ 0, each small shareholder either tenders his share or keeps it, while

the large shareholder decides what fraction of his shares to sell. In particular, a mixed strategy

for a small shareholder is a measurable mapping that specifies the probability with which he

sells his share for each signal:

σ : S → [0, 1].

Large shareholder’s strategy is a right-continuous and weakly increasing mapping σL : S ×

[0, 1] → [0, 1], which denotes the cumulative distribution function of the fraction of the

shares he tenders, and whose marginal on its first coordinate coincides with the distribution

of signals. The first argument is the signal, with a generic element s. The second argument

is the fraction r. Modeling the strategy as a cumulative distribution function ensures that

payoffs are well-defined (see Milgrom and Weber (1985)). The strategy σL is weakly increasing
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in both of its arguments, and for every s ∈ [0, 1] it satisfies

(1) σL(s, 1) = λH(s|h) + (1− λ)H(s|l).

The above condition ensures that the marginal distribution of σL on its first coordinate is

equal to the signal distribution.2 The set of strategies of the large shareholder, ΣL, is the set of

all strategies (distributions) satisfying equality (1). In addition, we introduce the conditional

distributional strategies, σL(s, r|ω), which we derive from σL(·, ·) as follows:

σL(s̄, r̄|ω) :=

∫ s̄

s=0

∫ r̄

r=0

h(s|ω)

λh(s|h) + (1− λ)h(s|l)
dσ(s, r).

Note that σL(s, 1|ω) = H(s|ω), for every s ∈ [0, 1].

A strategy for a small shareholder, σ, is a threshold strategy if there exists a signal γ ∈ S

such that σ(s) = 1 for every s < γ and σ(s) = 0 for every s > γ.

A strategy profile in a tender subgame is a collection {σi}i∈[0,1−x]∪{L}. A strategy profile is

symmetric if σi = σj for every i, j ∈ [0, 1 − x]; (σ, σL) denotes a typical symmetric strategy

profile.

2.1. Payoffs A small shareholder’s payoff from tendering his share is the price p. The

expected payoff from keeping his share depends on his belief q ∈ [0, 1] that the takeover is

successful in state h and his belief that the state is h.3 Let

β(s) :=
λf(s|h)

λf(s|h) + (1− λ)f(s|l)
,

be a small shareholder’s posterior belief that the state is h, given his signal s. Then, a small

shareholder’s payoff function is:

U(p, s, q, keep) = β(s)q,

and

U(p, s, q, sell) = p.

Similarly, let the large shareholder’s posterior belief that the state is h when he observes

2We could also model the strategy of the small shareholder as a distributional strategy. However, as we
will see later, in all equilibria the small shareholders’ strategies have a threshold structure. Hence, we do not
have to assume that the strategy of the small shareholder be representable by a distribution function.

3The role and meaning of the concepts, such as the belief q introduced here, will be clearer when we define
the equilibrium concept below.
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signal s be βL(s) :=
λh(s|h)

λh(s|h)+(1−λ)h(s|l)
. For a collection of beliefs qL := q(r)r∈[0,1], the expected

payoff from tendering a fraction r ∈ [0, 1] of his shares is:

UL(p, s, q(r), r) = x (rp+ (1− r)q(r)βL(s)) ,

with the interpretation that q(r) is the belief the large shareholder attaches to the takeover

succeeding in the high state when he tenders a fraction r of his shares.

Finally, the raider’s payoff (i) when he offers the price p, (ii) the shareholders use the

symmetric strategy profile (σ, σL), and (iii) he believes the probability of takeover success as

a function of the large shareholder’s behavior is determined by the collection qL, is given by:

UR(p, σ, σL, qL) = λ

∫

r,s

q(r)

(

xr + (1− x)

∫

s∈[0,1]

σ(s)f(s|h)ds

)

dσL(s, r|h)

− p

[

(1− x)

∫

s∈[0,1]

σ(s)[λf(s|h) + (1− λ)f(s|l)]ds+ x

∫

s,r

rdσL(s, r)

]

.

The first term represents the raider’s benefits when the takeover is successful and the

state is high. The second term represents the total payment the raider makes to acquire the

shares. As a reminder, small shareholders’ strategy σ is a standard behavior strategy which

prescribes for each signal s the probability with which a small shareholder tenders his share.

On the other hand, σL is a distributional strategy.

2.2. Equilibrium A tuple T = (σ, σL, q, q(r)r∈[0,1]) is an equilibrium of a tender subgame

with a price offer p if the following conditions hold:

(2) U(p, s, q, σ(s)) ≥ U(p, s, q, a), ∀a ∈ {keep, sell} , ∀s ∈ [0, 1].

(3)

∫

s∈[0,1],r∈[0,1]

UL(p, s, q(r), r)dσL(s, r) ≥

∫

s∈[0,1],r∈[0,1]

UL(p, s, q(r), r)dσ̄L(s, r), ∀σ̄L ∈ ΣL.

(4) q(r) =



















0, if (1− x)
∫ 1

0
σ(s)dF (s|h) + xr < 1/2

1, if (1− x)
∫ 1

0
σ(s)dF (s|h) + xr > 1/2

∈ [0, 1], if (1− x)
∫ 1

0
σ(s)dF (s|h) + xr = 1/2.

(5) q =

∫

s∈[0,1],r∈[0,1]

q(r)dσL(s, r|h).

The first two conditions are the standard conditions requiring that the shareholders’ behav-

ior is optimal given their beliefs. Condition (4) describes the large shareholder’s beliefs about

the probability of the successful takeover in the high state when he tenders a fraction r of his
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shares, given the fixed behavior of the small shareholders. The fraction of shares tendered by

the small shareholders in the high state, given strategy σ, is (1−x)
∫ 1

0
σ(s)dF (s|h). Therefore,

if the large shareholder tenders fraction r of his shares and if (1− x)
∫ 1

0
σ(s)dF (s|h) + xr is

larger (smaller) than 1/2, then the takeover succeeds (fails) with certainty. The indeterminate

case is when (1 − x)
∫ 1

0
σ(s)dF (s|h) + xr = 1/2. We leave the large shareholder’s beliefs, in

such a knife-edge case, to be determined in equilibrium. Finally, condition (5) requires that

the small shareholders’ belief q about the success of the takeover in the high state be derived

from qL, using the large shareholder’s strategy σL.

Remark 1 Our equilibrium concept is different than Nash equilibria or refinements thereof,

in that it contains variables such as the probability of a successful takeover. This is in the spirit

of the rational-expectations equilibrium concept, and allows for the probability of a successful

takeover when the fraction of shares acquired is one-half to be determined endogenously.

We show in Section 8 that the limit of the equilibrium outcomes of the takeover model with

finitely many shares is an equilibrium outcome of the model with a continuum of shares. We

will comment further on the equilibrium concept and the interpretation of the limits in the

subsequent sections.

The raider’s continuation payoff from offering p when the tuple T = (σ, σL, q, q(r)r∈[0,1]) is

played in the tender subgame is denoted by:

Π(p, T ) := UR(p, σ, σL, qL).

Note that a price p > 1 can never result in a positive payoff for the raider; we therefore

restrict his price offers to the interval [0, 1]. We say that the collection (p, T (p′)p′∈[0,1]) is an

equilibrium of the takeover game if each T (p′) is an equilibrium of the tender subgame with

price offer p′, and if p ∈ argmaxp′∈[0,1]Π(p
′, T (p′)).

When there is a unique equilibrium of a tender subgame for a given price p, we write

Π(p) for the raider’s profit when all other players play the unique equilibrium of the tender

subgame.

3. Symmetric Information

We first consider the symmetric information benchmark. The benchmark case can be rep-

resented by completely uninformative signals for the small and the large shareholders, i.e., by

an information structure such that f(s|h) = f(s|l) = f(s) and h(s|h) = h(s|l) = h(s) for all

s. Signal s here represents the role of a private randomization device. That is,
∫ 1

0
σ(s)dF (s)
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can be interpreted as the probability with which a small shareholder sells his share. To sim-

plify the notation we will assume that f and h are uniform distributions on the interval [0, 1]

and that σ is a threshold strategy which prescribes the small shareholder to sell his share if

s ≤ γ and not sell otherwise. Then, γ becomes the probability with which a small shareholder

sells his share.

Given that the information is symmetric, each shareholder attaches an expected value of λ

to a share after the takeover is successful, and value of 0 if the takeover does not succeed. Our

analysis here corresponds to the complete information case in Bagnoli and Lipman (1988) and

the symmetric information analysis in Marquez and Yılmaz (2008).

If the raider offers price p ≥ λ, then either all the shareholders tender their shares and the

raider makes a loss (if p > λ) or the raider just breaks even (if p = λ). On the other hand, if

the raider offers price 0, the probability of success needs to be 0 in equilibrium. If it were to

be larger than zero, it would be optimal for the shareholders to keep their shares, but then

the probability of success could not be positive. Therefore the raider’s profit after offering

the price zero is zero. In what follows we explore what happens when the raider offers a price

p ∈ (0, λ).

Since the shareholders are uninformed of the state of the world, the probability of the

takeover succeeding is identical in both states. Nevertheless, since the value of the company

is 0 in the low state we will focus on the probability of success in the high state, which we

denote by q, with an understanding that the latter is equal to the expected probability of

success.

Theorem 1 For any price offer p ∈ (0, λ) there is a unique equilibrium of the tender

subgame. In this equilibrium the large shareholder sells all of his shares, each small shareholder

sells his share with probability 0.5−x
1−x

, the takeover succeeds with probability q = p/λ and the

raider’s profit is 0.

Proof: See Appendix A. �

While the literature so far has emphasized the raider’s inability to make a profitable ten-

der offer for a widely dispersed company (see, for example, Grossman and Hart (1980) and

Bagnoli and Lipman (1988)), Theorem 1 shows that profitable tender offers are impossible

even in the presence of a large shareholder as long as he does not hold a majority stake.

In light of Theorem 1, the inability of the raider to make a profitable tender offer is not a

consequence of the dispersed ownership of the whole firm, but is rather a consequence of the

fact that the majority stake is widely dispersed.

In what follows we provide some intuition underlying the above theorem. Our first obser-

vation is that, for any p ∈ (0, λ), the probability of the takeover succeeding in the high state
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q has to be strictly between 0 and 1; which is established similarly as in Grossman and Hart

(1980) and Bagnoli and Lipman (1988). If q was 0, then keeping a share would be valueless

and all the shareholders would be selling their shares, contradicting the assumption that the

probability of success is 0. On the other hand, if the probability of success in the high state

was to be 1, then the shareholders would keep their shares, which would lead the takeover

to fail with certainty. Therefore, q ∈ (0, 1).

Furthermore, in any equilibrium after a price offer p ∈ (0, λ) it has to be the case that the

small shareholders are selling their shares with a probability γ such that (1− x)γ + x ≥ 1/2.

If that was not the case, then less than half of the shares in total would be sold even if the

large shareholder was to sell all of his shares. But then the takeover would fail with certainty,

contradicting the above observation that q ∈ (0, 1). That is to say, the small shareholders

sell their shares with a sufficiently high probability to make the large shareholder pivotal.

Also, (1 − x)γ ≤ 1/2, since otherwise the takeover would be successful with probability 1,

contradicting the above observation that q ∈ (0, 1). Given that in equilibrium the small

shareholders are mixing between selling and not selling their share, they must be indifferent

between these two choices. Selling the share yields the payoff p while keeping it yields λq.

Indifference then requires p = qλ, or q = p/λ.

Now we turn attention to the large shareholder. The large shareholder never sells with

positive probability a fraction of shares such that the takeover fails with certainty. Selling all

of his shares is a more profitable option. Large shareholder is also the only shareholder who

could potentially tinker with the probability of the takeover. In particular, if the probability

of success is q ∈ (0, 1) when he is selling a fraction r < 1 of his shares, then the value of the

shares he is keeping is (1− r)xqλ. In this case he can increase the success rate from q to 1 by

selling slightly more shares, which gets the total of the sold shares over 1/2. The only way that

such a profitable deviation does not exist is if the small shareholders sell with a probability

γ such that exactly half of the shares are sold in total only if the large shareholder sells

everything, i.e., (1− x)γ + x = 0.5. Thereby the large shareholder is not only made pivotal,

but is made pivotal with every share he has.

