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Abstract

This paper develops a theory of optimal taxation with behavioral agents. We use a general

behavioral framework that encompasses a wide range of behavioral biases such as mispercep-

tions, internalities and mental accounting. We revisit the three pillars of optimal taxation:

Ramsey (linear commodity taxation to raise revenues and redistribute), Pigou (linear com-

modity taxation to correct externalities) and Mirrlees (nonlinear income taxation). We show

how the canonical optimal tax formulas are modified and lead to a rich set of novel economic

insights. We also show how to incorporate nudges in the optimal taxation frameworks, and

jointly characterize optimal taxes and nudges. Under some conditions, the optimal tax sys-

tem is simple, in the sense that all tax rates are equal. For instance, all goods are optimally

taxed at the same rate (or a few different rates), and the optimal income tax features just one

marginal tax rate (or a few different marginal tax rates). This contrasts with the traditional

optimal tax results, that generically features complex tax systems that depend on the details

of the environment. Finally, we explore the Diamond-Mirrlees productive efficiency result and

the Atkinson-Stiglitz uniform commodity taxation proposition, and find that they are more

likely to fail with behavioral agents.
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1 Introduction

This paper develops a systematic theory of optimal taxation with behavioral agents. Our framework

is general. It allows for arbitrary behavioral biases (for example misperception of taxes, internalities,

or mental accounting), structures of demand, externalities, and population heterogeneity, as well as a

wide range of tax instruments. We derive a behavioral version of the three pillars of optimal taxation:

Ramsey (1927) (linear commodity taxation to raise revenues and redistribute), Pigou (1920) (linear

commodity taxation to correct for externalities) and Mirrlees (1971) (nonlinear income taxation).

Our results take the form of optimal tax formulas that generalize the canonical formulas derived

by Diamond (1975), Sandmo (1975) and Saez (2001). Our formulas are expressed in terms of similar

sufficient statistics and share a common structure.

The sufficient statistics can be decomposed into two classes: traditional and behavioral. Tradi-

tional sufficient statistics, which arise in non-behavioral models, include: social marginal utilities of

income and of public funds, compensated demand elasticities, marginal externalities and equilibrium

demands. Behavioral sufficient statistics are misoptimization wedges that arise only in behavioral

models. They can be thought of as the ideal corrective taxes that would undo the underlying be-

havioral biases, such as misperception of taxes or internalities. The behavioral tax formulas differ

from their traditional counterparts because of the behavioral sufficient statistics and because the

presence of behavioral biases shapes the traditional sufficient statistics, and in particular cross and

own price elasticities as well as social marginal utilities of income.

The generality of our framework allows us to unify existing results in behavioral public finance as

well as to derive new insights. A non-exhaustive list includes: a modified Ramsey inverse elasticity

rule (for a given elasticity, inattention increases the optimal tax); a modified optimal Pigouvian tax

rule (one dollar of externality should be taxed by more than a dollar if people are inattentive to

the tax); a new role for quantity regulation (heterogeneity in attention favors quantity regulation

over price regulation); the attractiveness of targeted nudges (which respects freedom of choice for

rational agents and limit the tax burden of the poor); a modification of the principle of targeting

(in the traditional model, it is optimal to tax the externality-generating good, but not to subsidize

substitute goods; in the behavioral model, it is actually optimal to subsidize substitute goods); a

uniform commodity taxation result within a “rigid” mental account (i.e. when the total budget

on a category of goods is inelastic because of behavioral mental accounting); marginal income tax

rates can be negative even with only an intensive labor margin; if the top marginal tax rate is

particularly salient and contaminates perceptions of other marginal tax rates, then it should be

lower than prescribed in the traditional analysis, and, conversely, if the wealthy overperceive the

productivity of effort, top marginal rates are higher than the traditional analysis.

Under some conditions regarding agents’ misperceptions of taxes, the optimal tax system is

simple, in the sense that all tax rates are equal. For instance, all goods are optimally taxed at

the same rate (or a few different rates), and the optimal income tax features just one marginal
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tax rate (or a few different marginal tax rates). This contrasts with the traditional optimal tax

results that generically feature complex tax systems that depend on the details of the environment

because when the tax system is too complex, agents make mistakes (and anchor too much on some

salient taxes). This is an extra cost absent from the traditional model. Then, if the mistake can be

large enough, the optimal tax systems features just one uniform tax rates across goods or income

brackets. It appears that this is the first time that a “simple tax system” arises in public finance

because of agents’ bounded rationality.

We also revisit two classical results regarding supply elasticities and production efficiency. The

first classical result states that optimal tax formulas do not depend directly on supply elasticities

if there is a full set of commodity taxes. The second classical result, due to Diamond and Mirrlees

(1971), states that under some technical conditions, production efficiency holds at the optimum (so

that for example, intermediate goods should not be taxed and inputs should be taxed at the same

rate in all sectors) if there is a complete set of commodity taxes and if there are constant returns

to scale or if profits are fully taxed. We show that both results can fail when agents are behavioral

because agents might misperceive taxes. Roughly, a more stringent condition is required, namely, a

full set of commodity taxes that agents perceive like prices (in addition perhaps to other commodity

taxes which could be perceived differently from prices).

Finally, we show that the celebrated uniform commodity taxation result of Atkinson and Stiglitz

(1972) requires more stringent conditions when agents are behavioral.

Taken together, our results show that the presence of behavioral biases weakens the traditional

arguments that deliver some form of simplicity of optimal tax systems on efficiency grounds (Di-

amond and Mirrlees 1971, Atkinson and Stiglitz 1972). However, new behavioral arguments for

simple taxes based on misperceptions come into play, which would have no bite if agents were

rational.

Relation to the literature We rely on recent progress in behavioral public finance and

basic behavioral modelling. We build on earlier behavioral public finance theory.1 Chetty (2009)

and Chetty, Kroft and Looney (CKL, 2009) analyze tax incidence and welfare with misperceiving

agents; however, they do not analyze optimal taxation in this context - our paper can thus be

viewed as a next logical step after CKL. An emphasis of previous work is on the correction of

“internalities,” i.e. misoptimization because of self-control or limited foresight, which can lead to

optimal “sin taxes” on cigarettes or fats (Gruber and Kőszegi 2001, O’Donoghue and Rabin 2006).

Mullainathan, Schwarzstein and Congdon (2012) offer a rich overview of behavioral public fi-

nance. In particular, they derive optimality conditions for linear taxes, in a framework with a binary

action and a single good. Allcott, Mullainathan and Taubinsky (2014) analyze optimal energy pol-

1Numerous studies now document inattention to prices or more broadly consequences of purchases, e.g. Abaluck

and Gruber (2011), Allcott and Taubinsky (forthcoming), Allcott and Wozny (2014) (see also Busse, Knittel and

Zettelmeyer 2012), Anagol and Kim (2012), Brown, Hossain and Morgan (2010), Chetty (2015), DellaVigna (2009),

Ellison and Ellison (2009).
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icy when consumers underestimate the cost of gas with two goods (e.g. cars and gas) and two

linear tax instruments. The Ramsey and Pigou models in our paper generalize those two analyses

by allowing for multiple goods with arbitrary patterns of own and cross elasticities and for multiple

tax instruments. We derive a behavioral version of the Ramsey inverse elasticity rule.

Liebman and Zeckhauser (2004) study a Mirrlees framework when agent misperceive the mar-

ginal tax rate for the average tax rate. Two recent, independent papers by Gerritsen (2014) and

Lockwood (2015) study a Mirrlees problem in a decision vs. experienced model, including a calibra-

tion and evidence. Our behavioral Mirrlees framework is general enough to encompass, at a formal

level, these models as well as many other relying on alternative behavioral biases.

We also take advantage of recent advances in behavioral modeling of inattention. We use a

general framework that reflects previous analyses, including misperceptions and internalities. We

rely on the sparse agent of Gabaix (2014) for many illustrations, which builds on the burgeoning

literature on inattention (Bordalo, Genaiolli Shleifer (2013), Caplin and Dean (2015), Chetty, Kroft

and Looney (2009), Gabaix and Laibson (2006), Kőszegi and Szeidl (2013), Schwartzstein (2014),

Sims (2003), Woodford (2012)). This agent misperceives prices in a way that can be endogenized

to economize on attention (hence the name “sparse”), respects the budget constraint in a way that

keeps a tractable behavioral version of basic objects of consumer theory, e.g. the Slutsky matrix and

Roy’s identity. Second, we also use the “decision utility” paradigm, in which the agent maximizes

the wrong utility function. We unify those two strands in a general, agnostic framework that can

be particularized to various situations.

Our result - that simple tax systems can be optimal with boundedly rational agents - is con-

ceptually different from other results in public finance regarding simple taxes with rational agents.

First, some results prescribes zero or uniform taxes at the rational optimum: Diamond and Mir-

rlees (1971)’s productive efficiency result yields zero taxation of intermediate inputs, and Atkinson

and Stiglitz (1972, 1976) show that optimal commodity taxes are uniform under strong assumption

regarding separability and homogeneity of preferences. Second, some results show that simple tax

systems can sometimes be approximately optimal: see Farhi and Werning (2013) and Stantcheva

(2014) for such results in dynamic environments.

The rest of the paper is organized as follows. Section 2 gives introduction to the topic, using

a minimum of mathematical apparatus to uncover some of the intuitions and economic forces.

Section 3 then develops the general theory, with heterogeneous agents, arbitrary utility and decision

functions. Section 4 studies the optimal nonlinear income tax problem. Section 5 studies the impact

of endogenous attention and salience as a policy choice. Section 6 revisits Diamond and Mirrlees

(1971) and Atkinson and Stiglitz (1972). Section 7 offers a discussion, in particular of objects that

would be important to measure. The online appendix contains more proofs and extensions.2

2The online appendix is available at https://www.dropbox.com/s/isgosq6t0fhvzli/BR-Taxes-OA.pdf
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2 The Basic Behavioral Ramsey and Pigou Problems

This section is meant as a simple introduction to the topic of this paper, using a lighter formal

apparatus than the rest of the paper. We start with an elementary treatment of the basic Ramsey

problem with behavioral agents. We then move to Pigouvian taxation.

The simplicity of the analysis in this section arises from a set of assumptions that we relax later:

we mostly abstract from heterogeneity and confine ourselves to the case of a representative agent; we

ignore distributive concerns and focus only on taxes to raise revenues and to correct externalities and

internalities; we consider quasi-linear and separable preferences; we study the limit of small taxes,

and we restrict ourselves to a simple parametrized set of behavioral biases with misperceptions of

taxes (Ramsey) and temptation (Pigou).

Section 3 relaxes all these assumptions and extends the results in this section in the context

of our general model, which allows for arbitrary heterogeneity, redistributive motives for taxation,

general preferences, large taxes, and general behavioral biases.

2.1 Basic Ramsey Problem: Raising Revenues with Behavioral Agents

2.1.1 The Consumer

We consider a representative agent with utility function  (c) and budget constraint q·c≤ . Here

c= (0  ) is the consumption vector, p = (0  ) is the before-tax price vector, τ= (0  )

is a vector of linear commodity taxes, q = p+τ is the after-tax price vector, and  is wealth. If

the representative agent were fully rational, he would solve:

max


 (c) s.t. q · c ≤ 

with resulting demand c (q ) (the superscript  standing for the traditional rational demand).

But the representative agent may not be rational. In the general model in Section 3, we specify

a general demand function c (q ) which reflects arbitrary behavioral biases, but still exhausts the

budget q ·c (q ) = . This flexible and general modelling strategy allows us to capture of range of

behavioral traits, ranging from temptation to misperception of prices and taxes. In this introductory

section, we use a simple specialization of the general model. We assume that behavioral biases take

the form of misperception of prices and taxes as captured by the sparse max model developed in

Gabaix (2014). Demand depends on both true prices q, perceived prices q (the superscript  stands

for “subjectively perceived prices” here) and wealth . It can be represented as

smax
|

 (c) s.t. q · c ≤ 
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The resulting demand c (q q ) has the following characterization

c (qq ) = c (q 0) 

where 0 solves q·c (q 0) = . In other words, the demand of a behavioral agent perceiving prices

q and with budget  is the demand c (q 0) of a rational agent facing prices q and a different

budget 0. The value of 0 is chosen to satisfy the true budget constraint, q·c (q 0) = .3

With this formulation, the usual “trade-off” intuition applies in the space of perceived prices:

marginal rates of substitution are equal to relative perceived prices
01
02

=
1
2
. For example, with

quasilinear utility  () = 0 +  (1  ) and 0 = 0 = 1, all wealth effects are absorbed in the

demand for good 0, and we can write  (q q
 ) =  (q

) for  ∈ {1  }. The demand of the
behavioral agent is then simply the demand of a rational agent with perceived prices q.

Perceived prices q are a function of true prices q and wealth . In the general model in Section

3, we allow for arbitrary perception functions q (q ). The resulting demand function is

c (q ) = c (qq (q )  ) 

so that demand depends on both perceived prices and true prices, and perceived prices depend on

true prices. In this section, we use a simple parametrization and assume that the agent correctly

perceives prices p but perceives taxes to be

  (τ ) =  + (1−) 
 (τ ) , (1)

for a “default” tax  (which we discuss later), and  ∈ [0 1] is an attention parameter. Full
attention/rationality corresponds to  = 1, and full inattention to  = 0. In the general model

we also allow attention to be endogenous, but we take it to be exogenous in this section. Perceived

prices are then given by

 (q ) =  + (1−) 
 (τ ) + with τ = q − p (2)

2.1.2 Planning Problem

The government must raise revenues using linear commodity taxes τ . We assume that good 0 (e.g.

leisure) is untaxed with 0 = 0 throughout the paper.
4 In the general model in Section 3, we allow

for a general production function. In this section, we assume a simple linear production function.

Normalizing 0 = 1, prices are set by the technological resource constraint: p·y ≤ , where  = p·e
3This adjustment rule is discussed in Chetty, Looney and Kroft (2009), building on Liebman and Zeckhauser

(2004) and Gabaix and Laibson (2006); its statement for general constrained maximization problems is systematized

in the sparse max.
4Otherwise, the taxation problem with a representative agent is trivial. The government can replicate lump-sum

taxes with a uniform tax on all commodities.

6



is the value of the initial endowment. The government planning problem is

max

L (τ ) 

where

L (τ ) =  (c) + τ · c (p+ τ  )
and   0 is the marginal utility of public funds.5

From now on in this section, we consider a quasi-linear and separable utility

 (c) = 0 +

X
=1

  () 

As is common in many introductory expositions of the Ramsey problem, we work in the limit of

small taxes (i.e. in the limit of Λ = − 1 close to zero). Without loss of generality, we normalize
production prices to  = 1, so that  is both the specific and ad valorem tax on commodity .

Lemma 1 (Approximation of the government’s objective function). We have the following approx-

imation

L (τ )− L (0) =  (τ ) + 
¡kτk2¢+

¡
Λ kτk2¢ 

where

 (τ ) =
−1
2

X
=1

 2  + Λ

X
=1

. (3)

Here   is the perceived tax,  is the price-elasticity of demand for good  at zero taxes, and 

expenditure on good  at zero taxes.

From now on in this section, we use (3) as the government’s objective function in this section.

As we shall see, optimal taxes τ are or order  (Λ) so that  (τ ) is of order  (Λ2) and captures the

leading approximation term in Λ of the government objective function L (τ ). This approximation
generalizes the traditional approximation by replacing true taxes  with perceived taxes 


 . The

first term −1
2

P

=1 
2
  in (3) captures the welfare distortions arising from taxation. Crucially,

it is the perceived tax   , not the actual tax , that matters for welfare distortions.
6 The second

term, Λ
P

=1  captures the net benefit from raising revenues (benefit to the government, minus

cost to the agents). There it is the real tax , not the perceived tax, that matters.

5If the government needs to raise revenues  from taxes, the problem is max  (c) s.t. τ · c ≥  and c =

c (p+ τ  ). Then,  is endogenous and equal to the Lagrange muliplier on the government budget constraint.
6This effect is anticipated in Chetty, Looney and Kroft (2009).
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2.1.3 Optimal Taxes

We start with the simplest case where  = 0 and   0 for all . The perceived tax is then simply

  = . The objective function (3) becomes

 (τ ) =
−1
2

X


2
 
2
  + Λ

X




Maximization over  yields the following result.

Proposition 1 (Modified Ramsey inverse elasticity rule) When  is fixed at 0 and   0, the

optimum is characterized by the following inverse-elasticity rule modified by inattention

 =
Λ

2


   =
Λ



 (4)

This Proposition generalizes the traditional Ramsey inverse elasticity rule, which prescribes

that the optimal tax should be  =
Λ

(this traditional rule is recovered when consumers are fully

attentive so that  = 1 for all ). Optimal taxes are higher at  =
Λ

2

than they would be in the

traditional Ramsey solution. Loosely speaking, this is because inattention makes agents less elastic.

Given partial attention  ≤ 1, the effective elasticity is , rather than the parametric elasticity

. In the spirit of the traditional Ramsey formula, lower elasticity leads to higher optimal taxes.
7

However, a naive application of the Ramsey rule would lead to the erroneous conclusion that

 =
Λ


rather than  =

Λ
2

. To gain intuition for this discrepancy, consider the effect of

a marginal increase in . The marginal benefit in terms of increased tax revenues is Λ The

marginal cost in terms of increased distortions is   . At the optimum, the marginal cost and

the marginal benefit are equalized. The result is that   =
Λ


, i.e. it is the perceived tax   that

is inversely related to the effective elasticity . This in turns implies  =


= Λ

2

. 8

The upshot of this analysis is that optimal taxes  increase relatively fast with inattention

. Formally, taxes increase quadratically with inattention, so that partial attention  leads to a

multiplication of the traditional tax by 1
2


.

7Finkelstein (2009) finds evidence for this effect. When highway tolls are paid automatically thus are less salient,

people are less elastic to them, and government react by increase the toll (i.e., the tax rate).
8In the general model case with perceptions as in equation (1), we can write 

¡
τ  

¢
=

−1
2

P


¡
 + (1−) 


¢2
 + Λ

P
 . We have

()


= −  + Λ +

( )


()


with

( )


=

−P 

 (1−) . The optimal tax is then given by

 =
Λ

2


+








2


− 1−





Since 

≤ 0, the optimal tax on a good  is lower when the tax on this good raises the default tax (the term 


).
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2.2 Simple Tax Systems at the Optimum

2.2.1 Condition Yielding a Uniform Tax Rate

In this subsection we take a stand on the default tax  and assume that it has the following form

 = max + 

where   0  ≥ 0, max = max  and  =
P

  is the average tax and where the weights 

satisfy  ≥ 0 and
P

  = 1.

This formulation is meant to capture the psychology of salience. The maximum tax is one

particularly salient features in a tax system. This is a plausible conjecture: we do not know of

any direct evidence on it. Arguably, there is encouraging circumstantial evidence. For instance,

Kahneman, Wakker and Sarin (1997) report the “peak-end” rule for the memory of past experiences:

the “peak” (most intense) experience is disproportionately remembered. Similarly, the maximum

tax might disproportionately affect memories of the tax system. Somewhat in the same spirit,

cumulative prospect theory puts a higher weight on extreme scenarios (Tversky and Kahneman

1992). Bordalo, Gennaioli and Shleifer (2014) also note that the extremes are important in the

mental representations of stereotypes. Finally, a disproportionate weight on the maximum tax

could also arise from robustness concerns and min-max behavior (Hansen and Sargent 2007) in the

face of policy uncertainty.

