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Abstract

This paper explores the implications of costly information ac-

quisition in a strategic communication model. We show that equi-

librium decisions based on a biased expert’s advice may be more

precise than when information is directly acquired by the decision

maker, even if the expert is not more efficient than the decision

maker at acquiring information. This result bears important im-

plications for organization design. Communication by an expert to

a decision maker may often outperform delegation of the decision

making authority to the expert, as well as centralization by the de-

cision maker of both information acquisition and decision making

authority.
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1 Introduction

Strategic information transmission is one of the central topics in economics

of information. Starting from the seminal work of Crawford and Sobel

(1982), this literature highlights the limited scope of information transmis-

sion via cheap talk messages, which generically leads to inaccurate or im-

precise decisions.1 However, the typical assumption made in this literature

is that perfect information is exogenously given to the expert-sender for

free, and he bears no cost of information acquisition.2 This informational

structure is clearly an extreme point in the set of feasible possibilities. In-

deed, information is typically costly. Expertise and knowledge are usually

obtained as a result of often time-consuming work and costly research.3

Departing from the previous literature, we consider a model of strategic

communication where information is costly and the decision to acquire it is

taken endogenously. In this context, we show that the decision-maker may

be able to induce the expert to overinvest, i.e. to acquire more information

than the decision-maker would acquire if the latter performed this task

herself, even if the expert does not have a better technology of information

acquisition. This insight yields our main finding: the decisions based on

advice of a biased expert can be more precise than the decisions based on

direct information acquisition by the decision maker. Precisely, under some

parametric restriction explained later, expert advice is strictly more precise

than direct information acquisition for all Pareto efficient equilibria, with

the exception of the equilibrium that maximizes the expert’s payoff, for

1See, for example, the contributions by Austen-Smith (1993), Gilligan and Krehbiel
(1987, 1989), Krishna and Morgan (2001a, 2001b), Wolinsky (2002), Battaglini (2002,
2004), Ambrus and Takahashi (2008).

2The exceptions include Austen-Smith (1994), Ottaviani (2000) and Ivanov (2010).
In Austen-Smith (1994), the sender may either acquire full information or remain com-
pletely ignorant. In Ottaviani (2000), the amount of information available to the expert
is exogenously given. In the model by Ivanov (2010), informational structure can be
selected costlessly by the decision-maker.

3For example, this is the case for investment advice by financial analyists, for policy
advice by experts reporting to Congress, for expert witnesses in trials, as well as for
many other real-world applications of strategic information transmission games.
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which the two alternatives yield the same precision.4,5 Our results stand in

contrast with the “common wisdom” of the previous literature on commu-

nication that decisions based on the biased expert’s advice are imprecise.

To explain our results, we first describe the main features of our model.

Initially, both parties - the decision-maker and the expert - are uninformed

about the state of the world and share a common prior. Either of them

can acquire information about the state of the world, in the form of binary

“trials”. The cost of information acquisition increases in the quantity of

information, which is measured by the number of “trials” performed.6 This

discrete model of information acquisition not only simplifies our analysis,

but also captures real world situations with discrete information, such as

aggregation of individual opinions from sincere voting, surveys, or experi-

ments. Moreover, as we explain later, the main driving forces of our model

extend beyond our specific model and would be present in other discrete

or even continuous models.

In our baseline model, the expert acquires the information and then

conveys a cheap-talk message to the decision-maker, who then takes an ac-

tion. We consider two scenarios: overt information acquisition and covert

information acquisition.7 In the former, the decision maker observes the

quantity of information acquired by the expert, but not its content. In

the latter, the decision-maker observes neither the quantity nor the con-

tent of the information acquired by the expert. In both cases, we focus

on the amount of information acquired and credibly transmitted by the

expert in equilibrium, which translates into the precision of the final ac-

tion made by the decision-maker. We then compare the outcomes of these

two communication games against two alternatives: the first one is direct

information acquisition by the decision-maker, the second one is delegation

to the expert of both information acquisition and the choice of action.

4The use of Pareto efficiency as an equilibrium refinement is standard in communi-
cation games.

5Unlike in Crawford and Sobel (1982), equilibria are not fully Pareto ranked in our
game, because information is costly, and the cost is borne solely by the expert, whereas
its benefit is shared by the two players. Pareto efficient equilibria with more (less)
information are preferred by the decision maker (expert).

6Our set-up is related to the Bernoulli-Uniform model of cheap talk analyzed by
Morgan and Stocken (2008).

7These two games are denoted shortly as “overt game” and “covert game”, in the
remainder of the paper.
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Our main result, the identification of parameter regions with informa-

tion acquisition overinvestment, is driven by different forces in the overt

and covert game. In the first one, the decision-maker induces the expert’s

strict overinvestment in information acquisition by ignoring her communi-

cation, unless the expert acquires the “right” amount of information. In

technical terms, a babbling equilibrium is played off the equilibrium path.8

This use of the worst credible punishment to provide the strongest incen-

tives on path is similar to the approach adopted to find Pareto efficient

equilibria in repeated games.

Moreover, this equilibrium construction finds support in the real-world,

as it is fairly common to observe decision-makers who only heed advice of

the experts whose qualifications or effort exceed the threshold set by the

former. Consider for example expert witnesses in legal trials. In the U.S.,

the Federal Rules of Evidence specify that testimony by an expert witness

is acceptable only if it “...is the product of sufficient facts or data,” and “ is

the product of reliable principles and methods 9”. This rule is sufficiently

broad and allows the judge to tailor her threshold of acceptability to the

particular case under consideration.10 If the judge finds that an expert had

8Ubiquitous in communication games, babbling equilibria are such that the decision-
maker’s decision is independent of the expert’s message, and, thus, the expert is indiffer-
ent among sending any message, and adopts a completely uninformative communication
strategy.

9According to the Federal Rule of Evidence 702:
“A witness who is qualified as an expert by knowledge, skill, experience, training, or

education may testify in the form of an opinion or otherwise if: (a) the expert’s scientific,
technical, or other specialized knowledge will help the trier of fact to understand the
evidence or to determine a fact in issue; (b) the testimony is based on sufficient facts or
data; (c) the testimony is the product of reliable principles and methods; and (d) the
expert has reliably applied the principles and methods to the facts of the case.”

10Berlin and Williams (2000) report that a case in which: “...The Illinois Supreme
Court then pointed out that it is the judge who must determine whether a potential
expert witness is qualified to render opinions in a specific lawsuit” They quote the
opinion of said Court in the case Jones v. O’Young et al. as follows: “...The trial court
has the discretion to determine whether a physician is qualified and competent to state
his opinion as an expert regarding the standard of care. . . .By hearing evidence on the
expert’s qualifications and comparing the medical problem and the type of treatment
in the case to the experience and background of the expert, the trial court can examine
whether the witness has demonstrated a sufficient familiarity with the standard of care
practiced in the case. . . [If the expert witness does not satisfy these requirements], the
trial court must disallow the expert’s testimony. . . . The requirements are a threshold
beneath which the plaintiff cannot fall without failing to sustain the allegations of his
complaint.”
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not met this threshold, (s)he would typically disqualify the expert rather

than allow a limited testimony by the expert. Our results suggest that this

legal procedure provides a powerful incentive for information acquisition.

Other real-world examples of what essentially is a threshold knowledge

rule for admissibility of an expert’s advice can be found in politics (parlia-

mentary and congressional hearing making use of expert’s advice), financial

and consumer markets (financial advisors and real estate agents have rating

systems and certain customers will only deal with the agents and advisors

who have the highest rating category11) , and academia (short reference

letters that do not describe in detail an academic’s research are usually

disregarded by hiring and tenure committees).

Furthermore, we identify a parameter region in which our strict overin-

vestment result extends to all Pareto efficient equilibria of the overt game,

with the exception of the expert’s preferred equilibrium. For the latter,

our result holds weakly: the expert acquires and reveals at least as much

information as the decision-maker would acquire directly. Also, that equi-

librium construction does not rely on babbling equilibria off path. Instead,

it is based on the most informative communication equilibrium being played

on and off path.

Before turning to the covert game, it is important to underline, here,

that our overinvestment results do not rely on the specific statistical struc-

ture we adopt in the overt game. The use of an off path threat to induce

overinvestment does not depend on the discreteness of our model, and

would be possible also in continuous information models.

In the covert game, the information acquisition investment is unob-

servable, and our strict equilibrium overinvestment result cannot rely on

credible punishments off path. We first show that there is no loss of gen-

erality in disregarding the possibility that the expert communicates how

much information he has acquired. Specifically, we show that allowing such

communication would not increase the set of equilibrium outcomes. As a

result, the decision-maker interprets any expert’s message under the belief

that the latter has acquired the equilibrium amount of information even if

the expert has, in fact, deviated from it.

We refer to this property as inflexibility of the equilibrium language.

11J.D. Power and Associates system of rating for brokers provides one example.
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In our model, this is an endogenous property of equilibria. Importantly,

it limits the attractiveness for the expert of a deviation from the equilib-

rium level of information acquisition. In fact, the equilibrium language is

optimally tailored to the equilibrium amount of information and is typi-

cally ill-suited for reporting the expert’s findings after he deviated at the

information acquisition stage.

This effect is not as powerful as the off path punishment in the overt

game. Therefore, stronger conditions on the parameters are required for

the overinvestment result to obtain. Nevertheless, one can find many ex-

amples of fixed equilibrium communication language in the real world. In

particular, the language of financial advice is often standardized. Specif-

ically, Standard and Poor’s Capital IQ equity analysts rank assets on a

qualitative 5-point scale (Strong Sell, Sell, Hold, Buy, Strong Buy). Simi-

larly, consumer research firms, such as Consumer Report, J.D. Powers and

Associates and others, typically rate the quality of products on a grid with

a fixed number of points. Standardized restricted communication protocols

can be found in public administration and in the military where communi-

cation between different units has to follow a formal fixed language. Simi-

larly, prospective employers often ask the referees to places job candidates

into one of several categories specified by the employers, rather than by the

referees.

As in the overt game, it is remarkable that also in the covert game our

strict overinvestment result extends to all Pareto efficient equilibria, with

the exception of the equilibrium preferred by the expert, for which our

result holds weakly.

It is intuitive that the main force leading to our results in the covert

game, namely the inflexibility of equilibrium language, holds quite broadly

beyond our specific model. In fact, consider any communication model,

continuous or discrete, in which the sender’s information is fixed. We know

from Crawford and Sobel (1982) that unless the sender is unbiased, the set

of messages used on the equilibrium path is discrete (up to outcome equiv-

alence). In other terms, the equilibrium language is discrete and, quite

generally, it depends on the amount of information held by the expert.

Hence, when considering covert information acquisition, an expert deviat-

ing from the equilibrium information acquisition choice is penalized by the
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requirement that he uses equilibrium language to communicate; i.e., he is

penalized by the inflexibility of language.

In the final part of the paper, we highlight the implications of our results

for the theory of optimal organization, and the prevalence of communication-

based organizations. Dessein (2002) and Ottaviani (2000) have shown that,

due to the loss of information in transmission, a communication-based or-

ganization in which the principal takes decisions based on the advice of

a biased expert, may be dominated by delegation of the decision-making

authority to an informed expert.12 But if an organization based on infor-

mation transmission is suboptimal then, perhaps, we should not expect it

to be used frequently and in important economic situations.

While the above results are derived in an environment where the ex-

pert has access to perfect and free information, our paper identifies novel

economic forces that arise under costly information acquisition and which

significantly raise the relative performance of communication-based orga-

nizations. Specifically, our strict overinvestment results identify plausible

sufficient conditions under which information transmission from the expert

to the decision maker performs better than either delegation of decision-

making to the expert, or direct information acquisition by the decision-

maker. Thus, more broadly, our results can be seen as providing a strong

support for the prominent role of information transmission between experts

and decision-makers in organizations, which has been postulated theoret-

ically and confirmed empirically (see, e.g., Bolton and Dewatripont,1994,

and Garicano, 2000).