The above reasoning shows that the only potential candidate for an equilibrium of a con-

tinuation game after a price offer p ∈ (0, λ) has the small shareholders sell their share with

probability 0.5−x
1−x

and the large shareholder sell everything, with the probability of takeover

succeeding being equal to p/λ. It is easy to verify that this profile of strategies indeed con-

stitutes an equilibrium. The small shareholders are willing to mix between selling and not

selling because the payoff from selling p is equal to the payoff from not selling q/λ. The large

shareholder strictly prefers to sell all of his shares. If he withheld some, less than half of the

shares would be sold in total and the probability of success would plunge to 0, rendering the
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withheld shares worthless.

Finally, after a price offer p ∈ (0, λ) the total value created is qλ. Each small shareholder

receives payoff qλ, therefore the small shareholders in total receive (1 − x)qλ. Large share-

holder’s payoff is px = qλx, thus the shareholders’ welfare in total qλ. This, in turn, implies

that the raider’s profit must be 0.

Large shareholder with a controlling stake. Our result depends on the assumption that the

large shareholder owns a minority stake of the firm. If the large shareholder were to own

a majority stake, then for every positive price offer, there would be an equilibrium of the

subgame in which the large shareholder would sell exactly half of the firm’s shares, and the

small shareholders would sell none. Therefore, in equilibrium, the takeover would succeed

and the raider would obtain half of the surplus of the takeover activity. If, contrary to what

we assume, the large shareholder holds a fraction x > 1/2 of the company, then the raider

can facilitate a successful takeover by offering any positive price. Namely, it is in the large

shareholder’s interest to ensure a successful takeover. Small shareholders’ holdings, on the

other hand, are not necessary for a successful takeover.

The equilibrium concept. The equilibrium concept used in our paper suffers from a slight

drawback of not being able to pinpoint the raider’s limiting equilibrium price. Namely, in the

continuum model the raider’s profit is 0 irrespective of which price in the interval [0, λ] the

raider offers, and hence any price offer in that interval can be sustained as part of an equilib-

rium. Despite this drawback the equilibrium concept provides an intuitive characterization

of the raider’s equilibrium payoff in a model with a finite and large number of shares and

shareholder. In particular, in Appendix C we show that any sequence of symmetric subgame

perfect equilibrium outcomes of finite games converges, as the number of shares and share-

holders go to infinity, to one of the tender equilibrium outcomes of the continuum shares

model. Because there may be multiple tender equilibria, we can not say to which one the

finite equilibrium outcomes converge. But since all of the tender equilibria yield zero profit

for the raider, we know that this will also be the case in the limit of the equilibria of finite

games. One can further show that along any sequence (pn, σn, σn
L)n in which pn ∈ [0, λ] for

all n and (σn, σn
L) are symmetric equilibria of continuation games after pn the raider’s profits

converge to 0; as is shown in an earlier version of this paper Ekmekci and Kos (2012b). Which

is why our equilibrium concept yields profit 0 for the raider for every p ∈ [0, λ].

4. Asymmetric Information

Each small shareholder observes a signal drawn from a conditionally i.i.d. F (s|ω) with

support S := [0, 1], and with the density function f(s|ω), where ω is the true state of the
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world. Large shareholder observes a signal s ∈ S := [0, 1] drawn from distribution H(s|ω),

with the density h(s|ω) and his signal is assumed to be independent of the small shareholders’

signals. We assume that the strong MLRP holds for the shareholders’ signal distributions,

i.e., f(s|h)
f(s|l)

and h(s|h)
h(s|l)

are strictly increasing on the interval [0, 1]. Notice that the strong MLRP

implies that all the densities are larger than zero and finite for all s ∈ (0, 1).

Below we characterize the equilibrium behavior of the shareholders for both on and off

the equilibrium price offers. In particular, in Theorem 2 we show that there is a unique

equilibrium of each tender subgame after a positive price offer, and we calculate the raider’s

profits in each of these equilibria. In Theorem 3, we show that it is possible that the raider

makes a positive price offer, the takeover is successful in the high state, and the raider makes

strictly positive profits. We start with a preliminary observation that the small shareholders

use threshold strategies in any tender subgame.

Lemma 1 In any equilibrium of the tender subgame where p > 0, the small shareholders

use a threshold strategy, i.e., there is a γ ∈ [0, 1] such that each small shareholder tenders his

share if s < γ and keeps it if s > γ.

Proof: Strict MLRP condition implies that a small shareholder’s belief β(s) is a strictly in-

creasing function. Fix an equilibrium of the tender subgame for some p > 0, T = (σ, σL, q, q(r)r∈[0,1]).

A small shareholder’s payoff from tendering a share is p, while keeping the share yields qβ(s).

Therefore, if σ(s) > 0 for some s, then for every s′ < s, it follows that qβ(s′) < p and hence

σ(s′) = 1. Similarly, if σ(s) < 1 for some s, then qβ(s′) > p for all s′ > s, and therefore

σ(s′) = 0 for every s′ > s.4 �

We call a signal s∗ ∈ [0, 1] pivotal if it has the property that when the small shareholders

use the threshold s∗, and the large shareholder tenders all his shares, then the fraction of

tendered shares in the high state is 1/2. Since x < 1/2, the pivotal type s∗ ∈ (0, 1) is uniquely

defined by

F (s∗|h)(1− x) + x = 1/2.

The critical price p̄ is the price that would keep the pivotal type indifferent between tendering

his share and keeping it, if he believed that the takeover would be successful with probability

one in state h. In particular,

(6) p̄ := β(s∗).

4Here we use a convention that if q and p are such that qβ(s) < p for all s, then the small shareholders
use the threshold γ = 1; in other words, they tender irrespective of their signal. Similarly, if qβ(s) > p for all
s, the threshold γ = 0, which means that they never tender.
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Remark 2 Note that both s∗ and p̄ are decreasing in x.

We now present the unique equilibrium of each tender subgame with a price offer p > 0.

The structure of equilibria depends on whether the price offer is below or above the critical

price.

Theorem 2 (Characterization) For any p > 0, there is a unique equilibrium of the tender

subgame, T = (σ, σL, q, q(r)r∈[0,1]). σ is a threshold strategy with a threshold γ ∈ [0, 1].

(i) If p ≤ p̄, then

a) γ = s∗.

b) σL(s, r) = 0 for every s ∈ [0, 1] and every r < 1.

c) q = p
β(s∗)

, q(1) = p
β(s∗)

and q(r) = 0 for all r < 1.

Moreover, the raider’s profit is given by:

(7) Π(p) = λ
q

2
− p

(

λ
1

2
+ (1− λ)[(1− x)F (s∗|l) + x]

)

.

(ii) If p > p̄, then

a) γ = 1 if p ≥ β(1), and otherwise is the unique solution to the equality β(γ) = p.

b) There is a signal sL ∈ [0, 1] and a fraction a < 1 such that, if the large shareholder’s

signal s > sL, then he tenders fraction a of his shares; and if s < sL, then he tenders

all of his shares.

c) q = 1, q(r) = 0 for r < a, and q(r) = 1 for r ≥ a.

Moreover, the raider’s profit is given by:

(8)

Π(p) = λ [(1− x)F (γ|h) + x(a(1−H(sL|h)) +H(sL|h))]

−pλ [(1− x)F (γ|h) + x(a(1 −H(sL|h)) +H(sL|h))]

−p(1− λ)[(1− x)F (γ|l) + x(a(1 −H(sL|l)) +H(sL|l))].

Proof: See Appendix B. �

The theorem characterizes the unique equilibrium of tender subgames under two cases.

The first one is when the price p is smaller than or equal to the critical price p̄. In this case,

the small shareholders’ equilibrium threshold is s∗, and is independent of the exact value of

p. The probability of a successful takeover in the high state, q, is determined endogenously so

that a shareholder receiving the signal s∗ is indifferent between tendering and not tendering

his share. If he tenders his share, he receives the price p, whereas if he keeps it, it is worth

zero in the low state, and one in the high state but only if the takeover succeeds. Such a

shareholder believes that the state is high and the takeover succeeds with probability β(s∗)q.
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0 p (price)

q (probability of success in state h)

p̄

1

Figure 1: This figure shows how the equilibrium probability of a successful takeover in state
h, denoted by q, varies with the raider’s price offer. In particular, q = p

p̄
for p ≤ p̄ and q = 1

for p > p̄.

Therefore, the probability of a successful takeover is linear in the price offer (see Figure 1 for

a depiction).

The large shareholder, on the other hand, tenders all of his shares regardless of his signal.

If he were to tender anything less, he would cause the takeover to fail in the high state with

certainty, by the definition of the pivotal signal s∗. Such a takeover failure would render the

shares he held back worthless. His behavior is therefore independent of his signal.

The shareholders’ behavior, as described for p ≤ p̄, and the definition of s∗ imply that

exactly half of the shares are sold in the high state. The raider’s payoff can now be decomposed

into two parts. He benefits only from the shares that he holds in the high state conditional on

the takeover succeeding, as captured in the first term in equation (7). Since (i) the probability

of the high state is λ, (ii) the probability of the success of the takeover in the high state is

q, and (iii) exactly half of the shares are being sold in the high state, this yields λq/2. The

second term in equation (7) represents the expected amount the raider pays for shares in the

equilibrium. It is the price p times the expected quantity of shares he has bought. Notice that

more shares are sold in the low state than in the high. This is because the large shareholder’s

tendering decision is independent of his signal, and the small shareholders tender their shares

when they observe the low signals, which are in turn more likely in the low state. This is a
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so-called lemons problem. Only the more pessimistic small shareholders are willing to tender

their shares. Therefore, the raider who wants to induce a successful takeover in the high state

must accept losses on the shares he buys from the small shareholders.

The second case is when the price offer p is larger than p̄. In this case, the small share-

holders’ equilibrium threshold γ is greater than the pivotal signal, s∗. Namely, the small

shareholder with a signal s∗ is indifferent between tendering and keeping his share even when

the probability of success is one and the price is p̄. He, therefore, strictly prefers to tender

when the higher price is offered and the probability of success is smaller than or equal to

one. Consequently the equilibrium threshold must be above s∗. An argument similar to the

one above implies that the large shareholder either tenders a fraction a of his shares, which

is barely sufficient to ensure a successful takeover in the high state, or he tenders all of his

shares. He certainly tenders all the shares when he deems the high state unlikely, in which

case even a successful takeover does not generate a high post-takeover share value. On the

other hand, he tenders only fraction a of his shares, the smallest fraction which renders suc-

cess in the high state certain, when his signal favors the high state. More importantly, when

p > p̄, the takeover succeeds with probability one in both states.

Before we proceed to the characterization of the raider’s equilibrium price offers, we show

that the raider’s profit from offering price zero is zero.

Lemma 2 Π(0, T ) = 0 for any equilibrium of the tender subgame where p = 0.

Proof: When p = 0, q = 0. If on the contrary q > 0, it would be optimal for the small

shareholders not to tender their shares and to obtain a positive payoff, which contradicts

q > 0. Since the probability of success in the high state is zero, the raider expects a payoff of

zero regardless of how many shares are tendered.5 �

In the next theorem, we characterize the raider’s optimal behavior. The raider, depending

on the parameters of the environment, either offers the price zero and makes zero profits, or

the price p̄, in which case he makes a positive profit.