Proposition 2 For a given   0, and for sufficiently small  and  (for all ), the optimal

tax system is simple, i.e. it features the same tax on all goods. In the case where  = 1 and

 = 0, we have the following explicit sufficient condition for simple taxes: for all ,    where

 =


 
 

.

The condition  ≤  means that the attention  to the price of goods with high elasticities

(those that should have low tax rates) is low enough.9

Proof. Consider the case  =  = 0. Then, perceived taxes are   = max, and equation (3)

can be rewritten as

 (τ ) =
−1
2

X


2 2max + Λ
X




Towards a contradiction, suppose that there is a good  with   max. Then
( )


= Λ  0

so that the planner’s objective function is increased by marginal increase in the tax  on the good

9When   0, +  = 1, Proposition 40 in the online appendix gives a quantitative sufficient condition: we have

simple taxes when 0 ≤ −


 +  − (1−) ≤  (1−), for  =


 
 

and  =


. This means

that the  are low enough,


high enough, and 


is low enough. Indeed, take the case where all  = 0: then

the condition states that 0 ≤  −  ≤ . Hence we must have  ≤ , i.e. the weight  on the 
 cannot be

too much higher than the true weigth  in the basket. Otherwise, the planner would be tempted to set a very low,

negative tax on a good , in order to lower the perceived tax.
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, because it does not impact any perceived tax. This holds up to the point where  = max. By

implication, at the optimum, all taxes are equal to max. The proof of the general case is more

involved and can be found in the online appendix. ¤

2.2.2 Conditions Yielding a Small Number of Different Tax Rates

We now generalize this idea to other quantiles. For example, agents can pay also attention to the

median tax median (τ ), as well as the max tax

 (τ ) = 1max (τ ) + 2median (τ ) + 

More generally, assume that agents use the following quantile-based default model

 (τ ) =

QX
=1


() +  (5)

where  is the -th quantile (with the convention that  (1) = max, 
(0) = min), and the ’s

correspond to different quantiles of taxes, and  is the weight on quantile . We assume that

people pay attention to the maximum tax, so that 1 = 1 and 1  0. As before,  is the mean

tax with weight  = ()=1. We assume that  ≥ 0 and  ≥ 0.

Proposition 3 Suppose that people pay attention to Q different quantiles, including a positive

weight on max, as in the “quantile-based default model” (5). For small enough  and  (for all )

the optimal tax system features are at most Q different tax rates.

Proof We start with the case m = 0 and  = 0. We show that each  must be exactly at

some quantile  (). Towards a contradiction, suppose that there is a good  such that  is not equal

to any of the quantiles  (). Since  (τ ) = −1
2

P
 
2
 (τ )+Λ

P
 , we have



= Λ  0. As

a result, the planners can increase its objective function by marginally increasing , proving that

the value of  was not optimal, a contradiction.

In the general case where m and  are close to 0, the proof is the same, by continuity. We

provide a rigorous proof in Proposition 18, which is a strict generalization of Proposition 3. ¤
One could also imagine that consumers form a different default tax for each category of goods.

For example, suppose that the default tax for all food items puts a large weight on the maximum

tax within all food items and that attention is low (as in Proposition 2). Then the optimal tax

system features a uniform tax on all food items.
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2.3 Basic Pigou Problem: Externalities, Internalities and Inattention

2.3.1 Optimal Corrective Taxes

We continue to assume a quasilinear utility function. We assume that there is only one taxed good

 = 1. The representative agent maximizes  (0 ) = 0 +  () subject to 0 +  ≤ . Here 

stands from the consumption the good 1 (we could call it 1, but expressions are cleaner by calling

it ). If the representative agent were rational, he would solve

max


 ()− 

However, there is a negative externality that depends on the aggregate consumption of good 1

(think for example of second-hand smoke), so that total utility is 0 +  () − ∗. Alternatively,

∗ could be an internality: a divergence between decision utility 0 +  () and experienced utility

0 +  () − ∗. This would capture the idea that good 1 is tempting and has extra unperceived

negative effects ∗ (e.g. a heart attack). The analysis is exactly identical in both cases.

To focus on the corrective role of taxes, we assume that Λ = 0 and that the government can

rebate tax revenues lump-sum to consumers. The objective function of the government is therefore

 ()− (+ ∗)   (6)

To attempt to correct the externality/internality, the government can set a tax  . If the agent

correctly perceived taxes, he would solve

max


 ()− (+ ) 

The optimal tax is  = ∗. It ensures that the agent maximizes the same objective function as that

of the government. This is the classic Pigouvian prescription: the optimal tax makes the agent

exactly internalize the externality/internality. Now consider an agent who only perceives a fraction

 of the tax. Then he solves

max


 ()− (+)  (7)

The optimal Pigouvian corrective tax required to ensure that agents correctly internalize the exter-

nality/internality is now  = ∗

. We record this simple result.

Proposition 4 (Modified Pigou formula) If the consumer pays only partial attention  ≤ 1 to the
tax and the externality/internality is ∗, then the optimal Pigouvian corrective tax is  =

∗

.

Suppose for concreteness that a good has a negative externality of $1. With rational agents, it

should be taxed by exactly $1. However, suppose that agents perceive only half of the tax. Then,

the good should be taxed by $2, so that agents perceive a tax of $1.
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It may be contrasted to the modified optimal Ramsey tax (Proposition 1), which had  =
Λ


1
2


.

In the Pigou case, partial attention  leads to a multiplication of the traditional tax by
1

in the

Pigou case and by 1
2


in the Ramsey case. 10

If different consumers have heterogenous perceptions, then Proposition 4 suggests that no uni-

form tax can perfectly correct all of them. Hence, heterogeneity in attention prevents the imple-

mentation of the first best. We now explore this issue more thoroughly.

2.3.2 Heterogeneity in Attention and Its Consequences

We now assume that there are several consumers, indexed by  = 1 . Agent  maximizes


¡
0  


¢
= 0 + 

¡

¢
. The associated externality/internality is . He pays an attention 

to the tax so that perceived taxes are   =  (we continue to assume  = 0). The government

is Utilitarian, so that the government planning problem isX



¡

¢− ¡+ 

¢
 (8)

We call ∗ = argmax 
¡

¢− ¡+ 

¢
 the quantity consumed by the agent at the first best.

To make things transparent, we use

 () =
− 1

2
2

Ψ


which using 
 =

−
Ψ
= , implies a demand function

 () =  −Ψ

The expressions in the rest of this section are exact with that quadratic utility function. For

generality utility functions, they hold provided that they are understood as the leading order terms

in a Taylor expansion around an economy with no heterogeneity.

After some algebraic manipulations, social welfare compared to the first best can be written as

 () = −Ψ
2

X


¡
 − 

¢2
 (9)

The first best cannot be implemented unless all agents have the same .

Proposition 5 (Heterogeneity in attention or externality/internality creates welfare losses) The

10The fact that the tax should be higher when it is underperceived is qualitatively anticipated in Mullainathan,

Schwartzstein and Cogdon (2012), but without the specific 1

factor.
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optimal Pigouvian tax is

 ∗ =

£


¤

h
2

i 
Welfare compared to the first best is then ( ∗) = tax with

tax =  (0)

h

2
i

h
2

i
− ¡ £

¤¢2

h
2

i

h

2
i 

where  (0) = −1
2
Ψ

h

2
i
is welfare without corrective taxation.

A key message of Proposition 5 is that heterogeneity in attention creates welfare losses. Take the

case of a uniform externality/internality  = , but heterogeneous attention to the tax. Welfare

compared to the first best is  (0)
()
[2]

, and is increasing in the variance of perceptions . No

tax can fully correct the externality/internality, unlike in the basic Pigouvian model. This opens

up a potential role for quantity regulations, an issue to which we now turn.

Quantity vs. Price regulation Suppose the government imposes a uniform quantity re-

striction, mandating  = ∗. For instance, banning the good corresponds to setting ∗ = 0.

Lemma 2 The optimal quantity restriction ∗ is ∗ = 
£

∗¤
. Social welfare compared to the first

best is then

 = −1
2



Ψ


³

∗´



This proposition shows that the key disadvantage of uniform quantity restrictions is that the

optimal quantity is typically heterogenous across agents.

Corollary 1 (Quantity vs. price regulation) Quantity restrictions are better than corrective taxes

( ≥ tax) if and only if

1

Ψ


³

∗´ ≤ Ψ


h

2
i

h
2

i
− ¡ £

¤¢2

h
2

i 

Several insights can be gleaned from this formula. First, quantity restrictions tend to dominate

if attention  is very heterogeneous. Taxes are better if optimal quantities 
∗
are very heteroge-

neous. Second, when the demand elasticity is low (low Ψ), quantity restrictions are worse. This is

because agents suffer more from a given deviation from their optimal quantity, an effect reminiscent

of Weitzman (1974). Third, for small enough externalities, taxes are better than quantity restric-

tions. Indeed, there are only second order losses from the externality (
h

2
i
), while the quantity
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restriction discretely lowers welfare (to the zeroth order).11 A natural instrument in this context is

a nudge, which we develop in detail below in the context of the general model in Section 3.

We have concluded our introductory tour of the most elementary impacts of bounded rationality

on taxation. We now move on to a more general analysis.

3 Optimal Linear Commodity Taxation

In this section, we introduce our general model of behavioral biases. We then describe how the basic

results of price theory are modified in the presence of behavioral biases. Armed with these results,

we then analyze the problem of optimal linear commodity taxation without externalities (Ramsey)

where the objective of the government is to raise revenues and redistribute, and with externalities

(Pigou) where an additional objective is to correct externalities. We also propose a model of nudges.

We show how to incorporate nudges in the optimal taxation framework and characterize the joint

optimal use of taxes and nudges. This analysis is performed at a general and rather abstract level.

We then derive a number of concrete results in a series of simple examples. These example are

simple particularizations of the general model and results.

3.1 Price Theory with Behavioral Agents

Consider a consumer. Our primitive is a demand function c(q ) where q is the price vector and 

is the budget. The demand function incorporates all the behavioral biases that the agent might be

subject to (internalities, misperceptions, etc.). The only restriction that we impose on this demand

function is that it exhausts the agent’s budget so that q · c(q ) = . We evaluate the welfare

of this agent according to a utility function  (c). This utility function represents the agent’s true

or “experienced” utility, with a resulting indirect utility function given by  (q ) =  (c (q )).

Crucially, the demand function c(q ) is not assumed to result from the maximization of the utility

function  (c) subject to the budget constraint q · c = .

This formulation imposes another implicit restriction, namely that producer prices p and taxes

τ matter to the consumer only through q = p+τ . We relax this assumption in Sections 5.2 and 6.1

where we consider a demand function of the form c(p τ  ). Note however that this distinction is

immaterial if producer prices p are exogenously fixed, an assumption which we maintain throughout

this section, but which we relax in Section 6.1.

We now introduce the basic objects of price theory and explain how their relations are modified

in the presence of behavioral biases. We only highlight the main results. We refer the reader to

Appendix 10.1 for the detailed derivations.

11This third point is specific to a quantity mandate (which has no free disposal). It would not hold with a quantity

ceiling (which has free disposal).
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We define two different Slustky matrices. First, there is the “income-compensated” Slutsky

matrix

S
 (q ) = c(q ) + c(q )(q )

Second, there is the “utility-compensated” Slutsky matrix

S
 (q ) = c (q )− c (q )

 (q )

 (q )


The utility-compensated Slutsky matrix S
 (q ) can also be computed using the expenditure

function  (q b) = min  s.t.  (q ) ≥ b and the corresponding Hicksian demand function
h (q b) = c (q  (q b)). Indeed, we have

S
 (q  (q )) = h (q  (q )) 

The two Slustky matrices S
 (q ) and S


 (q ) correspond to two different ways of decompose

the marginal consumption change (q ) resulting from a marginal price change  into an

income effect and a substitution effect depending on whether the substitution effect is assumed

to be computed at constant income or at constant utility. In the first case, the income effect is

−c(q )(q ) and the substitution effect is S
 (q ). In the second case, the income

effect is c (q )
 ()

()
 and the substitution effect is S


 (q ) .

In the traditional model with no behavioral biases, income-compensated marginal prices changes

preserve utility since by Roy’s identity  (q )  +  (q ) (q ) = 0. As a result,

S
 (q ) = S


 (q ) and the two decompositions coincide. But with behavioral biases, income-

compensated marginal prices changes do not preserve utility since, as we shall see below, Roy’s

identity fails. As a result, S
 (q ) 6= S

 (q ) and the two decompositions differ.

With behavioral biases, two other properties of Slutsky matrices are modified. First, in general,

the Slutsky matrices S(q ) and S (q ) are not symmetric. Second, in general, the vectors

S (q ) · q, S (q ) · q and q · S (q ) are not necessarily equal to 0.12

To see how Roy’s identity is modified in the presence of behavioral biases, it is useful to first

define the misoptimization wedge

τ  (q ) = q −  (c (q ))

 (q )
 (10)

12We treat the case of S
 (q ). In the traditional model with no behavioral biases, we can rewrite the planning

problem defining the expenditure function as  (q b) = min q · c s.t. (c) ≥ b and apply the envelope theorem
to get h (q b) =  (q b). This in turn implies that S

 (q  (q )) =  (q b) is necessarily symmetric. And
together with the homogeneity of degree 0 of the Hicksian demand function h (q b), this implies that S (q ) ·
q = q · S (q ) = 0. With behavioral biases, this rewriting of the planning problem defining the expenditure

function is invalid. As a result, in general S
 (q  (q )) 6=  (q b) so that we cannot conclude that S (q )

is symmetric. See below for an explicit example using the misperception model.
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where  refers to a wedge to due behavioral biases. In the traditional model without behavioral

biases, τ  (q ) = 0. The wedge τ  (q ) is an important sufficient statistic for behavioral biases.

For reasons that will appear clear below, we also call τ  (q ) the ideal misoptimization corrective

tax. Of course, the imposition of such a tax would change the price vector q, which would in

turn modify the ideal misoptimization corrective tax etc. At this stage, we use the term ideal

misoptimization corrective tax in a purely definitional sense, without any implication about the

structure of optimal taxes.

Armed with the definition of τ  (q )  we can now state the behavioral version of Roy’s identity

 (q )

 (q )
= −c (q )− τ  (q ) · S

 (q ) , (11)

where the term τ  (q ) ·S
 (q ) is a discrepancy term that arises from a failure of the envelope

theorem because agents do not fully optimize. The intuition for equation (11) is the following: the

impact on welfare  (q )  = 0(c)c(q ) of a change  in the price of commodity 

can be decomposed into an income effect −0(c)c(q )(q ) = − (q ) (q ) and
a substitution effect 0(c) · S

 (q ). In the traditional model with no behavioral biases, the

income-compensated price change that underlies the substitution effect does not lead to any change

in welfare–an application of the envelope theorem. The traditional version of Roy’s identity follows.

As we have already argued above, with behavioral biases, income-compensated price changes lead

to changes in welfare–a failure of the envelope theorem. The behavioral version of Roy’s identity

accounts for the associated welfare effects.

In the online appendix, we establish the following set of identities, which will be useful at times

in our characterization of optimal taxes

τ  (q ) · c(q ) = 0, τ  (q ) · S (q ) = τ  (q ) · S (q ) , (12)

S
 (q ) = S


 (q )− c(q )[τ (q ) · S

 (q )] (13)

We now present two useful concrete particularizations of the general model: the decision vs.

experienced utility model and the misperception model.

Decision vs. experienced utility model We start with the decision vs. experienced utility

model, in which the demand function could arise from a “decision utility”  (c) (the subjectively

perceived utility), so that

c (q ) = argmax


 (c) s.t. q · c ≤ 

However, the true “experienced” utility remains  (c) which can be different from  (c). In this

case, the ideal misoptimization corrective tax is simply given by the wedge between the decision
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and experience marginal utilities

τ  (q ) =
 (q )

 (q )
−  (q )

 (q )


The income-compensated Slutsky matrix S
 (q ) is the Slutsky matrix of an agent with utility

(c). It is different from the utility-compensated Slutsky matrix S
 (q ) since the underlying

compensation is for experienced utility  (c) rather than decision utility  (c).

As an example, consider the case of two goods c = (0 1) quasilinear utilities 
 (c) = 0+

 (1)

and  (c) = 0+ (1) with  (1) =  (1)− 1 and   0 The consumption 1 of good 1 entails

a negative internality −1. For instance, good 1 could be ice creams,  (1) would then represent

the immediate pleasure from eating the ice cream, while  (1) represent those immediate pleasures

minus the future pain 1 from the extra weight gained (see e.g. O’Donoghue and Rabin 2006).

Then, τ  (q ) =
¡
 0  


1

¢
where  0 = 0 and 


1 =   0, so that the ideal misoptimization corrective

tax  1 on good 1 is exactly equal to the associated internality .

Misperception model We turn to the misperception model, which was already outlined in

Section 2. There are two primitives: a utility function  (c) and a perception function q (q ).

Given true prices q, perceived prices q, and budget , the demand

c (q q ) = arg smax
|

 (c) s.t. q · c ≤ 

is the consumption vector c satisfying  (c) = q for some   0 and q · c = w.13 Then the

primitive demand function c (q ) of the general model is given by

c (q ) = c (qq (q )  ) 

The ideal misoptimization corrective tax is formally given by τ  (q ) = q − ()

·() . However,

because in the misperception model, we have q (q ) ·S (q ) = 0, and because τ  (q ) enters

all our formulas through τ  (q ) ·S (q ), we can take

τ  (q ) = q − q (q ) (14)

in all of our formulas involving τ ·S . This fleshes out the idea that τ  (q ) represents the impact

of the discrepancy between true prices and perceived prices.

Given this demand function c (q ), the notions of the general model apply and receive a

13If there are several such , we take the lowest one, which is also the utility-maximizing one.
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concrete interpretation. First, we define the matrix of marginal perceptions

 (q ) =
 (q )




where the -th columnM  (q ) =
()


encodes the marginal impact of a change in true price

 on the perceived price q
.14 It is convenient to define the Hicksian demand of a fictitious rational

agent facing prices q

h (q b) = argmin

q · c s.t.  (c) ≥ b

and the associated Slutsky matrix

S
 (q

 b) = h (q b) 
We also define S (q ) =S (q (q )   (q )). Then, the utility-compensated Slutsky matrix

S (q ) of the general model is given by

S (q ) = S (q ) ·M (q ) . (15)

i.e. 
 (q ) =

P
 


 (q ) (q ). That is, when the price of good  changes, it creates a

change in a change  (q ) =



()


in the perceived prices  of a generic good , which in

turn changes (via the rational Slutstky matrix S (q )) the demand for good .

Model isomorphisms The decision vs. experienced utility model and the misperception

model are particular cases of the general model. We now show that the general model can always

be represented as a misperception model, but not as a decision vs. experienced utility model.

Given a general demand c(q ), we can define a perception function

q (q ) =
 (c (q ))

 (q )


We can then study the misperception model with utility function  (c) and perception function

q (q ), with resulting demand function c (q q ( )  ). Lemma 4 in the appendix shows that

c (q ) = c (q q ( )  ). This proves that the demand function in the general model can

always be represented as arising from an underlying misperception model.

By contrast, the general model cannot in general be represented by a decision vs. experi-

enced utility model. Indeed, a decision utility model always generates a symmetric Slutsky matrix

S (q ), and this property does not hold in general for the general model. For example, the misper-

ception model with exogenous perception  (q ) = 1{=} features 
 (q ) = 

 (q ).