1.1 Literature Review.

The study of information acquisition is almost entirely unexplored in the

cheap talk literature. An exception is a preliminary working paper by

Eso and Szalay (2010). They consider a game in which an expert, who

has the same preferences as the decision-maker, is initially uninformed but

can learn the exact realization of the state by paying a fixed cost. In

the beginning, the decision-maker commits to a message set (equivalently,

action set) that she allows the sender to choose from. They show that

12See also, relatedly, Aghion and Tirole (1997) and Gilligan and Krehbiel (1987).
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restricting this message set and hence coarsening the language available

for communication, compared to allowing the sender to communicate the

exact state of the world, can induce the sender to acquire information for

a larger range of costs. Similarly, Szalay (2005) shows that restricting the

set of actions available to the agent in the delegation game can increase

the incentive for the latter to acquire information. In both these papers,

the restriction on the actions or the message set available to the expert is

exogenous to communication, and the focus is on the normative question of

which exogenously fixed language maximizes information acquisition. Our

paper is very much distinct. Unlike in their paper, in our game the language

is endogenous. Its derivation is significantly involved as the language arises

within the equilibrium interaction between the players. Our motivation

is also different: we study the positive question of whether information

acquisition overinvestment may occur in communication games, and how

it affects the relative performance of different organization structures.13

Another exception is Di Pei (2013), who considers a model of covert

costly information acquisition and transmission which is very different from

ours. In his model, the expert acquires arbitrary information partitions of

the state space, to then observe the element of the acquired partition. His

key assumption, which is violated in our standard and intuitive binary trial

model, is that if a sender can purchase an information partition, then he

can also purchase any coarsening of that partition, at a lower cost. The

remarkable implication of this assumption is that all equilibria involve full

revelation of the sender’s private information. Indeed, there is no reason

for the sender to purchase a very precise information partition and then

reveal only a coarse summary of his findings, if, instead, he can directly

purchase such coarser information at a lower cost. Our model is very dif-

ferent, and even Pareto efficient equilibria need not be fully separating.

Remarkably, though, the overinvestment result that we identify here would

hold a fortiori, and for a bigger parameter space, in using the information

acquisition technology by Di Pei (2013).

Less closely related, Che and Kartik (2009) study information acquisi-

13Our model has further methodological differences: our expert is biased, he can
acquire any amount of information, and his information remains imprecise, except in
the limit.
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tion in the context of verifiable information transmission, which has proper-

ties that are very different from cheap talk even in absence of information

acquisition. In their model, the expert has the same preferences as the

decision-maker but a different prior. Since information is verifiable, an in-

formed experts can only disclose the exact signal or conceal it completely.

They focus on the choice of the expert by the decision-maker, and show

that the decision-maker would prefer to choose an expert with a prior dif-

ferent from hers, because the divergence in prior beliefs between the sender

and the receiver, while stifling communication, delivers better incentives

for information acquisition.

The remainder of the paper is organized as follows. Section 2 intro-

duces the model. Section 3 describes information acquisition overinvest-

ment. Section 4 derives the implications for organization design. Section 5

concludes.

2 The Model

We start by introducing our model of cheap talk with endogenous acqui-

sition of costly information by the sender. It is a natural extension of the

classic Crawford and Sobel (1982) uniform-quadratic model. There are two

players, the expert and the decision maker. The decision-maker’s payoff is

given by

UR (y, θ) = − (y − θ)2 , (1)

where θ is an unknown state of the world, with uniform common prior

distribution over [0, 1], and y is the action taken by the decision-maker.

The expert’s payoff is given by

US (y, θ, b)− c (n) = − (y − θ − b)2 − c (n) , (2)

where the bias b > 0 measures the preference discrepancy between the ex-

pert and the decision-maker and c (n) is the cost of information acquisition

performed by the expert.

The game unfolds as follows. First, the expert acquires costly infor-

mation about θ which we model as n ∈ N ∪ {0} i.i.d. binary trials with

aggregate cost c (n) = cn. The number of trials n performed by the expert

8



affects the precision of the expert’s information about θ. Each trial can re-

sult either in success or failure, with probability of success equal to the true

θ. Having observed the number k of successes in n trials, the expert sends a

message m ∈ M to the decision maker, where M is the message set. After

receiving the message, the decision-maker chooses an action y ∈ [0, 1].

For given n and θ, the number of successes k is distributed according

to the binomial distribution:

f (k|n, θ) =
n!

k! (n− k)!
θk (1− θ)n−k , for 0 ≤ k ≤ n,

while under unknown uniformly distributed θ the distribution of k is also

uniform:

Pr (k|n) =

� 1

0

n!

k! (n− k)!
θk (1− θ)n−k dθ =

1

n + 1
.

Finally, note that the posterior distribution of θ given k successes in n

trials is a Beta distribution with parameters k + 1 and n − k + 1, and its

density is given by:

f (θ|k, n) =
(n + 1)!

k! (n− k)!
θk (1− θ)n−k , if 0 ≤ θ ≤ 1.

The corresponding posterior expectation of θ is E [θ|k, n] =
k + 1

n + 2
.

We will distinguish between two cases in the analysis. In the overt game,

prior to choosing an action the decision-maker observes the number of trials

n performed by the expert. In the covert game, n is private unverifiable

information of the expert. All proofs are relegated to the Appendix.

2.1 The Overt Game

A pure strategy Perfect Bayesian Equilibrium of the overt game is described

by a tuple
�

n, {Pn′}n′=0,1,...,∞, {y (Pn′)}n′=0,1,...,∞

�
, where n is the equilib-

rium number of trials conducted by the expert; Pn′ ≡
�

pn
′

1 , ..., pn
′

#Pn′

�
is

the partition of the set of the expert’s types {0, 1, ..., n′} describing the in-

formation communicated by the expert after performing n′ ∈ {0, 1, ...,∞}

trials; and {y (Pn′)} is the decision maker’s action profile corresponding to
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partition Pn′ .

According to this definition, if the expert performs n′ trials with k

successes, then he sends a message informing the decision maker that the

element pi of the communication partition Pn′ has occurred, where k ∈ pi.
14

Correspondingly, {y (Pn′)} ≡
�

yn
′

p1
, ..., yn

′

p#P
n′

�
, where yn

′

pi
∈ [0, 1], denotes

the decision-maker’s action after the expert sends a message corresponding

to the element pi of the partition Pn′ .

A babbling communication partition contains a single element, whereas

in a fully separating communication partition, each type constitutes an

element of the partition.

The following conditions must hold in an equilibrium:

(i) The action profile y(Pn′) must be sequentially rational for all n′ i.e., for

every pi ∈ Pn′ , yn
′

pi
maximizes the decision-maker’s expected payoff given

that the sender’s type is in pi:

yn
′

pi
∈ argmax

y

� 1

0

UR(y, θ)f(θ|k ∈ pi, n)dθ (3)

(ii) For every n′ ∈ {0, 1, ...,∞}, the partition Pn′ is incentive compatible

i.e., for any k ∈ {0, 1, ..., n′} and pi ∈ Pn′ s.t. k ∈ pi, we have:

� 1

0

US
�

yn
′

pi
, θ, b

�
f (θ|k, n′) dθ ≥

� 1

0

US(yn
′

q , θ, b)f (θ|k, n′) dθ, for all q ∈ Pn′.

(4)

(iii) n maximizes the expert’s expected payoff given {Pn′}n′=0,1,...,∞ and

{y (Pn′)}n′=0,1,...,∞ i.e., letting pn
′

(k) denote the element of the partition

Pn′ s.t. k ∈ pn
′

(k), we have:

n ∈ arg max
n′∈{0,1,...,∞}

n′�

k=0

�� 1

0

US
�

yn
′

pn′ (k)
, θ, b

�
f (θ|k, n′) dθ × Pr (k|n′)

�
−c(n′).

(5)

Next, we first describe the decision-maker’s optimal action, then the

14Note that we do not specify explicitly which message(s) m ∈M by the expert signal
an element pi of the partition Pn′ , for any n

′. Any arbitrary partition of the message
space M into #Pn′ sets M1, ...,M#P

n′
such that ∪iMi = M and Mi ∩Mj = ∅ for

i �= j will do. With any such convention, every message uniquely maps into an element
of partition Pn′ , for any n

′.
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incentive compatible partitions. Given the quadratic payoff function, the

sequentially rational action yn
′

pi
must be equal to the decision-maker’s poste-

rior expectation of θ given the observed number of trials n′ and the element

pi of the partition Pn′ communicated by the expert. Precisely, we have:

Lemma 1 Let |pi| denote the cardinality of pi. Then we have:

yn
′

pi
= E [θ|pi, n

′] =
1

|pi|

�

k∈pi

k + 1

n′ + 2
. (6)

Next, we characterize the incentive-compatible (IC) communication par-

titions.

Proposition 1 For any n′, any incentive compatible communication par-

tition Pn′ is such that each element of the partition consists of consecutive

types.

For each i ∈ {1, ..., I−1}, the cardinalities |pi| and |pi+1| of the elements

pi and pi+1 of the partition are such that the following condition holds:

4b (n′ + 2)− 2 ≤ |pi+1| − |pi| ≤ 4b (n′ + 2) + 2. (7)

Proposition 1 has the following immediate Corollary:

Corollary 1 For any n′, a fully separating communication partition is in-

centive compatible if and only if b (n′ + 2) ≤ 1/2. If b ≥ 1/4 the only

incentive compatible communication partition is the babbling one.

Proposition 1 allows us to compare and contrast our model with the

original model of Crawford and Sobel (1982). In the latter model, IC com-

munication strategies are characterized by a partition of the type space

such that any element of the partition is an interval (ai, ai+1), and each

boundary type ai of the expert is indifferent between the two sequentially

rational actions yi and yi+1 associated with the intervals (ai−1, ai) and

(ai, ai+1) respectively. This implies the so-called “arbitrage condition”,

ai+1 − ai = ai − ai−1 + 4b, which pins down all equilibria.

Condition (7) is conceptually equivalent to the arbitrage condition. The

main difference is that in our model the expert is not perfectly informed,
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and the type space is finite. For this reason, boundary types in an IC

partition are typically not exactly indifferent between two elements of it.

However, we have the following limiting result:

Lemma 2 As n′ →∞, any IC partition Pn′ of our model converges to an

equilibrium partition of the Crawford and Sobel (1982) model:

lim
n′→∞

|pi| /(n
′ + 1)→ ai − ai−1 for any i

Next, because we use Pareto-efficiency as a refinement concept, let us

highlight the notions of Pareto-ranking of IC communication partitions and

that of Pareto-efficiency of the equilibria of the overall game. For any n′,

when the decision-maker uses her sequentially rational strategy described in

Lemma 1, the players’ ex-ante expected payoffs associated with IC partition

{Pn′} can be rewritten as follows:

E
�
− (y(Pn′)− θ)2

��Pn′]− b2 − cn′ (8)

E
�
− (y(Pn′)− θ)2 |Pn′

	
(9)

Notice that expressions (8) and (9) differ by b2 + cn′.

Observe that at the interim stage i.e., after the number of trials n′ has

been chosen but the number of successes has not yet been realized, cn′

is a sunk cost for the sender and the preferences of the two players are

aligned. Both players would like to minimize E

�

yn
′

pi
− θ

�2
|Pn′



, the resid-

ual variance of θ associated with the equilibrium communication partition.

Hence, all IC communication partitions with given number of trials n′ can

be Pareto-ranked according to the value of E

�

yn
′

pi
− θ

�2
|Pn′



. In partic-

ular, a fully separating IC partition, if it exists, is Pareto efficient15. An

omitted result (Proposition A.1), available upon request provides a com-

plete characterization of Pareto efficient IC partitions.

Consider next the notion of ex-ante Pareto efficiency of the equilibria of

the overall game. We will say that equilibrium
�

n′, {Pn}n=0,1,...,∞, {y (Pn)}n=0,1,...,∞

�

15If a partition contains a non-singleton element, pool p, then for this pool we have
E [θ|p] =

�
k∈pE [θ|k] /|p|. Since the quadratic function is convex, by Jensen’s inequal-

ity this partition is associated with a higher residual variance than the fully separating
partition.
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is ex-ante Pareto efficient if there is no other equilibrium in which the ex-

pert’s and the decision-maker’s ex-ante payoffs are greater, with at least one

of them strictly greater than in equilibrium
�

n′, {Pn}n=0,1,...,∞, {y (Pn)}n=0,1,...,∞

�
.

Observe that, in contrast to the interim stage, at the ex-ante stage the pref-

erences of the two players are not aligned. The reason is that the invest-

ment cost cn′ has not been sustained yet. This creates a tension between

the common interest of the two players in reducing the information loss,

and the fact that the cost of information acquisition is borne entirely by

the expert.

Note that when we refer to the decision-maker’s objective in the game,

we will typically say that the decision-maker wishes to maximize the preci-

sion of the decision, which is the inverse of the variance in (9), 1

E[(y(Pn′)−θ)2|Pn′ ]
.

This is equivalent to maximizing (9).