Theorem 3 The raider’s profit is maximized at either p = 0 or p = p̄. If

Π(p̄) := λ
1

2
− p̄

(

λ
1

2
+ (1− λ)[(1− x)F (s∗|l) + x]

)

> 0,

then the raider offers the price p̄, and the takeover is successful with probability one in both

states. If instead Π(p̄) < 0, then the raider offers price zero, and the takeover fails with

5Shareholders’ equilibrium behavior for p = 0 is restricted only by q = 0. In the low state the takeover
could succeed with any probability.
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0 price (p)

profits

p̄

π̄

π̄

Figure 2: This figure shows the relationship between the raider’s profits and the price offer he
makes. If λ1

2
− β(s∗)

(

λ1
2
+ (1− λ)[(1− x)F (s∗|l) + x]

)

> 0, then the profit function has the
shape of the thick curve (higher curve); otherwise, it has the shape of the thin curve (lower
curve). In either case, the profit function is strictly decreasing in the price offer in the range
p ≥ p̄.

certainty in the high state.

Proof: See Appendix B. �

Only one of two prices may arise in equilibrium. Either the raider is not willing to offer a

positive price for the shares, or he pays the lowest price that ensures a successful takeover in

the high state.

To see that no price strictly between zero and p̄ is offered, notice that for any such price

the threshold type of the small shareholders is s∗. Moreover, the indifference condition for

the type s∗ implies that p = qβ(s∗). Hence, the price and the probability of a successful

takeover in the high state are linearly related to each other. The fraction of shares that the

raider acquires does not depend on the price, as long as p ≤ p̄, because the large shareholder

tenders all of his shares at any such price. Therefore, if offering a positive price is a better

strategy than offering a zero price, then the marginal cost of increasing the probability of

success in the high state is strictly smaller than the marginal benefit from increasing such a

probability. Consequently, offering p̄ dominates any offer below p̄.

The raider does not want to make an offer larger than p̄. Note that the total surplus is

equal to the probability of a successful takeover in the high state. This probability is 1 as

long as the price is at least p̄. Therefore, the total surplus is independent of the price offer
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in that range. However, the surplus that goes to the shareholders strictly increases with the

price offer. Hence, the raider’s profits are lower with higher price offers. (See figure 2, which

shows that the raider’s profits are linear in price until the price reaches p̄ and are decreasing

when the price is above p̄.)

In what follows we briefly comment on the roles that information and the equilibrium

concept play in obtaining our result. Subsequent sections serve to explore environments with

several large shareholders or private benefits, show how the size of the large shareholder

influences the raider’s profit, and provide a foundation for our equilibrium concept.

The Role of Information. Two things are to be pointed out about information structures in

our model. First, large shareholder’s information is irrelevant for the outcome of the takeover

and the raider’s profit. Indeed, Theorem 3 shows that the raider’s profit is maximized at

either 0 or p̄. The raider’s profit is 0 when he offers price 0, thus independent of large

shareholder’s information. When the raider offers price p̄ the large shareholder sells all of his

shares regardless of his private information, due to Theorem 2. Since p̄ is clearly independent

of the large shareholder’s information the conclusion is that so are the raider’s strategy and

the profit.

Second, an important ingredient of the model that helps the raider to make a profit, besides

having a large shareholder, is the asymmetry of information among the small shareholders.

The dispersion of information guarantees that there are always some shareholders who are

pessimistic enough to sell their shares. Indeed, in Theorem 5 we show that in the limit

when the size of the large shareholder, x, converges to 0.5 from below, the raider’s profit

is decreasing in the belief of the lowest type of small shareholders, β(0). That is, the more

pessimistic the lowest type, the larger the profit the raider can make. In this case, increased

dispersion in the form of lower β(0) enables the raider to achieve a higher profit. This point

is developed further in Theorem 5 and the paragraphs following it.

The equilibrium concept. In Section 8 we establish that a limit of symmetric PBE of finite

games must be an equilibrium of the game with a continuum of shares. Since in our model

with asymmetric information the equilibrium outcome is generically unique, Theorem 3, it

follows that such a unique outcome is the limit (as the number of shares goes to infinity) of

the sequence of symmetric PBE equilibria of the finite games.

5. Multiple large shareholders

We now show that our results extend to a setting with multiple large shareholders. Suppose

there are K large shareholders, j ∈ {1, 2..., K}. Large shareholder j holds a fraction xj of

the total number of shares. We assume that x :=
∑K

j=1 xj < 1/2.
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First we consider the symmetric-information setup, where the value of the company in the

case the takeover succeeds is λ. In a tender subgame after a price offer p, the large shareholder

j’s strategy σL,j is a probability distribution over the fraction of his shares he tenders to the

raider. In a symmetric equilibrium the small shareholders use mixed strategies,6 i.e., they are

indifferent between tendering and not tendering their shares. This means that the probability

they assign to the takeover succeeding must be equal to p/λ. In turn, the ex ante expected

surplus is equal to p, and the small shareholders’ surplus is (1−x)p. On the other hand, each

of the large shareholders can guarantee himself the payoff pxj by selling all of his shares;

thus the large shareholders together get at least xp. But then there is no surplus left for the

raider.

Now suppose that there is incomplete information about the state of the world, and the

large shareholder j receives a private signal, which is distributed according to the probability

distribution function Hj(s|ω). In this case, there might a multiplicity of equilibria in the

continuum model due to the possibility of coordination failures among large shareholders.

However, there also exists an equilibrium in which, after the price offer p̄ = β(s∗), the

large shareholders tender all their shares, and the takeover is successful with certainty. In

this equilibrium, the raider’s profit is the same as in the unique equilibrium of the tender

subgame with price offer p̄ in the model with a single large shareholder who holds fraction x

of all the shares. Hence, if Π(p̄) > 0, the raider offers price p̄ and the takeover succeeds with

certainty.

6. Private benefits

Suppose that the raider obtains some private benefit, B > 0, if the takeover is successful,

irrespective of the state of the world.

In the symmetric-information scenario, the raider’s equilibrium payoff is B, and the prob-

ability that the takeover succeeds is one. This is very similar to the result obtained by

Marquez and Yılmaz (2008) in an environment without a large shareholder. The reason is

that, given that the raider can not make a profit on the shares he acquires, he makes certain

that he receives the private benefit B. He can always achieve this by offering the shareholders

the full post-takeover value of the company.

In the incomplete-information game with a continuum of shares, the shareholders’ behavior

is the same regardless of the size of B; therefore, the characterization of the shareholders’

behavior carries over from the environment with B = 0. For any strictly positive price offer,

the raider receives at least half of all the shares in the high state of the world. As in the

6Symmetry here means that all the small shareholders use the same strategy.
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case in which B = 0, prices above p̄ are dominated for the raider by p̄.7 In the remainder

of the analysis we focus on the case in which p ∈ [0, p̄]. For the prices in (0, p̄], exactly half

the shares are sold in the high state. This in turn means that the raider receives a fraction

of shares that strictly exceeds one-half, and therefore the takeover succeeds with probability

one, in the low state of the world.

There is a multiplicity of equilibria in the tender subgame after p = 0, with the common

feature that the takeover succeeds with probability zero in the high state, and that all the

shareholders have payoff zero. Nevertheless, the equilibrium outcome is unique, since when

the raider offers any positive price, the takeover succeeds in the low state with probability

one.

In equilibrium the raider offers either price p̄ or zero. Prices above zero increase the proba-

bility of a successful takeover in the high state, but do not affect the probability of a successful

takeover in the low state or, for that matter, the fraction of shares that the raider acquires.

In particular, for any price p ≤ p̄, the probability that the takeover succeeds in the high state

is p/p̄. Hence, if the raider prefers to offer a positive price to offering a zero price, then he

also prefers to offer p̄ to offering any price strictly smaller than p̄. The equilibrium price is

p̄ if Π(p̄) + λB > 0. In other words, there is a threshold B̄ ≥ 0 such that if B ≥ B̄, then

the takeover succeeds with probability one in both states. Otherwise, it is only successful in

the low state. Moreover, this threshold is strictly smaller than the threshold identified by

Marquez and Yılmaz (2008) if x > 0, and coincides with their threshold if x = 0.

Some care is required when Π(p̄)+λB < 0; equivalently, Π(p̄)+B < (1−λ)B. In this case,

the raider offers price zero, the takeover succeeds with probability one in the low state and

with probability zero in the high state. While we pointed out that there are equilibria of the

tender subgame after price offer zero in which the takeover succeeds in the low state with any

probability, the tender equilibrium requires that after the price offer zero, an equilibrium of

the tender subgame is played in which the takeover succeeds with probability one in the low

state. Otherwise, the raider would have a profitable deviation to a price just slightly above

zero, which would ensure that he obtains the private benefit B at least in the low state.

To sum up, we state the results argued above in the form of a Theorem, without providing

a formal proof.

Theorem 4 In an incomplete-information model in which the raider has some commonly

known private benefits B ≥ 0, the raider offers either price p̄ or zero. He offers price p̄ if

Π(p̄)+λB > 0. Moreover, given the size of the large shareholder’s stake x < 1/2, there exists

7For all those prices, the takeover in the high state occurs with probability 1; thus, the expected surplus
is λ+ B. Increasing the price from p̄ can only increase shareholders’ payoffs, and thus, decrease the raider’s
payoff.
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a B̄x such that if B > B̄x, the takeover succeeds with probability one in both states and the

raider makes a profit.

7. Comparative statics

Our asymmetric information model allows for several comparative statics that offer testable

predictions on the relationship between ownership structure, takeover success, and the dis-

tribution of takeover gains. We start by exploring the effects of the large shareholder’s stake

on the takeover success rate and the raider’s profits.

In the next lemma we show that the raider’s payoff from offering the lowest price that

renders the takeover successful is strictly increasing in the large shareholder’s stake.

Lemma 3 Let Π(x) := Π(p̄(x)) be the raider’s profit when he offers the price p̄ and the

large shareholder holds a fraction x < 1/2 of the shares. Then Π(x) is a strictly increasing

function.

Proof: See Appendix B. �

For the following result we assume that the small shareholders’ belief function β(·) is

continuous. This is for example guaranteed if the densities f(·|ω) are continuous. We argue

that Π(x) is positive when x is close to, but smaller than, 1/2, and negative when x is just

slightly above zero. Together with the fact that Π(x) is increasing in x, this ensures the

existence of x∗ < 1/2 such that Π(x) ≤ 0 for x < x∗. Moreover, for any x > x∗, Π(x) > 0,

i.e., the raider turns a profit on the takeover.

Theorem 5 limxց0Π(x) < 0 and limxր1/2Π(x) =
1
2
[λ− β(0)] > 0. There exists x∗ < 1/2

such that Π(x) > 0 for all x > x∗ and Π(x) < 0 for all x < x∗.

Proof: See Appendix B. �

Π(x) is the raider’s profit when the large shareholder owns a fraction x of the shares and

the raider offers the price p̄. The negative limit, when x tends towards zero, then means that

by offering p̄, the raider would incur a loss. This in turn means that the raider will prefer to

offer the price zero. This result is in line with the results from Marquez and Yılmaz (2008),

who have shown that when the firm is owned only by small shareholders, the raider cannot

make a profit.

The surprising result is that for larger x, the profit from offering the price p̄ is larger. One

might think that a large shareholder would present a more formidable opponent to deal with,
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which would lower the raider’s profit. However, the large shareholder gets in his own way

and sells all of his shares. In fact, the larger his stake, the more shares the raider obtains

from him. For example, suppose x = 0.49. Knowing that he will get all of the shares from

the large shareholder, the raider needs to acquire one percent of the company from the small

shareholders. But then, by offering a low price, he can target precisely the most pessimistic

small shareholders who jointly own one percent, because they are willing to sell for a low

price.