Since  (q ) is symmetric,  (q ) is not symmetric as long as there exists  and  with 6= .

14For instance, in specification (2),  = 1= + (1−)



.
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3.2 Optimal Taxation to Raise Revenues and Redistribute: Ramsey

There are  agents indexed by . Each agent is competitive (price taker) as described in Section

3.1. All the functions describing the behavior and welfare of agents are allowed to depend on .

It will sometimes be convenient to assume that each agent has a type  (), that all agents of the

same type are identical with the number of agents of type  given by by . This configuration is

allowed by our formalism. With some abuse of terminology, we sometimes refer to  as the type of

agent . We omit the dependence of all functions on (q ), unless an ambiguity arises.

We introduce a social welfare function 
¡
1  

¢
and a marginal value of public funds .

The planning problem is

max


 (τ ) 

where15

 (τ ) =
¡¡
 (p+ τ  )

¢
=1

¢
+ 

X


£
τ · c (p+ τ  )− 

¤


Good 0 is constrained to be untaxed: 0 = 0. We assume perfectly elastic supply with fixed

producer prices p. We relax this assumption in Section 6.1 where we consider the case of imperfectly

elastic supply with endogenous producer prices p.

Following Diamond (1975), we define  to be the social marginal utility of income for agent 

 =  + τ · c (16)

where

 =

 (17)

is the social marginal welfare weight. The difference τ ·c between  and  captures the marginal
impact on tax revenues of a marginal increase in the income of agent .

We also renormalize the ideal misoptimization corrective tax

eτ 
=




τ  (18)

We now characterize the optimal tax system.1617.

15The analysis is identical if we allow for endowments e, using the objective function

 (τ ) =
¡¡

¡
p+ τ   + p · e¢¢

=1

¢
+ 

X


£
τ · c ¡p+ τ   + p · e¢− 

¤


16It is instructive to see how to obtain the simple Ramsey model that we analyzed in Section 2. The limit of small

taxes corresponds to − small, with one type of agent and formula (19) becomes 0 = ¡− 
¢
 +

τ ·S
 = 0,

which generalizes (4) to the case of a non-diagonal matrix S

 .

17Suppose that there is uncertainty, possibly heterogeneous beliefs, several dates for consumption, and complete

markets. Then, our formula (19) applies without modifications, interpreting goods as a state-and-date contingent

goods. See Spinnewijn (2014) for an analysis of unemployment insurance when agents misperceive the probability of
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Proposition 6 (Behavioral multiperson Ramsey formula) If commodity  can be taxed, then at the

optimum
 (τ )


= 0 with

 (τ )


=
X


[
¡
− 

¢
 + (τ − eτ 

) · S
 ] (19)

Proof We have



=
X


[





+  + τ · c]

Using the definition of  =

, the behavioral versions of Roy’s identity (11), and the Slustky

relation, we can rewrite this as




=
X


[
³
− − τ  · S



´
+  + τ · (−c + S

 )]

We then use the definition of the social marginal utility of income  =  + τ · c to get




=
X


[
¡
− 

¢
 +

£
τ − τ 

¤ · S
 ]

The result follows using the renormalization (18) of the ideal misoptimization corrective tax.

¤
An intuition for this formula can be given along the following lines. The impact of a marginal

increase in  on social welfare is the sum of three effects: a mechanical effect, a substitution effect,

and a misoptimization effect.

Let us start with the mechanical effect
P

(− ) . If there were no changes in behavior,

then the government would collect additional revenues   from agent , which are valued by the

government as ( − ) . Indeed, taxing one dollar from agent  to the government creates a

net welfare change of  − , where  is the value of public funds and  is the social marginal

utility of income for agent  (which includes the associated income effect on tax revenues).

Let us turn to the substitution effect
P

 τ ·S
 . The change in consumer prices resulting

from the tax change  induces a change in behavior S

  of agent  over and above the income

effect accounted for in the mechanical effect. The resulting change τ · S
  in tax revenues is

valued by the government as τ · S
 .

Finally, let us analyze the misoptimization effect −P eτ  · S
 . This effect is linked to

the substitution effect. If agent  were rational, then the change in behavior captured by the

substitution effect would have no first-order effects on his utility. This is a consequence of the

envelope theorem. When agent  is behavioral, this logic fails, and the change in behavior associated

with the substitution effect has first-order effects −τ  ·S
  = −eτ  ·S

  on his utility.

finding a job, and Davila (2014) for an analysis of a Tobin tax in financial markets with heterogeneous beliefs.
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One way to think about the optimal tax formulas (19) is as a linear system of equations indexed

by  in the optimal taxes  for the different commodities

−PS

 


= 1− ̄


− (







) +
−P eτ 

 S






where  =
P

 

 is total consumption of good  and ̄ = 1



P
 

 is the average social marginal

utility of income. Of course the coefficients in this linear system of equations and the forcing terms

(on the right-hand side) are endogenous and depend on taxes . Nevertheless, at the optimum, one

can in principle solve out the linear system to express the taxes  as a function of these coefficients

and forcing terms (valued at optimal taxes). The first forcing term 1 − ̄


− (







) captures

the revenue raising and redistributive objectives of taxation. The second forcing term
− ̃


 






capture the corrective objective of taxation to address the effects of misoptimization. Note that the

formulas feature eτ 
= τ  so that the ideal misoptimization corrective taxes are weighted by

the social marginal welfare weights . Intuitively, optimal taxes put more weight on addressing

misoptimization by agents which on which the social welfare function puts more weight.

We can also write the optimal tax formula using the utility-compensated Slutsky matrices S.

For this purpose, it is convenient to introduce a different renormalization of the ideal misoptimization

corrective tax eeτ 
= 


τ . We then get

0 =
 (τ )


=
X


[
¡
− 

¢
 + (τ − eeτ 

) · S
 ] (20)

Comparison with the traditional model with no behavioral biases In the traditional

model of Diamond (1975) where all agents are rational, only the mechanical and substitution effects

are present, yielding

0 =
 (τ )


=
X


[
¡
− 

¢
 + τ · S

 ]

Adding behavioral agents introduces the following differences. First, the changes in behavior (in-

come and substitution effects) and the social marginal welfare weights are modified, leading to

different values for , , and a different Slutsky matrix S

 . Second, there is a new effect (the

misoptimization effect) leading to a new term −eτ  · S
 .

Moreover, in the traditional model without behavioral biases we can use the symmetry of the

Slutsky matrix S to write τ · S
 =

P
 S


 as τ · S

 =
P

 S

 . We can then rewrite the

optimal tax formula in “discouragement” form as

−P S




= 1− ̄


− (







)

The left-hand side is the discouragement index of good , which loosely captures how much the
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consumption of good  is discouraged by the taxes  on all the different commodities . The

right-hand side indicates that in the absence of distributive concerns (homogenous  = ), all

goods should be uniformly discouraged in proportion to the relative intensity 1 − ̄


of the raising

revenue objective. With distributive concerns (heterogenous ), goods that are disproportionately

consumed by agents that society tries to redistribute towards (agents with a high ) should be

discouraged less.

With behavioral biases, the optimal tax formula cannot in general be simply written in discour-

agement form. This is because the Slutsky matrix S is not symmetric in general. But when the

the Slutsky matrix S is symmetric, then we can go through the same steps as above and rewrite

the optimal tax formula (19) as follows

−P S




= 1− ̄


− 

µ







¶
+
−P ̃


 S







with a similar interpretation. The difference is that once gain that the values for , , and for

the Slutsky matrix S

 are different than in the traditional model with no behavioral biases, and

that there are new terms ̃

 reflecting misoptimization.

Lump-sum taxes and the negative income tax Suppose that in addition to linear com-

modity taxes, the government can use a lump-sum tax or rebate  identical for all agents (a negative

income tax). Then optimal commodity taxes are characterized by the exact same conditions. But

there is now an additional optimality condition corresponding to the optimal choice of the lump-sum

tax  yielding

̄ =
1



X
=1

 =  (21)

Suppose that agents are homogeneous, and that lump-sum taxes are available, so that  = .

Proposition 6 implies that the optimal tax satisfies τ =τ̃ . The optimal tax corrects the agent’s

internality. If in additional all agents are rational, then we get τ =τ̃  = 0.

When agents are heterogenous, formula (18) optimal taxes are not zero anymore τ 6= 0. The
optimal tax formula then captures a version of the celebrated negative income tax famously proposed

by Friedman (1962).

3.3 Optimal Taxation with Externalities: Pigou

We now introduce externalities and study the consequences for the optimal design of commodity

taxes. The utility of agent  is now 
¡
c 

¢
 where  = 

¡¡
c
¢
=1

¢
is a one-dimensional

externality (for simplicity) that depends on the consumption vectors of all agents and is therefore
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endogenous to the tax system.18 All individual functions encoding the behavior and welfare of

agents now depend on the externality .

The planning problem becomes

max


 (τ ) 

where

 (τ ) =
¡¡
 (p+ τ   )

¢
=1

¢
+ 

X


£
τ · c (p+ τ   )− 

¤


 = 
¡¡
c (p+ τ   )

¢
=1

¢


We define the social marginal value of the externality

Ξ =

P


h






+ τ · c

i
1−P c






This definition includes all the indirect effects of the externality on consumption and the associated

effects on tax revenues (the term τ · c in the numerator) as the associated multiple round effects
on the externality (the “multiplier” term encapsulated in the denominator). With this convention,

Ξ is negative for a bad externality, like pollution. We also define the ideal (agent-specific) Pigouvian

tax

τ  = −Ξ




It represents the dollar value of the externality created by one more unit of consumption by agent

. We finally define the externality-augmented social marginal utility of income

 =  + Ξc

 =  + 

¡
τ − τ 

¢ · c.
This definition captures the fact that, as one dollar is given to the agent, his direct social utility

increases by , but the extra dollar changes consumption by c, and, hence, the total externality

by c

, with a welfare impact Ξc


. The next proposition generalizes Proposition 6.

19

Proposition 7 (Behavioral multiperson Pigou formula) If commodity  can be taxed, then at the

18For example, to capture an externality (e.g. second hand smoke) from the consumption of good 1, we could

specify  = ∗


P
 


1 and 

¡
c 

¢
= 

¡
c
¢− .

19Formally, misoptimization and externality wedges (eτ , τ ) enter symmetrically in the optimal tax formula.
In some particular cases, behavioral biases can be alternatively modelled as externalities (for example, this is the

case for a decision vs. experienced utility model with a representative agent). But this is not true in general. For

example, misperceptions naturally give rise to non-symmetric Slutsky matrices S

 which cannot be captured with

a traditional externality model. Moreover, even with a quasilinear utility function and separable utility (so that the

Slutisky matrix is diagonal and hence symmetric), the misperception model would require externalities that directly

depend on price wedge q − q, which is not covered in the traditional externalities literature.
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optimum

 (τ )


= 0, with

 (τ )


=
X


[
¡
− 

¢
 + 

³
τ − eτ  − τ 

´
· S

 ] (22)

3.4 Optimal Nudges

In this section, we develop a model of nudges and we derive a formula characterizing optimal nudges.

At an abstract level, we assume that a nudge influences consumption but does not enter the budget

constraint. This is the key difference between a nudge and a tax. The demand function c (q  )

and it satisfies the budget constraint q · c (q  ) = , where  is the nudge vector.

Specializing the general model a bit more, we propose the following concrete model of nudges.

In the absence of a nudge, the agent has decision utility  and perceived price q∗, which is the

perceived price before the nudge. With the nudge,

c (q  ) = arg smax
|

 (c) s.t. q · c ≤ 

That is, his demand c satisfies  (c) = Λ
 (q c ) for a constant Λ  0 pinned down by the

budget constraint q ·c = . The perceived (potentially nonlinear) budget constraint  (q c ) ≤
 is modified by the nudge. But the true budget constraint is unchanged.

A useful specification is that of a nudge as a (psychological) tax on consumption good , in

which case

 (q c ) = q∗ · c+  (23)

where  ≥ 0 captures the nudgeability of the agent ( = 0 corresponding to a non-nudgeable

agent).20 An example of such nudge is a public campaign against cigarettes (  0) or for recycling

(  0). Another useful specification is that of a nudge as a (psychological) anchor on a given

consumption of good , in which case

 (q c ) = q∗ · c+  | − |  (24)

so that an extra psychological penalty if the agent deviates from the quantity  recommended by the

nudge. For instance, the nudge could be a default allocation in a retirement plan (see e.g. Carroll

et al. 2009). With the second specification, a number of agents will choose the default.21

We now characterize optimal nudges.

20We could generalize to an costly attention away from the nudge along the lines of Section 5, e.g. with , with

 () weakly decreasing in , with  = 1 being an non-nudgeable agent.
21The technical condition for the default to be chosen is

¯̄̄
 () Λ

 − 
∗


¯̄̄
 .
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Proposition 8 (Optimal nudge formula) Optimal nudges satisfy

 (τ  )


= 0 with




(τ  ) =

X


(τ − τ  − eτ 
) · c (25)

The optimality conditions for taxes
( )


= 0 are unchanged.

This formula clarifies how to best use nudges. It has three terms corresponding to three po-

tentially conflicting goals of nudges. The first term, τ · c captures the fact that the changes in
behavior induced by nudges directly change tax revenues. The second term, −τ  · c captures
the fact that the changes in behavior induced by nudges affect welfare and tax revenues through

their effect on externalities. The third term, −eτ 
 · c captures the fact that the changes in

behavior induced by nudges affect welfare because agents misoptimize.22

A nudge may also directly affect agents’ utility  (c ). This could be captured by specifying

 (c ) =  (c) −  or perhaps 
 (c ) =  (c) −  | − |  depending on the context. For

example, a display of cancerous lungs on a pack of cigarettes not only nudges people away from

consuming a cigarette (as captured by ), but may also directly lower their utility, as measured

by . The optimal nudge formula is then modified to incorporate the additional welfare effects of

nudges

0 =



(τ  ) =

X


[(τ − τ  − eτ 
) · c + 




]

3.5 Examples

In this section, we analyze different specializiations of the general model in order to extract concrete

insights from Propositions 6, 7 and 8.

3.5.1 Constant Marginal Utility of Wealth and Misperception

For many of our examples, we will use the following particularization of the general model. There

is both misperception and decision vs. experienced utility. We make two simplifying assumptions.

First, we assume that decision and experienced utility are quasilinear so that the marginal utility

of wealth is constant. Second, we assume that misperceptions are constant. Finally, we allow for

externalities  but assume that they are separable from consumption.

22At this level of generality, quantity restrictions (e.g. mandates or caps) could be modeled in as nudges, with the

vector  representing a vector of quantity restrictions influencing the demand functions c (q  )  Of course the

particular way in which quantity restrictions influence demand differs from nudges, and as a result the implications

of these first order conditions are very different for nudges and quantity restrictions. For example, imagine that 

indexes a quantity restriction stipulating that the consumption of a certain commodity  must be equal to . In the

context of the specialized model outlined above, this would lead to c (q  ) = arg smax|∗ 
 (c) s.t. q ·c ≤ 

and  =  That is, his demand c satisfies  =  (c) and  = Λ

 

∗ for all  6= , for a constant Λ  0 pinned

down by the budget constraint q · c = .
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Formally, we decompose consumption c= (0C) where C is of dimension , and we normalize

0 = 0 = 1. The experienced utility of an agent of type  is quasilinear

 (c0C ) = 0 +  (C)− 

where  = (
¡
C
¢
=1

). Agent  is subject to two sets of biases. First, he maximizes a decision

utility

 (c0C ξ) = 0 +  (C)− 

which differs from his experienced utility, but remains quasilinear. Second, he perceives prices to be

q = p+ τ  with τ  =Mτ , so that the misperception of taxes is given by a constant matrix

of marginal perceptionsM. The corresponding perception function is23

q(q) = p+M(q − p)

The demand c (q  ) =
¡
0 (q ) C

 (q)
¢
of agent  is such that C (q) = C

¡
q (q)

¢
and 0 (q ) =  − q ·C (q), where C

¡
q

¢
= argmax   (C)− q ·C.

We define the rational Slutsky matrix

S
¡
q

¢
=

C
¡
q

¢
q



This corresponds to the Slutsky matrix of an agent with decision utility  but who perceives

taxes correctly. Because decision utility is quasilinear, there are no income effects and we have

S (q ) = S (q ) = S
¡
q(q)

¢ ·M.

We also define the ideal internality corrective tax τ  and the ideal internality/externality

corrective tax τ as follows:

τ  = 

 (C)− 

 (C) and τ =



τ  + τ 

The wedge τ  is closely related to the ideal misoptimization corrective tax τ  according to

τ  = τ  + τ − τ 

Basically, τ  captures two forms of misoptimization: those arising from the difference between

decision and experienced utility (τ ) and those arising from the misperception of taxes (τ −τ ).

In this example, we find it useful to separate them.

23In all those definitions, we omit the row and columns corresponding to good 0, which has no taxes and no

misperceptions.
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We now characterize optimal taxes. We decompose them into a Ramsey term τRamsey and a

Pigou term τPigou. The Ramsey term captures the revenue-raising and redistributive motives of

taxation. The Pigou term captures the corrective motive of taxation, arising both from the desire

to alleviate internalities and externalities. The formula features because the social marginal utilities

of income . Because there are no wealth effects in consumption, they are simply given by the

social marginal welfare weights  =  = .

Proposition 9 (Optimal tax formula with constant marginal utility of wealth and misperception)

In the constant marginal utility of wealth and misperception specification of the general model, the

optimal tax is given by

τ = τRamsey + τPigou

where

τRamsey = −(
X


M0S( − ¡ −M
¢ 

))−1

X


(1− 


)c (26)

τPigou = (
X


M0S( − ¡ −M
¢ 

))−1

X


M0Sτ (27)

These formulas simplify in the limit of a small (or in the absence of) redistribution or revenue

raising motive, i.e. in the limit where  = max

¯̄̄



− 1
¯̄̄
is small. To this end, we define

S  =M0SM

We also define the misperception-adjusted ideal internality and externality corrective tax

τ  =
¡
M

¢−1
τ

Then we have24

τRamsey = −(
X


S )−1
X


(1− 


)C +

¡
2
¢
 (28)

τPigou = (
X


S )−1
X


S τ  +
¡
 ·
°°τ

°°¢  (29)

where
°°τ

°° = sup °°τ 
°°. When externalities are small so that °°τ 

°° = (), then both

the the Pigou and the Ramsey terms are of order , and the approximation errors in both equations

24These formulas coincide with the standard tax formulas in the absence of behavioral biases for some fictitious

rational agents with Slutsky matrices S  and ideal externality corrective taxes τ . The analogy with

fictitious agents is not perfect. Indeed, the sensitivities of consumption to tax changes are given by S = SM

and not byM0SM.

27



are order 2. We call this the limit of small taxes for short.

3.5.2 Correcting Internalities/Externalities: Relaxation of the Principle of Targeting

The classical “principle of targeting” can be stated as follows. If the consumption of a good entails an

externality, the optimal policy is to tax it, and not to subsidize substitute goods or tax complement

goods. For example, if fuel pollutes, then optimal policy requires taxing fuel but not taxing fuel

inefficient cars or subsidizing solar panels (see Salanié (2011) for such an example). Likewise, if

fat is bad for consumers, and they suffer from an internality, fat should be taxed, but lean turkey

should not be subsidized. We will now see that misperceptions of taxes lead to a reconsideration of

this principle of targeting.