We conclude by observing that ex-ante Pareto efficiency requires that on

the equilibrium path players communicate according to the Pareto efficient

IC partition but it does not preclude the players from coordinating on

less informative equilibria off the equilibrium path, i.e. after the expert

performs a non-equilibrium number of trials.

2.2 The Covert Game

Let us now introduce the covert game. Unlike in the overt game, the

decision maker does not observe the amount of information acquired by

the expert, and the latter may send a cheap talk message about how many

trials he performed. The other elements are the same as in our overt game.

Hence, a Perfect Bayesian Equilibrium of the covert game must also specify

the decision-maker’s beliefs also about the expert’s information acquisition

choice.

Our analysis focuses on the set of equilibria in which the expert plays

a pure strategy at the information acquisition stage. The next Lemma

shows that we can, without loss of generality, restrict attention to equi-

libria in which the decision-maker’s beliefs about the expert’s information

acquisition choice is the same on and off path.

Lemma 3 Any outcome supported in a Perfect Bayesian Equilibrium of
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the covert game in which the expert follows a pure strategy in the choice of

the number of trials can also be supported in a Perfect Bayesian Equilibrium

in which the decision-maker’s beliefs about the number of trials do not vary

with the expert’s message m.

Relying on Lemma 3, we will focus on equilibria in which after any

message, the decision-maker believes that the expert performed the equi-

librium number of trials with probability 1. As in the overt game, the

expert’s equilibrium communication strategy is equivalent to a partition of

the set of possible successes. So a pure-strategy Perfect Bayesian Equilib-

rium of the covert game can be represented by a triple (n∗, Pn∗,y (Pn∗)),

where n∗ is the number of trials, Pn∗ is the communication partition of

the set of possible successes {0, 1, ..., n∗}, and y (Pn∗) ≡ {yn
∗

pi
}pi∈Pn∗ is the

decision-maker’s equilibrium action profile, which satisfy the following:

(i) the action profile y (Pn∗) is sequentially rational, i.e. for all p′i ∈ Pn∗ :

yn
∗

p′i
∈ arg max

y∈{yn∗pi }pi∈Pn∗

� 1

0

UR(y, θ)f(θ|k ∈ pi, n)dθ.

(ii) the partition Pn∗ is incentive compatible for the expert given the

decision-maker’s action profile y (Pn∗), i.e. for every pi, pj ∈ Pn∗ and k ∈ pi:

� 1

0

US
�
yn

∗

pi
, θ, b

�
f (θ|k, n∗) dθ ≥

� 1

0

US(yn
∗

q , θ, b)f (θ|k, n∗) dθ.

(iii) n∗ maximizes the expert’s ex-ante expected payoff, i.e.

n∗ ∈ arg max
n′∈{0,1,...,∞}

n′�

k=0

�
max

yp∈y(Pn∗)

� 1

0

US (yp, θ, b) f (θ; k, n′) dθ

�
Pr (k;n′)−c(n′).

(10)

While conditions (i) and (ii) are the same as their counterparts for the

overt game in (3) and (4), respectively, condition (iii) is specific to the

covert game, reflecting the possibility of the expert’s unobservable devia-

tions in the number of trials. To understand it, consider the expected payoff

that the expert gets by deviating to some n′, n′ �= n∗, at the information

acquisition stage. In this case, the communication game will still proceed

on the basis of the equilibrium partition Pn∗ . That is, whatever message

14



the expert sends at the communication stage, he can only induce one of

the actions in the equilibrium action profile y (Pn∗). So, an expert who has

obtained k successes in n′ trials, will induce such action y from the action

profile y (Pn∗) that maximizes his payoff, as reflected in (10).

The nature of the optimality condition (10) has important implications

for the analysis of the covert game. In particular, the following trade-

off emerges: a more informative communication partition leads to a more

precise decision. However, a higher informativeness of a (candidate equilib-

rium) partition could also make it more profitable for the expert to deviate

at the information acquisition stage.

We conclude this section by observing that, as the overt game, the covert

game also has multiple equilibria and we will focus on Pareto-efficient equi-

libria, which are naturally defined as follows: equilibrium (n∗, Pn∗,y (Pn∗))

is ex-ante Pareto efficient if there is no other equilibrium in which the ex-

pert’s and the decision-maker’s expected payoffs are greater, with at least

one of them strictly greater than in equilibrium (n∗, Pn∗,y (Pn∗)).

2.3 Benchmark: Information Acquisition by the De-

cision Maker

One of the central results of cheap-talk communication models is that de-

cisions based on information communicated by a biased expert are less

precise, and hence less efficient, than the decisions that would be made by

the decision maker if she had direct access to the information. Our paper

asks whether this result continues to hold when information is costly and

its acquisition is endogenous.

To this end, we need to consider the benchmark problem of a decision-

maker acting without an expert and acquiring information by herself. This

decision-maker chooses the number of trials n, incurs the cost c (n) = cn

for performing them, observes the number of successes k ∈ {0, ..., n}, and

then chooses the action y∗k. We maintain the same assumptions on the joint

distribution of θ and k for given n and the decision-maker’s payoff function

as in the previous sections.

The same argument as in Lemma 1 implies that the decision-maker’s

optimal action y∗k after k successes in n trials satisfies y∗k = E [θ|k] = (k+1)
n+2

.
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Moreover, we can establish the following Lemma:

Lemma 4 If the decision-maker performs n trials, then her expected utility

is equal to:

E
�
− (y∗k − θ)2 |n

	
− cn = −

1

6(n + 2)
− cn. (11)

and the decision maker’s optimal number of trials n∗ (c) is equal to:

n∗ (c) = max

�
n : −

1

6(n + 2)
− cn−

�
−

1

6(n− 1 + 2)
− c(n− 1)

�
> 0

�

=

�
1

2

��
1 +

2

3c
− 3

��
. (12)

Combining (11) and (12) yields a closed form expression for the decision-

maker’s maximal attainable expected payoff:

E
�
− (yn∗ − θ)2 |n∗

	
−cn∗ = −

1

6
�
1
2

��
1 + 2

3c
+ 1

��−c

�
1

2

��
1 +

2

3c
− 3

��
.

(13)

3 Overinvestment and Decision Precision

This section provides the main result of this paper: the decisions based

on the advice of a biased expert can be equally or more precise than the

decisions based on information directly acquired by the decision maker.

This result is driven by a combination of two factors. The first factor is

overinvestment in information acquisition by the expert. The second factor

is the smallness of information loss in transmission.

The overinvestment is a product of a trade-off between two driving

forces. On the one hand, the decision-maker has an incentive to induce

the agent to acquire as much information as possible, because the cost of

information acquisition is borne by the latter. On the other hand, the

expert prefers to acquire less information than in the benchmark direct-

acquisition case, because some information can be lost in transmission and

hence it is not worth the investment to be acquired. Instead, in the direct-

acquisition case all information is fully utilized by the decision-maker.
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At first glance, it would appear that the expert’s incentives to acquire

less information should lead to underinvestment. Yet, this is not the case:

in plausible equilibria the aforementioned trade-off leads to overinvestment,

although the exact way in which this occurs is different in the overt and

covert game, as we outlined in the introduction. Along with overinvest-

ment, the second factor that leads to a higher decision precision in the

communication game is the smallness of the loss of information in trans-

mission. Intuitively, when information is costly, the agent has an incentive

to acquire only the information that he would transmit in equilibrium.

The fact that the expert’s equilibrium information is fairly coarse helps the

agent’s incentives to transmit it in full.

Finally, we note that our overinvestment results do not rely on mis-

alignment of preferences between the two players: They hold also when the

expert is unbiased. This stand in stark contrast with the work Che and

Kartik (2009) on the acquisition and transmission of verifiable information.

3.1 Decision Precision in the Overt Game

The observability of the number of trials in the overt game implies that the

decision-maker can and will react to the amount of information acquired by

the expert. In particular, it is quite natural that an observable deviation by

the expert from the equilibrium number of trials would cause the decision-

maker to lose any trust in the expert: the decision-maker would consider

any message sent by the deviating expert to be non-credible and uninfor-

mative. This logic suggests that a babbling equilibrium will be played off

the equilibrium path.

Such behavior by the decision-maker is credible, because babbling does,

in fact, constitute an equilibrium of the communication game. It also

imposes the strongest punishment on the expert for a deviation at the

information acquisition stage.16 The following Proposition demonstrates

that this punishment is sufficiently strong to induce the expert to overinvest

in information acquisition, compared to the single-player benchmark. This

16Selection of a babbling equilibria to improve the decision maker’s welfare is reminis-
cent of the constructions in the sequential cheap talk models of Aumann and Hart (2003)
and Krishna and Morgan (2004). But, unlike in our construction, babbling equilibria
there are also invoked on the equilibrium path.
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overinvestment, however, is not too large so that it remains consistent with

full transmission of the expert’s information in the communication stage.

Hence, the final decision in the overt game is strictly more precise than the

decision based on information directly acquired by the decision maker.

Proposition 2 If b ≤
��

1 + 2
3c

+ 3
�−1

and c ≤ 5−
√
17

48
, then the overt

game has an equilibrium in which the final decision is strictly more precise

than the decision based on direct information acquisition by the decision

maker.

A few remarks are in order. First, the sufficient conditions identified by

the Proposition are quite intuitive. The condition on the bias is consistent

with Corollary 1: full revelation of the trial outcomes is incentive compat-

ible only if the bias is sufficiently small. The condition on the unit cost

c comes from the fact that if the cost is too high, then the expert would

never overinvest, not even if the decision-maker threatened to completely

ignore his messages so that a babbling equilibrium would be played.

Second, for expositional simplicity we have assumed that the informa-

tion acquisition cost is the same for the expert and the decision maker.

The result of Proposition 2 holds a fortiori if the expert is more efficient

than the decision maker at acquiring information.

Third, Proposition 2 focuses on conditions for the existence of an equi-

librium with overinvestment and no loss of information in transmission. In

this case, we provide a concise characterization of the conditions on the

parameters b and c.

However, full revelation of information is not necessary for the decision

to have higher precision in the overt game than in the case of direct infor-

mation acquisition by the decision maker. What is necessary for this result

is that the loss of information in the communication game should not be

too large. To illustrate this, we have numerically computed equilibria for

a broad range of parameters b and c and have identified a larger region of

these parameter values for which there exists an equilibrium of the overt

game with a higher decision precision than under direct information acqui-

sition by the decision maker. In a large part of this parameter region the

identified equilibria involve some loss of information in transmission.
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We performed the analysis for b ∈ [0, 0.25], c ∈ [0, 0.027] and n ≤

100. This is the relevant parameter range, since for b ≥ 0.25 the unique

equilibrium of the communication game is uninformative, and for c > 0.027

the unique solution of the decision maker’s optimization problem is n∗ = 0.

For every feasible parameter constellation in this range, we have computed

the equilibria and equilibrium outcomes and then compared the minimal

residual variance E
�
(yn − θ)2 |n

	
among these equilibria with the residual

variance in the first term of (13).

The results of this numerical analysis are presented in Figure 1(b).

Figure (1a) instead, depicts the region where the sufficient conditions in

Proposition 2 are satisfied. Taken together, these two figures illustrate

that, under a broad range of parameter values, even if some information

is lost in communication, overinvestment more than compensates for this

loss. Hence, the decision remains more precise in the communication game

than in the case of direct information acquisition.
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Figure 1: (1a) In the white region, the sufficient conditions in Proposition 2

are satisfied. (1b) In the white region the decision in the most informative

equilibrium of the overt game is strictly more precise than with direct information

acquisition. In the grey region it is as precise. In the black region it is strictly

less precise.

Next, we show that reliance on babbling off the path is not necessary

for weak overinvestment. The following Proposition shows the latter can

be achieved even when the most informative equilibrium is played off the

path, after any deviation by the expert at the information acquisition stage.
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While in this equilibrium, which is the expert’s preferred Pareto efficient

equilibrium, the final decision is as precise as the decision based on direct

information acquisition by the decision maker, in all the other Pareto effi-

cient equilibria of the overt game, the final decision is strictly more precise.

Focusing on Pareto efficient equilibria is standard practice in the commu-

nication literature. Hence, the following Proposition identifies a parameter

region in which communication is generally more efficient than direct in-

formation acquisition.

Proposition 3 If b ≤
��

1 + 2
3c

+ 1
�−1

, then there exists a Pareto effi-

cient equilibrium of the overt game in which the most informative com-

munication equilibrium is played on and off path, and such that the final

decision is as precise as with direct information acquisition by the deci-

sion maker. In any other Pareto-efficient equilibrium of the overt game

the final decision is strictly more precise than the decision based on direct

information acquisition.