This brings us to another part of the result. The limit of the raider’s profit as x goes

toward one-half depends on β(0), that is, on the belief of the small shareholders who receive

the lowest possible signal. Since the prior probability of the high state is λ and we assume

MLRP, it follows that β(0) < λ. However, β(0) can be anywhere in [0, λ). If it is closer to

zero, the agent who is observing the lowest signal is almost certain that he is in the low

state. In such an environment the low signal is very informative about the state. If β(0) is

closer to λ, then the shareholder who observes signal 0 holds almost the same beliefs as he

did prior to observing the signal. Such a signal is rather uninformative. Our result shows

that as x tends to one-half, the raider’s profit is higher when the bottom signal is more

informative. This is not only because of the conveyed information per se, but because the

greater informativeness of the bottom signal helps the raider to differentiate the shareholders.

This in turn enables him to buy the shares from the most pessimistic shareholders relatively

cheaply. It is worthwhile to remark at this point that this observation relies on looking at the

limit as x goes to one-half. For a fixed x, the impact of increasing the informativeness of the

signals of the small shareholders is ambiguous. This is because a more precise information

structure may cause the pivotal type to be higher for some parameters.8

Finally, if the raider can reap private benefits from a successful takeover, then for every

benefit B > 0, there is an x(B) < 1/2 such that if x > x(B), the raider makes a strictly

positive profit and the probability of a successful takeover is one. If, on the other hand,

x < x(B), then the raider cannot make a profit, he offers the price zero, and the probability

of a successful takeover in the low state is one, while the probability of a successful takeover in

the high state is zero. Moreover, x(B) is (weakly) decreasing in B, x(0) < 1/2, and x(B̄) = 0

for B̄ as identified in Marquez and Yılmaz (2008). More precisely, function x(B) is strictly

decreasing for B ∈ [0, B̄] and constant at 0 for B ≥ B̄.

8We thank an anonymous referee for this observation.
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8. Finite Model and Convergence

In this section we introduce the tender game with finitely many shares. There are n shares

in total.9 Each one of the (1 − x)n small shareholders holds a single share, while the large

shareholder holds xn shares. We allow for the two information structures as specified in

Sections 3 and 4, i.e., when the signals are uninformative or when the strict version of MLRP

is satisfied. While the result could be proven beyond the two information structures, such

generality would unnecessarily complicate the exposition.

8.1. Strategies and Payoffs A mixed strategy for the raider is a distribution over a set

of prices, [0, 1]. In a tender subgame after the raider’s price offer, a strategy for a small

shareholder is a mapping from his signal to the probability with which he tenders his share,

denoted by σn(s). A strategy for the large shareholder describes the number of shares he

tenders for every realization of his private signal. It will be convenient to describe his strategy

as a joint probability distribution function over his signals and the fraction of shares that

he is tendering. Remembering that ΣL is the set of all strategies for the large shareholder in

the model with continuum shares, let the set Σn
L ⊂ ΣL be the set of strategies such that for

any σn
L ∈ Σn

L, for every s ∈ [0, 1], and for every i ∈ {0, 1, ..., nx− 1}, the strategy σn
L(s, r) is

constant in the interval r ∈
[

i
nx
, i+1

nx

)

. A strategy for the large shareholder in the game with

n shares is an element in Σn
L, and a typical strategy is σn

L. The large shareholder’s strategy

induces a probability distribution on the fraction of tendered shares conditional on state h,

denoted by gn : {0, 1, ..., nx} → [0, 1], and defined as:

gn(i) :=

∫

s∈[0,1]

(σn
L(s, i/nx)− σn

L(s, (i− 1)/nx))dH(s|h) , for i > 0;

gn(0) :=

∫

s∈[0,1]

σn
L(s, 0)dH(s|h).

We specify the payoffs of the small shareholders and the large shareholder in the same way

that we did for the continuum shares case in Section 4. In particular, the small shareholders’

payoffs are

U(p, s, q, keep) = β(s)q,

U(p, s, q, sell) = p,

where p denotes the price offered for the firm, s denotes a shareholder’s signal, and q represents

the probability of the success of the takeover in the high state, conditional on the shareholder

keeping his share.

9In the following development, if any number that corresponds to a number of shares is not an integer, it
should read as the smallest integer not larger than that number.
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Remark 3 We interpret the raider’s price offer p as the price he offers for the whole

company, which converts into offering a price p/n per share. The small shareholders’ payoffs

are then p/n if they tender and β(s)q/n if they do not tender. The latter payoff is due to

the fact that in the high state the company is worth 1, with a per share value of 1/n. But

now notice that the small shareholders’ behavior is determined by the ratio of p and β(s)q.

Therefore, the payoffs defined above capture the relevant behavior.

The large shareholder’s payoff when tendering a fraction r of his shares is

UL(p, s, q(r), r) = x [rp+ (1− r)q(r)βL(s)] ,

where q(r) is the probability he attaches to the takeover succeeding in the high state, given

that he is selling a fraction r of his shares.

8.2. Equilibrium We say that a couple T n = (σn
L, σ

n) is a symmetric Nash equilibrium

of the tender subgame, when there are n shares, and when the price offer for the firm’s total

shares is p, if the following two conditions hold:

U(p, s, qn−1, σ
n(s)) ≥ U(p, s, qn−1, a), ∀a ∈ {keep, sell} , ∀s ∈ [0, 1],

and
∑

i∈{0,1,...,nx}

∫

s∈[0,1]

UL(p, s, q
n(i/nx), i/nx)dσn

L(s, i/nx) ≥

∑

i∈{0,1,...,nx}

∫

s∈[0,1]

UL(p, s, q
n(i/nx), i/nx)dσ̄n

L(s, i/nx), ∀σ̄L ∈ Σn
L,

where

qn(i) :=

(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k,

qn−1 :=

nx
∑

i=0

gn(i)

(1−x)n−1
∑

k=n/2−i

(

(1− x)n− 1

k

)

φk
n(1− φn)

(1−x)n−1−k.

The term qn(i/nx) is the probability of a successful takeover in the high state when the

large shareholder tenders exactly i shares, while qn−1 is the probability of a successful takeover

in the high state, conditional on a particular small shareholder keeping his share. The term

φn refers to the probability that a small shareholder tenders in the high state, and is defined

as follows:

φn :=

∫

s∈[0,1]

f(s|h)dσn(s).
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The probability of a successful takeover in the high state is:

qn :=

nx
∑

i=0

gn(i)

(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k.

For any p ≥ 0 and T n = (σn, σn
L), the raider’s payoff function, Πn(p, T n), is defined similarly

to the payoff function in the model with a continuum of shares. Specifically, its definition is

as follows:

Πn(p, T n) =
1

n
λ





nx
∑

i=0

gn(i)





(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k(k + i)









− p

[

(1− x)

∫

s∈[0,1]

σ(s)[λf(s|h) + (1− λ)f(s|l)]ds+ x

∫

s,r

rdσL(s, r)

]

.

We say that a tuple Γn := (pn, T n(p′)p′∈[0,1]) is an equilibrium of the tender game if

each T n(p′) is a symmetric Nash equilibrium of the tender subgame with price offer p′,

and Πn(pn, T n(p)) = maxp′∈[0,1]Π
n(p′, T n(p′)).

Remark 4 Note that our equilibrium concept is equivalent to a perfect Bayesian equilibrium

when the strategies are defined as measurable with respect to the prices. In fact, even after

off-equilibrium price offers by the raider, the shareholders’ beliefs about the state of the world

are unchanged and equal to their posterior belief obtained by Bayesian updating using the

common prior λ and their signal.10

8.3. Convergence Let an outcome θ := (p, π, q) ∈ [0, 1]× [0, 1]× [0, 1] be a tuple, where p

is a price, π is the raider’s profit, and q is the probability of success in the high state. Every

equilibrium of a finite game induces an equilibrium outcome.

Theorem 6 If {θn = (pn, πn, qn)}n=1,2,... is a sequence of equilibrium outcomes in the finite

shares model with n shares, then any limit point θ = (p, π, q) of the sequence is a tender

equilibrium outcome of the continuum shares model.

Proof: See Appendix C. �

The proof proceeds by showing that the equilibrium strategies of the small shareholders,

σn, and that of the large shareholder, σn
L, as well as prices, pn, and probabilities of success

in the high state, qn, converge to their counterparts, (σ, σL, p, q), in the game with a con-

tinuum of shares. From these limiting objects we derive a mapping q(r), representing the

large shareholder’s beliefs about the success of the takeover in the high state when selling

10For a precise statement of PBE, see Fudenberg and Tirole (1991, Definition 8.2).
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a fraction r of his shares. We conclude by showing that in the model with a continuum of

shares, the raider’s equilibrium price offer is p and (σ, σL, q, q(r)r∈[0,1]) is a tender equilibrium

of the tender sub game after price offer p.

9. Discussion

We have analyzed the impact of a large shareholder (or shareholders) on takeovers. The

main finding of the paper is that, without any informational asymmetries, the raider cannot

carry out profitable takeovers even with a minority large shareholder. However, when the

shareholders are privately and asymmetrically informed, and the raider is not, the presence

of a large shareholder can facilitate profitable takeovers. More precisely, the raider makes a

positive profit if the large shareholder is large enough. In addition to the large shareholder, the

crucial ingredient of the model enabling these profits is asymmetry of information between

the small shareholders. Asymmetry enables the existence of the shareholders who due to

unfavorable information sell their shares even at low prices. Our model also allows for several

comparative statics that offer testable predictions about the relationship between ownership

structure, takeover success, and the distribution of takeover gains.

In this paper we focus on a simple mechanism in which the raider offers a price per share.

In a related paper we show that when the shareholders have private information about the

state of the world, conditional offers in which the seller pays a price p per share if at least

half of the shares are tendered, do not increase the raider’s expected profit in the continuum

shares model. Moreover, as we show in a companion paper (Ekmekci and Kos (2012a)), the

raider’s profit is the same across the two mechanisms.11

A. Proof of Theorem 1

We break down the proof of the theorem into a sequence of lemmata. In particular, we start

by deriving the properties that any equilibrium of a continuation game must satisfy. These

properties yield a unique candidate for an equilibrium. We then show that the candidate is

indeed an equilibrium.

First we offer some clarifications. Signals the shareholders observe here are completely

uninformative. Therefore, since the signals across the shareholders were conditionally inde-

pendent to start with, they are independent here. In essence, they can be thought of as

independent randomization devices. Any small shareholder’s strategy specifies the probabil-

ity γ with which the small shareholder sells his share. Alternatively, and with a slight abuse

11A similar result was established in an environment without a large shareholder in Marquez and Yılmaz
(2007).
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of notation, γ can be thought of as a threshold strategy from the set of signals [0, 1] into

sell/not sell which prescribes the shareholder to sell his share if the signal he observes is below

γ. Also, since the shareholders are uninformed of the state, the probability of success in the

low state is the same as the probability of success in the high state q, which is therefore equal

to the expected probability of success.

As in the supposition of the theorem in everything that follows we will assume p ∈ (0, λ).

Lemma 4 After a price offer p ∈ (0, λ) the takeover can neither succeed nor fail with

certainty, i.e., q ∈ (0, 1).

Proof: If the takeover was to succeed with certainty, q = 1, then the small shareholders

would be better off keeping their shares and obtaining the payoff λ rather then selling them

for a price p < λ. But then less than half of the shares would be sold which contradicts the

assumption that q = 1.

On the other hand, if the takeover was certain to fail, q = 0, the small shareholders would

be strictly better of by selling, rather than keeping their worthless shares. Thereby more than

half of the shares would be sold, which would render q = 0 an impossibility. �

The next lemma shows that the small shareholders sell their shares with a probability high

enough to make the large shareholder pivotal. More precisely, they sell their shares with a

probability high enough so that if the large shareholder sells everything at least half of the

shares are sold.

Lemma 5 In any equilibrium of the continuation game after a price offer p ∈ (0, λ) the

small shareholders use a strategy σ with a threshold γ such that (1−x)γ+x ≥ 0.5 and γ < 1.

Proof: Suppose to the contrary that there was an equilibrium of the continuation game

such that (1−x)γ+x < 0.5. Then q = 0, because even if the large shareholder sells all of his

shares less than half of the shares are sold in total. But then the contradiction is obtained

with Lemma 4. �

The large shareholder is the only shareholder who can affect the probability of success.