We use the specialization of the general model developed in Section 3.5.1. We assume that

 = , so there is no revenue-raison motive τRamsey = 0, and the internality/externality is constant

across agents τ = τ . We place ourselves in the limit of small taxes. Equation (29) then yields

the optimal tax:

τ = τPigou =
¡

£
M0SM

¤¢−1

£
M0¤Sτ 

We consider the case with  = 2 taxed goods (in addition to the untaxed good 0), where the

consumption of good 1 features an internality/externality so that τ = (∗ 0) with ∗  0. This can

be generated as follows in the model in in Section 3.5.1. In the externality case, we simply assume

that (
¡
C
¢
=1

) = ∗ 1
P



1 . In the internality case, we assume that 

 (C) =   (C)−∗
1 .

For example, in the externality case, good 1 could be fuel and good 2 a solar panel. In the internality

example, good 1 could be fatty beef and good 2 lean turkey. In addition, we assume that the

attention matrices are diagonal so thatM = (
1 


2).

When agents have uniform misperceptions (M =M), the optimal tax is τ =M−1τ . This

implies 1 =
∗
1

 0 and 2 = 0. The principle of targeting applies. This is no longer true when

misperceptions are not uniform.

Proposition 10 (Modified Principle of targeting) Suppose that the consumption of good 1 (but

not good 2) entails a negative internality/externality and none on good 2. If agents perceive taxes

correctly, then good 1 should be taxed, but good 2 should be left untaxed–the classical principle of

targeting holds. If agents misperceive the tax on good 1 in heterogeneous ways (
¡

1

¢
 0),

and if the perceptions of goods 1 and 2 are only mildly correlated, then, good 2 should be subsidized

(respectively taxed) if and only if goods 1 and 2 are substitutes (respectively complements).

Proposition 10 shows25 that if people have heterogeneous attention to a fuel tax, then solar

panels should be subsidize (this result is also reminiscent of Allcott, Mullainathan and Taubinsky

(2014)).26 The reason is that the tax on good 1 is an imperfect instrument in the presence of

25The technical condition for the mild correlations of the perceptions of goods 1 and 2 is

∙

2 −

[
1


2 ]



(

1 )
2


1

¸
 0.

26Recall that goods 1 and 2 are substitutes (respectively complements) if and only if 12  0 (respectively 

12  0).
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attention heterogeneity. It should therefore be supplemented with a subsidy on substitute goods

and a tax on complement goods. A fuel tax should therefore be supplemented with a subsidy on

solar panels and tax on fuel inefficient cars. And a fat tax should be supplemented withy a subsidy

on lean turkey.

A similar logic applies in the traditional model with no behavioral biases, if there is an externality,

and this externality is heterogenous. Our result should therefore be interpreted as an additional

reason (heterogenous misperceptions of corrective taxes) why the principle of targeting might fail

in the presence of behavioral biases.

3.5.3 Cross-Effects of Attention

How does attention to one good affect the optimal tax on another? To answer this question, we

use the specialization of the general model developed in Section 3.5.1, assuming a representative

consumer (so that we drop the index ), no internality/externality so that τ = 0, and in the limit

of small taxes. Defining Λ = 

− 1, we can rewrite formula (28) as

τ = −Λ (M 0SM)
−1
c.

This is a generalization of Proposition 1, which assumed a diagonal matrix S.

To gain intuition, we take  = 2 goods,M =  (12), we normalize prices to 1 = 2 = 1,

and we write the rational Slutsky matrix as 
 = − for  = 1 2, and 


12 = 

21 = −
√
1212.

Proposition 11 (Impact of cross-elasticities on optimal taxes with inattentive agents) With two

taxed goods, the optimal tax on good 1 is 1 =
Λ

2
11

1−


2
1
12

2
2
21

1−2 . When attention to the tax of good 2

2 falls, the optimal tax on good 1 increases (respectively decreases) if goods 1 and 2 are substitutes

(respectively complements).

Suppose for example that the goods are substitutes with   0.27 When 2 falls, the optimal

tax on good 2 increases by the effects in Proposition 1, and optimal taxes on substitute goods also

increase.28

3.5.4 Internalities and Redistribution

We next study the interaction between internalities and redistribution. We use the specialization

of the general model developed in Section 3.5.1. We treat the social marginal welfare weights

27We have 2  1 since S is a 2× 2 negative definite matrix so that 0  detS = 1212
¡
1− 2

¢
.

28Perhaps curiously, we can have 1
1

 0 with complement goods   0. This happens if and only if 2 

1

2

q

12
21

. That latter condition is quite extreme, and would imply that 1  0 even though the planner wants to

raise revenues. This is because the planner wants to increase consumption of the low elasticity (low 2 2), good 2,

he wants to subsidize good 1 if it is a strong complement of good 2.
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 =  as primitives, corresponding to the weighted Utilitarian welfare function
¡¡

¢
=1

¢
=P

 
. For simplicity, we assume that good 1 is solely consumed by a class of agents, ∗ but not by

other agents  6= ∗. We also assume that good 1 is separable, ∗ (C) = 
∗
1 (1) +

∗
1 (C1),

where C1 = ()1 and  (C) = 

1 (C1) for  6= ∗. We assume that good 1 features a

harmful internality 
∗
1 = 

∗



∗
1  0 and that all taxes are correctly perceived. Formally, we

take  (C) =  (C) for  6= ∗ and ∗ (C) = ∗ (C) − 
∗
1 1. As a concrete example, 

∗

could stand for “poor” and good 1 for “sugary sodas”. This could capture a recent policy proposal

considered in New York City to tax sugary sodas.

Proposition 6 yields

1

1
= (1− 

∗


)
1

1
+


∗




∗
1

1


where 1 = −1
1

∗
11 .

The sign is ambiguous because there are two forces at work, corresponding to the two terms

on the right-hand side.29 The first term (1− 
∗


) 1
1
corresponds to the redistributive objective of

taxes. It is decreasing in 
∗
and negative if 

∗
 . This is because good 1 is consumed only by

the poor and therefore taxing good 1 redistributes away from the poor. The second term 
∗




∗
1

1

corresponds to the internality-corrective motive of taxes. It is increasing in 
∗
positive. This is

because good 1 is harmful as it entails a negative internality. As we increase the weight 
∗
on the

poor, the tax increases if and only if

∗
1

1
1  1, i.e. if the internality-correction motive is stronger

than the redistribution motive.

This situation highlights one of the advantages of nudges over corrective taxes: they are a way

to correct internalities without mechanical redistributive effects. To capture this idea, imagine

the internality can be completely eliminated by an informational nudge (e.g. explaining the bad

consequences of sugar) that sets 
∗
1 = 0. Optimal taxes are then only used for redistribution, 1 =

−∗
1

. In some cases, quantity restrictions can be used to the same effect, and these considerations

may also help rationalize why governments choose to ban high-interest rate loans, rather than tax

them, since taxes create an additional burden for the poor.

3.5.5 Optimal Nudges and Interactions with Optimal Taxes

In this section, we propose an example illustrating the optimal determination of nudges and their

interaction with taxes. We use the specialization of the general model developed in Section 3.5.1.

There is only one taxed good  = 1. We treat the social marginal welfare weights  =  as

primitives, corresponding to the weighted Utilitarian welfare function 
¡¡

¢
=1

¢
=
P

 
.

We also treat internalities/externalities captured by the constant wedges τ = 


τ  + τ  as

primitives.

29In independent work, Lockwood and Taubinsky (2015b) examine a related problem, in the context of a Mirrleesian

income tax.
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We use quadratic utilities as in Section 2.3.2. More formally, in the internality case, we assume

that   () =
−1

2
2

Ψ
and  () =

−1
2
2

Ψ
−  . In the externality case, we assume that

 () =   () =
−1

2
2

Ψ
− , where  = 

 


P
 τ

.

We take the nudge as a tax model (23). The demand of a consumer can then be expressed as

 ( ) = 0 −Ψ
¡
 + 

¢


where  is the sensitivity of agent  to the nudge.

We start with the case where the nudge is the only instrument. We apply the optimal nudge

formula (25). The optimal nudge is given by30

 =

£


¤

h

2
i 

In this simple model the optimal nudge is simply the regression coefficient of  on . If all agents

have the same sensitivity  = 1, the nudge is equal to the the average ideal internality/externality

corrective tax  = 
£


¤
. Heterogeneities in nudgeability determine how well targeted the nudge

is to the internality/externality. Controlling for 
£


¤
, the nudge is weaker is there is more

heterogeneity in nudgeability (higher 
h

2
i
), and, controlling for heterogeneity in nudgeability,

the nudge is stronger when nudgeability is correlated with the internality/externality (
£


¤
is higher).

We next consider the optimal joint policy using both nudges and taxes. We only highlight a few

results; the details can be found in Appendix 12.4.

One can show that
2


= − 1

Ψ

£¡
− 

¡
1−

¢¢

¤


As a result, taxes and nudges are complements if and only if 
£¡
− 

¡
1−

¢¢

¤ ≤ 0. Nudges

and taxes can be complement if social marginal utility if income  and nudgeability  are positively

correlated. Loosely speaking, if poor agents (with a high ) are highly nudgeable, then taxes and

nudges can become complements, because in that case, nudges reduces the consumption of poor,

nudged agents, and the tax can then be increased more without much adverse redistributive effects.

If  =  so that there are no revenue raising or redistributive motives, then taxes and nudges are

30The intermediate steps are as follows. Using c = −Ψ,  = 0   =  − , we get 

(τ  ) =


P



£
τ − τ  − τ 

¤ · c = 
P



£
0−  + 

¤
Ψ
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substitutes. Nudges are taxes are then given by the following formulas31

 =

£
()2

¤

£


¤−
£


¤

£


¤
 [()2] [()2]− ( [])

2


 =

£


¤

£
()2

¤−
£


¤

£


¤
 [()2] [()2]− ( [])

2


The more powerful the nudge is for high-internality agents (the higher is 
£


¤
, keeping

all other moments constant), the more optimal policy relies on the nudge and the less it relies

on the tax (the higher is , the lower is ). Symmetrically, if the better perceived is the tax by

high-internality people (the higher is 
£


¤
), the more optimal policy relies on the tax and

the less it relies on the nudge.

The more heterogeneity there is in the perception of taxes (the higher is 
£
()2

¤
, holding

all other moments constant), the less targeted the tax is to the internality/externality, and, as

a result, the lower is the optimal tax  is lower, and uncertain of certain conditions, the higher

the optimal nudge .32 Similarly, the more heterogeneity there is in nudgeability (the higher is


£
()2

¤
, holding all other moments constant), then lower is the optimal nudge  decreases, and,

under similar conditions, the higher is the optimal tax  .

3.5.6 Aversive Nudges vs. Taxes

How do things change when nudges are aversive? To address this question, we augment the example

of Section 3.5.4 with aversive nudges. We use the same quadratic utility functions as in Section

3.5.5. We use the nudge as a tax model developed in Section 3.4. For concreteness, we interpret

the harmful good (good 1) as cigarettes. We extend the model to account for the possibility that

the nudge may directly create an aversive reaction (perhaps via a disgusting image of a cancerous

lung), which we capture as a separable utility cost  so that utility is now

 (c ) =  (c)− 

where  is the nudge aversion term.

31In the general case, with the notation  :=  ( ) :

 =

h


2
i

£
 − Ψ

¤−
£



¤

£


¤

h


2
i

h
2 − 

i
− [] [ − ]



 =

£


¤

h


2 − 

i
−

£
 − Ψ

¤

£
 − 

¤

h


2
i

h
2 − 

i
− [] [ − ]



32The condition is 
£


¤

h

2
i
≥ 

£


¤

£


¤
. It is verified if ,  are independent.
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The next proposition formalizes how nudge aversion changes the relative attractiveness of nudges

and taxes. For simplicity, we consider a special case with one type of agent and where the planner

can to use only one of two instruments to discourage cigarette consumption: a weakly positive tax

( ≥ 0) or an aversive nudge ( ≥ 0).

Proposition 12 (“Nudge the poor, tax the rich”) We consider a good with a “bad” internality

(e.g. cigarettes). We suppose that at most one of two instruments (nudges and nonnegative taxes)

can be used to correct this internality. Then, an optimal tax is superior to an optimal nudge if and

only if
− 

∗

∗ 
−∗∗

∗  (30)

This proposition captures a new interesting trade-off between taxes and nudges. Both taxes

and nudges correct internalities, but taxes also raise revenues on the agents consuming the good

under consideration (which may or may not be desirable) while nudges do not and instead directly

reduce utility. Taxes dominate nudges when the revenue raising motive on agents consuming the

good associated with the internality is strong (−  is high), and when these agents are attentive

to the tax (∗ is high). Nudges dominate taxes when nudge aversion is low (
∗
is low) and when

agents are easily nudged (
∗
is high).

3.5.7 Do More Mistakes by the Poor Lead to More Redistribution?

In this example, we consider the consequences for income taxation of the hypothesis that richer

agents make fewer mistakes. We deviate from the above setup with quasilinear utility. There are

two goods with prices normalized to one. The decision and experienced utility of agent  are given

by

 (1 2) =



1

1 


2

2

1
1 2

2

and

 (1 2) =
11 22
1
1 2

2



with 

1 + 


2 = 1 + 2 = 1. The indirect utility of agent  with (post-tax) income  is then

given by

 () =   =

Ã


1

1

!1
Ã


2

2

!2

≤ 1

The stronger the behavioral bias of agent , the lower his marginal utility of income . This is

because a marginal unit of income is spent inefficiently.

We focus on a negative income tax: a linear income tax  and a lump sum rebate. The unique

purpose of the tax is to redistribute. The pre-tax and post-tax income of agent  are denoted by

 and  + (̄− ) , where ̄ is average income defined by
P

(
− ̄) = 0We assume that the

33



social welfare function is given by
P



()
1−

1− with   0.

The planning problem is then

max


(; {})

with


¡
 {}¢ =X



¡

¢1−

1− 

¡
 + 

¡
̄ − 

¢¢1−


Proposition 13 (Mistakes and redistribution) If the preference for redistribution is strong ( 

1), larger behavioral biases (reductions in ) for the poor (agents with   ̄) lead to more

redistribution (higher taxes ). Conversely, if the preference for redistribution is weak (  1),

larger behavioral biases for the poor lead to less redistribution.

The intuition for these results is the following. The key question is the impact of behavioral

biases on the social marginal utility of income  =
¡


¢−
. Indeed, the marginal benefit 



of increased redistribution (a higher tax ) is inversely related to the covariance between the social

marginal utility of income and income 

=
P

 

¡
̄ − 

¢
= − ¡ ¢.

Larger behavioral biases for agent  increase its weight
¡


¢−
in social welfare, but reduce

his marginal utility of income . The resulting effect on the social marginal utility of income 

depends of the relative strength of these two effects. When   1, the former effect dominates and

larger behavioral biases lead to higher . The opposite occurs when   1. When  = 1, the two

effects exactly cancel out so that  is independent of .

3.5.8 Mental Accounts

A rudimentary model of mental accounts In this section, we show how our general model

can accommodate some simple behavioral biases associated with mental accounting (Thaler 1985,

Hastings and Shapiro 2013). We then show how these biases modify some basic results in optimal

taxation.

The primitives are an experience utility function , a partition of the set of commodities into

 subsets or accounts indexed by  = 1  , mental accounting functions  (q )  and an

extended demand function c (qω), where ω =
¡
1  

¢
. We denote by C the vector of com-

modities associated with account  and we write c =
¡
C1 C

¢
. The mental accounting functions

 (q ) ≥ 0 must satisfyP 
 (q ) = . The extended demand function must satisfy

q ·C (qω) =  (q ) 

The demand function c (q ) is the simply defined by c (q ) = c (qω (q )). We denote the

extended indirect utility function by  (qω) =  (c (qω)) 

Basically, spending on the different categories  of commodities is determined by some mental

34



accounting functions  (q ). Rational demand subject to mental accounts corresponds to

c (qω) = argmax


 (c) s.t. q ·C =  for  = 1  (31)

The traditional model with frictionless mental accounts corresponds to  (q ) = q ·C (q ),

where c (q ) =
¡
C1 (q )  C (q )

¢
is the demand function of a rational agent.

Given these mental accounting functions, spending on the different goods within each categories

could be subject to additional behavioral biases. For example, a concrete model of the mental

accounting functions  (q ) is the following

(c (q ) ω (q )) = argmax
()

 (c)−
X



¡
 − 

 (q )
¢
s.t. q ·C =  and

X


 = 

(32)

where 
 (q ) is an exogenous default mental accounting function. The idea is that there are

frictions on mental accounting so that the consumer faces some mental adjustment costs given

by 
¡
 −  (q )

¢
when the expenditure  (q ) on account  is different from the default

expenditure  (q ). Implicit in the formulation of this concrete model is the assumption that

these mental adjustment costs are not taken into account in the evaluation of welfare. This approach

is justifiable, but so is its polar alternative which fully takes these costs into account in welfare.

Similar issues arise in the treatment of attention in Section 5.1. Note that the more abstract model

presented above does not rely on this assumption.

The optimal tax formulas in Propositions 6 and 7 corresponding to the multiperson Ramsey

problem without and with externalities can then be applied without modifications to this simple

model of mental accounting.

However, it is also enlightening to write these formulas in a slightly different way by leveraging

the specific structure of the simple mental accounting model. We define the “income -compensated”

Slutstky matrix for the extended demand function as

S

 (qω) = c(qω) + c(qω)(qω) (33)

This Slutsky matrix corresponds to a decomposition of price effects into income of substitution

effects where the latter are compensated using with an adjustment of mental account . In the tra-

ditional model without behavioral biases, this decomposition is independent of the mental account

 which is used for this decomposition, since the marginal utility of income is equalized across

all accounts: c(qω
 (q )) = c0 (qω

 (q )). It follows that the “income -compensated”

Slutstky matrix is also independent of .33 By contrast, with behavioral biases in mental ac-

33However the “income -compensated” Slutsky matrix 

 (q  (q )) of the extended demand function is

in general different from the “income compensated” Slutstky matrix 

 (q ) of the demand function, which is

defined as in Section 3.1. Indeed, the latter also reflects the subsitution effects associated with the adjustments


(q ) in the mental accounts in response to changes in the price  of commodity .

35



counting, the marginal utility of income is not equalized across all accounts so that in general

c(qω (q )) 6= c0 (qω (q )). As a result, the decomposition of price effects on income effects
and substitution effects depends on which mental account  is used for this income compensation,

and the “income -compensated” Slutstky matrix depends on .34

Reintroducing  superscripts to index agent heterogeneity, we define the social marginal utility

of -income for agent  as

 =  + τ · c where  =

 

We also define the income- based misoptimization wedges for the extended demand and utility

function as

τ  = q − 


 τ̃  = τ 

Finally, for every commodity , we denote by  () the mental account to which this commodity

is associated with. We can then rewrite the tax formula in the following way. Note that this is

simply a re-expression of Proposition 6.

Proposition 14 (Multiperson Ramsey with mental accounting) If commodity  can be taxed, then

at the optimum

 (τ )


= 0 with

 (τ )


=
X


[
¡
− ()

¢
 + (τ − τ̃ ()) · S()

 +
X




] (34)

This alternative expression of the multiperson Ramsey optimal tax formula for commodity 

features the “income  ()-compensated” Slutsky matrix corresponding the the mental account to

which commodity  is associated, the social marginal utilities of -income , the a () based

misoptimization wedges, and the price derivatives of the mental accounting functions 

. Writing

the optimal tax formula in this way will prove useful to derive specific results below in the context

of further specializations of the model.