To prove this Proposition we first show that under its condition, full

revelation of information is incentive compatible if the expert performs the

same number of trials that would be acquired by the decision-maker if she

did so directly, without an expert. This allows us to show that the expert

would, indeed, want to acquire this amount of information in equilibrium,

even if the most informative communication equilibrium is played off the

path.

To understand this, recall that the preferences of the decision-maker

and the expert are aligned at the stage when the number of trials have

been performed but their realizations are not yet known: both of them

wish to minimize E

�

yn
′

pi
− θ

�2
|Pn′



, the residual variance of θ associated

with the equilibrium communication partition (equivalently, maximize the

decision precision). So if the expert deviates and performs a different num-

ber of trials n′′, then irrespective of whether the continuation equilibrium

after n′′ involves full or partial revelation of information, the expert’s payoff

would go down by at least the same amount as the payoff of the decision

maker who switches from n∗(c) trials to n′′ in direct information acquisi-

tion. So, since n∗(c) is optimal for the decision-maker in direct information

acquisition, it also constitutes an equilibrium choice for the expert.
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This equilibrium is Pareto-efficient because in it the expert attains his

highest ex-ante expected payoff among all equilibria. By definition, in any

other Pareto-efficient equilibrium the decision maker has to obtain a higher

ex-ante expected payoff, i.e. the decision has to be more precise.

3.2 Decision Precision in the Covert Game

In contrast to the overt game, in the covert game the decision maker does

not observe the amount of information acquired by the expert. So the

latter can make unobservable deviations in this activity. By Lemma (3)

we can restrict attention to equilibria in which the expert’s messages are

not informative of such deviations and the decision-maker always keeps

her equilibrium belief about the number of experiments performed by the

expert.

The main result of this section demonstrates that equilibria with over-

investment also exist in the covert game, albeit under more restrictive con-

ditions on the parameters of the model than in the overt game. Consider

an equilibrium in which the decision-maker expects the agent to perform

n∗ (c) + 1 trials and then fully reveal the outcome, where n∗(c) is the opti-

mal number of trials performed by the decision maker in the absence of an

expert when the cost of a trial is equal to c, as defined in (12). A deviation

to n∗ trials would be beneficial for the expert with a small bias if the ex-

pert could communicate both her information acquisition decision and the

observed outcome to the decision-maker. However, since in equilibrium the

expert can only communicate information of the form “I have observed k

successes out of n∗(c)+1 trials” (k ∈ {0, 1, ..., n∗(c)+1}) such deviation to

n∗ trials is no longer profitable, because any action that the expert could

induce via such messages is further away from his ideal action.

The following simple example illustrates this logic.

Example 1 Suppose that c = 1
35

and b ≤ 17
210

. By Lemma 4, n∗ = 0 i.e.,

the decision maker would not acquire any information, thus receiving a

payoff of − 1
12
. However, there exists an equilibrium of the covert game

in which the expert performs one trial and reveals its outcome, inducing

action y = 1
3
after a failure and y = 2

3
after a success. The associated

expected payoffs of the expert and of the decision maker are − 1
18
− b2 − c
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and − 1
18
, respectively. The decision maker achieves a higher utility than if

she acquired information directly. Let us check that this is an equilibrium.

If the experts deviates to zero trials, then any message he sends can only

induce one of the equilibrium actions, namely y = 1
3
or y = 2

3
. Because of

his upwards bias (b > 0), he prefers y = 2
3
. The expected utility that the

expert obtains by inducing y = 2
3
is −1

9
+ b

3
− b2. For b ≤ 17

210
and c = 1

35
,

this is less than − 1
18
−b2−c, so this deviation is unprofitable. Showing that

the expert will not deviate to any n > 1 is straightforward and is therefore

omitted.

Remarkably, while Example 1 is such that the optimal direct informa-

tion acquisition choice is not to perform any trial, this feature is by no

means general in our construction17. Example 2 considers the case when

b ≤ 1
24
and 1

72
< c < 1

48
. In this case, the decision-maker acquiring informa-

tion directly performs exactly one trial, and there is an equilibrium of the

covert game in which the expert performs exactly two trials. This example

highlights the main forces present in our equilibrium construction, in a case

where expert’s deviation in information acquisition generates a non-trivial

information partition.

Example 2 Suppose that b ≤ 1
24

and 1
72

< c < 1
48
. By Lemma 4, the

decision-maker would acquire one trial, thus receiving a payoff of − 1
18
− c.

However, there exists an equilibrium of the covert game in which the expert

performs two trials and reveals their outcomes, inducing actions 1
4
, 1
2
, and

3
4
if the announced number of successes is zero, one, or two, respectively. .

The associated expected payoffs of the expert and of the decision maker are

− 1
24
− b2 − 2c and − 1

24
, respectively. Truthful revelation of the realization

of two trials is incentive compatible for the expert because b ≤ 1
8
(Corollary

1). Next, we check that the expert does not have a profitable deviation in

the information acquisition stage.

17Further, Example 1 can be extended to show that our overinvestment results hold
beyond our parametric statistical model. Consider an alternative model in which the
expert’s information acquisition model consists in choosing the fineness of a partition
of the state space [0, 1] , composed of equally sized intervals. I.e., the expert chooses
the number n of intervals [(k − 1)/n, k/n], k = 1, . . . , n, at cost cn, to then observe the
interval to which θ belongs. It can be shown that, for b ≤ 7

60
and c = 1

35
, there exists

an equilibrium of the covert game such that the decision maker achieves a higher utility
than if she acquired information directly. (Details available upon request.)
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If the expert deviates to zero trials, then any message he sends can

only induce one of the equilibrium actions, namely 1
4
, 1
2
or 3

4
. The expert’s

payoffs from inducing these actions are − 1
12
−
�
b + 1

4

�2
, − 1

12
− b2, and

− 1
12
− b2, respectively. Because b2 ≤ 1

24
, the expert’s payoff from action

1
2
is the highest of the three, but is smaller than his putative equilibrium

payoff − 1
24
−b2−2c because c < 1

48
. So this deviation is unprofitable. Next,

consider a deviation to n = 1. In this case, the number of successes k could

be either 0 or 1. The computations provided in the Appendix show that,

when k = 0, the expert prefers to induce action 1/4 rather than actions

1/2 or 3/4, and when k = 1, the expert prefers to induce action 3/4 rather

than actions 1/4 or 1/2. So, after a deviation to n = 1, the expert’s payoff

is Prob(k = 0|n = 1)
�
−2

� 1
0

�
1
4
− θ − b

�2
(1− θ)dθ

�
+ Prob(k = 1|n =

1)
�
−2

� 1
0

�
3
4
− θ − b

�2
θdθ

�
− c =− 3

48
− b2 − c. This is smaller than his

putative equilibrium payoff − 1
24
− b2− 2c. Finally, showing that the expert

would not deviate to n > 2 is straightforward and is therefore omitted.

Our general analysis uncovers sufficient conditions for strict overinvest-

ment, and is presented in the following Proposition, where the symbol In=k

denotes the indicator function which takes the value one if n = k, and zero

otherwise.

Proposition 4 For any integer n, if b ≤ 1
4(n+3)

, and
1

6(n+2)(n+3)
< c < 1

6(n+1)(n+3)
−max

�
0,
�
1
3
b
�
In=0,

�
24b−1
96

�
In=1,

�
30b−1
450

�
In=2,

�
30b−1
360

�
In=3,

�
63b−2
735

�
In=4

�
18, the covert game possesses an equilibrium in

which the final decision is strictly more precise than the decision based on

direct information acquisition by the decision maker.

The sufficient conditions of Proposition 4 are represented graphically

in Figure (2a). Consider what happens as the cost of an experiment c in-

creases. As Figure (2a) indicates, an interval of costs for which the sufficient

condition in Proposition 4 is satisfied is followed by an interval of slightly

higher costs for which the condition does not hold. The latter cost interval

is then again followed by an interval of higher costs where the sufficient

condition holds, and so on.

18It is easy to check that this interval is non-empty.
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Figure 2: (2a) In the white region, the sufficient conditions in Proposition 4

hold. (2b) In the white region, the decision in the most informative equilibrium

of the covert game is strictly more precise than under optimal direct information

acquisition. In the grey region the precision is the same in the most informative

equilibrium of the covert game and under optimal direct information acquisition.

In the black region, the decision under optimal direct information is more precise

than in the most informative equilibrium of the covert game.

This pattern reflects the following regularity. Let H(n) be an interval

of cost values for which a given n is the optimal number of trials under direct

information acquisition. It can be shown that H(n) =
�

1
6(n+2)(n+3)

, 1
6(n+1)(n+2)

�
.

Therefore, the cost axis can be divided into adjacent intervals H(n) cor-

responding to different values of n. For each n, the second condition in

Proposition 4 identifies a subset of H (n), let us call it L (n), for which the

result holds. In particular, L (n) has the same lower bound but a strictly

smaller upper bound than H(n). This explains the pattern in figure (2a).

The intervals H (n) are adjacent but the intervals L (n) are not adjacent

because each L (n) only constitutes the lower part of the corresponding

H (n).

When the unit cost c lies in L(n) and the bias is not too large, the covert

communication game admits an equilibrium in which the expert runs n+1

trials and fully reveals their outcome. L (n) is a strict subset of H (n)

because, if c is too close to the upper bound of H (n), the expert prefers to

save some cost and unobservedly deviate to n trials. The condition on the

bias i.e., b ≤ 1
4(n+3)

, guarantees that, if the expert performs n+1 trials, he
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then fully reveals their realization in the communication game.

Since the conditions of Proposition 4 are sufficient, rather than nec-

essary, we have numerically identified the whole region of the parameter

space where the precision of the decision maker’s action in the most infor-

mative equilibrium of the covert game is strictly higher than under optimal

direct information acquisition The results of this analysis are reported in

Figure (2b). For comparison, Figure (2a) represents the region where the

sufficient conditions of Proposition 4 hold. We conclude the analysis of the

covert game with a result analogous to Proposition 3 for the covert game.

Proposition 5 If b ≤
�
2
�

1 + 2
3c

+ 2
�−1

, then in the equilibrium of the

covert game with the highest expert’s ex ante payoff, the final decision is

as precise as the decision based on direct information acquisition by the

decision maker. In any other Pareto efficient equilibrium of the game, the

decision is strictly more precise.

The proof of Proposition 5 establishes that in his preferred equilibrium

the expert performs n∗ (c) trials, where n∗ (c) is given by (12), and fully

reveals their outcome. The key step of the proof shows that the expert

cannot benefit by deviating at the information acquisition stage from this

level, because after such deviation he experiences a larger loss in his ex-

pected payoff, than the loss suffered by the decision-maker if the latter

made the same deviation in the benchmark case of direct information ac-

quisition. The second part of the Proposition follows from the observation

that in any other Pareto efficient equilibrium the utility of the decision

maker, and hence the precision of the decision, must be higher.

We conclude this section with a brief discussion of a possible extension

of our model to the case of verifiable reporting. Suppose that information

acquisition is still covert, but that the expert cannot fabricate information,

nor lie about its content. His only choice in the communication game is

how much of the acquired information to disclose. Then, the existence of

equilibria in which the expert overinvests in information and makes a full

disclosure follows from Proposition 5 and the standard unravelling argu-

ment based on Milgrom (1981). We conjecture that this result would hold

under a larger set of parameters than under unverifiable information, but

we have not confirmed this conjecture formally.
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4 Organizational Design

Our results have important implications for the issue of optimal organiza-

tion and allocation of authority therein. Consider the problem of choosing

an optimal decision when information acquisition is costly. The process of

information acquisition and decision-making could be organized in several

ways, via a number of organizational forms and methods. Particularly, let

us focus on three intuitive and ubiquitous organizational forms which also

approximate a number of other organizations:

• Centralization: the principal performs both the task of acquiring

information and making a decision.

• Delegation: the principal delegates both information acquisition and

decision-making to an agent.

• Communication: the principal delegates the task of information ac-

quisition to an agent but keeps the decision-making authority.

Under centralization, the principal bears the cost of information trans-

mission. Yet at the same time, the principal retains full control over in-

formation, and hence there is no loss or distortion of information in trans-

mission. Delegation, instead, allows the principal to reallocate the cost of

information acquisition to the agent. However, this benefit for the princi-

pal comes at the cost of a suboptimal decision taken by the agent, whose

preferences are not aligned with her own. Finally, under communication

the principal retains decision-making authority, but the agent’s bias affects

both the amount of information that he acquires and the extent to which

the acquired information is communicated to the principal. The described

trade-offs imply that it is not clear which organizational structure is opti-

mal from the principal’s ex ante point of view.