The only way to prevent him from trying to increase the probability of success up to 1, which

would be contrary to Lemma 4, is to have him sell all of his shares. Indeed this makes him

not just pivotal, but pivotal with every share he owns.

Lemma 6 In any equilibrium of the continuation game after a price offer p ∈ (0, λ) the large

shareholder sells all of his shares and the small shareholders sell their shares with probability
0.5−x
1−x

.
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Proof: First we establish that the large shareholder never sells with a positive probability a

fraction of shares r such that less than half of the shares are sold in total, (1−x)γ+xr < 0.5,

and the takeover fails with certainty. Notice that in such a case the shares that the large

shareholder would keep, x(1 − r) in total, would be worthless. By selling them he would

receive px(1−r) instead. Therefore selling all the shares would present a profitable deviation.

Lemma 4 states that q ∈ (0, 1) which together with the above paragraph implies that the

raider must with positive probability sell a fraction of shares r such that q(r) ∈ (0, 1).

Now, suppose that for some r < 1 we have 0 < q(r) < 1, thus (1 − x)γ + xr = 0.5. The

large shareholder cannot sell such a fraction r with positive probability. If he did his payoff

from doing so would be prx+ q(r)rxλ. By selling an ǫ > 0 more, for an ǫ small enough, the

probability of success would increase to 1 and the value of the shares he keeps to λ, yielding

him a payoff of p(r + ǫ)x+ (r − ǫ)xλ and thus constituting a profitable deviation.

Since the raider must be selling with positive probability a fraction r such that q(r) ∈

(0, 1) and by the previous paragraph this r cannot be smaller than one, it must be the case

that q(1) ∈ (0, 1). Which, in turn, is possible only if (1 − x)γ + x = 0.5. Consequently,

the large shareholder sells all of his shares and the small shareholders sell with probability

γ = (0.5− x)/(1− x). �

The probability of success of the takeover is pinned down by the price.

Lemma 7 In any equilibrium of the continuation game after a price offer p ∈ (0, λ), the

takeover must succeed with the probability q = p/λ.

Proof: Lemma 5 shows that the small shareholders sell their shares with positive prob-

ability. Clearly they do not sell with probability one, in which case more than half of the

shares would be sold in total and the takeover would succeed with probability 1, contradicting

Lemma 4.

The above paragraph establishes that a small shareholder is mixing between selling his

share or not. He will only do that if he is indifferent. Selling a share gives him payoff p while

keeping it delivers qλ. Therefore p = qλ, which proves our claim. �

Finally, we show that the above derived candidate indeed is an equilibrium.

Lemma 8 The strategy for the small shareholders to sell their shares with probability 0.5−x
1−x

,

for the large shareholder to sell all of his shares, together with q(r) = 0 for r < 1, q(r) = p/λ

for r = 1, and q = p/λ is an equilibrium of the continuation game with the price p ∈ (0, λ).

Proof: Clearly (1 − x)0.5−x
1−x

+ x = 0.5, thus exactly half of the shares are sold if the

shareholders use the strategies prescribed by the candidate equilibrium. A small shareholder’s
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payoff from selling is p and from keeping a share qλ. These two are by the definition of q

equal rendering the small shareholder indifferent between selling and not selling. Thus his

strategy is optimal.

Since q(r) = 0 for r < 1 the large shareholder causes the takeover to fail if he sells

anything less than all of his shares. Thus making the withheld shares worthless. I.e., the large

shareholder’s payoff from selling a fraction r of his shares is prx. This is clearly maximized

at r = 1.

As the last step we need to show that q is derived from the function q(r) according to

the large shareholder’s equilibrium strategy. Since the large shareholder sells all of his shares

with probability 1, q = q(1) which concludes our proof. �

Lastly, it is easy to see that the raider’s payoff after any price offer p ∈ (0, λ) is 0. Namely,

the total created value is qλ, (1−x)qλ accrues to the small shareholder and xp = xqλ to the

large shareholder, leaving nothing on the table for the raider.

B. Proofs for the Asymmetric Information Model

Proof of Theorem 2: Suppose that there exists an equilibrium of the tender subgame

after some price offer p > 0, and denote it by T = (σ, σL, q, q(r)r∈[0,1]). Lemma 1 implies σ is

a threshold strategy. We denote its threshold by γ. In the following development, we will fix

this candidate equilibrium, and characterize its properties. Then we will verify that such an

equilibrium exists.

Before we characterize the equilibrium, we remind the reader of two definitions from the

main text. The pivotal type, s∗ ∈ [0, 1] is the type such that if the small shareholders use

the threshold strategy s∗, and if the large shareholder tenders all his shares, the fraction of

tendered shares is 1/2. Since x < 1/2, there is indeed an interior threshold signal s∗ ∈ (0, 1),

which satisfies the equality, F (s∗|h)(1 − x) + x = 1/2. Price p̄ is the price that makes the

small shareholder observing the threshold signal s∗ ∈ (0, 1) indifferent between tendering her

share or keeping it, if she believes that the takeover is successful in state h with probability

one. In particular, p̄ := β(s∗).

The first claim shows that the probability of the success of the takeover is larger than zero.

Claim 1 q > 0.

Proof: Suppose, on the way to a contradiction that q = 0. Then, not tendering yields an

expected payoff of zero, while tendering yields p > 0, therefore γ = 1. Consequently, at least

1 − x of shares are sold regardless of what the large shareholder does, resulting in q(r) = 1

for every r ∈ [0, 1]. In turn q = 1, which contradicts the hypothesis that q = 0. �
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Next we establish a lower bound on the threshold used in an equilibrium by small share-

holders.

Claim 2 (1− x)F (γ|h) + x ≥ 1/2.

Proof: If the claim was not true, less than half the shares in total would be sold in the

high state, even if the large shareholder were to tender all of his shares. Implying q(r) = 0

for every r ∈ [0, 1]. Therefore, q = 0 which would contradict Claim 1. �

The above claim establishes that in any equilibrium the strategy of the small shareholders

is such that the large shareholder could guarantee that at least half of the shares are sold in

the high state, if he wanted to.

In what follows we define the notation for the share of the large shareholder that needs to be

tendered so that exactly half of the shares are tendered in the high state, given the equilibrium

strategy of the small shareholders. Notice that such a share of the large shareholder exists in

an equilibrium due to the previous claim.

Definition 1 Let

a := max{0,
1/2− (1− x)F (γ|h)

x
}.

In the next claim we show, roughly speaking, that the large shareholder never sells less

than fraction a of his shares. Moreover, if he is selling precisely a and if q(a) < 1 then it must

be that a = 1. Indeed, if the large shareholder were to sell a < 1 with positive probability

and q(a) < 1, then he would be better off by selling just slightly more than a which would

ensure the success of the takeover in the high state and yield a significantly larger payoff on

the shares the large shareholder keeps.

Claim 3 If σL(s, r) > 0 for some r < 1 and s ∈ [0, 1], then q(r) = 1.

Proof: The proof is in two steps. First, if σL(s, r) > 0 for some r < 1, then r ≥ a. To see

this, note that q(r) = 0 for r < a, in which case the large shareholder gets p for the shares he

tendered and zero for the ones he keeps. Therefore, tendering all shares does strictly better

than tendering r < a. Hence, σL(s, r) = 0 for every r < a.

For the second step, we show that the claim is true under the two cases: i) r > a and ii)

r = a.

i) When r > a, q(r) = 1 by the definition of a and by the equilibrium requirement on q(r).

ii) Now suppose that r = a, σL(s, a) > 0, r < 1, and suppose contrary to the assertion of

the claim, that q(a) < 1. Then the large shareholder has a profitable deviation by tendering
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a fraction arbitrarily close to but above a, by which he pushes the probability of the success

in the high state to 1. This contradicts the equilibrium condition that σL maximizes the large

shareholder’s payoff. �

If the small shareholders expect the success of the takeover in the high state to be less

than certain, then it must be the case that the large shareholder is selling all of his shares.

Otherwise he could increase the probability to one by selling just slightly more shares.

Claim 4 If q < 1, then σL(s, r) = 0 for every r < 1 and s ∈ [0, 1].

Proof: Let q < 1. If a = 1, then the claim is true because σL(s, r) = 0 for every r < a = 1

as shown in Claim 3.

Let a < 1, and on the way to a contradiction assume that σL(s, r) > 0 for some r < 1.

Then q(r) = 1 for all such r, by Claim 3. Moreover, if a < 1, then q(1) = 1. Therefore q = 1,

contradicting the supposition that q < 1. �

So far we have established several properties of the equilibrium. In what follows, we will

complete the characterization under two cases: i) when p < p̄ and ii) when p ≥ p̄.

CASE 1: Suppose that p < p̄.

When the price p is below the threshold p̄ the takeover cannot succeed with certainty in

the high state.

Claim 5 If p < p̄, then q < 1.

Proof: Suppose on the way to a contradiction that q = 1. Then, either γ = 0 or γ > 0. If

γ > 0, then p = qβ(γ), p < p̄ = β(s∗), and β(·) is strictly increasing imply γ < s∗. Therefore,

(1− x)F (γ|h) + x < (1− x)F (s∗|h) + x = 1/2,

hence q(r) = 0 for every r ∈ [0, 1]. Consequently q = 0, which contradicts the assumption we

started with. A similar analysis yields a contradiction when γ = 0. �

Claim 1 and 5 put together yield that in any equilibrium, it has to be the case that

q ∈ (0, 1). From the previous analysis we also know that in such an equilibrium, the large

shareholder would try to tip the scale in the favor of the certain success, if he could. The

only way he can be prevented from doing so is if he is already selling all of his shares.

Claim 6 σL(s, r) = 0 for every s ∈ [0, 1] and r < 1.
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Proof: From Claim 5, we know that q < 1. The result is then implied by Claim 4. �

In words, the large shareholder tenders all his shares regardless of his information.

Claim 7 a = 1, γ = s∗ and q = p
β(s∗)

.

Proof: If a < 1, then q(1) = 1, and since the large shareholder would be tendering

all his shares by claim 6, q = 1. This contradicts the statement of Claim 5 that q < 1.

Therefore a = 1, and using the definition of a, γ = s∗. Finally, since γ is the threshold type,

q = p
β(γ)

= p
β(s∗)

, completing the proof. �

Below, we summarize the characterization of the equilibrium of the tender subgame when

p < p̄.

Summary 1 If 0 < p < p̄, then

γ = s∗, q =
p

β(s∗)
, σL(s, r) = 0,

for every s ∈ [0, 1] and r < 1, and

q(1) = q, q(r) = 0,

for every r < 1. It is straightforward to verify that this is an equilibrium. We conclude that

there is a unique equilibrium for 0 < p < p̄.

CASE 2: Suppose that p ≥ p̄.

First we establish that if the price offer is high, then in equilibrium, the takeover succeeds

with probability one in the high state.

Claim 8 If p ≥ p̄ then q = 1.

Proof: On the way to a contradiction, assume that q < 1. Then by Claim 4, σL(1, r) = 0

for every r < 1, i.e., the large shareholder tenders all his shares. Moreover, p ≥ p̄ and q < 1

imply β(γ) = p
q
> p̄ = β(s∗) and therefore γ > s∗. But then q = 1, because the large

shareholder tenders all his shares and (1 − x)F (γ|h) + x > 1/2. This contradicts the initial

hypothesis that q < 1. �

Remark 5 Since q = 1, γ is found by the identity β(γ) = p. Since p ≥ p̄, γ ≥ s∗.12

12If p ≥ β(1), we set γ = 1, in which case the small agents tender their shares for all the signals.
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At low prices, p < p̄, the takeover succeeds in the high state with a probability q smaller

than one. The only way to prevent the large shareholder from increasing this probability to

one was if he was already tendering all of his shares in the equilibrium. For a high price

p ≥ p̄, however, the probability of the takeover succeeding in the high state must be one, as

shown in Claim 8. This leaves scope for the large shareholder to keep some of the shares if

he deems them more valuable then the price the raider is offering.