We could also derive a similar alternative expression for the multiperson Ramsey optimal tax

formula in the presence of externalities along very similar lines. In the interest of space, we do not

include it in the paper.

34The price theory concepts introduced in Section 3.1 are still defined in the same way. They can be related to

the corresponding concepts that we have introduced in this section. In particular, we have

(q ) =
X


c(q )

and

S
 (q ) = c (q ) +

X


c(q ) +
X


c(q )(q )
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Concrete applications with rigid mental accounts We now explore concrete applications

of this framework to optimal taxation formulas. In the interest of space, we focus in the main text

on the case of rigid mental accounts, by which we mean the following: a mental account  is rigid

when the amount  (q ) allocated to account  is independent of q and  (it must be the case

that at least one account is not rigid, so that
P

0 
0 = ). We refer the reader to the online

appendix (Section 12.1) for a treatment of the concrete applications in the more general case with

flexible accounts where  (q ) depends on q and . We assume that the only bias is one of

mental accounting, so that spending within each account is chosen to maximize utility. This means

that the extended demand function is given by c (qω) = c (qω).

Uniform commodity taxation with rigid mental accounts We now derive a uniform

commodity taxation within rigid mental accounts.

Proposition 15 (Uniform commodity taxation within a rigid mental account) Suppose that there

is just one type of agent and that a mental account  is rigid. Then, all commodities associated

with mental account  should be taxed at the same rate.

It is efficient to tax all commodities associated in a rigid mental account at the same rate in

order to avoid distorting the relative consumption of two commodities within the account.35

Rigid mental accounts therefore give a new, behavioral, rationale for uniform commodity taxes.

It is distinct from the traditional argument for uniform commodity taxation with rational agents

proposed by Atkinson and Stiglitz (1972), which obtains under some separability and homogeneity

assumptions regarding preferences and which we review in Section 6. It also complements our

results in Section 3.6 by offering an additional and conceptually distinct behavioral argument for

simple taxes.

We consider the basic setup in Section 2.1, modified to incorporate rigid mental accounts. We

make the further simplification that there is one commodity per mental account. We assume that

before taxes, the optimal amount  is allocated to good , so that  0 () =  = 1. Rigid mental

accounts do not adjust after the introduction of taxes so that  remains constant. Consumption

is therefore given by  =



= 

1+


Modified simple Ramsey rule with rigid mental accounts We first derive the optimal

Ramsey rule with this rigid mental account with one good per account.

Proposition 16 (Ramsey formula with rigid mental accounts) In the simple Ramsey problem with

a rigid mental account, the optimal tax is

 = Λ

35The Proposition implicitly assumes that all commodities in account  can be taxed.
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This is in stark contrast with the traditional Ramsey case where  =
Λ

, and the misperception

case where  =
Λ

2

. The intuition is as follows, in the limit of small taxes. We denote by  the

elasticity of the demand for good . In the traditional model without behavioral biases, we have

 = . But in the behavioral model with a rigid mental account for commodity , the elasticity of

the demand for good  is  = 1 and is totally divorced from the parameter  = −  0()
 00()

, which

is simply the inverse of the curvature of the utility function   for good . Welfare can then be

expressed as

 = −1
2

X


2



2
 + Λ

X


 (35)

and the optimal tax is given by

 = Λ


2
 (36)

A change in taxes  changes consumption by  = −. The associated change in welfare

is − 1

( − )  + Λ with a change in the marginal distortion − 1


( − )  proportional

to the curvature − 
00()

 0()
= 1


of the utility function   for good  and where  −  = .

Therefore for a given demand elasticity , a higher values of  pushes for higher tax, while for a

given , a higher values of  pushes for a lower tax. In the traditional model without behavioral

biases,  =  and the resulting effect of a higher  is a lower tax. By contrast, in the behavioral

model with a rigid mental account,  = 1 so that a higher  results in a higher tax.

Pigou with rigid mental accounts We next revisit the basic Pigou problem of Section 2.3,

with one type of agent. There is one good, in its rigid mental account, as described above.

Proposition 17 (Modified Pigou formula with mental accounting) If the consumer uses rigid men-

tal account, and the good simple Pigou problem with mental account, the optimal tax (for small

externalities) is:

 = 

In contrast, in traditional case, the Pigouvian optimal  = , while with attention  to the

tax the optimal tax is  =


(Proposition 4). Here  = . The reason is the following. At

the first best, the planner would like  0 () =  + , as in the traditional tax. If the elasticity of

(rational) demand is  = −  0()
00()

, this means that consumption should fall by 


after the tax.

But with a rigid mental account, the actual elasticity of demand is 1 (recall  =



): so the tax

should satisfy: 

= 



, and  = .

3.6 Optimality of Simple Taxes

We now state a general result on the optimality of simple (e.g., uniform) tax systems. For simplicity,

we go back to the model without Pigouvian externalities. We assume that people pay disproportion-

ate attention to the maximum tax. To generalize the idea, we assume that they also pay attention
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to other quantiles of taxes, for instance the median tax. Because we think that perceptions are

formed in percentage (“ad valorem”) form, we normalize here  = 1. Formally, we suppose that

the perceived tax can be expressed:

τ  (τ  ) = f
¡
 (1) (Q) τ  

¢
(37)

for some function f that is 1. Here  () is the −th quantile of taxes, for instance  (1) is the
maximum tax and  (12) is the median tax.36 Hence, people pay special attention to Q quantiles of
taxes. We assume that people do pay attention to the maximum tax (the quantile 1, i.e. 100%):

this is 1 = 1 and one of the quantiles considered.

Here  smoothly parametrizes the attention function. We also consider a parameter 0, such

that f
¡
 (1) (Q) τ  0

¢
does not depend on τ . This means that when  = 0, agents just pay

attention to the quantile taxes (e.g., just to the maximum tax), but not to other taxes. When  is

close to 0, the agent pays a lot of attention to the quantile taxes and little to the other taxes.

One concrete example of this is:   (τ  ) = (1−) 
 +, 

 =
PQ

=1 
() + , with

a positive weight on max, i.e. 1  0. Here  = ( ), and, for example, 0 = (0 0 ) ensures

f
¡
 (1) (Q) τ  0

¢
is independent of τ .

With  types of agents, each agent  has her own perception function f. We assume that the

same parameter 0 implies f

¡
 (1)   (Q) τ  0

¢
independent of τ for all .

Proposition 18 (Simple taxes — multiperson Ramsey) We suppose that at 0, there is an interior

optimum tax system, which features
P



¡
− 

¢
 6= 0 for all . Then, generically, if  is near 0,

the optimal tax system is simple, i.e. has at most Q different tax rates.

The term
P



¡
− 

¢
 represents the mechanical effect on the government’s objective function

of a marginal increase in the the tax  (i.e. ignoring substitution effects). In many cases it is natural

to expect that
P



¡
− 

¢
  0. For example, this is the case if there is just one type of agent ,

no lump-sum taxes, and the government wants to raise revenues (  ). Similarly, with several

types of agents and a lump-sum tax, condition (21) holds, then
P



¡
− 

¢
 = 

¡
−  

¢
,

and 
¡
−  

¢
 0 if the government seeks to redistribute from rich to poor, as long as the

rich (low ) consume more of good  than the poor (high ).

Proposition 18 can easily be extended in a variety of ways. For instance, if there is also a small

fraction of rational consumers, while the other agents are as in the rest of the paper, the result

goes through too (see also Proposition 27). The assumption that people put weights on quantiles in

forming their perceptions is important for the result. Replacing them by averages does not generally

give rise to simple tax systems.

36Formally,  () = inf
©
 s.t. #

©
  ≥ 

ª ≥ (1− )
ª
. This tilts the quantiles towards the higher values, for

instance with that definition, the median of {1 2 3 4} is 3.
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Extension: Model with categories of goods We can easily extend the model to the case

where taxes are perceived category-by-category. We partition the set of goods {0  } into 

“natural” categories
¡I¢

=1
: {0  } = I1 ∪  ∪ I . We call I () ∈ ©I1 Iª the natural

category of each good . For instance, if  is an apple, I () may be the category of food items. We
assume perceived rate is formed as in (37), but the quantiles are taken simply within each category.

For instance, we could have   = (1−) 

I() +, where 


I is formed base on statics within

category I , e.g. 

I = max∈I . Categories are the same for all agents.

Corollary 2 We suppose that agents partition the goods in  categories, as described above. Under

the assumptions of Proposition 18, for  near 0, the optimal tax system is still simple, consisting

of at most Q different tax rates.

For instance, if there are two categories of goods (food and non-food items) and agents use the

maximum taxes as a salient tax in each category, then there will be at the optimum two different

uniform tax rates, one for food, one for non-food items.

4 Nonlinear Income Taxation: Mirrlees Problem

4.1 Setup

Agent’s behavior There is a continuum of agents indexed by skill  with density  () (we

use  rather than , the conventional index in that literature). Agent  has a utility function

 ( ), where  is his one-dimensional consumption,  is his pre-tax income, and  ≤ 0.37
The total income tax for income  is  (), so that disposable income is  () =  −  (). We

call  () = 0 () = 1 −  0 () the local marginal “retention rate”, Q = ( ())≥0 the ambient

vector of all marginal retention rates, and 0 =  (0) the transfer given by the government to an

agent earning zero income. We define the “virtual income” to be  () =  ()− (). Equivalently
() =  () + (), so that  () is the local slope of the budget constraint, and  () its intercept.

We use a general behavioral model in a similar spirit to Section 3. The primitives is the income

function  (Q 0 )  which depends on the local marginal retention rate , the ambient vector of

all marginal retention ratesQ, and the virtual income . In the traditional model without behavioral

biases we have  (Q 0 ) = argmax 
 ( +  )  so that  does not depend on Q and 0.

With behavioral biases, this is no longer true in general. The income function is associated with

the indirect utility function  (Q 0 ) =  ( +  )|=(0)
. The earnings  () of agent

 facing retention schedule  () is then the solution of the fixed point  =  ( () Q  ()), his

consumption is  () = ( ()) and his utility is  () =  ( ()   ()).

37If the agent’s pre-tax wage is ,  is his labor supply, and utility is  ( ), then  ( ) = 
¡
 



¢
. Note

that this assumes that the wage is constant (normalized to one). We discuss the impact of relaxing this assumption

in Sections 6.1.2 and 12.9.
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Planning problem The objective of the planner is to design the tax schedule  () in order

to maximize the following objective functionZ ∞

0

 ( ())  () + 

Z ∞

0

( ()−  ())  () 

Like Saez (2001), we normalize  = 1. We call  () =  0 ( ())  ( ( ()) Q  ( ())) the

marginal utility of income. This is the analogue of  in the Ramsey problem of Section 3, and

we identify agents with their income level  () instead of their skill . Most of the time, we leave

implicit the dependence on  () on  to avoid cluttering the notations. We now derive a behavioral

version of the optimal tax formula in Saez (2001).

4.2 Saez Income Tax Formula with Behavioral Agents

4.2.1 Elasticity Concepts

Recall that the marginal retention rate is  () = 1− 0 (). Given an income function  (Q 0 ),

we introduce the following definitions. We define the income elasticity of earnings

 =  (Q 0 ) 

We also define the uncompensated elasticity of labor (or earnings) supply with respect to the actual

marginal retention rate

 =



 (Q 0 ) 

Finally, we define the compensated elasticity of labor supply with respect to the actual marginal

retention rate

 =  − 

We also introduce two other elasticities, which are zero in the traditional model without behav-

ioral biases. We define the compensated elasticity of labor supply at  with respect to the marginal

retention rate  (∗) at a point ∗ different from :

∗ =



∗ (Q 0 ) 

We also define the earnings sensitivity to the lump-sum rebate at zero income38

0 =



0 (Q 0 ) 

We shall call ∗ a “behavioral cross-influence” of the marginal tax rate at 
∗ on the decision of

38Formulas would be cleaner without the multiplication by  in those elasticities, but here we follow the public

economics tradition.
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an agent earning . In the traditional model with no behavioral biases, ∗ = 0 = 0. But this is

no longer true with behavioral agents.39
040

All these elasticities a priori depend the agent at earnings . As mentioned above, we leave this

dependence implicit most of the time.

Just like in the Ramsey model, we define the “ideal misoptimization corrective tax”

 (Q 0 ) = −( ) +  ( )

 (Q 0 ) |=(0)=+



We also define the renormalized ideal misoptimization corrective tax

e  () =  ()   () 

In the traditional model with no behavioral biases, we have   (Q 0 ) = e  () = 0. But this is
no longer true with behavioral agents.

We have the following behavioral version of the Roy identity (proven in the appendix, section

13.2):



=  −  




∗


= −




∗  (38)

As in Section 3, the general model can be particularized to a decision vs. experienced utility

model, or to a misperception model.

Misperception model The agent may misperceive the tax schedule, including her marginal

tax rate. We call   (Q 0) () the perceived tax schedule, 
 () =  −  (Q 0) () the

perceived retention schedule, and (Q 0) () =
(0)()


the perceived marginal retention

rate. Faced with this tax schedule, the behavior of the agent can be represented by the following

problem

smax
|(·)

 ( ) s.t.  =  () 

This formulation implies that the agent’s choice ( ) satisfies  =  () and

 () ( ) +  ( ) = 0

instead of the traditional condition  ()  ( ) +  ( ) = 0. This means that the agent cor-

rectly perceives consumption and income ( ) but misperceives his marginal retention rate  ().

39For instance, in the misperception model, in general, the marginal tax rate at ∗ affects the default tax rate and
therefore the perceived tax rate at earnings .
40In the language of Section 3.1, we use income-compensation based notion of elasticity, S , rather than the

utility—compensation based notion S .
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Together with  =  (), this characterizes the behavior of the agent.41

Accordingly, we define  (  ) to be the solution of  ( ) +  ( ) = 0 with  =

 + .42 The income  () of agent  is then the solution of the fixed point equation

 =  ( ()  (Q 0) ()   ()) 

his consumption is  () = ( ()) and his utility is  () =  ( ()   ()).

Summing up, in the misperception model, the primitives are a utility function  and a per-

ception function  (Q 0) (). This yields an income function  (  ). The general function

 (Q 0 ) is then  ( (0) Q 0 ) =  ( (0)   (Q 0) (
0)  ) for any earnings 0.

One concrete example of misperception is (Q 0) =  (Q 0) with

(Q 0) () =  () + (1−) [ (Q) + (1− )
0 +

R 
0
 (0) 0


]

where  ∈ [0 1] is the attention to the true tax (hence retention) rate, 0+
 
0
(0)0


is the average

retention rate (as in Liebman and Zeckhauser (2004)), and  ∈ [0 1]. The default perceived

retention rate might be a weighted average of marginal rates, e.g.  (Q) =
R
 () ()  for some

weights  ().

As in the Ramsey case, it is useful to express behavioral elasticities as a function of an agent

without behavioral biases. Call  ( 0) = argmax  ( + 0 ) the earnings of a rational agent

facing marginal tax rate  and extra non-labor income 0. Then,  (  ) =  ( 0) where 0

solves 0 +  ( 0) =  +  ( 0). We call  ( 0) = 


( 0) − 

0 (
 0)  ( 0) the

rational compensated sensitivity of labor supply (it is just a scalar). We also define  = 


as

the compensated elasticity of labor supply of the agent if he were rational.

We define  =  (Q 0) () as the attention to the own marginal retention rate and ∗ =

∗ (Q 0) () as the marginal impact on the perceived marginal retention rate at  of an increase

in the marginal retention rate at ∗. Then, we have the following concrete values for the elasticities

of the general model (the derivation is in Section 13.2 of the appendix):

 =

µ
1− 

 −  



¶
 ∗ =

µ
1− 

 −  



¶
∗  (39)

  =
 −  

1−  −


 (40)

If the behavioral agent overestimates the tax rate ( −    0), the term   is negative. Loosely,

we can think of   as indexing an “underperception” of the marginal tax rate. In the traditional

41This is a sparse max problem with a non-linear budget constraint, which generalizes the sparse max with a

linear budget constraint we analyzed in section 2.1. The true constraint is  =  (), but the perceived constraint is

 =  (Q 0) ().
42If there are several solutions, we choose the one yield the greatest utility.
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model without behavioral biases, ∗ = 1=∗, 
 =  and   = 0.

Decision vs. experienced utility model In the decision vs. experienced utility model,

behavior is represented by the maximization of a subjective decision utility  ( ) subject to the

budget constraint  =  (). We then have ∗ = 0, and  and  are the elasticities associated

with decision utility . The ideal misoptimization corrective tax is

  =



 − 


 (41)

Other useful concepts and notations We next study the impact of the above changes on

welfare. Following Saez (2001), we call  () the density of agents with earnings  at the optimum

and  () =
R 
0
 (0) 0. We also introduce the virtual density ∗ () = ()

()−00() ().

We define the social marginal utility of income

 () =  () +
 ()

1−  0 ()

∙e  () + ¡ 0 ()− e  ()¢ ∗ ()
 ()

¸
 (42)

This definition is the analogue of the corresponding definition (16) in the Ramsey model. It

is motivated by Lemma 8 in the online appendix, which shows that, if the government transfers a

lump-sum  to an agent previously earning , the objective function of the government increases

by  () = ( ()− 1) . The social marginal utility of income  () reflects a direct effect  ()
of that transfer to the agent’s welfare, and an indirect effect on labor supply captured - to the

leading order as the agent receives , his labor supply changes by
()

1− 0(), which impacts tax

revenues by
()

1− 0()
0 ()  and welfare by

()

1− 0()e  () ; the terms featuring ∗()
()

(in practice

often close to 1) capture the fact that the agent’s marginal tax rate changes as the agent adjusts

his labor supply, which impacts tax revenues and welfare because misoptimization.

4.2.2 Optimal Income Tax Formula

We next present the optimal income tax formula. The online appendix (section 12.2) presents the

intermediary steps used in the derivation of this formula.

Proposition 19 Optimal taxes satisfy the following formulas (for all ∗)

 0 (∗)− e  (∗)
1−  0 (∗)

=
1

 (∗)
1− (∗)
∗∗ (∗)

Z ∞

∗
(1−  ())

 ()

1− (∗)
 (43)

−
Z ∞

0

∗ ()

 (∗)
 0 ()− ̃  ()

1−  0 ()
∗ ()
∗∗ (∗)


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This formula can also be expressed as a modification of the Saez (2001) formula

 0 (∗)− e  (∗)
1−  0 (∗)

+

Z ∞

0

 (∗ )
 0 ()− ̃  ()

1−  0 ()
 (44)

=
1

 (∗)
1− (∗)
∗∗ (∗)

Z ∞

∗
−

 
∗ ()

µ
1−  ()− 

̃  ()

1−  0 ()

¶
 ()

1− (∗)


where  () =
()

()
1

and

 (∗ ) =

Ã
∗ ()

 (∗)
−
Z ∞

0=∗
−

 0
∗ () (0)



0 ()

 (∗)
0
!

∗ ()
∗∗ (∗)



The first term 1
(∗)

1−(∗)
∗∗(∗)

R∞
∗ (1−  ())

()

1−(∗) on the right-hand side of the optimal tax

formula (43) is a simple reformulation of Saez’s formula, using the concept of social marginal utility

of income  () rather than the marginal social welfare weight  () The link between the two is

in equation (42)). The second term − 1
∗
R∞
0

∗
()

(∗)
 0()−̃()
1− 0() 

∗()
∗(∗) on the right-hand side is new

and captures a misoptimization effect together with the term
−(∗)
1− 0(∗) on the left-hand side.