Relative performance of communication and delegation has been pre-

viously explored in the literature, albeit without information acquisition.

Dessein (2002) and Ottaviani (2000) find that delegation tends to outper-

form communication. This paper contributes to this strand of literature

by introducing endogenous and costly information acquisition and by also

adding centralization to the set of organizational forms being compared.
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To compare the three organizational forms from the point of view of

the principal, we need to compute the principal’s expected payoff under

each of them. To this end, note that centralization is modelled by our

benchmark of direct information acquisition by the decision-maker. The

optimization problem solved by the agent under delegation is similar to

the problem solved by the principal under centralization. In both cases,

the party acquiring information (i.e., the principal under centralization,

and the agent under delegation) will conduct n∗(c) trials given by (12),

and take the action maximizing that player’s expected payoff. So, the

expected payoff of the principal is given by:

Under centralization,

E
�
− (y∗ − θ)2 |n∗(c)

	
− cn∗(c). (14)

Under delegation,

E
�
− (y∗ − θ)2 |n∗ (c)

	
− b2 (15)

where y∗ is the principal’s optimal decision equal to k+1
n∗(c)+2

when k successes

are observed in n∗ (c) trials.

Finally, communication as an organization can be modelled either via

the overt or the covert game analyzed above, depending on the observability

conditions. In an equilibrium of the overt or covert communication game

with n trials and communication partition P , the principal earns a payoff

equal to:

E
�
− (ȳ − θ)2 |P

	
. (16)

where ȳ = E(θ|pi) is the optimal decision when the expert’s message signals

element pi of the partition P .

Inspection of (14)-(16) reveals that the principal achieves the highest

expected payoff under communication if the precision of the decision in

equilibrium of the communication game is at least as large as under dele-

gation or centralization i.e.,

E
�
− (ȳ − θ)2 |P

	
≥ E

�
− (y∗ − θ)2 |n∗ (c)

	
.

Even if the above expression holds as equality, i.e. if the precision of the

decision is the same across these organizational forms, communication dom-
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inates centralization because the cost of information acquisition is borne

by the expert in the former and by the principal in the latter. Communi-

cation also dominates delegation because in the latter the expert’s decision

is biased against the decision-maker, as reflected by the term −b2 in (15).

Propositions 3 and 5 above identify sufficient conditions under which

the decisions in all Pareto efficient equilibria of the overt and covert game

are at least as precise as under centralization. Based on these results, we

can state the following Corollary.

Corollary 2 (a) If b ≤
��

1 + 2
3c
+ 1

�−1
, then the principal strictly prefers

any Pareto efficient equilibrium of the overt game to either centralization

or to delegation.

(b) If b ≤
�
2
�

1 + 2
3c

+ 2
�−1

, then the principal strictly prefers any Pareto

efficient equilibrium of the covert game to centralization and delegation.

Corollary 2 holds under the assumption that the agent and the principal

have the same cost c of an experiment. This assumptions is relevant for

the comparison between communication and centralization. However, the

comparison between communication and delegation does not rely on it,

since the expert bears the cost of information acquisition in both these

organizational forms.

Further, the conditions in Corollary 2 are sufficient for the optimality

of communication, but are not necessary. So, to present a more complete

comparison of the organizational forms, we turn to numerical analysis. The

results are summarized in Figures (3)-(5). Figure (3) depicts the region of

the parameter space where the sufficient condition (a) of Corollary 2 holds.

Figures (4a) and (4b) present the optimal organizational form computed

numerically. The value for communication was calculated choosing the

principal’s and the agent’s preferred equilibrium of the overt game in Fig-

ure (4a) and Figure (4b), respectively. Compared to Figure (3), Figures

(4a) and (4b) show that communication is the best organization for a larger

set of the cost/bias parameter values. In particular, communication is op-

timal unless the bias is sufficiently large. For small costs of information

acquisition, the value of the bias plays the crucial role: any of the three or-

ganizational forms can be optimal, depending on the bias. Specifically, the

principal prefers communication if the bias is small; delegation dominates
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if the bias is intermediate; centralization dominates if the bias is large.

The region where delegation is optimal disappears as the information ac-

quisition cost increases. Perhaps not surprisingly, centralization dominates

when the bias is large, regardless of the cost of information acquisition. As

we move from the expert’s preferred equilibrium to the decision-maker’s

preferred equilibrium, communication becomes optimal under a broader

set of parameter values, and mostly at the expenses of delegation, rather

than centralization.
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Figure 3: In the white region, the sufficient condition (a) in Corollary 2 is

satisfied.
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Figure 4: In the white region, the best organization is Communication. In the

grey region, it is Delegation. In the black region, it is Centralization. Panel (4a)

considers the equilibrium of the overt game preferred by the decision maker.

Panel (4b) considers the one preferred by the expert.
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Covert information acquisition is compared with centralization and del-

egation in Figures (5a) and (5b). Figure (5a) depicts the region of the

parameter space where the sufficient condition (b) of Corollary 2 holds.

Figure (5b) presents the numerical derivation of the optimal organizational

form which utilizes the principal’s preferred equilibrium of the covert game

under communication (The results for the expert’s preferred equilibrium

are very similar, and hence have been omitted). Comparison of Figures

(5a) and (5b) shows that Condition (b) in Corollary 2 is sufficient but not

necessary, similarly to the overt game. Also, compared to Figure (4) (overt

game), in Figure (5b) (covert game) the area where delegation dominates

is noticeably larger.
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Figure 5: (5a) In the white region, the sufficient condition (b) in Corollary 2 is

satisfied. (5b) In the white region, the best task allocation is Communication.

In the grey region, it is Delegation. In the black region, it is Centralization.

5 Conclusion

We have developed a simple yet intuitive model of costly endogenous in-

formation acquisition with strategic communication of this information. In

this context, we have shown that decisions based on a biased expert’s advice

may be more precise than optimal choices based on direct information ac-

quisition, even if the expert is not more efficient than the decision maker at

acquiring information. This result is important for organization design, as

it implies that under certain conditions communication outperforms del-
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egation and centralization. In this respect, our paper contributes to the

literature that employs a strategic communication framework to study op-

timal allocation of authority in the presence of incomplete information.

A number of other interesting questions can be addressed in the frame-

work of our model. First, suppose that the decision-maker was able to

subsidize the expert’s information acquisition cost. How would that affect

the amount of information acquired and the precision of the decision? Sec-

ond, how would the outcome of the communication game be affected if the

expert acquired the information covertly but had an option to verifiably

disclose the amount of information that he acquired? Would a decision

maker prefer knowing the amount of information acquired by an expert,

when she could not inspect its content? As shown by Austen-Smith (1994),

this issue is far from being transparent. We leave these and other questions

for future research.

Appendix

Proof of Lemma 1. The decision maker chooses yn
′

pi
so as to maximize

−

� 1

0

�
yn

′

pi
− θ

�2
f (θ|k ∈ pi, n′) dθ.

Taking the first-order condition, we obtain yn
′

pi
=
� 1
0

θf (θ|k ∈ pi, n′) dθ =
E [θ|pi, n′]. Simplifying:

E [θ|pi, n
′] = E [E [θ|k, n′] |k ∈ pi] =

�

k∈pi

E [θ|k, n′]
f (k;n′)�
k∈pi f (k;n′)

=
1

|pi|

�

k∈pi

k + 1

n′ + 2

becauseE [θ|k, n′] = k+1
n′+2

, and f (k;n′) =
� 1
0

f (k;n′, θ) dθ =
n′!

k! (n′ − k)!

� 1
0

θk (1− θ)n
′−k dθ =

n′!

k! (n′ − k)!
k!(n′−k)!
(n′+1)!

= 1
n′+1

.

Proof of Proposition 1 First, we show that the incentive compati-
bility constraint (4) can be rewritten as

−
�

yn
′

pi
− yn

′

q

� 
�
yn

′

pi
+ yn

′

q

�
− 2E [θ/k, n′]− 2b



≥ 0 for all q ∈ Pn′ .
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For this, note the following:

� 1

0

US
�

yn
′

pi
, θ, b

�
f (θ; k, n′) dθ ≥

� 1

0

US(yn
′

q , θ, b)f (θ; k, n′) dθ

−

� 1

0

��
yn

′

pi
− θ − b

�2
−
�

yn
′

q − θ − b
�2�

f (θ; k, n′) dθ ≥ 0

−

� 1

0

��
yn

′

pi

�2
+ (θ + b)2 − 2yn

′

pi
(θ + b)−

�
yn

′

q

�2
− (θ + b)2 + 2yn

′

q (θ + b)

�
f (θ; k, n′) dθ ≥ 0

−

� 1

0

��
yn

′

pi

�2
−
�

yn
′

q

�2
− 2

�
yn

′

pi
− yn

′

q

�
(θ + b)

�
f (θ; k, n′) dθ ≥ 0

−
�

yn
′

pi
− yn

′

q

� 
�
yn

′

pi
+ yn

′

q

�
− 2E [θ/k, n′]− 2b



≥ 0

Next, we prove that in any pure-strategy equilibrium of the commu-
nication subgame, each element of the equilibrium partition is connected.
Suppose by contradiction that there exists an equilibrium where at least
one element of the partition is not connected. Then, there exists at least
a triple of types (k, k′, k′′) such that: k < k′′ < k′, k and k′ belong to the
same element of the partition, which we denote by pa, and k′′ belongs to a
different element, which we denote by pb. Let ya and yb be the equilibrium
actions associated to pa and pb respectively. By incentive compatibility, the
following inequalities must hold:

(yb − ya)

�
ya + yb −

2 (k + 1)

n′ + 2
− 2b

�
≥ 0

(yb − ya)

�
ya + yb −

2 (k′ + 1)

n′ + 2
− 2b

�
≥ 0

(ya − yb)

�
ya + yb −

2 (k′′ + 1)

n′ + 2
− 2b

�
≥ 0

Because the first two expressions are positive, then ya+yb−
2 (k + 1)

n + 2
−2b

and ya + yb −
2 (k′ + 1)

n + 2
− 2b have the same sign. But then, also ya + yb −

2 (k′′ + 1)

n + 2
− 2b has the same sign, because k < k′′ < k. And hence, the last

expression is negative: A contradiction.
Next, we prove that incentive compatibility implies expression (7). Let

k be the expert’s type. Denote by y the equilibrium action associated
to k, and by �y any other equilibrium action. The incentive compatibility
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constraint is:

(�y − y)

�
�y + y −

2 (k + 1)

n′ + 2
− 2b

�
≥ 0. (.17)

First, we rule out the possibility that a type k deviates by inducing an

equilibrium action �y larger than y. This deviation is unprofitable if and
only if

�y + y −
2 (k + 1)

n′ + 2
− 2b ≥ 0. (.18)

Because the expression is increasing in �y and decreasing in k, it immediately
follows that the tightest incentive compatibility constraints concern the
highest type k in any element pi of the equilibrium partition, entertaining
the possibility of deviating and inducing the equilibrium action �y associated
to pi+1, the element of the partition immediately to the right of p.

Hence, we now consider such constraints. The explicit expression for y
and ỹ are:

y =
1

|pi|

�
k + 1

n′ + 2
+

k − 1 + 1

n′ + 2
+ ... +

k − (|pi| − 1) + 1

n′ + 2

�
=

2k − |pi|+ 3

2 (n′ + 2)

�y =
1

|pi+1|

�
k + 1 + 1

n′ + 2
+

k + 2 + 1

n′ + 2
+ ... +

k + |pi+1|+ 1

n′ + 2

�
=

2k + |pi+1|+ 3

2 (n′ + 2)

Hence, condition (.18) simplifies as:

2k + |pi+1|+ 3

2 (n′ + 2)
+

2k − |pi|+ 3

2 (n′ + 2)
−

2
�
k + 1

�

n′ + 2
− 2b ≥ 0,

or,
|pi+1| ≥ |pi|+ 4b (n + 2)− 2. (.19)

Proceeding in the same fashion, we prove that when �y < y, the tightest
incentive compatibility constraints concern the lowest type k in any element
pi of the equilibrium partition, entertaining the possibility of deviating and
inducing the equilibrium action �y associated to pi−1, the element of the
partition immediately to the left of pi. Again, letting j be the cardinality
of pi, and z be the cardinality of pi−1, we obtain

y =
1

|pi|

�
k + 1

n′ + 2
+

k + 1 + 1

n′ + 2
+ ... +

k + |pi| − 1 + 1

n′ + 2

�
=

2k + |pi|+ 1

2 (n′ + 2)

�y =
1

|pi−1|

�
k − 1 + 1

n′ + 2
+

k − 2 + 1

n′ + 2
+ ... +

k − |pi−1|+ 1

n′ + 2

�
=

2k − |pi−1|+ 1

2 (n′ + 2)
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Hence, condition (.18) simplifies as:

2k − |pi−1|+ 1

2 (n′ + 2)
+

2k + |pi|+ 1

2 (n′ + 2)
−

2 (k + 1)

n′ + 2
− 2b ≤ 0

which implies
|pi| ≤ |pi−1|+ 4b (n + 2) + 2. (.20)

Proof of Lemma 2We prove that as n′ →∞, for any i, |pi| /(n′+1)→
ai − ai−1. In fact, condition (7) implies that

4b (n′ + 2)− 2

n′ + 1
≤
|pi+1| − |pi|

n′ + 1
≤

4b (n + 2) + 2

n′ + 1
,

and, taking limits for n′ → ∞, 4b ≤ ai − ai−1 + ai+1 − ai ≤ 4b,which is
exactly the arbitrage condition of Crawford and Sobel (1982).