Definition 2 Let sL be the signal that satisfies βL(sL) = p, if such a signal exists. Let

sL := 0 if βL(0) > p and let sL := 1 if βL(1) < p.

sL is the signal at which the large shareholder’s expected value for each of his shares is

equal to the price, when he is expecting the takeover to succeed with probability one.

The following claim shows that the large shareholder tenders fraction a of his shares when

his signal is high and all of his shares when the signal is low.

Claim 9 i) σL(s, r) = 0 for r < a and any s ∈ [0, 1]. In words, the large shareholder does

not tender a fraction less than a.

ii) For s < sL and r < 1: σL(s, r) = 0. For s > sL and r ∈ [a, 1):

σL(s, r) = λ[F (s|h)− F (sL|h)] + (1− λ)[F (s|l)− F (sL|l)].

Notice that σL(s, 1) = λF (s|h) + (1− λ)F (s|l) for all s ∈ [0, 1], by the definition of distribu-

tional strategies.

In words, the large shareholder tenders exactly fraction a if his signal is above the threshold

signal sL. He tenders all his shares if his signal is below sL.

iii) If sL < 1, then q(a) = 1.

Proof: Part i) follows directly from Claim 3.

We will argue part ii) by considering two cases: γ = s∗ and γ > s∗. If γ = s∗, then a = 1 by

the definition of a and s∗. Since the large shareholder never tenders a fraction smaller than

a, as in part i), σL(s, r) = 0 for every r < 1 and every s ∈ [0, 1]. q = 1 then implies that

q(a) = 1.

If γ > s∗, then a < 1. When s < sL, the price p is greater than βL(s), by the definition of

sL. Therefore, it is optimal for the large shareholder to tender all his shares. Hence, if s < sL,

then σL(s, r) = 0 for every r < 1.

If sL = 1, then the proof is complete. So, let sL < 1. A direct calculation shows that

tendering any fraction r > a is dominated by tendering fraction a+r
2

of shares. Moreover, if

q(a) < 1, then tendering a fraction arbitrarily close to a from above is a profitable deviation.
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Therefore, the optimality condition for the large shareholder’s strategy delivers that q(a) = 1.

Since σL(s, r) = 0 for r < a, in any equilibrium from part i), σL(s, a) = λ[F (s|h)−F (sL|h)]+

(1− λ)[F (s|l)− F (sL|l)] for s > sL, which concludes the proof. �

We have proven that all equilibria of the tender subgame have the following structure:

i) If 0 < p < p̄, then γ = s∗, q = p
β(s∗)

, σL(s, r) = 0 for every s ∈ [0, 1] and r < 1. Moreover,

the raider’s profit is:

Π(p) = λ(q/2− p/2) + (1− λ)(−p[(1 − x)F (s∗|l) + x]).

ii) If p = p̄, then γ = s∗, q = 1, σL(s, r) = 0 for every s ∈ [0, 1] and r < 1; the raider’s

profit is:

Π(p) = λ(1/2− p/2) + (1− λ)(−p[(1 − x)F (s∗|l) + x]).

iii) If p > p̄, then γ satisfies β(γ) = p, q = 1, σL(s, r) satisfies the findings above; the

raider’s profit is:

Π(p) = λ [(1− x)F (γ|h) + x(a(1 −H(sL|h)) +H(sL|h))]

−pλ [(1− x)F (γ|h) + x(a(1 −H(sL|h)) +H(sL|h))]

−p(1 − λ)[(1− x)F (γ|l) + x(a(1−H(sL|l)) +H(sL|l))].

�

Proof of Theorem 3: In what follows we use the characterization of profits obtained in

Theorem 2. We start by rewriting Π(p) for p ≤ p̄. Inserting q = p/β(s∗) into (7), we obtain

Π(p) = p

[

λ

2

(

1

β(s∗)
− 1

)

− (1− λ)[(1− x)F (s∗|l) + x]

]

.

Since the profit function is linear in p, for p ∈ [0, p̄], if λ/2(1/β(s∗) − 1) − (1 − λ)[(1 −

x)F (s∗|l) + x] is non-negative, then any price less that p̄ is weakly dominated by p̄. If on the

other hand, the expression is negative, then any price p ∈ (0, p̄] is dominated by zero.

Next we will provide four inequalities to argue that any price p > p̄ is dominated by p̄.

Before we proceed, notice that p > p̄ implies γ > s∗.

For the first inequality, γ > s∗ and p = λf(γ|h)
λf(γ|h)+(1−λ)f(γ|l)

imply:

λ(1− p)F (γ|h) + (1− λ)(−p)F (γ|l) < λ(1− p)F (s∗|h) + (1− λ)(−p)F (s∗|l).
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To see this, we rewrite the inequality by plugging in the value of p and rearranging to obtain:

F (γ|h)

f(γ|h)
−

F (γ|l)

f(γ|l)
<

F (s∗|h)

f(γ|h)
−

F (s∗|l)

f(γ|l)
.

The above inequality holds because the derivative of K(s) := F (s|h)
f(γ|h)

− F (s|l)
f(γ|l)

with respect to s

is negative when s < γ, due to MLRP.

The second inequality follows directly from p > p̄:

λ(1− p)F (s∗|h) + (1− λ)(−p)F (s∗|l) < λ(1− p̄)F (s∗|h) + (1− λ)(−p̄)F (s∗|l).

The first two inequalities together yield

(9) λ(1− p̄)F (s∗|h) + (1− λ)(−p̄)F (s∗|l) > λ(1− p)F (γ|h) + (1− λ)(−p)F (γ|l).

The third inequality follows from the MLRP condition in a similar fashion as the first

inequality, but by using the condition p = βL(sL) (The case of p > βL(1) leads to sL = 1,

and the inequality follows similarly.):

λ(1− p)[a(1−H(sL|h)) +H(sL|h)] + (1− λ)(−p)[a(1−H(sL|l)) +H(sL|l)]

≤ λ(1− p) + (1− λ)(−p).

Indeed, rearranging shows that the above inequality is true if and only if:

1−H(sL|h)

1 −H(sL|l)
≥

h(sL|h)

h(sL|l)
.

This last inequality follows directly from MLRP.

The fourth inequality again follows directly from p > p̄

λ(1− p) + (1− λ)(−p) < λ(1− p̄) + (1− λ)(−p̄)

The last two inequalities yield

(10)

λ(1−p̄)+(1−λ)(−p̄) > λ(1−p)[a(1−H(sL|h))+H(sL|h)]+(1−λ)(−p)[a(1−H(sL|l))+H(sL|l)].

35



Now, for p > p̄:

Π(p̄)−Π(p) =

λ(1− p̄)F (s∗|h) + (−p̄)(1− λ)(1− x)F (s∗|l)− λ(1− p)(1− x)F (γ|h) + p(1− λ)(1 − x)F (γ|l)

+ x [λ(1− p̄)− p(1− λ)− λ(1− p)[a(1−H(sL|h)) +H(sL|h)] + p(1− λ)[a(1 −H(sL|l)) +H(sL|l)]]

> 0,

where the first equality uses the identity 1/2 − x = F (s∗|h), the term in the second line is larger

than zero due to (9) and the term in the third line due to (10). �

Proof of Lemma 3: s∗(x) is strictly increasing in x, which is readily seen from

(11) (1− x)F (s∗|h) + x = 1/2.

Therefore β(s∗(x)) is strictly decreasing in x. Π(x) can be rewritten as follows:

Π(x) =
λ

2
− β(s∗)[

λ

2
+ (1− λ)[(1− x)F (s∗|l) + x]].

We show that the second term is decreasing in x. First, β(s∗) is decreasing in x. Second, as

we will show below, (1−x)F (s∗|l)+x is decreasing in x, completing the proof. Differentiating

(11) with respect to x yields

0 = 1− F (s∗|h) + (1− x)f(s∗|h)
ds∗

dx
.

Now:

d((1− x)F (s∗|l) + x)

dx
= 1− F (s∗|l) + (1− x)f(s∗|l)

ds∗

dx

= 1− F (s∗|l)− f(s∗|l)
1− F (s∗|h)

f(s∗|h)
< 0,

where the second line follows from (11) and the third from MLRP. This concludes the proof.

�

Proof of Theorem 5: Let s∗(x) be defined by

(1− x)F (s∗(x)|h) + x =
1

2
,
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for all x ∈ [0, 1/2]. Then

lim
xց0

Π(x) = lim
xց0

(

λ

2
− β(s∗(x))

[

λ

2
+ (1− λ)[(1− x)F (s∗(x)|l) + x]

])

=
λ

2
− β(s∗(0))

[

λ

2
+ (1− λ)F (s∗(0)|l)

]

= (1− λ)f(s∗(0)|l)β(s∗(0))

[

F (s∗(0)|h)

f(s∗(0)|h)
−

F (s∗(0)|l)

f(s∗(0)|l)

]

< 0,

where the second equality follows from continuity of β(·) and s∗(·), and the third line follows

by observing 1/2 = F (s∗(0)|h) and rearranging. The inequality is due to MLRP.

On the other hand,

lim
xր1/2

Π(x) = lim
xր1/2

(

λ

2
− β(s∗(x))

[

λ

2
+ (1− λ)[(1− x)F (s∗(x)|l) + x]

])

=
1

2
[λ− β(0)]

> 0,

where the second line follows after observing s∗(1/2) = 0.

Π(x) is a strictly increasing function due to Lemma 3. Existence of x∗ as defined in the

text of the theorem then follows from the above obtained limits. �

C. Finite Model and Convergence: Proof of Theorem 6

We prove Theorem 6 via a sequence of lemmata. In particular, we show that symmetric

equilibrium outcomes of the finite shares model converge to an equilibrium outcome of the

model with a continuum of shares. In the following development, we denote the strategies in

the finite shares model with n shares using the superscript n.

C.1. Threshold Strategies The next lemma is a preliminary observation showing that

the equilibrium strategies of small shareholders in finite shares model either have a threshold

structure, or there is an outcome equivalent equilibrium in which small shareholders use a

threshold strategy.

Lemma 9 Let T n = (σn
L, σ

n) be a symmetric Nash Equilibrium of the tender subgame with

price offer p when there are n shares. Then there is unique symmetric equilibrium strategy
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profile T̃ n := (σn
L, σ̃

n) that induces the same distribution over outcomes as T n, and the small

shareholders’ strategy σ̃n is a threshold strategy.

Proof: The MLRP property on the signal distribution implies that β(s) is weakly increas-

ing in s. A small shareholder’s payoff from tendering a share is p, whereas the payoff from

keeping it is β(s)qn−1. Therefore, if U(p, s, qn−1, keep) > U(p, s, qn−1, sell) for a signal s ∈ [0, 1],

then U(p, s′, qn−1, keep) > U(p, s′, qn−1, sell) for every s′ < s. Similarly, if U(p, s, qn−1, sell) >

U(p, s, qn−1, keep) for a signal s ∈ [0, 1], then U(p, s′, qn−1, sell) > U(p, s′, qn−1, keep) for ev-

ery s′ > s. Therefore, there are signals s1 ≤ s2 such that σn(s) = sell for all s < s1 and

σn(s) = keep for all s > s2, and β(s1) = β(s2). Let s∗∗ ∈ [s1, s2] be the unique signal such

that F (s∗∗|h)−F (s1|h) =
∫ s2
s1

1{σn(s)=sell}dF (s|h); where the term 1 is the indicator function.

It is then clear that the strategy σ̃n defined as σ̃n(s) = sell for all s ≤ s∗∗ and σ̃n(s) = keep

for all s > s∗∗ yields identical outcomes as σn when the price offer is p and the large share-

holder strategy is σn
L. Also it is clear that T̃ n is an equilibrium strategy profile, since the

distribution of action profiles remains unchanged. �

Henceforth, without loss of generality, we will confine attention to equilibria in which small

shareholders are using a threshold strategy. The term γn denotes the threshold type of the

threshold strategy σn. Hence, φn = F (γn|h).