The intuition is as follows. First, suppose for concreteness that ∗ ()  0, then increasing the

marginal tax rate at ∗ leads the agents at another income  to perceive higher taxes on average,

which leads them to decrease their labor supply and reduces tax revenues. Ceteris paribus, this

consideration pushes towards a lower tax rate, compared to the Saez optimal tax formula. Second,

suppose for concreteness that ̃  ()  0, then increasing the marginal tax rate at ∗ further reduces

welfare. This, again, pushes towards a lower tax rate.

The modified Saez formula (44) uses the concept of the social marginal welfare weight  ()

rather than the social marginal utility of income  (). It is easily obtained from formula (43) using

equation (42). When there are no income effects so that  =  () = 0, the optimal tax formula (43)

and the modified Saez formula (44) are identical. They coincide with the traditional Saez formula

when there are no behavioral biases so that ∗ () =  (∗ ) = ̃  () = 0. In this case, the

left-hand side of (44) is simply
 0(∗)
1− 0(∗) so that the formula solves for the optimal marginal tax rate

 0 (∗) at ∗.

The formula is expressed in terms of endogenous objects or “sufficient statistics”: social mar-

ginal welfare weights  (), elasticities of substitution  (), income elasticities  (), and income

distribution  () and ∗ (). With behavioral agents, there are two differences. First, there are

two additional sufficient statistic, namely the ideal misoptimization corrective tax ̃ () and the

behavioral cross-elasticities ∗ (). Second, it is not possible to solve out the optimal marginal tax

rate in closed form. Instead, the modified Saez formula (44) at different values of ∗ form a system

of linear equations in the optimal marginal tax rates  0 () for all . The formula simplifies greatly

in the case where behavioral biases can be represented by a decision vs. experienced utility model.
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Indeed, we then have  (∗ ) = 0 and ̃  () =  ()




−


, so that there is no linear system of

equations to solve out to recover  0 ().

4.2.3 Marginal Tax Rate for Top Incomes

We start by revisiting the classic result that if the income distribution is bounded at max, then the

top marginal income tax rate should be zero. In our model, this need not be the case. One simple

way to see that is to consider the case of decision vs. experienced utility. Tax formula (43) then

prescribes  0 (max) = ̃  (max) which is positive or negative depending on whether top earners over

or under perceive the benefits of work (under or over perceive the costs of work).

We now derive a formula for the marginal rate at very high incomes when the income distribution

is unbounded at the top. It proves convenient to consider a (high) 0 above which we consider

that incomes are “top incomes”, and the marginal rate is constant. We consider tax systems

with constant marginal tax rates for  ≥ 0. We assume that  () =  for   0. We call

 () =
R∞
0

∗ ()∗ the sensitivity to the asymptotic tax rate. This is the elasticity of earnings

of an individual at earnings   0 to an increase to the top rate, arising perhaps because of

a misperception of the tax environment. Concretely, think of the recent case of France where

increasing the top rate to 75% might have created an adverse general climate with the perception

that even earners the top income would pay higher taxes.

We call ,  

the asymptotic values for large incomes and  the Pareto exponent of the

earnings distribution (when  is large, 1− () ∝ −). We define the weighted means:  [ ()] =
()()
()

and ∗
£

¤
=


()

 0()−̃()
1− 0() ∗()  0()−̃()

1− 0() ∗()
.

Proposition 20 (Optimal tax rate for top incomes) The optimal marginal rate  for top incomes

is

 =
1−  −  + 


 

1−  −  + 

 + 

(45)

where

 = 

∙
 0 ()− ̃  ()

1−  0 ()

¸


 []

 [1≥0 ]
∗
£

¤


This generalizes the Saez (2001) formula which can be recovered in the particular case where

 =   = 0 (Saez (2001) itself generalizes Diamond (1998)). The intuition is as follows - the 

terms reflects not only the fact that the top marginal tax rate affects not only top earners, but also

the tax perceived by agents at all points of the income distribution with associated effects on tax

revenues. The more increasing the top tax rate lowers all incomes (the higher  ()), the higher ,

and the lower the top optimal tax rate.

The   terms are positive (resp. negative) when top earners overperceive (resp. underperceive)

the marginal benefits of effort or underperceive (resp. overperceive) taxes. These terms lead to

higher (resp. lower) top optimal rates compared to the Saez formula.
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Consider the typical Saez calibration with  (∞) = 02,  = 0 and  = 2. If the typical tax

is  0 () ' 1
3
so that 

h
 0()
1− 0()

i
' 1

2
, we take 0 to be at the top 1% quantile of the income

distribution. Piketty and Saez (2003, updated 2015) report that in the income share of the top

1% is 20%, so that
[]

[1≥0 ]
= 1

02
. This implies that  = 

h
 0()−̃()
1− 0()

i


[]

[1≥0]
∗
£

¤
=

1
2
2 1
02
∗
£

¤
= 5∗

£

¤
.

The average cross-influence ∗
£

¤
does not appear to have ever been measured. It is assumed to

be 0 in the traditional model. We propose the following thought experiment to gauge its potential

magnitude. Suppose that increasing the top rate by 10% will decrease earnings outside the top

bracket by 1%. Then, ∗
£

¤
= (1−  0 ()) 


=
¡
1− 1

3

¢
01 = 0067, which gives an interpretable

benchmark that we now use.

Take first the case where  = 0 the top optimal tax rate maximizes revenues raised on top

earners. With rational agents, the top marginal tax rate is  = 71%. If ∗
£

¤
= 0067, then

 = 62%, and if we double the influence of top earners, then  = 45%. When the weight on top

earnings is higher, say  = 02, the corresponding numbers for the top rate are: 67%, 53% and 25%.

This illustrates the potentially large importance of the behavioral cross-impact of the top tax rate,

a sufficient statistic that is assumed to be zero in traditional analyses.

The ideal misoptimization corrective tax   does not affect the optimal tax rate when  = 0.

When  = 05, it increases the optimal top rate from 56% to 67% when the internality goes from no

misperception of taxes by top earners   = 0 to underperception of taxes by top earners   = 05.

4.2.4 Possibility of Negative Marginal Income Tax Rates

In the traditional model with no behavioral biases, negative marginal income tax rates can never

arise at the optimum. With behavioral biases negative marginal income tax rates are possible at the

optimum. To see this, consider for example the decision vs. experienced utility model with decision

utility  and assume that  is quasilinear so that there are no income effects  ( ) = −  ().

We take experienced utility to be  ( ) =  −  (). Then the modified Saez formula (44)

becomes
 0 (∗)− e  (∗)
1−  0 (∗)

=
1

 (∗)
1− (∗)
∗∗ (∗)

Z ∞

∗
(1−  ())

 ()

1− (∗)


where ̃  () = − ()0 () −1

by (41). When   1, we have e  (∗)  0 and it is possible for this

formula to yield  0 (∗)  0. This occurs if agents undervalue the benefits or overvalue the costs

from higher labor supply. For example, it could be the case that working more leads to higher human

capital accumulation and higher future wages, but that these benefits are underperceived by agents,

which could be captured in reduced form by   1. Such biases could be particularly relevant at

the bottom of the income distribution (see Chetty and Saez (2013) for a review of the evidence). If

these biases are strong enough, the modified Saez formula could predict negative marginal income

tax rates at the bottom of the income distribution. This could provide a behavioral rationale for the

EITC program. In independent work, Gerritsen (2014) and Lockwood (2015) derives a modified
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Saez formula in the context of decision vs. experienced utility model. Lockwood (2015) zooms

in on the EITC program and provides an empirical analysis documenting significant present-bias

among EITC recipients and shows that a calibrated version of the model goes a long way towards

rationalizing the negative marginal tax rates associated with the EITC program.

This differs from alternative rationales for negative marginal income tax rates that have been

put forth in the traditional literature. For example, Saez (2002) shows that if the Mirrlees model is

extended to allow for an extensive margin of labor supply, then negative marginal income tax rates

can arise at the optimum. We refer the reader to the online appendix (section 12.8) for a behavioral

treatment of the Saez (2002) extensive margin of labor supply model.

4.3 Optimality of Simple Income Taxes

We use the notations and concepts from the treatment of simple taxes for the multi-person Ramsey

case, Section 3.6. We suppose that people pay disproportionate attention to the maximum tax and,

possibly, other quantiles of taxes. Formally, we suppose that the perceived tax can be expressed as

 (Q 0 ) = 
¡
(1)(Q) Q 0 

¢
for some function  that is 1. We assume that people do pay attention to the maximum tax (the

quantile 1, i.e. 100%): this is 1 = 1 is one of the quantile considered. As stated before,  parame-

trizes the attention function. We also consider a parameter 0 such that 
¡
(1)(Q) Q 0 0

¢
does not depend on (Q 0), i.e. where the agent solely pays attention to the quantiles 

(). One

concrete example of this is:  (Q 0 ) = (1−)  + with  =
PQ

=1 
() + , with

1  0. Then,  = ( ) and 0 = (0 0 ).

Suppose that  = 0 and define Γ (
∗) =

R∞
∗ (1−  ()) () .

Proposition 21 (Simple taxes — income tax). We suppose that, at 0, there is a well-defined

optimum tax system, which features Γ (∗) 6= 0 for almost all ∗  0. Then, generically, if  is near
0, the optimal tax system is simple, i.e. has at most Q different marginal rates.43

5 Endogenous Attention and Salience

We now allow for endogenous attention to taxes and analyze its impact on optimal taxes. We also

discuss tax salience as a policy choice in the design of the optimal tax system. We illustrate the

discussion in the context of the general analysis of Section 3.

43The condition Γ (∗) 6= 0 when  = 0 is arguably quite weak. Indeed, it is natural to expect that Γ (
∗)  0 for

∗  0. To see this, suppose that  = 0. Then, Lemma 9 in the online appendix gives have Γ (0) = 0. Take also the

case  = 0,  () =  (). As the social welfare weight  () is decreasing in , and Γ (0) = 0, we will have Γ (∗)  0
for all ∗  0.
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5.1 Attention and Welfare

Attention as a good To capture attention and its costs, we propose the following reinterpre-

tation of the general framework. We imagine that we have the decomposition c = (Cm), where

C is the vector of traditional goods (champagne, leisure), andm is the vector of attention (e.g. 

is attention to good ). We call  (respectively ) the set of indices corresponding to traditional

goods (respectively attention). Then, all the analysis and propositions apply without modification.

We here summarize the essentials, while Section 10.3 in the appendix gives more details.

This flexible modeling strategy allows to capture many potential interesting features of attention.

The framework allows (but does not require) attention to be chosen and to react endogenously to

incentives in a general way (optimally or not). It also allows (but does not require) attention to be

produced, purchased and taxed.

We find it most natural to consider the case where attention is not produced, cannot be purchased

and cannot be taxed. This case can be captured in the model by imposing that ( =  = 0 for

 ∈ ).

It is useful to consider two benchmarks. The first benchmark is “optimally allocated attention”,

which we capture as follows - we suppose that there is a primitive choice functionC(q m) for tra-

ditional goods that depends on attentionm= (1 ) so that c (q m) = (C(q m) m).
44

Attentionm=m (q ) is then chosen to maximize  (C (q m) m). This generates a function

c (q ) = (C(q m (q ))m(q )). In that benchmark, attention costs are incorporated in

welfare45 For instance we might a separable utility function  (Cm) =  (C) −  (m) for some

cost function  (m). A non-separable  might capture that attention is affected by consumption

(e.g., of coffee) and attention affects consumption (by needing aspirin).

The second benchmark is “no attention cost in welfare,” where attention is endogenous (given by

a functionm(q )) but its cost is assumed not to directly affect welfare so that  (Cm) = (C).

For instance, as a decision vs. experienced utility generalization of the example of the previous

paragraph, we could have m (q ) = argmax  (C (q m) m), where  (Cm) =  (C) −
 (m), but still  (Cm) = (C). In that view, people use decisions heuristics that can respond to

incentives, but the cost of those decision heuristics is not counted in the utility function. In practice,

this is largely because that cost of attention is hard to measure. In that benchmark,   = 0 for

 ∈ .

Optimal taxation with endogenous attention The tax formula (19) has a term (τ−eτ 
) ·

S

 =

P
∈( − e  )S


 , a sum that includes the “attention” goods  ∈ . As attention is

44For instance, in a misperception model, attention operates by changing the perceived price q (q m) which

in turn changes consumption as C(q m) = C(q q (q m)  ).
45The first order condition characterizing the optimal allocation of attention can be written as τ  ·c

(q m) = 0

for all  ∈ {1  }. This condition can be re-expressed more conveniently by introducing the following no-

tation: we call  () the index  ∈  corresponding to dimension  ∈ {1  } of attention. We then getP
∈  C

(q m) +  
()

= 0 for all  ∈ {1  }.
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assumed to have zero tax, we have  = 0 for  ∈ . To think about e  requires no special

treatment in general - this term can account for “misoptimization” terms in attention. However,

two polar cases are worth considering that simplify the calculations.

First, consider the “no attention cost in welfare” case. In this case we saw that e  = 0 for

 ∈ . Together with  = 0 for  ∈ , this implies that (τ − eτ 
) ·S

 =
P

∈ ( − e  )



is the sum restricted to commodities.

Second, consider the “optimally allocated attention” case. Proposition 34 indicates that

(τ − eτ 
) · S

 =
X
∈

(

 − e  



|) (46)

where S


| is a Slutksy matrix holding attention constant, which is in general different from S

 .

The reason is that for welfare, it is enough to consider constant attention by the envelope theorem.

For tax revenues, the full Slutsky matrix, including changes in attention, matters (the term 

 ).

However, for welfare, when attention is assumed to be optimally allocated, it is the Slutsky matrix

holding attention constant that matters (the term e  


|). This is a version of the envelope

theorem.

Illustration in the basic Ramsey case We illustrate those notions in the basic Ramsey

case of section 2 with just one taxed good (good 1, whose index we drop, and whose pre-tax price

is 1) and  = 0 and small taxes  . We go back to a very elementary presentation, as this provides

a clear intuition for the economic forces at work. Given attention  (), the perceived tax is

  () =  (), and demand is  () =  (1−  () ). We assume that attention comes from an

optimal cost-benefit analysis:

 () = argmax

−1
2
 2 (1−)

2 −  ()

The first term represents the private costs costs of misunderstanding taxes, −1
2
 ( −  )

2
 while

the term − () is the psychic cost of attention,  () (see Gabaix (2014)). The planner’s problem
is max  () with

 () = −1
2
2 ()  2 − ( ()) + Λ

where  = 1 in the “optimal chosen attention” case and  = 0 in the “no attention cost in welfare”

case. In the “fixed attention” case,  () is fixed, and  () = 0. Then, the optimal tax satisfies

0 () = − ()  ( () + 0 ())−0 ( ())0 () + Λ = 0

In the “optimal chosen attention” case, we use the agent’s first order condition 0 ( ()) =
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 2 (1− ()) and  = 1 and the optimal tax is

∗ =
Λ

 ()
2
+ 0 ()

(47)

In the “no attention cost in welfare case,”  = 0, the optimal tax is

0 =
Λ

 ()
2
+  ()0 ()

(48)

When attention is fixed, the optimal tax is  =
Λ

()2
 when 0 () = 0.

Proposition 22 In the interior region where attention has an increasing cost ( ()0 ()  0),

the optimal tax is lowest with attention is chosen optimally and its cost are taken into account

in welfare; intermediate in the “no attention cost in welfare”; and largest with fixed attention -

∗  0   .

When attention’s cost is taken into account, the planner chooses lower taxes ∗  0 to

minimize both consumption distortions and attention costs. 46 Plainly, the tax is higher when

attention is variable than when attention is fixed - this is basically because demand is more elastic

then (−




= − ( () + 0 ())).

5.2 Salience as a Policy Choice

Governments have a variety of ways of making a particular tax more or less salient. For example,

Chetty, Kroft and Looney (2009) present evidence that sales taxes that are included in the posted

prices that consumers see when shopping have larger effects on demand. It is therefore not un-

reasonable to think of salience as a characteristic of the tax system that can be chosen or at least

influenced by the government. This begs the natural question of the optimal salience of the tax

system.47

We investigate this question in the context of two simple examples. We start with the basic

Ramsey model developed in Section 2 with  = 0. Imagine that the government can choose

between two tax systems with different degrees of salience  and 0 with 0
   for all .

Then it is optimal for the government to choose the lowest degree of salience. We denote by 

(respectively 0) the value of the objective of the government with optimal taxes conditional on

salience m (respectively m0). The gain from decreased salience can be written as  − 0 = ∆

46The example allows to appreciate the Slutsky matrix with or without constant attention. In addition, the

Slutsky matrix with constant  has 
11| =

(1+)


= −, while the Slutksy matrix with variable  has

11 =
(1+())


= − (+ 0 (1)). The online appendix (section 12.6) provides other illustrations.

47Note that we are excluding taxes from directly affecting experienced utility: taxes affect utility only through

their impact on the chosen consumption bundle. In the terminology of Bernheim and Rangel (2009), we treat tax

salience as an anciliary condition.
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with ∆ = 1
2

P

=1

³
1
2


− 1
02


´
Λ2


  0. In this basic Ramsey model where taxes are used only

to raise tax revenues, less salient taxes are preferable. The reason is that less salient taxes are less

distortionary because the associated elasticities are lower   0
.

The result that less salience is desirable is not general. We choose to make this point in the

context of the basic Pigou model developed in Proposition 5. We suppose that all agents have

the same utility  =  and the same associated externality/internality  = , but that their

perceptions are different  6= 0. Now imagine that the government can choose between two

tax systems with different degrees of salience  and 0 for every agent . We want to capture

the idea that more salience not only increases average attention for all agents, but also decreases

the heterogeneity in perceptions . We formalize this comparative static with the following two

requirements [0]  [] and
 []

[2]


 [0]
[02]

. The gain from the decreased salience is

given by  − 0 = ∆ with ∆ = −1
2
Ψ2

³
 []

[2]
−  [0]

[02]

´
 0. In this basic Pigou model,

where taxes are used only to correct a homogenous externality/internality, more salient taxes are

preferable. This is because more salient taxes are perceived more homogeneously and can therefore

better correct for the underlying externality/internality.

In general the key observation is that the relevant Slutsky matrix S

 that appears in the

optimal tax formula depends on the salience of the tax system. It could also be interesting to allow

the government to combine different tax instruments with the same tax base but different degrees

of salience. Our general model could be extended to allow for this possibility. We would start with

a function 
¡
p τ 1 τ 2  τ

¢
, where τ  are tax vectors with different degrees of salience. Each

tax instrument  corresponds a Slutsky matrix 

 which depends on the tax instrument indexed

by . The optimal tax formula can then be written as
( )


= 0 where

 (τ )


=
X


[
¡
− 

¢
 + (τ̄ − eτ 

) · S
 ]

with τ̄ =
P

=1 τ
. The intuition for this formula is that the different tax instruments lead to

different substitution effects captured by different Slutsly matrices 

 . Note that the substitution

effect associated with one tax instrument  affects the common tax base of the other tax instruments

0, which explains why the formula features the total τ̄ rather than the individual tax τ .48

48As an extreme example, consider again the basic Ramsey example outlined above, and assume that the two tax

systems with salience  and 0 can be used jointly. Consider the case where there is only one agent and only one
(taxed) good. With 0  , we get

0 = (− ) + [ + (̄  − ̄)]S 0 = (− ) + [ + (̄ − ̄)]0S

where ̄ is the total perceived tax arising from the joint perception of the two tax instruments. This requires  = 

and with ̄ = 0. In other words, the solution is the first best. This is because a planner can replicate a lump sum

tax by combining a tax  with low salience  and a tax − 
0 with high salience 

0  , generating tax revenues

 
0−
0 per unit of consumption of the taxed good with no associated distortion. This is an extreme result, already

derived by Goldin (2012). In general, with more than one agent and heterogeneities in the mispereceptions of the
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6 Revisiting Diamond-Mirrlees and Atkinson-Stiglitz

In this section, we revisit two classical public finance results: the Diamond and Mirrlees (1971)

production efficiency result and the associated result that supply elasticities do not enter in optimal

tax formulas, as well as the Atkinson and Stiglitz (1972) uniform commodity taxation result.