Calculations leading to expressions (9) and (8). For any n′, con-
sider the expert’s and the decision-maker’s expected payoffs associated to
IC partition {Pn′}, assuming that the decision-maker plays her sequentially
rational strategy, as described by Lemma 1.:

n′�

k=0

�� 1

0

US
�

yn
′

pn′(k)
, θ, b

�
f (θ; k, n′) dθ × Pr (k;n′)

�
− c(n′) (.21)

n′�

k=0

�� 1

0

UR
�

yn
′

pn′(k)
, θ, b

�
f (θ; k, n′) dθ × Pr (k;n′)

�
(.22)

Let the operator E [.|Pn′ ] denote the expectation with respect to θ and
k conditional on the number of experiments n′, and the associated partition
Pn′. Then, using the fact that, by (6), E [y(Pn′)|Pn′] = E [θ|Pn′ ], we can
rewrite the expert’s expected payoff in (.21) as follows:

E
�
− (y(Pn′)− θ − b)2 |Pn′

	
− cn′ = E

�
− (y(Pn′)− θ)2 + 2b (y(Pn′)− θ) |Pn′

	
− b2 − cn′

= E
�
− (y(Pn′)− θ)2

��Pn′]− b2 − cn′,

Further, the decision-maker’s expected payoffs in (.22) can be rewritten as:

E
�
− (y(Pn′)− θ)2 |Pn′

	

Proof of Lemma 3: Consider an equilibrium E1 = (n1, m1(n, k), B1(.), σ1)
in which the expert performs n1 trials, and follows message strategym1(n, k),
where n is the number of trials and k is the number of successes, the
decision-maker forms beliefs B1(.) : M �→ ∆({(n, k)|n, k ∈ N , n ≥ k}) and
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follows action-choice strategy σ1(.) : B1 �→ ∆([0, 1]). 19 Note that the de-
cision maker’s beliefs B1(.) is a mapping from the set of expert’s messages
M into the set of probability distributions ∆({(n, k)|n, k ∈ N , n ≥ k}),
reflecting the fact that in the covert game the decision maker has to form
beliefs not only about the number of successes but also about the number
of experiments performed by the expert.

Let M e = {m1(n1, k)|k = 0, 1, ..., n1} be the set of messages sent on the
equilibrium path with a positive probability. Then B1

|N(m) puts probability

1 on n1 for all m ∈ M e. Next, fix some arbitrary m̆ ∈ M e and consider
modified belief B̂(.) and modified strategy σ̂(.) such that for any m ∈ M e,
B̂(m) = B1(m) and σ̂(m) = σ1(m), while for any m ∈ M \M e, B̂(m) =
B1(m̆) and σ̂(m) = σ1(m̆). Hence, B̂(.) puts probability 1 on n1 for all
m ∈ M .

Now consider a putative equilibrium Ê = (n1, m1(n, k), B̂(.), σ̂(.)) in
which the expert performs n1 trials and follows message strategy m1(n, k),
and the decision-maker uses belief rule B̂(.) and strategy profile σ̂(.). With
the decision-maker’s belief rule B̂(.) in Ê , no expert’s message can change
the decision-maker’s beliefs about the number of trials.

Furthermore, Ê does constitute a perfect Bayesian equilibrium because
E1 is a perfect Bayesian equilibrium, and both Ê and E1 prescribe the
same behavior and beliefs on the equilibrium path, with the only difference
between them being in the beliefs off the equilibrium path i.e., after a
message m ∈ M \ M e: after such message Ê prescribes beliefs B̂(m) =
B1(m̆), while E1 prescribes beliefs B1(m). However, since a message m̆ is
also available to a deviating expert in E1 but does not lead to a profitable
deviation, there is no profitable deviation for an expert in Ê . So, Ê is a
perfect Bayesian equilibrium. Q.E.D.

Proof of Lemma 4: First, recall that y∗k = E [θ|k] = (k + 1)/(n + 2).
Using this expression below we obtain:

E
�
− (y∗k − θ)2 |n

	
− cn = −

n�

k=0

Pr (k;n)

� 1

0

(E [θ|k]− θ)2 f (θ; k, n)− cn

19In this proof, we need to use a more canonical definition of perfect Bayesian equi-
librium, not relying on partitions.
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= −
n�

k=0

1

n + 1

� 1

0

�
k + 1

n + 2
− θ

�2
(n + 1)!

k! (n− k)!
θk (1− θ)n−k dθ − cn

= −
n�

k=0

1

n + 1

� 1

0

��
k + 1

n + 2

�2
+ θ2 − 2θ

�
k + 1

n + 2

� 
(n + 1)!

k! (n− k)!
θk (1− θ)n−k dθ − cn

= −
n�

k=0

1

n + 1

�� 1

0

θ2
(n + 1)!

k! (n− k)!
θk (1− θ)n−k dθ −

�
k + 1

n + 2

�2 
− cn

= −
n�

k=0

1

n + 1

�
(k + 2) (k + 1)

(n + 3) (n + 2)
−

�
k + 1

n + 2

�2 
− cn

= −
1

6(n + 2)
− cn. Q.E.D.

Proof of Proposition 2. We prove that there exists an equilibrium of
the overt information acquisition game in which the expert runs n∗ (c) + 1
trials and fully reveals their realizations. Clearly, this equilibrium implies
a decision precision higher than the benchmark of direct information ac-
quisition by the decision maker. The result then follows because either this
equilibrium is Pareto-efficient, or there exists another equilibrium which
Pareto-dominates it, in which the payoff of the decision-maker, i.e. the
decision precision, is even higher.

The proof proceeds as follows. First, we find the maximal number of
trials �n (c) such that, under a given investment cost c, the utility that the
expert obtains by conducting �n (c) trials and fully revealing their realiza-
tions to the decision maker is higher than the utility from running any other
number of trials and playing the babbling equilibrium. Formally, �n (c) is
the highest integer that satisfies

−
1

6 (n + 2)
− b2 − cn ≥ −

1

12
− b2.

Further, from Corollary 1 it follows that !n (b) ≡
"
1
2b
− 2

#
is the maximal

number of trials for which full revelation in the communication game is
incentive compatible. Hence, it is an equilibrium for the expert to run
n∗(c) + 1 trials and to fully reveal the information to the decision maker
whenever the following condition holds:

n∗(c) + 1 ≤ max{!n (b) , �n (c)}. (.23)

The condition n∗ (c) + 1 ≤ �n (c) is satisfied if
�

2+3c
12c

− 3
2
+ 1 ≤ 1

12c
− 2,

i.e., c ≤ 5−
√
17

48
, whereas the condition n∗ (c) + 1 ≤ !n (b) is satisfied if
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�
2+3c
12c

− 3
2
+ 1 ≤ 1

2b
− 2, or b ≤

��
1 + 2

3c
+ 3

�−1
.

If !n (b) ≥ n∗ (c) + 1 and �n (c) ≥ n∗ (c) + 1, then there exists an equi-
librium of the overt information acquisition game in which the expert
runs n∗ (c) + 1 trials and fully reveals their realizations, while the bab-
bling equilibrium is played in any subgame in which n′ �= n trials are run.
The decision maker’s utility E

�
− (yp − θ − b)2 |Pn

	
in this equilibrium is

−1/[6(n∗+1+ 2)] which is strictly larger than the decision maker’s utility
−1/[6(n∗ + 2)] if she directly acquired information. Q.E.D.

Proof of Proposition 3. We prove that the expert’s preferred equi-
librium of the game is such that he acquires exactly n∗ (c) trials and fully
reveals the outcome. Hence, this equilibrium yields the same decision pre-
cision as direct information acquisition by the decision maker. The result
then follows from the observation that the expert’s preferred equilibrium is
by construction Pareto-efficient. Hence, in any other Pareto-efficient equi-
librium, the ex-ante utility of the decision maker, which coincides with the
precision of the decision, must be weakly larger than in this equilibrium.

Consider the expert’s preferred equilibrium of the game. This equilib-
rium is such that the most informative (i.e. the Pareto efficient) commu-
nication equilibrium is played both on and off the equilibrium path. To
prove that this is the case, notice that the maximizing the expert’s payoff
over all equilibria can be viewed as a two-stage maximization process. The

expert’s expected payoff is equal to E


−
�
yn

′

pi
− θ

�2
|Pn′



− b2− cn′. In the

first stage of the maximization, for any number n′ of experiments we select
an incentive compatible partition Pn′ and a profile of equilibrium actions

y (Pn′) that maximize E


−
�
yn

′

pi
− θ

�2
|Pn′



− b2, i.e. that maximize the

precision of the information transmitted. Then, in the second stage of the
maximization, we choose the number of experiments n that maximizes the

maximum value of E


−
�
yn

′

pi
− θ

�2
|Pn′



− b2 as derived in the first stage,

minus the cost cn′.
Next, we show that in this equilibrium, in which the Pareto-efficient in-

centive compatible partition is played in the communication stage on and off
the equilibrium path and the expert, correctly anticipating this, selects the
number of trials that maximizes his expected payoff, the equilibrium num-
ber of trials is exactly n∗ (c) and full revelation occurs, if the condition in the

Proposition holds. First, notice that the condition b ≤
��

1 + 2
3c

+ 1
�−1

implies that
"
1
2b
− 2

#
≥
��

2+3c
12c

− 1.5
�
, that is !n (b) ≥ n∗(c). This in turn

implies that fully revealing the outcome of n∗ (c) trials is incentive compati-
ble. Next, consider deviations at the information acquisition stage. In equi-
librium, the expert’s expected utility, E

�
US (y∗, θ, b) |n

	
− c (n) is equal to
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E
�
UR (y∗, θ) |n

	
−c (n)−b2, the expected payoff of a decision maker who di-

rectly conducts n∗(c) trials, minus b2. Now suppose the expert deviates, and
purchases n′ trials and the most informative communication equilibrium is
played in the ensuing communication subgame. Given this communication

partition Pn′ , E


−
�
yn

′

pi
− θ − b

�2
|Pn′



= E



−
�
yn

′

pi
− θ

�2
|Pn′



− b2. For

n′, full separation might or might not be incentive compatible.
If it is, then the difference between equilibrium payoff and deviation

payoff is equal to the payoff difference that the decision maker would receive
in the single agent decision problem if he purchased n′ trials rather than
n∗ (c). This payoff difference is negative, by definition of n∗ (c). If some
information loss occurs, the deviation gain is strictly smaller than the payoff
difference that the decision maker would receive in the single agent decision

problem because E


−
�
yn

′

pi
− θ

�2
|Pn′



< E

�
UR (y∗, θ) |n′

	
and again the

result is implied by the definition of n∗ (c). Q.E.D.

Proof of Proposition 4. We start from the observation that for any
integer l, n∗ (c) = l for 1

6(l+2)(l+3)
< c < 1

6(l+1)(l+2)
, hence also for any c in

the interval required by the Proposition. The proof will show that if the
conditions in the proposition hold, then in equilibrium the expert acquires
n∗ (c) + 1 = l + 1 trials and fully reveals their outcome.

First, by Corollary 1, full revelation of the outcome of l +1 is incentive
compatible for b ≤ 1

2(l+3)
, hence it is incentive compatible for b ≤ 1

4(l+3)
.

Next, we establish that the expert has no incentive to acquire a number
of trials different from l+1. The expert’s expected payoff from performing
l+1 trials and fully revealing the outcome is equal to W (l + 1) = − 1

6(l+3)
−

b2.
Because 1

6(l+2)(l+3)
< c < 1

6(l+1)(l+2)
and b ≤ 1

4(l+3)
, the proof of Proposi-

tion 5 –interchanging n∗ with l + 1 –- implies that deviating from l + 1
trials to run n > l + 1 trials is not profitable.