C.2. Convergence Let the collection {pn, T n, qn}n=1,2... be a sequence where each pn ∈

[0, 1] is a price, T n is a symmetric Nash equilibrium of the tender subgame with price offer

pn and n shares, and qn is derived from T n as described in the main body of the paper. In

the following development, we fix this sequence.

C.2.1. Method of proof We first prove that the equilibrium outcomes of the sequence {pn, T n, qn}n

converge to an equilibrium outcome of the continuum game we identified in the main text. On

the way to the result, we first argue that there is a strategy σL ∈ ΣL to which the sequence

σn
L converges. Moreover, γn, the threshold type of σn, converges to a threshold γ, prices,

pn, converge to a price p, and qn converges to q. From these limit objects, we derive a new

mapping q(r)r∈[0,1] and show that (σL, σ, q, q(r)r∈[0,1]) where σ is a threshold strategy with

the threshold γ, is an equilibrium of the tender subgame with a price offer p in the continuum

game. Finally we show that the equilibrium prices of the finite games, pn, converge to an

equilibrium price, p, of the continuum game.

The lemma below shows that every collection {pn, T n, qn}n has a convergent subsequence.

Lemma 10 There exists a subsequence of {pn, γn, σn
L, q

n}n and an increasing and right-

continous function σL ∈ ΣL such that σn
L(s, r) → σL(s, r) at every continuity point of σL(s, r),

pn → p, qn → p, γn → γ.
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Proof: Since pn, γn, qn ∈ [0, 1] for all n, the sequence {pn, γn, σn
L, q

n}n has a convergent

subsequence {pnk, γnk, σnk
L , qnk}nk. Sequence {σ

nk
L }nk has a subsequence {σnkj

L }nkj which con-

verges to a distribution due to Helly’s theorem; distributions here have a bounded support

(see Billingsley (1986), Thm 25.10). Moreover, since all the distributional strategies along

the sequence {σnkj
L }nkj satisfy equation (1), and so does the limit. Therefore, the limit dis-

tribution of {σnkj
L }nkj is in ΣL and {pnkj, γnkj, σnkj

L , qnkj}nkj is a convergent subsequence of

{pn, γn, σn
L, q

n}n. �

From this point on, we use the term limn→∞ to take the limit over the convergent subse-

quence identified in the previous lemma. We denote the limit point to which the subsequence

converges with the collection of the price p, threshold signal γ, large shareholder’s strategy

σL and the probability of success in the high state, q.

So far we identified a limit of a sequence of equilibria of finite games. In the following

development, we establish that the limiting strategies constitute, a part of, an equilibrium of

the continuum game. Note, however, that an equilibrium in the continuum game is identified

by two strategies, one for small shareholders and one for the large shareholder, a probability

q and a mapping {q(r)}r∈[0,1]. In our description of the equilibrium of the continuum game

we will use the limit distributions for the strategies, the limit of qn for q, while in the next

definition we describe how to specify the mapping {q(r)}r∈[0,1]. Let a := min{a∗, 1} ∈ [0, 1]

where a∗ is the solution to (1− x)γ + xa∗ = 1/2.

Definition 3 Let q(r) = 0 for all r < a, q(r) = 1 for all r > a. If σL(1, a|h) −

limy→a− σL(1, y|h) > 0, then let

q(a) =
q − (1− σL(1, a|h))

σL(1, a|h)− limy→a− σL(1, y|h)
,

otherwise let q(a) be an arbitrary number between 0 and 1.

First we establish that q(a) as defined above can actually be interpreted as a probability.

Lemma 11 q(a) ∈ [0, 1].

Proof: We start by showing q(a) ≥ 0. On the way to the result, note that for every ǫ > 0,

1− σn
L(1, a+ ǫ|h) =

nx
∑

i=(a+ǫ)nx

gn(i).
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Definition of a and the fact that φn converges to φ imply

(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k →n→∞ 1,

uniformly over all i ≥ (a+ǫ)nx. Indeed, a was defined so that whenever the large shareholder

tenders more than fraction a of his shares in the continuum game, given the fixed behavior of

the small shareholders, he expects the takeover in the high state to succeed with probability

one. Now

nx
∑

i=(a+ǫ)nx

gn(i)

(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k −
nx
∑

i=(a+ǫ)nx

gn(i) → 0.

The above observations can be put together to show that there exists an N such that for

n > N ,

(1− ǫ)(1− σn
L(1, a+ ǫ|h)) = (1− ǫ)

nx
∑

i=(a+ǫ)nx

gn(i)

≤

nx
∑

i=0

gn(i)

(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k

= qn.

Since the inequality is true for every large n, it has to be true in the limit:

q ≥ (1− ǫ)(1 − σL(1, a+ ǫ|h)).

Moreover, the last inequality holds for every ǫ > 0, and σL is right continuous, therefore

q ≥ 1− σL(1, a|h).

Next we argue that q(a) ≤ 1. For this, it suffices to show that

1− q ≥ lim
y→a−

σL(1, y|h).

Suppose, to the contrary that 1 − q < limy→a− σL(1, y|h). Then there exists an ǫ1 > 0 such

that

(12) 1− q < σL(1, a− ǫ1|h).
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1 − q is the probability the small agents attach in the limit to the failure of the takeover in

the high state. It is easy to verify that

1− q = lim
n→∞

nx
∑

i=0

gn(i)

n

2
−i−1
∑

k=0

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k.

Fix an ǫ2 such that 0 < ǫ2 ≤ ǫ1 and notice that definition of a and the fact that φn converges

to φ imply

n

2
−i−1
∑

k=0

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k → 1,

uniformly for all i ≤ (a − ǫ2)nx. The idea is, in the limit game a is the fraction of shares

that the large shareholder needs to sell, so that exactly half of the shares are sold, given the

small shareholders’ strategy. Thus, if he is selling a fraction smaller than a, and the small

shareholders’ strategies are converging to the limit strategy, it has to be the case that for

large n the takeover is failing with probability 1 in the high state.

But then there exist an ǫ3 > 0 and N such that for n > N

1− q = lim
n→∞

nx
∑

i=0

gn(i)

n

2
−i−1
∑

k=0

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k

≥

(1−ǫ2)nx
∑

i=0

gn(i) +

nx
∑

i=(1−ǫ2)nx

gn(i)

n

2
−i−1
∑

k=0

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k − ǫ3

≥

(1−ǫ2)nx
∑

i=0

gn(i)− ǫ3.

Since the above inequality holds for every ǫ3 and σL(1, a− ǫ2|h) = limn

∑(1−ǫ2)nx
i=0 gn(i),

1− q ≥ σL(1, a− ǫ2|h),

which contradicts (12). Hence, 1− q ≥ limy→a− σL(1, y|h). �

Now that we have established the limiting structure of the game we need to show that the

limiting strategies, together with the beliefs, form an equilibrium of the continuum game.

First we show that the limit threshold signal of the small shareholders represents the optimal

strategy for them in the continuum game.

Lemma 12 The limit threshold type γ is such that U(p, s, q, keep) > (<)p if s > (<)γ.
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Proof: We start by calculating the term qn − qn−1 :

qn :=
nx
∑

i=0

gn(i)

(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k.

qn−1 :=

nx
∑

i=0

gn(i)

(1−x)n−1
∑

k=n/2−i

(

(1− x)n− 1

k

)

φk
n(1− φn)

(1−x)n−1−k.

We use the following identity:

(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k −

(1−x)n−1
∑

k=n/2−i

(

(1− x)n− 1

k

)

φk
n(1− φn)

(1−x)n−1−k

=

(

(1− x)n− 1
n
2
− i− 1

)

φ
n

2
−i

n (1− φn)
(1−x)n−n

2
+i

to obtain:

qn − qn−1 =
nx
∑

i=0

gn(i)

(

(1− x)n− 1
n
2
− i− 1

)

φ
n

2
−i

n (1− φn)
(1−x)n−n

2
+i,

which is easily seen to converge to 0 as n goes to infinity. Now, qn−1 → qn and qn → q imply

qn−1 → q.

Pick any arbitrary s < γ. Since γn → γ, there is a N such that for every n > N ,

s < γn. Observing that small shareholders with signals less than the threshold signal γn

weakly prefer to tender in the game with n shares delivers that U(pn, s, qn−1, keep) ≤ pn.

Moreover, because U is continuous in qn−1, because qn−1 → q, and because pn → p, we have

that U(p, s, q, keep) ≤ p. Because s is arbitrarily chosen, the previous inequality holds for

any s < γ. A similar argument shows that U(p, s, q, keep) ≥ p for any s > γ. �

The last piece of the puzzle in the limit result for the equilibria of the tender subgames is

to establish that the large shareholder’s limiting strategy σL is a best response to the small

shareholders’ limiting strategies in the continuum game, given the limiting price and beliefs.

Lemma 13

∫

s,r

UL(p, s, q(r), r)dσL(s, r) ≥

∫

s,r

UL(p, s, q(r), r)dσ̃L(s, r),
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for every σ̃L ∈ ΣL.

Proof: Suppose, contrary to the assertion of the lemma, that there exists a σ̃L ∈ ΣL such

that

∫

s,r

UL(p, s, q(r), r)dσL(s, r) <

∫

s,r

UL(p, s, q(r), r)dσ̃L(s, r).

We will consider two cases: a < 1 or a = 1.

Case 1: a < 1. There exist an ǫ > 0, and a σ̄L ∈ ΣL such that:

∫

s,r

UL(p, s, q(r), r)dσL(s, r) <

∫

s,r

UL(p, s, q(r), r)dσ̄L(s, r),(13)

σ̄L(1, a+ ǫ) = σ̄L(1, a− ǫ),

and σ̄L(1, y) = σ̃L, for y ∈ [0, a− ǫ). The idea is to take the strategy σ̃L and construct a new

strategy σ̄L by shifting the probability mass that σ̃L(1, ·) assigns to the interval [a− ǫ, a+ ǫ]

toward the endpoint of the interval, a+ǫ. The existence of a σ̄L satisfying the above inequality

is guaranteed because, given a < 1, shifting the shares slightly above a cannot decrease the

payoff discontinuously.

Let for every r ∈ [0, 1],

σ̄n
L(s, r) := σ̄L(s, i/nx),

for the unique i that satisfies i− 1 < rnx ≤ i.

In what follows, we will show that the large shareholder’s equilibrium payoffs in the finite

games converge to his payoffs in the continuum game with price p and tuple T . We will use

this finding together with the hypothesis that σL is not a best response to find a profitable

deviation from σn
L when n is large, obtaining a contradiction.

In particular, let UL(p
n, σn, σn

L) be the large shareholder’s payoff from following the strategy

σn
L when the small shareholders follow the symmetric threshold strategy σn, in the finite game

with n shares and a price offer pn. We argue that:

lim
n→∞

UL(p
n, σn, σn

L) =

∫

UL(p, s, q(r), r)dσL(s, r),(14)

lim
n→∞

UL(p
n, σn, σ̄n

L) =

∫

UL(p, s, q(r), r)dσ̄L(s, r).(15)

We start with the first equality. Note that for every ǫ > 0, qn(r) converges uniformly to 1

in the domain r > a+ ǫ and converges uniformly to zero in the domain r < a− ǫ. The large
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shareholder’s payoff can now be rewritten as:

UL(p
n, σn, σn

L) =
∑

i∈{0,1,...,nx}

∫

s∈[0,1]

UL(p
n, s, qn(i/nx), i/nx)dσn

L(s, i/nx)

=
∑

i∈{(a+ǫ)nx,...,nx}

∫

s∈[0,1]

UL(p
n, s, qn(i/nx), i/nx)dσn

L(s, i/nx)

+
∑

i∈{0,1,...,(a−ǫ)nx}

∫

s∈[0,1]

UL(p
n, s, qn(i/nx), i/nx)dσn

L(s, i/nx)

+
∑

i∈{(a−ǫ)nx+1,...,(a+ǫ)nx−1}

∫

s∈[0,1]

UL(p
n, s, qn(i/nx), i/nx)dσn

L(s, i/nx).