6.1 Diamond-Mirrlees (1971)

6.1.1 Supply Elasticities: Optimal taxes with Efficient Production

So far, we have assumed a perfectly elastic production function (constant production prices p). In

traditional, non-behavioral models, this is without loss of generality. Indeed, with a complete set

of commodity taxes, optimal tax formulas depend only on production prices but not on production

elasticities τ . In behavioral models, this result must be qualified. This section therefore generalizes

the model to imperfectly elastic production function (non-constant prices p).

In behavioral models, prices p and taxes τ might affect behavior differently. We introduce a

distinction between taxes τ  that affect behavior like prices, and taxes, τ  that affect behavior

differently from prices. For example τ could represent taxes that included in listed prices p+ τ

(either because they are levied on producers or because they are levied on consumers but the listed

prices are inclusive of the tax) and taxes τ  that are not included in listed prices. An agent’s demand

function can then be written as c (p+ τ τ  ). This distinction will prove to be important for

the generalization of our results to imperfectly elastic production functions.

We denote the associated indirect utility function by  (p+ τ τ  ) and the Slutsky matrices

corresponding to τ  (or p) and τ by S

 and S


  respectively. We allow for the possibility

(but we do not impose it) that these Slutsky matrices do not coincide.

We assume that government must finance a vector of government consumption g and that profits

are fully taxed - we allow for decreasing returns to scale and nonzero profits. The production set is

expressed as {y s.t.  (y) ≤ 0}. Perfect competition imposes that  (y) = 0 and p=  0 (y), where

y is the equilibrium production. Market clearing requires that g+
P

c
 (p+ τ  τ  ) = y. We

denote by τ̄ = τ  + τ  the sum of the tax vectors.

We can write the planning problem as

max
 


¡¡
 (p+ τ  τ  )

¢
=1

¢
subject to the resource constraint



Ã
g+

X


c (p+ τ  τ  )

!
= 0

two taxes, the first best might not be achievable.
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and the competitive pricing condition

p =  0
Ã
g+

X


c (p+ τ  τ  )

!


The competitive pricing equation is a fixed point in p. We denote the solution by p (τ  τ  ).

The derivatives of this function p encapsulate the incidence of taxes depending on the demand and

supply elasticities. We define the price derivative matrix defined by  =


, the derivative of

the prices  of commodity  with respect to the tax 

 with  ∈ { }. We also define the supply

elasticity matrix  by  =


( 00−1) and the demand elasticities 


 by 


 = − 1



P
 c



.

Finally we define the matrix  (p) as the diagonal matrix with -th element given by . Then,

by applying, the implicit function theorem to the competitive pricing condition, we obtain after

some manipulations that the matrix of price derivatives  is given by

 = −(p) ( + 

)
−1

 (p)
−1

(49)

so that the  reflects both demand and supply elasticities. This formula is the behavioral extension

of the standard incidence calculations determining how the burden of taxes is shared between

consumers and producers. Compared with the traditional model without behavioral biases, the

difference is that  depends on the salience of the tax instrument . Incidence 
 therefore depends

on salience (and more generally on how taxes are perceived). This conceptual point already appears

in Chetty, Looney and Kroft (2009). Our incidence formula only generalizes it to many goods and

arbitrary preferences.

We replace p in the objective function and the resources constraint, and we put a multiplier 

on the resource constraint. We form the Lagrangian

 (τ  τ ) =
¡¡
 (p (τ  τ  ) + τ τ  )

¢
=1

¢− Ãg+X


c (p (τ  τ  ) + τ  τ  )

!


The optimal tax formulas can be written as 
= 0 for  ∈ { } if tax  is available.

Proposition 23 With an imperfectly elastic production function, the following results hold. If there

is a full set of commodity taxes τ  then the optimal tax formulas can be written as

0 =
X


[
¡
− 

¢
 + (τ̄ − eτ 

) · S
 ]

and are independent of production elasticities and coincide with those of Section 3 if taxes are

restricted to be of the τ  type or with those of Section 5.2 if taxes can be both of the τ  type and the

τ  type. Second, when there is a restricted set of commodity taxes τ , then the optimal tax formulas
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can be written as

0 =
X


[
¡
− 

¢
 + (τ̄ − eτ 

) · S


] +
X


X


[
¡
− 

¢
 + (τ̄ − eτ 

) · S
 ]

depend on production elasticities and do not coincide with those of Sections 3 and 5.2.

With a full set of commodity taxes τ , we can rewrite the objective function and the resource

constraint in the planning problem as a function of q = p + τ . We can then relax the planning

problem by dropping the competitive pricing equation, which is slack - this equation can then

simply be used to find τ  given the desired value of q. As a result, only the first derivatives of

the production function p =  0 enter the optimal tax formulas and not the second derivatives  00

(and hence do not depend on supply elasticities). With a restricted set of commodity taxes τ,

this relaxation of the planning problem fails, the competitive pricing equation cannot be dropped,

and the optimal tax formulas depend on the second derivatives  00 (and hence depend on supply

elasticities).

Therefore, with behavioral agents, the principle from traditional models that supply elasticities

do not enter in optimal tax formulas as long as there is a full set of commodity taxes extends if

taxes are understood to be of the τ  form. The difference is that even with a full set of commodity

taxes of the τ  (which would be enough to guarantee that optimal tax formulas do not depend on

supply elasticities in the traditional model), optimal tax formulas do depend on supply elasticities

if there is only a restricted set of commodity taxes of the τ  form.

A similar result holds in the Mirrlees case. Hence, in the traditional analysis, the supply elasticity

doesn’t appear in the optimal tax formula. This is not true any more with a behavioral model,

which is developed in Proposition 47 of the online appendix.

To illustrate Proposition 23, consider the separable case  (c) = 0+ (1) in the misperception

case with  1 = 

1 +1


1 , with 0 ≤ 1 ≤ 1 and 


1 is exogenous (perhaps set to 0).

We represent the production function as follows - it takes  (1) units of good 0 to produce 1

units of good 1. We define supply and demand to be  (1) =  0−1 (1) and  (1 + 

1 +1


1) =

0−1 (1 + 

1 +1


1) We denote the corresponding supply and demand elasticities (corresponding

to a fully perceived change in 1) by   0 and   0 . Differentiating the equilibrium condition

 (1) = (1 + 

1 +1


1) yields

11 = −


 + 
1

Compared to the traditional incidence analysis, because consumers are not fully attentive to the

tax on good 1 (1  1), the burden of the tax is shifted to the consumer. This echoes a result in

Chetty, Looney and Kroft (2009).

We now turn to optimal taxes. We work in the limit of small taxes when Λ = − 1 is close to
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0 as in Section 2. Then, the optimal tax  1 satisfies

0 =

µ
Λ1 −  1

1

1
11

¶
+

µ
Λ1 −  1

1

1
1

¶
11

which we can rewrite as
Λ

1
=



1 +1


1

1

1 + 11
1 + 11



As long as 1  1, the higher is the supply elasticity , the more the burden of the tax is shifted

to the consumer, the higher is 11  0, and the lower is the optimal tax.
49

6.1.2 Productive Inefficiency at the Optimum

A canonical result in public finance (Diamond and Mirrlees 1971) shows that there is production

efficiency at the optimum if there is a complete set of commodity taxes and either constant returns

or fully taxed profits. We show that this result can fail even when the planner has a full set of

commodity taxes of the τ  type (which would be enough to guaranty production efficiency in the

traditional model), as long as there is not a full set of commodity taxes of the τ  type.

We start by considering the case where there is a full set of commodity taxes of the τ  type and

show that production efficiency holds under some extra conditions. We denote by q = p+τ . We fol-

lowDiamond andMirrlees (1971) and establish that production efficiency holds by assuming that the

planner can control production, showing that the planner chooses an optimum on the frontier of the

production possibility set. The corresponding planning problem ismax  
¡¡
 (q τ  )

¢
=1

¢
subject to the resource constraint 

¡
g+

P
 c

 (q τ  )
¢ ≤ 0.

Proposition 24 With a full set of commodity taxes τ , production efficiency holds if either: (i)

there are lump sum taxes and for all q τ  and ,  (q τ
 ) ≥ 0 for all  with a strict inequality

for some  ; or (ii) for all q, τ and , there exists a good  with  (q τ
 ) ≤ 0 for all  with a

strict inequality for some .

The proof is almost identical to the original proof of Diamond and Mirrlees (1971). Note however

that the conditions  (q τ
 )  0 or  (q τ

 )  0 can more easily be violated than in the

traditional model without behavioral biases. Indeed, when agents misoptimize, it is entirely possible

that the marginal utility of income be negative  (q τ
 )  0. Loosely speaking, this happens if

mistakes get worse as income increases. Similalry, it is entirely possible that  (q τ
 )  0 for

all  since Roy’s identity does not hold (


6= −). Failures of production efficiency could then

49Another way to see this is as follows. Consider the optimal tax with infinitely elastic supply  =∞ (a constant

price 1). It satisfies
³
Λ1 − 1

1
1
11

´
= 0. Now imagine that   ∞. Then at this tax

³
Λ1 −  1

1
1
1

´
 0

so that
³
Λ1 −  1

1
1
1

´
11  0 and by implication

³
Λ1 − 1

1
1
11

´
+
³
Λ1 −  1

1
1
1

´
11  0 This implies that

increasing the tax improves welfare.
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arise even with a full set of commodity taxes τ . In the interest of space, we do not explore these

conditions any further.

We now show that production efficiency can fail with a restricted set of commodity taxes τ ,

even if there is a full set of commodity taxes τ . Consider the following example. There are two

consumptions goods, 0 and 1, two types of labor,  and , a representative agent with decision utility

 (0 1  ) = 0+  (1)− − , and experienced utility  (0 1  ) =  (0 1  )−∗1,
where ∗  0 indicates an internality. For instance, 1 could be cigarette consumption. Hence, the

government would like to discourage consumption of good 1.

The production function for good  is  =
³



´ ³

1−

´1−
, with  ∈ (0 1). As before, 0 is

the untaxed good, 0 = 0. The government can set taxes 1  and  on good 1, labor of type

 and labor of type , and tax the employment of type  labor in sector 1. We assume that the

consumer perfectly perceives taxes  , and prices 0 1   (the latter being the price of labor

of type  ). In addition, the government can set a tax 1 for the use of input  in the production

of good 1. Note that production efficiency is equivalent to 1 = 0.

Proposition 25 If the consumer is fully inattentive to the tax 1, then the optimal tax system

features production inefficiency: 1  0. If the consumer is fully attentive to the tax 1, then the

optimal tax system features production efficiency: 1 = 0.

The essence is the following - the government would like to lower consumption of good 1, which

has a negative internality. However, agents do not pay attention to the tax 1 on good 1, therefore

a tax on good 1 will not be effective. We assume that the government cannot use producer taxes.

Hence, the government uses a tax 1  0 on the input use in the production of good 1 (lowering

production efficiency) to discourage the production of good 1, increase its price and discourage its

consumption.

6.2 Atkinson-Stiglitz (1972)

Atkinson and Stiglitz (1972) show uniform commodity taxation is optimal if preferences have the

form  (0  (C)), with C = (1  ),  homogeneous of degree 1, and 0 (the untaxed good)

might be leisure. We now investigate how to generalize this result with behavioral agents.

Proposition 26 Consider the decision vs. experienced utility model. Assume that decision utility

is of the form  (0 
 (C)) and that experienced utility is of the form  (0  (C)) with  and

 homogeneous of degree 1. Then, if  = , then uniform ad valorem commodity taxes are optimal

(even though decision and experienced utility represent different preference orderings), but, if  6= ,

then uniform ad valorem commodity taxes are not optimal in general.

The bottom line is that with behavioral biases, it is no longer sufficient to establish empirically

that expenditure elasticities for (1  ) are unitary.
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Another relevant consideration has to do with time horizons. Consider a tax reform and as-

sume away any link between periods for simplicity (say because agents do not have access to asset

markets). Imagine a situation where, in the long-run, choices can be represented by a decision

utility  (0 
 (C))  and welfare can be evaluated with an experienced utility  (0  (C)) with

 = . But, in the short-run as the tax code changes, agents misperceive taxes and, hence, make

different choices. Then optimal time-varying taxes might be uniform in the long run but not in

the short run. Likewise, if agents pay differential attention to taxes (at least in the short run), the

Atkinson-Stiglitz (1972) neutrality result will fail.

7 Discussion

7.1 Novel Sufficient Statistics

Operationalizing our optimal tax formulas (19) and (44) requires taking a stand on the relevant

sufficient statistics: social marginal value of public funds, social marginal utilities of income, elas-

ticities, internalities and externalities. For example in the general Ramsey model, the optimal tax

formula features the social marginal value of public funds , the social marginal utilities of income

, consumption vectors c, Slutsky matrices S, and marginal internalities as measured by the

ideal misoptimization corrective taxes τ̃ . All these sufficient statistics are present in the optimal

tax formula of the traditional model with no behavioral biases, with the exception of marginal

internalities τ̃ . They are routinely measured by empiricists. They can be estimated with rich

enough data on observed choices. The fact that agents are behavioral influences their value but

does not change the way they should be estimated.

The marginal internalities τ̃ , which summarize the effects of behavioral biases at the margin

are arguably harder to measure. This poses a problem similar to the more traditional problem of

estimating marginal externalities τ  to calibrate corrective Pigouvian taxes in the traditional with

no behavioral biases. The common challenge is that these statistics are not easily recoverable from

observations of private choices. In both cases, it is possible to use a structural model, but more

reduced-form approaches are also feasible in the case of internalities.

Indeed, a common strategy involves comparing choices in environments where behavioral biases

are attenuated and environments resembling those of the tax system under consideration. Choices

in environments where behavioral biases are attenuated can be thought of as rational, allowing the

recovery of experienced utility  as a utility representation of these choices, with associated indirect

utility function . Differences in choices in environments where behavioral biases are present would

then allow to measure the marginal internalities τ  =q−

. For example, if the biases arise from

the misperception of taxes so that τ  =τ − τ , then perceived taxes τ  could be estimated by

comparing the environment under consideration to an environment where taxes are very salient or

more generally where the environment is clearly understood by agents. If the biases arise because
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of temptation, then standard choices would reveal decision utility . To the extent that agents

are sophisticated and understand that they are subject to these biases, experienced utility  could

be recovered by confronting agents with the possibility of restricting their later choice sets. In

the terminology of Bernheim and Rangel (2009), this strategy uses refinements to uncover true

preferences.

Another strategy (see e.g. Chetty, Kroft and Looney (2009) and Allcott, Mullainathan and

Taubinsky (2012)) is to establish and isolate behavioral biases is to find violations of the conditions

imposed by rational choice (for example showing that a demand elasticity depends on the salience

of the tax). Yet another strategy if behavioral biases arise from misperception is to use surveys to

directly elicit perceived taxes τ  (see e.g. Liebman and Zeckhauser (2004) and Slemrod (2006)).

Similarly, in the Mirrlees model, our optimal tax formula (44) features the distribution of income

 () and ∗ (), the social marginal utilities of income  (), the elasticities  () and ∗ () as

well as e  (∗). All these sufficient statistics are present in the optimal tax formula of the traditional
model with no behavioral biases, with the exception of ∗ () and e  (). Even though measuring
the behavioral cross-influence ∗ () (which measures how changing the marginal tax rate at 

∗

impacts the labor supply at ) is typically neglected (because ∗ () = 0 in the traditional model

with no behavioral biases), measuring the elasticity ∗ () poses no conceptual difficulty as it can

be recovered from observation of private choices but of course measuring it constitutes an interesting

empirical challenge.50 As for e  (), the same strategies that were discussed for e  in the context
of the Ramsey model above can be employed in this Mirrlees context as well.

In the misperception model, another, complementary approach is possible by using surveys (see

e.g. De Bartolome 1995, Liebman and Zeckhauser 2004 and the references therein) to directly

measure perceptions (in our model, this is the matrix  =
 ()


).

Finally, we have argued that the conditions (on the richness of the set of tax instruments) for

the supply elasticities not to enter direction in the optimal tax formulas are more stringent when

agents are behavioral than in the traditional model. In some sense, supply elasticities and their

empirical measurement are therefore more central to the behavioral approach than to the traditional

approach.

It would be interesting to study if the condition for the optimality of simple taxes is verified in

practice, and to see for example if the maximum tax has an important influence on behavior. The

same idea holds for marginal tax rates. Is the top tax particularly salient? This kind of consideration

is present in the policy debate (under headings like “business-friendliness” of the environment) but

it would be desirable to bring rigorous empirical evidence to bear on this question.

50That might help bridge the gap between micro and macro elasticities, as people are both influenced by their

“local-micro” tax ( ()) and the “ambient” tax rates (, perhaps the average tax rate).
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7.2 Robustness to Learning?

Arguably, our results are not just short-run effects. First, there seems to be a persistence of

confusion. Slemrod (2006) argues that Americans overestimate on average the odds their inheritance

will be taxed. People seem to perceive average for marginal tax rates (Liebman and Zeckhauser

2004); people may overestimate the odds they’ll move to a higher tax bracket (Benabou and Ok

2001). Second, our framework applies to situations where consumers do not maximize experienced

utility. There, learning may be quite slow. For instance, people may persistently smoke too much,

perhaps because of hyperbolic discounting (Laibson 1997).

In addition, we also provide an analytical justification in the context of a simple explicit learning

model. Suppose that taxes  at set once and for all time 0. Agents start by being inattentive for

an an amount of time 1− , and then become attentive for an amount of time  (this could be

the “discounted” amount of time, so that it takes  years to learn, then  =
R∞


− = − ).

Welfare is then given by  () = −1
2

P


£
(1−) (  )

2
+ 2

¤
+

P
 . This is exactly like

a one-period model with a fraction  of fully attentive agents. The setup is similar to Proposition

2. We use   = max to make the point.

Proposition 27 (Simple tax scheme from bounded rationality with learning) If learning is slow

enough, the optimal tax system is to have simple taxes forever.

The online appendix (Section 12.7) also develops a model where the government can continuously

update the tax system, where the conclusion is qualitatively the same. The idea is that complex

taxes have short-run costs (people make mistakes) and long-run benefits (the system is closer to the

Ramsey ideal once agents have learned). It is optimal to keep taxes simple if agents learn slowly.

8 Conclusion

We wrote a behavioral version of the main results from the traditional static theory of optimal

taxation. A natural extension is to dynamic settings and to more general contracting environments.

We plan to develop this issue in future work.
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9 Appendix: Notations

Vectors and matrices are represented by bold symbols (e.g. c).