By concavity of W , W (l+1)−W (l−j)
j+1

> W (l+1)−W (l−1)
2

. Hence, requiring

that c < W (l+1)−W (l−1)
2

= 1
6(l+1)(l+3)

deters all deviations from l + 1 to l− j,
j = 1, ..., l.

Finally, a deviation to l trials is not profitable for the expert if c <
W (l + 1) − Ŵ (l), where Ŵ (·) was defined in the proof of Proposition 5.
The rest of the proof establishes that for l > 4, 1

6(l+1)(l+3)
< W (l + 1) −

Ŵ (l), hence requiring that c < 1
6(l+1)(l+3)

guarantees that the deviation
to l trials is not profitable. Also, it establishes that for l < 4, the value

of 1
6(l+1)(l+3)

−


W (l + 1)− Ŵ (l)



is at most 1

3
b if l = 0, 24b−1

96
if l = 1,

30b−1
450

if l = 2, 30b−1
360

if l = 3, and 63b−2
735

if l = 4, hence the condition in the
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proposition guarantees that c < min
$

1
6(l+1)(l+3)

,


W (l + 1)− Ŵ (l)


%
.

To calculate W (l + 1)−Ŵ (l), we need to compute Ŵ (l). Denoting by
yj the action in the set

�
0, 1

l+3
, ..., l+1

l+3

�
preferred by an expert who observed

j successes in l trials, we obtain:

Ŵ (l) =
1

l + 1

l�

j=0

Ŵ (j, l; yj) = −
l�

j=0

1

l + 1
(yj − b)2 + 2

l�

j=0

j + 1

(l + 1) (l + 2)
(yj − b)−

1

3

= −
1

3
−

l�

j=0

yj − b

l + 1

�
yj − b− 2

j + 1

l + 2

�
.

Hence,

W (l + 1)− Ŵ (l) = −
1

6(l + 3)
− b2 +

1

3
+

l�

j=0

yj − b

l + 1

�
yj − b− 2

j + 1

l + 2

�

=
2k + 5

6 (l + 3)
− b2 +

l�

j=0

yj − b

l + 1

�
yj − b− 2

j + 1

l + 2

�
.

Next, we characterize the expert’s preferred action yj, for j = 0, ..., l.
First, we establish that yj ∈

�
j+1
l+3

, j+2
l+3

�
. The payoff of type j is maximized

by action j+1
l+2

+ b > j+1
l+3

, hence the action j+1
l+3

is preferred to any smaller

action. Also, j+1
l+2

< j+2
l+3

, hence the fact that in equilibrium the type whose

payoff is maximized by j+2
l+3

+ b is willing to truthfully reveal his type guar-

antees that after a deviation to l trials the action j+2
l+3

is preferred to any
larger action.

Second, we observe that a sender whose payoff is maximized by j+1
l+2

+ b

will choose to induce action j+1
l+3

rather than j+2
l+3

if and only if 2b+ 2j−l
(l+2)(l+3)

>

0 and this quantity is increasing in j, hence for any bias such that b ≤ 1
4(l+3)

,

we can find a threshold J =
"
−b (n + 2) (n + 3) + n

2

#
≤ n

2
such that types

j ≤ J prefer action j+1
n+3

and types j > J prefer action j+2
n+3

. Notice that

J = −1 denotes the case where all types j prefer action j+2
n+3

.
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Then, the difference W (l + 1)− Ŵ (l) can be rewritten as

W (l + 1)− Ŵ (l)

=
2k + 5

6 (l + 3)
− b2 + 2

J�

j=0

j+1
l+3

− b

l + 1

�
j+1
l+3

− b

2
−

j + 1

l + 2

�
+ 2

l�

j=J+1

j+2
l+3
− b

l + 1

�
j+2
l+3
− b

2
−

j + 1

l + 2

�

=
2J2 + 2J (12b− l + 10bk + 2bk2 + 1) + 2 + 12b + l − 2bk + l2 − 8bk2 − 2bk3

2 (l + 1) (l + 2) (l + 3)2

It it is easy to check that 1
6(l+2)(l+3)

is smaller than the above expression for
any J , hence the range for c identified in the statement of the proposition
is nonempty.

Next, we consider the following difference:

W (l + 1)− Ŵ (l)−
1

6 (l + 1) (l + 3)

=
2J2 + 2J (12b− l + 10bk + 2bk2 + 1) + 2 + 12b + l − 2bk + l2 − 8bk2 − 2bk3

2 (l + 1) (l + 2) (l + 3)2

−
1

6 (l + 1) (l + 3)

=
3J2 + J (36b− 3k + 30bk + 6bk2 + 3) + 18b− l − 3bk + l2 − 12bk2 − 3bk3

3 (l + 3)2 (l + 1) (l + 2)

The denominator is positive. The numerator is a quadratic expression
in J . For l ≥ 8, this quadratic is positive for any l and any b hence

min
$

1
6(l+1)(l+3)

,


W (l + 1)− Ŵ (l)


%
= 1

6(l+1)(l+3)
. Using the definition of

J , we have that:
For l = 0, J = −1 and W (l + 1) − Ŵ (l) = 1−6b

18
, hence 1

6(l+1)(l+3)
−


W (l + 1)− Ŵ (l)


= b

3
.

For l = 1, if b ≤ 1
24
, J = 0 and 1

6(l+1)(l+3)
−


W (l + 1)− Ŵ (l)



= 0. If

instead 1
24

< b < 1
16
, then J = −1 and 1

6(l+1)(l+3)
−


W (l + 1)− Ŵ (l)



=

24b−1
48

.

For l = 2, if b ≤ 1
30

J = 0 and 1
6(l+1)(l+3)

−


W (l + 1)− Ŵ (l)



< 0. For

b ∈ ( 1
30

, 1
20
], J = 0 and 1

6(l+1)(l+3)
−


W (l + 1)− Ŵ (l)



= 30b−1

450
.

For l = 3, if b ≤ 1
60

J = 1 and 1
6(l+1)(l+3)

−


W (l + 1)− Ŵ (l)



< 0. For

b ∈ [ 1
60

, 1
24
], J = 0 and 1

6(l+1)(l+3)
−


W (l + 1)− Ŵ (l)



= 30b−1

320
.
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For l = 4, if b ≤ 1
42

J = 1 and 1
6(l+1)(l+3)

−


W (l + 1)− Ŵ (l)



< 0. For

b ∈ [ 1
42

, 1
28
], J = 0 and 1

6(l+1)(l+3)
−


W (l + 1)− Ŵ (l)



= 63b−2

735
.

For l = 5, if b ≤ 1
112

, J = 2. If b ∈
�
1
112

< b ≤ 3
112

	
, J = 1. If

b ∈ [ 3
112

< b ≤ 5
112

], J = 0. In each of these three cases, 1
6(l+1)(l+3)

−

W (l + 1)− Ŵ (l)



< 0.

For l = 6, from the expression for J one can see that either J = 1 or

J = 2. In both cases, 1
6(l+1)(l+3)

−


W (l + 1)− Ŵ (l)



< 0.

For l = 7, from the expression for J one can see that either J = 1 or

J = 2 or J = 3. In all these cases, 1
6(l+1)(l+3)

−


W (l + 1)− Ŵ (l)



< 0.

We can therefore conclude that for l > 4, 1
6(l+1)(l+3)

< W (l + 1)−Ŵ (l),

hence requiring that c < 1
6(l+1)(l+3)

guarantees that the deviation to l trials
is not profitable. Moreover, we have established that for l < 4, the value

of 1
6(l+1)(l+3)

−


W (l + 1)− Ŵ (l)



is at most 1

3
b if l = 0, 24b−1

96
if l = 1,

30b−1
450

if l = 2, 30b−1
360

if l = 3, and 63b−2
735

if l = 4, hence the condition in

the proposition guarantees that c < min
$

1
6(l+1)(l+3)

,


W (l + 1)− Ŵ (l)


%
,

hence guarantees that the deviation to l trials is not profitable. Q.E.D.

Proof of Proposition 5. Consider n∗ (c), the optimal number of
trials under direct information acquisition by definition in (12). To prove
the Proposition it is sufficient to show that there exists an equilibrium in
which the sender performs n∗ (c) trials and fully reveals his information in
the communication stage. Such an equilibrium, if it exists, would be the
expert-preferred equilibrium. So, in any Pareto-efficient equilibrium the
decision-maker’s expected payoff has to be (at least weakly) greater than
in this equilibrium.

To establish the existence of the desired equilibrium, in which the expert
runs n∗ (c) trials and fully reveals their realizations, first, note that the

condition b ≤
�
2
�

1 + 2
3c

+ 2
�−1

and definition (12) together imply that

b ≤ 1
2(n∗(c)+2)

. So, by Corollary 1 full revelation is incentive compatible at

the communication stage after the expert runs n∗ (c) trials.
Further, the expert’s expected payoff after running n∗ (c) trials and fully

revealing their realizations is equal to − 1
6(n∗+2)

− b2 − cn∗. By definition,

n∗(c) ∈ argmaxn−
1

6(n+2)
− cn. Hence, n∗(c) ∈ argmaxnW (n) − cn ≡

− 1
6(n+2)

− b2 − cn.
So, to complete the proof it is sufficient to establish that for any n ∈

{0, 1, ...,∞}, W (n) ≥ Ŵ (n) where Ŵ (n) is the expected payoff that the
expert gets after deviating to n signals.
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To establish this inequality, first, note that W (n) =
�n

j=0
W (j,n)
n+1

where

W (j, n) = −

� 1

0

(E [θ|j, n]− θ − b)2 f (θ|j, n) dθ

= −

� 1

0

(E [θ|j, n]− θ)2 f (θ|j, n) dθ − b2

= −

�
(E [θ|j, n])2 − 2(E [θ|j, n])

j + 1

n + 2
+

(j + 2) (j + 1)

(n + 3) (n + 2)

�
− b2

= −

��
j + 1

n + 2

�2
− 2

�
j + 1

n + 2

�
j + 1

n + 2
+

(j + 2) (j + 1)

(n + 3) (n + 2)

 
− b2

= −

�
(j + 2) (j + 1)

(n + 3) (n + 2)
−

�
j + 1

n + 2

�2 
− b2 (.24)

Similarly, Ŵ (n) =
�n

j=0
Ŵ (j,n;)
n+1

, where

Ŵ (j, n) = − max
yj∈{ 1

n∗+2
, 2
n∗+2

,...,n
∗+1

n∗+2}

� 1

0

(yj − θ − b)2 f (θ|j, n) dθ

= −

� 1

0

�
(yj − b)2 + θ2 − 2θ(yj − b)

	 (n + 1)!

j! (n− j)!
θj (1− θ)n−j dθ

= −

�
(yj − b)2 +

� 1

0

(n + 1)!

j! (n− j)!
θj+2 (1− θ)n−j dθ − 2(yj − b)

� 1

0

(n + 1)!

j! (n− j)!
θj+1 (1− θ)n−j dθ

�

= −

�
(yj − b)2 +

(n + 1)!

j! (n− j)!

(2 + j)! (n− j)!

(n + 3)!
− 2(yj − b)

(n + 1)!

j! (n− j)!

(1 + j)! (n− j)!

(n + 2)!

�

= −

�
(yj − b)2 − 2 (yj − b)

j + 1

n + 2
+

(j + 2) (j + 1)

(n + 3) (n + 2)

�
. (.25)

Note that the message yj optimally chosen by type j (i.e. the expert who
observed j successes in n trials) has to be compatible with the equilib-
rium beliefs that he has acquired n∗ signals, even off the equilibrium path.
Therefore, yj ∈

�
1

n∗+2
, 2
n∗+2

, ..., n
∗+1
n∗+2

�
.

The proof proceeds by showing that for any j ≤ n− j

D (j, n) ≡


W (j, n)− Ŵ (j, n; yj)



+


W (n− j, n)− Ŵ (n− j, n; yn−j)



≥ 0.

(.26)
Since types j and n − j are ex-ante equally likely after n experiments,
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inequality (.26) implies that W (n) ≥ Ŵ (n). 20

Before computing D (j, n) let us establish the following useful property.
Claim A. Suppose that yj =

k+1
n∗+2

for some k ∈ {0, 1, ..., n∗}. Then

either yn−j =
n∗−k+1
n∗+2

or yn−j =
n∗−k+2
n∗+2

.