We use the facts that qn(·) → q(·) uniformly for r ∈ [0, a− ǫ] ∪ [a + ǫ, 1], σn
L converges to

σL, and that UL(p, s, q(r), r) is continuous in r ∈ [0, a−ǫ]∪ [a+ ǫ, 1] and in its first argument,

to argue that there is an N such that for n > N :

∑

i∈{0,1,...,nx}

∫

s∈[0,1]
UL(p

n, s, qn(i/nx), i/nx)dσn
L(s, i/nx) ≥(16)

≥

∫

r>a+ǫ

∫

s
UL(p, s, q(r), r)dσL(s, r) +

∫

r<a+ǫ

∫

s
UL(p, s, q(r), r)dσL(s, r)+

x(a− ǫ)p

∫ a+ǫ

a−ǫ
dσL(1, r) + x(1− a− ǫ)λ





(a+ǫ)xn
∑

i=(a−ǫ)xn

gn(i)

(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k



− ǫ.

In the above expression, the first two terms on the right-hand side are the limit payoffs

in the specified regions. We obtain the third term by explicitly rewriting the UL term in

the integral, and bounding it generously. The second inequality below bounds the large

shareholder’s payoff from above, in a similar fashion as the first inequality did from below:

∑

i∈{0,1,...,nx}

∫

s∈[0,1]
UL(p

n, s, qn(i/nx), i/nx)dσn
L(s, i/nx) ≤(17)

∫

r>a+ǫ

∫

s
UL(p, s, q(r), r)dσL(s, r) +

∫

r<a+ǫ

∫

s
UL(p, s, q(r), r)dσL(s, r)+

x(a+ ǫ)p

∫ a+ǫ

a−ǫ
dσL(1, r) + x(1− a+ ǫ)λ





(a+ǫ)xn
∑

i=(a−ǫ)xn

gn(i)

(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k



+ ǫ.

Remember that:

q = lim
n→∞

xn
∑

i=0

gn(i)

(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k.
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The above sum can be split into three parts where the first sum is from 0 to (a− ǫ)xn − 1,

the second from (a− ǫ)xn to (a+ ǫ)xn and the third from (a+ ǫ)xn+1 to xn. The first sum

converges, due to the definition of a, to 0, and the third to limn→∞

∑xn
i=(a+ǫ)xn+1 g

n(i), which

is in turn equal to 1− σL(1, a+ ǫ|h). Therefore:

q = 1− σL(1, a+ ǫ|h) + lim
n→∞

(a+ǫ)xn
∑

i=(a−ǫ)xn

gn(i)

(1−x)n
∑

k=n/2−i

(

(1− x)n

k

)

φk
n(1− φn)

(1−x)n−k.

(16) can now be rewritten as

∑

i∈{0,1,...,nx}

∫

s∈[0,1]

UL(p
n, s, qn(i/nx), i/nx)dσn

L(s, i/nx) ≤

≤

∫

r>a+ǫ

∫

s

UL(p, s, q(r), r)dσL(s, r) +

∫

r<a+ǫ

∫

s

UL(p, s, q(r), r)dσL(s, r)

+x(a + ǫ)p

∫ a+ǫ

a−ǫ

dσL(1, r) + x(1− a + ǫ)λ(q − (1− σL(1, a+ ǫ|h))) + 2ǫ.

and (17) as

∑

i∈{0,1,...,nx}

∫

s∈[0,1]

UL(p
n, s, qn(i/nx), i/nx)dσn

L(s, i/nx) ≥

≥

∫

r>a+ǫ

∫

s

UL(p, s, q(r), r)dσL(s, r) +

∫

r<a+ǫ

∫

s

UL(p, s, q(r), r)dσL(s, r)

+x(a− ǫ)p

∫ a+ǫ

a−ǫ

dσL(1, r) + x(1− a− ǫ)λ(q − (1− σL(1, a+ ǫ|h)))− 2ǫ.

Since the above inequalities hold for every ǫ > 0, and since the cumulative distributions

are right-continous functions:

lim
n→∞

∑

i∈{0,1,...,nx}

∫

s∈[0,1]

UL(p
n, s, qn(i/nx), i/nx)dσn

L(s, i/nx) =

=

∫

r>a

∫

s

UL(p, s, q(r), r)dσL(s, r) +

∫

r<a

∫

s

UL(p, s, q(r), r)dσL(s, r)

+xap[σL(1, a)− lim
y→a−

σL(1, y)] + x(1− a)λ[q − (1− σL(1, a|h))].

Replacing the definition of q(a), and rewriting the definition of UL(p, s, q(a), a), we get:

lim
n→∞

∑

i∈{0,1,...,nx}

∫

s∈[0,1]

UL(p
n, s, qn(i/nx), i/nx)dσn

L(s, i/nx) =

=

∫

r>a

∫

s

UL(p, s, q(r), r)dσL(s, r) +

∫

r<a

∫

s

UL(p, s, q(r), r)dσL(s, r) +

∫

s

UL(p, s, q(a), a)dσL(s, a)

=

∫

r,s

UL(p, s, q(r), r)dσL(s, r).
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This completes the proof of (14). (15) can be shown using the same method, after first

observing that σ̄n
L is constructed so that it converges to σ̄L at every continuity point of σ̄L,

and that:

UL(p
n, σn, σ̄n

L) =
∑

i∈{0,1,...,nx}

∫

s∈[0,1]

UL(p
n, s, qn(i/nx), i/nx)dσ̄n

L(s, i/nx)

=
∑

i∈{(a+ǫ)nx,...,nx}

∫

s∈[0,1]

UL(p
n, s, qn(i/nx), i/nx)dσ̄n

L(s, i/nx)

+
∑

i∈{0,1,...,(a−ǫ)nx}

∫

s∈[0,1]

UL(p
n, s, qn(i/nx), i/nx)dσ̄n

L(s, i/nx),

because σ̄L(1, a+ ǫ) = σ̄L(1, a− ǫ), by construction. Now the steps used in the proof of (14)

can be used to show limn→∞ UL(p
n, σn, σ̄n

L) =
∫

UL(p, s, q(r), r)dσ̄L(s, r).

(13), (14) and (15) imply

lim
n→∞

UL(p
n, σn, σ̄n

L) =

∫

UL(p, s, q(r), r)dσ̄L(s, r)

>

∫

UL(p, s, q(r), r)dσL(s, r)

= lim
n→∞

UL(p
n, σn, σn

L).

Therefore there exists an n such that

UL(p
n, σn, σ̄n

L) > UL(p
n, σn, σn

L),

contradicting the fact that σn
L is a best response.

Case 2: a = 1. We first argue that, if a = 1, and if p > 0, then the strategy σ̄L, ac-

cording to which the large shareholder tenders all shares at every signal gives the large

shareholder a strictly higher payoff then any other strategy in the continuum game. In par-

ticular, let σ̄L(1, 1) = 1 and σ̄L(1, r) = 0 for every r < 1. Then,
∫

UL(p, s, q(r), r)dσ̄L(s, r) >
∫

UL(p, s, q(r), r)dσ
′
L(s, r) for every σ′

L 6= σ̄L. Indeed, when the large shareholder tenders

less than fraction a in the continuum game, the probability of a successful takeover, by the

definition of a, is zero. Therefore it is profitable for the large shareholder to deviate towards

tendering fraction a of his shares. Moreover, the large shareholder’s payoff from tendering all

his shares is px.

If σL is suboptimal, then σ̄L yields the large shareholder a strictly higher payoff than σL:
∫

UL(p, s, q(r), r)dσL(s, r) < xp. Moreover,
∫

UL(p, s, q(r), r)dσL(s, r) = limn→∞UL(p
n, σn, σn

L).
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Since pn → p, we conclude that, for some n, UL(p
n, σn, σn

L) < xpn. But then tendering all the

shares in the game with n shares is a profitable deviation from σn
L for the large shareholder,

contradicting the assumption that σn
L is a best response.

The only remaining case is p = 0. In this case, all strategies give the large shareholder zero

payoff in the continuum game, and hence all strategies are best responses. �

The above lemmata can be combined to establish that the limit object (σ, σL, q, q(r)r∈[0,1])

that we have derived from the sequence {σn, σn
L, q

n}n is an equilibrium of the continuum

game after the price offer p.

Lemma 14 The tuple T = (σ, σL, q, q(r)r∈[0,1]) is an equilibrium of the tender subgame in

the continuum game with price p.

Proof: The above lemmata show how to construct the belief function q(r), and establish

that σ and σL are best responses for the small shareholders and the large shareholder, re-

spectively. In particular, Lemma 13 shows that σL is a best response to q(r) and p, Lemma

12 shows that small shareholder’s strategy is a best response to q and p. In Definition 3, we

construct q(r) in a way that it satisfies the equilibrium conditions for q(r). Moreover, q(r)

integrates to q using σL, by construction. The only caveat that the definition does not deliver

is if the large shareholder’s strategy does not have a mass on selling a fraction a. In this case,

q = 1− σL(1, a), which follows from the two inequalities above inequality 12. �

The last thing to argue is that the limit of equilibrium prices coincides with an equilibrium

price of the continuum game.

Lemma 15 Let {pn, σn, σn
L}n be a sequence of prices and equilibrium strategies of the tender

subgames with price offer pn in the finite shares model with n shares. If limn p
n = p, then,

limn Π
n(pn, σn, σn

L) = Π(p), where Π(p) is raider’s equilibrium profit of the tender subgame

with a price offer p in the model with continuum shares.

Proof: We omit the formal proof to this result, as it is very similar to showing how the

large shareholder’s payoff in the finite shares model converges to his payoff in the model

with a continuum of shares; as in equality (14). The only caveat is the possible multiplicity

of equilibria for a price p in the game with a continuum of shares. However, the raider’s

equilibrium profits after the price offer p are uniquely pinned down both in the symmetric

information as well as the asymmetric information set up, as analyzed in sections 3 and 4.

�
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In what follows we complete the proof of Theorem 6. We show that if {pn, σn, σn
L}n is

a convergent sequence of equilibrium price offers and equilibrium strategies of the tender

subgames with price offer pn in the finite shares model with n shares, then p := lim pn is

an equilibrium price offer for the raider in the model with a continuum of shares. This is

sufficient for the proof of Theorem 6, because lemmata 14 and 15 posit that the probability

of a successful takeover, qn, and the profits of the raider, Πn converge to their equilibrium

counterparts in the continuum shares model, after price offer p.

Let p̂ be a price at which the raider achieves the maximum profit in a model with a

continuum of shares. Such a price exists both in the models we analyzed in sections 3 and 4.

Also, in both models, although there may be multiple tender sub game equilibria after some

price offers, the raider’s payoff is identical across all equilibria. As stated in Lemma 15, Π(p′)

denotes the raider’s equilibrium payoff in the tender sub game after price offer p′. Any price

p′ for which Π(p′) = Π(p̂) can be sustained as a tender equilibrium price offer by the raider.

Therefore proving that Π(p) = Π(p̂) will complete the proof. Clearly Π(p) ≤ Π(p̂), because

Π(p̂) is the maximum of Π(.).

On the way to a contradiction, suppose that Π(p) < Π(p̂). Then it has to be the case that

there is an ǫ > 0 and an integer N such that, whenever n > N , Πn(pn, σn, σn
L) < Π(p̂)−ǫ. On

the other hand, if the raider instead offered the price p̂ in the finite games, then for sufficiently

large n, his equilibrium payoffs from following this strategy gives him a payoff arbitrarily close

to Π(p̂), due to Lemma 15. But this is a contradiction to pn being an equilibrium price offer

by the raider, since offering p̂ is a profitable deviation when n is sufficiently large.
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