General notations

c :consumption vector

 :index for household type 

 :government’s objective function.

mM :attention vector, matrix

p: pre-tax price

p: subjectively perceived price

q =p+τ : after-tax price

q: subjectively after-tax perceived price

SS

 S


 :Column of the Slutsky matrix when price  changes.

 (c) : true utility

 (c): subjectively perceived utility

 (p ) : true indirect utility

 :personal income

 :social utility

Λ = − 1 :weight on revenue raised in planner’s objective
: demand elasticity for good 

τ : tax

τ : subjectively perceived tax

: externality

Multiperson Ramsey

T : tax schedule (e.g.  = {τ  0}, where 0 is a lump-sum transfer).

Q: number of quantiles agents pay attention to
 (resp. ): marginal social utility of income (resp. adjusted for externalities)

 :parametrization of perception functions

τ : ideal corrective tax for misoptimization

 : nudge parameter

Nonlinear income tax

 () :social welfare weight

 () (resp. ∗ ()): density (resp. virtual density) of earnings 

 (): cumulative distribution function of earnings
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 :agent’s wage, also the index of his type

 () = 0 (): marginal retention rate, locally perceived

Q = ( ())≥0: vector of marginal retention rates

0: tax rebate at 0 income

 () :virtual income

 () =  −  (): retained earnings

 (): tax given earnings 

: pre-tax earnings

 (): marginal social utility of income

: income elasticity of earnings

 :Pareto exponent of the earnings distribution

: compensated elasticity of earnings

∗ (): compensated elasticity of earnings when the tax rate at 
∗ changes.

 : uncompensated elasticity of earnings

10 Appendix: Behavioral Consumer Theory

Here we develop behavioral consumer theory with nonlinear budget. The agent faces a problem:

max  (c) s.t.  (cp) ≤ . When the budget constraint is linear,  (cp) =p · c,

 =   =  with a linear budget

In general (e.g. in Mirrlees), the budget constraint  (cp) could be non-linear.

The agent, whose utility is  (c), may not completely maximize. Instead, his policy is described

by c (p ), which exhausts his budget  (c (p ) p) = . Though this puts very little structure

on the problem, some basic relations can be derived. We then propose specific behavioral models

and an application to welfare with inattention.

10.1 Abstract general framework

The indirect utility is defined as  (p ) =  (c (p )) and the expenditure function as  (p b) =
min (cp) s.t.  (cp) ≥ b. This implies  (p  (p b)) = b (with b a real number). Differentiating
with respect to , this implies




= −  (50)

We define the compensated-demand based Slutsky matrix, defined as:

S
 (p ) = c (p ) + c (p ) (cp)|=() (51)
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The Hicksian demand is: h (p b) =c(p  (p b)), and the Hicksian-demand based Slutsky matrix
is defined as: S

 (p b) = h (p b).
The Slutsky matrices represent how the demand changes when prices change by a small amount,

and the budget is compensated to make the previous basket available, or to make the previous utility

available:S (p ) = c (p+ x  (c (p ) p+ x))|=0 andS
 (p ) = c (p+ x  (p+ x  (p )))|=0

i.e., using (50),

S
 (p ) = c (p )− c (p )

 (p )

 (p )
(52)

In the traditional model, S = S , but we shall see that this won’t be the case in general. 51

We have the following elementary facts (with c(p )   (p ) unless otherwise noted).

 · c = 1,  · c = −, c =  (53)

The first two come from differentiating (c (p ) p) = . The third one comes from differentiating

 (p ) =  (c (p )) with respect to .

Proposition 28 (Behavioral Roy’s identity) With  (p ), we have




= − (c (p ) p) + (54)

where

 (p ) = −τ  (p ) · c (p ) = −τ  · S
 = −τ  · S

 (55)

and the ideal misoptimization corrective tax is defined to be

τ  (p ) =  (c (p ) p)−  (c (p ))

 (p )
(56)

When the agent is the traditional rational agent, τ  = 0. In general, τ  · c (p ) = 0.

Proof : Relations (53) imply: τ  · c =
³
 − 



´
c = 1 − 1 = 0. Next, we differentiate

 (p ) =  (c (p ))



=

c


=
( −  + ) c



=
( − ) c


− as  · c = − from (53)

= −τ  · c − (57)

51See Aguiar and Serrano (2015) for a recent study of Slutsky matrices with behavioral models.
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Next,

 = −τ  · c = −τ  ·
µ
S
 + c (p )

 (p )

 (p )

¶
by (52)

= −τ  · S
 as τ

 · c = 0 (58)

Likewise, (51) gives, using again τ  · c = 0

 = −τ  · c = −τ  · ¡S
 − c

¢
= −τ  · S



¤

Proposition 29 (Slutksy relation modified) With c(p ) we have

c = −c + S

 + c = −c − c

¡
τ  · S



¢
+ S



c = −c + S



and

S
 − S

 = c = −c
¡
τ  · S



¢
(59)

Proof.

c = c
 (p )

 (p )
+ S

 by (52)

= c
¡− +

¢
+ S

 by Proposition 28

Also, (51) gives: c = −c + S

 .¤

Lemma 3 We have

 · S
 = 0,  · S

 = − (60)

Proof Relations (53) imply  · S
 =  ·

¡
c + c

¢
= − + = 0. Also,  · S

 =

 ·
¡
S
 − c

¢
= −. ¤

10.2 Application in Specific Behavioral Models

10.2.1 Misperception model

To illustrate this framework, we take the misperception model (i.e., the sparse max agent). It

comprises a perception function p (p ) (which itself can be endogenized, something we consider

later). The demand satisfies:

c (p ) = h (p (p )   (p )) (61)
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where h (p ) is the Hicksian demand of a rational agent would perceived prices p (p ).

Proposition 30 Take the misperception model. Then, with S (p ) = h (p
 (p )   (p ))

the Slutsky matrix of the underlying rational agent, we have:

S
 (p ) = S

 (p ) · p (p ) (62)

i.e. 
 =

P
 






()


, where



()


is the matrix of perception impacts. Also

τ  =  (cp)−  (cp
)

 (cp) · c (p ) (63)

Given  (p
 c) ·S

 = 0, we have:

 = ( (p c)− (p
 c)) · S

 =  (p c) · S
 (64)

so that

 = τ  · S
 with τ

 =  (p c)− (p
 c) (65)

This implies that in welfare formulas we can take τ  =  (p c) −  (p
 c) rather than the

more cumbersome τ  =  (cp)− (
)

()· .

Proof Given c(p ) = h (p (p )   (p )), we have c = h

. Then,

S
 = c (p )− c (p )

 (p )

 (p )
= hp



(p ) + h − c





= Sp (p ) + h

 − h




as c = h




= Sp (p )

Next, observe that the demand satisfies  (p ) = Λ (p
 c) for some Lagrange multiplier

Λ, and that  (p
 c) ·S = 0 for a rational agent (see equation (60) applied to that agent). So,

 (p
 c) ·S = 0.

− (p ) = τ  · S
 =

µ
 − 



¶
· Sp (p ) =

µ
 − Λ (p

 c)

 (p )

¶
· Sp (p )

=  · Sp (p ) = ( − (p
 c)) · Sp (p )

Finally, we have 

= Λ (cp

) for some scalar Λ  0. Given (53)
(())

()
= 

· =
(

)

()· (indeed, both are equal to


· ).

¤
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We note that ·S = 0 in the (static) misperception model (this is because  = Λ (cp
) for

some scalar Λ, and  (cp
) ·S = 0 from Proposition 31). This is not true in the decision-utility

model.

Representation lemma The following Lemma means that the demand function of a general

abstract consumer can be represented as that of a misperceiving consumer with perceived prices

p (p ).

Lemma 4 (Representing an abstract demand by a misperception). Given an abstract demand

c(p ), and a utility function  (c), we can define the function:

p (p ) =
 (c (p ))

 (p )
(66)

Then, the demand function can be represented as that of a sparse agent with perceived prices

p (p ).

c (p ) = c (pp (p )  )  (67)

Proof The demand of a sparse agent c (pp ) is characterized by  (c
 (pp )) = p

for some , and p·c= . By construction, we have  (c
 (pp )) = p for p = p (p ).

Hence, the representation is valid. We make a mild assumption, namely that given a c=c(p ),

there’s no other c0 with p·c0 = ,  (c
0) =  (c), and  (c0)   (c). Otherwise, we would need to

consider another “branch” of the sparse max, namely a solution  (c
) = p with c · p =  with

 not necessarily the lowest value possible.¤
We note that for any p (p ) =  (c (p )) for some   0, we have

(())

()
= 

· (indeed,

both are equal to 
· ).

10.2.2 Decision-utility model

In the decision-utility model there is a “true” utility function  (c), and a perceived utility function

 (c). Demand is c(p ) = argmax 
 (p c) s.t.  (p c) ≤ .

Consider the “parallel” agent who’s rational with utility . We call  (p ) =  (c (p )) his

utility. For that parallel agent, rational agent, call S (p ) = c (p ) + c (p )
0
c his Slutsky

matrix.

Proposition 31 In the decision-utility model, S
 = S


 is the Slutsky matrix of a rational agent

with utility  (c). The ideal misoptimization corrective tax is:

τ  =
 (c (p ))

 (p )
−  (c (p ))

 (p )

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10.2.3 Hybrid Model: Agent maximizing the wrong utility function with the wrong

prices

Suppose now an agent with true problem max  (c) s.t.  (p c) ≤ , but who maximizes

smax|  (c) s.t.  (p c) ≤  with both the wrong utility and the wrong prices. This is hy-

brid of the two previous models.

In terms of decision (if not welfare), the agent is a misperceiving agent with utility  and

perceived prices p. Call  (p ) =  (c (p )) and h (p b) = argmin (p c) s.t.  (c) ≥ b
the indirect utility function (of that misperceiving agent) and the rational compensated demand of

that agent with utility . Then, our agent has demand:

c (p ) = h (p (p )   (p )) (68)

Proposition 32 (Agent misperceiving both utility and prices) Take the model of an agent max-

imizing the wrong utility function  (c), with the wrong perceived prices p. Call S (p ) =

h

 (p

 (p )   (p )) the Slutsky matrix of the underlying rational agent who has utility , and

define

S
 (p ) = S (p ) · p (p ) (69)

i.e. 
 =

P
 






()


, where



()


is the matrix of marginal perception. Then,

S
 (p ) = S


 (p ) + c

µ



+

¶
S
 (p ) = S


 + c

µ



− 



¶
S
 (p ) = c − c





We can write

− = τ  · S


with:

τ  = ( (cp)− (p
 c)) +

µ


− 



¶
(70)

Finally,  (p
 c) ·S

 = 0.

This tax τ  is the sum of two gaps: between the prices ( (cp) −  (p
 c)) and perceived

prices, and between true utility and perceived utility (


− 


).
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Proof. So, withM  =
()


, and use c(p ) = h (p  (p )):

c (p ) = h

 

c (p ) = h

 ·M  + h


  = S


 + c





Using (51) and (52) gives:

S
 = c (p ) + c (p ) (cp) = S


 + c

µ



+

¶
S
 = c (p )− c (p )

 (p )

 (p )
= S

 + c

µ



−  (p )

 (p )

¶
We have

 (p
 c) · S

 =  (p
 c) · h (p ) ·M  = 0 as  (p

 c) · h (p ) = 0

Recall also that


= Λ (p

 c) as the agent maximizes with perceived prices p. Hence,

− =

µ
 (cp)− 



¶
S


=

µ
( (cp)− (p

 c))−
µ



− Λ (p

 c)

¶¶
S
 as  (p

 c) · S
 = 0

=

µ
( (cp)− (p

 c))−
µ



− 



¶¶
· S

 = τ  · S


¤

10.3 Attention as a good

10.3.1 Interpreting attention as a good

We propose a simple abstract way to think about attention, including its potentially suboptimal

allocation. Call c= (Cm) the “meta-good” made of both regular commodities C and attention

m, which are both vectors. Utility is  (c) =  (Cm). The framework applies  (c). There is a

demand c(p ). We can think that attention has market price 0 (it could have a non-zero price,

for instance if m is the amount of computer power one uses to optimize).

The concrete example of misperception framework is worth keeping in mind for concreteness. We

have the demand C (pp m) = arg smax|  (Cm) s.t.  · (Cm) ≤ , which depends on

perceived prices p. Then, given p (p m), demand is C(p m) =C (pp (pm )  m).

If m is optimally allocated, m(p ) = argmax  (C (p m) m). In general (even with non-

optimal attention), given an attention policy m(p ), demand is C(p ) =C(p m (p )).

71



Characterizing optimal allocation of attention Suppose that we have a constraint: c(p ) =c(p 

for some parameter . For instance, suppose that c(p  ) = (C (p m ()) m ()); when

m () = θ, we’re considering the potentially optimal allocation of attention, as attention affects

directly the choice of goods. If m= (123) = (1 2 2), we captures that the attention to

goods 2 and 3 have to be the same.52

Proposition 33 (Characterizing optimal allocation of attention) The first order condition for the

optimal allocation of parameter  (i.e.,  (p ) = argmax  (c (p  ))) is:

τ  · c (p  ) = 0 (71)

Proof The FOC is c = 0. We note that·c = 0 by budget constraint: (c (p  )) = .

So,

τ  · c =
µ
 (cp)

 (p )
−

¶
· c =  (cp) · c

 (p )

so that τ  · c = 0 if and only if  · c = 0. ¤

Proposition 34 (Value of when attention is optimal). When attention is of the form c (p  ) =

(C (p m ()) m ()), and is optimally chosen, then

− = τ 
 ·C (p m)|=(())

= τ 
 · S

| (p m)|=(()) = τ 
 · S

| (p m)|=(())

where τ 
 =  (Cp) − ()

()
is the ideal tax restricted to goods consumption, and S

| and

S
| are the Slutsky matrices S

 and S
 holding attention constant, i.e. associated to decision

C (p m) with constant m =m ( (p )).

Proof We have

− = τ  · c (p  ) = τ  · £¡C (p m)  0
¢
+ c (p  )  (p )

¤
= τ  · ¡C (p m)  0

¢
as τ  · c = 0

=
¡
τ 
 τ




¢ · ¡C (p m)  0
¢
= τ 

 ·C (p m) . = τ 
 · S

 = τ 
 · S

|

“No attention cost in welfare” benchmark Another benchmark is the “no attention cost

in welfare”, i.e. the cost of attention is not taken into account in the welfare analysis. Suppose

52In a model of noisy decision-making à la Sims (2003), the same logic exactly applies, except that quantities

are generally stochastic. The consumption is a random variable  ( e), where e indexes noise, rather than a
deterministic function. Then, utility is  ( ()) :=  [ ( ( e))], S () is likewise a random variable. We

do not pursue this framework further here, at it is hard to solve beyond linear-quadratic settings, e.g. with Gaussian

distribution of prices — which in turn generates potentially negative prices.
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that attentionm just moves with prices, but as an automatic process whose “cost” is not counted:

this is,  (Cm) =  (C) and attention has 0 price, p = 0. This is the way it is often done in

behavioral economic (see however Bernheim and Rangel 2009): people choose using heuristics, but

the “cognitive cost” associated with a decision procedure isn’t taken into account in the agent’s

welfare (largely, because it is very hard to measure, and that revealed preference techniques do not

apply).

Proposition 35 (Value of  in the case of fixed attention, and the case of “No attention cost in

welfare”). In the “fixed attention” and the “No attention cost in welfare”

− = (τ

  0) · S

 (p ) =

X
=1

τ 

S
 =

¡
τ 
  0

¢ · S
 (p ) = (τ


 0) · c (p )

This is, only the components of τ  and the Slutsky matrix linked to commodities matter.

Proof

We have τ  =
¡
τ 
 τ




¢
=
¡
τ 
 0
¢
as  = 0. So, − = τ  · S

 (p ) = τ 
 · S

. ¤

Misperception example In the misperception model with attention policy m (p ), we

have:

c (p ) = (C [pp (p m (p ))   (p )] m (p ))

When attention is optimally chosen, we can apply Proposition 34 with m () = . This gives:

− = τ 
 · S,

 with

S
| = S

p (p m) (72)

i.e. the Slutsky matrix has the the sensitivity with fixed attention. Hence, we have both − =

τ 
·S,

 when attention is optimal.

In the “no attention cost in welfare” case, τ 
 = 0 and

− = τ 
 · S



When attention is not necessarily optimal, we also have (from (64)), using again decomposition

τ  =
¡
τ 
 τ




¢
:

− = τ  · S = τ 
 · S

 + τ



m



where S
 =S

 ·p (p ), where now the total derivative matters, including the variable attention.
The online appendix (section 12.6) presents more examples.
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11 Appendix: Proofs

The online appendix contains further proofs.

Proof of Proposition 7 We observe that a tax  modifies the externality as:




=
X




∙
 (q  ) + 





¸

so 


=


 




1− 



. The term 1

1− 



represents the “multiplier” effect of one unit of pollution

on consumption, then on more pollution. So, calling 


no 
the value of 


without the externality

(that was derived in Proposition 6)




− 



no 

=




(X









+ 

X


τ ·  (q  )
)
=





X


"





+ τ · 

#

=

P
 




1−P 



X


"





+ τ · 

#
= Ξ

X






Using Proposition 6,




=
X


[(− ) + τ · S
 − τ  · S

 + Ξ · (− + S
 )]

=
X


[(−  − Ξ · ) + (τ +
Ξ


) · S

 − τ  · S
 ]

Proof of Proposition 8




=
X


[





+ (τ − τ )]c =

X


[
µ


− q + q

¶
+ (τ − τ )]c

=
X


[
µ


− q

¶
+ τ ]c as q · c (q  ) =  implies q · c = 0

Proof of Proposition 18 We call T = {τ  } the tax system, made of the schedule of tax
rates τ = ()=1, and the potential lump-sum transfer , which could be optimized or not (then

 is just a fixed value, perhaps 0). From Proposition 6, define:

 (T  ) =
X


¡
− 

¢
 +

X


£
τ  +

¡
− 

¢
τ
¤ · S

 S

 =

X


S

 



Define  = { (1)   (Q)} the set of quantiles at the optimum. The reader is encouraged to
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think of the central case where consumer think about just one quantile, the maximum, so  =

{max}. Here  (T  ) = 

(T  ) whenever  is not one of the quantile taxes, i.e.  ∈  .

Case  = 0. We suppose by contradiction that there is an  with  ∈  . Given M = 0,

S

 = 0, so that  (T  0) =

P


¡
− 

¢
 6= 0. We have  (T  0) 6= 0 whenever  ∈  . This

implies that  can’t be an optimum. This proves that any tax  must have a value in  , which has

at most Q elements. In short, simple taxes are optimum when  = 0.

Case  close to 0. We call T ∗ the optimal tax system when  = 0. We reason for ( ) in

small neighborhood  of (T ∗∗ 0). Because  (T ∗∗ 0) 6= 0, we know that, perhaps by reducing
, we have  ( ) 6= 0 for all ( ) ∈ .

It is clear that for a generic economy, for  close enough to 0, the optimum tax T ∗ () is
unique and continuous in . So, for  close enough to 0, (T ∗ ()  ) will be in . This implies

 (T ∗ ()  ) 6= 0 for all . Hence, if we had  ∈  , we’d have 

(T ∗ ()  ) =  (T ∗ ()  ) 6= 0,

a contradiction with the optimality of . Hence, we must have  ∈  . As in the case  = 0, this

means that all taxes have one of the Q values in  : the tax system is simple.
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