Proof of Claim A: For any j ∈ {0, 1, ..., n}, define

kj ∈ arg min
k′=0,...,n∗

����
k′ + 1

n∗ + 2
−

�
j + 1

n + 2
+ b

����� . (.27)

If for some j, the maximizer k′ of the above expression is not unique, then
choose one of the (two) maximizers arbitrarily and set it equal to kj. So,

yj =
kj+1

n∗+2
.

We need to distinguish two cases:
Case 1: yj =

kj+1

n∗+2
≤ j+1

n+2
, and Case 2: yj =

kj+1

n∗+2
> j+1

n+2
.

Let us start with Case 1. We will show that in this case, yn−j =
n∗−kj+1
n∗+2

.

Since b ≥ 0, we have: 0 ≤ j+1
n+2

− kj+1

n∗+2
≤ kj+2

n∗+2
− j+1

n+2
. By (.27),��� kj+1n∗+2

−
�
j+1
n+2

+ b
���� ≤

��� kj+2n∗+2
−
�
j+1
n+2

+ b
����. So we have:

����
n∗ − kj + 1
n∗ + 2

−

�
n− j + 1

n+ 2
+ b

����� =
����
j + 1

n+ 2
−
kj + 1

n∗ + 2
− b

���� ≤ b+
����
j + 1

n+ 2
−
kj + 1

n∗ + 2

���� ≤

b+

����
kj + 2

n∗ + 2
−
j + 1

n+ 2

���� =
����b+

kj + 2

n∗ + 2
−
j + 1

n+ 2

���� =
����
n∗ − kj

n∗ + 2
−

�
n− j + 1

n+ 2
+ b

����� .

(.28)

Inequality (.28) implies that type n − j prefers the action
n∗−kj+1
n∗+2

as-

sociated with message n∗ − kj to the action
n∗−kj
n∗+2

associated with message

n∗ − kj − 1. This, in combination with
n∗−kj+1
n∗+2

≥ n−j+1
n+2

and the fact that
the utility function of type n − j is single-peaked around the maximum
n−j+1
n+2

+ b, b ≥ 0, implies that type n − j prefers message n∗ − kj to any
message lower than n∗ − kj − 1.

Let us now show that type n − j also prefers to send message n∗ − kj
associated with action

n∗−kj+1
n∗+2

rather than any higher message associated

with a higher action. This is immediate if n−j+1
n+2

+ b ≤ n∗−kj+1
n∗+2

If, on the

other hand, n−j+1
n+2

+ b > n∗−kj+1
n∗+2

, this follows from the following facts: (i)

20If n is odd, there is an even number of possible types {0, 1, ..., n+1}, and n+1
2

pairs
of types (j, n− j) with j ≤ n− j. If n is even, then there is an odd number of possible
types, and so there are n

2
pairs (j, n− j) with j < n− j, plus the type n

2
. When j = n

2
,

we have n− j = j. In this case D
�
n
2
, n
�
= 2



W

�
n
2
, n
�
− Ŵ (j, n; yj)



. The result then

follows by showing that D
�
n
2
, n
�
> 0 and that D (j, n) > 0 for each pair (j, n− j) with

j < n
2
.
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n−j+1
n+2

≤ n∗−kj+1
n∗+2

, so n−j+1
n+2

+b− n∗−kj+1
n∗+2

≤ b ≤ 1
2(n∗+2)

; (ii)
n∗−kj+2
n∗+2

− n−j+1
n+2

−

b ≥ 1
n∗+2

− b ≥ 1
2(n∗+2)

, (iii) type n− j’s payoff function is symmetric and

single-peaked at n−j+1
n+2

+ b.

Next, consider Case 2 : yj =
kj+1

n∗+2
> j+1

n+2
. Let us show that in this case

yn−j ∈
$
n∗−kj+1
n∗+2

, n
∗−kj+2
n∗+2

%
.

Since
n∗−kj+1
n∗+2

< n−j+1
n+2

and b ≥ 0, the expert of type n−j gets a strictly

higher payoff from action
n∗−kj+1
n∗+2

than from any lower action. Thus, it

remains to show that type n − j’s expected utility from action
n∗−kj+2
n∗+2

is
higher than her expected utility from any higher action.

Further, note that we must have j+1
n+2

≥ kj
n∗+2

. Otherwise, since b ≤
1

2(n∗+2)
, type j would get a higher utility from action

kj
n∗+2

than from action
kj+1

n∗+2
, which would contradict yj =

kj+1

n∗+2
.

Thus, n−j+1
n+2

≤ n∗−kj+2
n∗+2

, and since the expected utility function of the

type n − j is symmetric around its maximum at y = n−j+1
n+2

+ b and b ≤
1

2(n∗+2)
, we conclude that the type n− j gets a higher expected utility from

action
n∗−kj+2
n∗+2

than from any other actions. This completes the proof of
Claim A.

Let us now turn back to the proof of the Proposition and compute
D (j, n). From (.24), (.25), (.26) we have

D (j, n) =
(j + 1)2

(n + 2)2
+

(n− j + 1)2

(n + 2)2
− 2b2

+

�
(yj − b)2 + (yn−j − b)2 − 2 (yj − b)

j + 1

n + 2
− 2 (yn−j − b)

n− j + 1

n + 2

�

=
(j + 1)2

(n + 2)2
+
(n− j + 1)2

(n + 2)2
+

�
y2j + y2n−j − 2yj

j + 1

n + 2
− 2yn−j

n− j + 1

n + 2
− 2b(yj + yn−j − 1)

�

=

�
yj −

(j + 1)

(n + 2)

�2
+

�
yn−j −

(n− j + 1)

(n + 2)

�2
− 2b(yj + yn−j − 1). (.29)

If yn−j =
n∗−kj+1
n∗+2

, then yj + yn−j = 1, and hence by (.29) D (j, n) =�
yj −

(j+1)
(n+2)

�2
+
�

yn−j −
(n−j+1)
(n+2)

�2
. The latter expression is nonnegative.

If instead yn−j =
n∗−kj+2
n∗+2

, then yj + yn−j = 1 + 1
n∗+2

. So, by (.29),

D (j, n) =

�
yj −

j + 1

n + 2

�2
+

�
yn−j −

n− j + 1

n + 2

�2
−

2b

n∗ + 2

=

�
j + 1

n + 2
−

kj
n∗ + 2

�2
+

�
kj + 1

n∗ + 2
−

j + 1

n + 2

�2
−

2b

n∗ + 2
(.30)
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In the proof of Case 2 of Claim A, we have established that
kj
n∗+2

≤
j+1
n+2

≤ kj+1

n∗+2
. Observe that kj+1

n∗+2
− kj

n∗+2
= 1

n∗+2
. So the value of the first

two terms of D (j, n),
�
j+1
n+2

− kj
n∗+2

�2
+
�
kj+1

n∗+2
− j+1

n+2

�2
, depends only on

kj+1

n∗+2
− j+1

n+2
and reaches its minimum when j+1

n+2
=

kj+1/2

n∗+2
. In this case,�

j+1
n+2

− kj
n∗+2

�2
+
�
kj+1

n∗+2
− j+1

n+2

�2
= 1

2(n+2)2
, and D (j, n) = 1

2(n+2)2
− 2b

n∗+2
.

Hence, D (j, n) ≥ 0 when b ≤ 1
4(n∗+2)

. This concludes the proof that under

the given conditions on the parameters, D (j, n) ≥ 0 hence W (n) ≥ Ŵ (n).
Q.E.D.
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A Results and Calculations not submitted

for publication

Proposition A.1 For any n′ and b, the Pareto-efficient incentive com-
patible partition is P ∗ = {p∗1, ..., p∗K} such that K = max{k ∈ N|k +

⌈4b (n′ + 2)− 2⌉ × k(k−1)
2

) ≤ n′ + 1}. For all i = 1, ..., K, the element p∗i of
the equilibrium partition consists of consecutive types and has cardinality
|p∗i | = 1+ ⌈4b (n′ + 2)− 2⌉× (i− 1)+

"
r
K

#
+ I

�
r −

�"
r
K

#
+ 1

�
K + i > 0

�
,

where r ≡ n′ + 1 −


K + ⌈4b (n′ + 2)− 2⌉ × K(K−1)

2



, and I denotes the

indicator function.

Proof. The equilibrium partition P identified in the Proposition is the
one with the largest cardinality K and with the smallest difference in the
cardinality of subsequent elements, subject to the incentive compatibility
condition (7).

The proof is in three parts. First we show that the negative of the

expected residual variance, E


−
�
yn

′

pi
− θ

�2
|Pn′



can be rewritten as −1

3
+

E [E(θ|pi)2]. Then, we show that among the equilibrium partitions with
the largest number of elements, the equilibrium with the smallest differ-
ence between the cardinalities of any two subsequent elements minimizes
the expected residual variance. Third, we show that, among the equilib-
rium partitions with the smallest difference in the cardinality of subsequent
elements, the one which minimizes the expected residual variance is the one
with the largest number of elements.

Part 1: E


−
�
yn

′

pi
− θ

�2
|Pn′



= −1

3
+ E [E(θ|pi)2].

By the law of iterated expectations,

E

�
−
�

yn
′

pi
− θ

�2
|Pn′

�
= −Eθ

�
(E [θ|pi]− θ)2

	

= −Epi

�
Eθ

�
(E [θ|pi]− θ)2 |pi

		

= −Epi [V ar [θ|pi]] .

1



Because V ar [θ] = Epi [V ar [θ|pi]] + V arpi [E(θ|pi)], we thus obtain:

E

�
−
�

yn
′

pi
− θ

�2
|Pn′

�
= −V ar [θ] + V arpi [E(θ|pi)]

= −V ar [θ] + E
�
E(θ|pi)

2
	
−E [E(θ|pi)]

2

= −V ar [θ] + E
�
E(θ|pi)

2
	
−E [θ]2

= −
1

12
+ E

�
E(θ|pi)

2
	
−

�
1

2

�2

= −
1

3
+ E

�
E(θ|pi)

2
	

.

Part 2: Among the equilibrium partitions with the largest
number of elements, the equilibrium with the smallest difference
between the cardinalities of any two subsequent elements maxi-

mizes E


−
�
yn

′

pi
− θ

�2
|Pn′



= −1

3
+ E [E(θ|pi)2].

Suppose the number of trials is n+1 and the number of types is n′+1.
Consider an equilibrium partition P with I elements {ki, ..., ki+1 − 1}Ii=1,
where kI+1 ≡ n + 1. We obtain:

E

�
−
�

yn
′

pi
− θ

�2
|P

�
= −

1

3
+E

�
E(θ|pi)

2
	
= −

1

3
+

I�

i=1

ki+1 − ki
n + 1

�
ki+1 + ki + 1

2 (n′ + 2)

�2
.

Next, consider a different equilibrium partition P ′ =
�
k′i, ..., k

′
i+1 − 1

�I
i=1

,
such that there is a unique i ∈ I with k′i = ki+1, and k′j = kj for all j �= i.

Denoting the associated expected residual variance by E
�
− (yp − θ)2 ;P

	

we obtain:

E

�
−
�

yn
′

p′i
− θ

�2
;P ′

�
− E

�
−
�

yn
′

pi
− θ

�2
;P

�

=
ki+1 − (ki + 1)

n + 1

�
ki+1 + (ki + 1) + 1

2 (n′ + 2)

�2
+

ki + 1− ki−1
n′ + 1

�
ki + 1 + ki−1 + 1

2 (n′ + 2)

�2

−
ki+1 − ki

n′ + 1

�
ki+1 + ki + 1

2 (n′ + 2)

�2
−

ki − ki−1
n′ + 1

�
ki + ki−1 + 1

2 (n′ + 2)

�2

=
(ki+1 − ki−1) [(ki+1 − ki)− (ki + 1− ki−1)]

4 (n′ + 2)2 (n′ + 1)
> 0.

where the last inequality holds because P ′ is an equilibrium partition,
hence k′i+1 − k′i > k′i − k′i−1, which implies ki+1 − ki − 1 > ki + 1− ki−1.
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Part 3: Among the equilibrium partitions with the small-
est difference in the cardinality of subsequent elements, the one
which minimizes the expected residual variance is the one with
the largest number of elements.

Denoting by P (m) the best equilibrium partition among those with m
elements, we prove that P (j) dominates P (j − 1) . Repeating the argument
proves the statement.

To prove that P (j) dominates P (j − 1) we describe an algorithm to
construct a sequence of partitions with the following features:

(a) the first term of the sequence is P (j)
(b) the last term of the sequence is P (j − 1)
(c) each term of the sequence, except for the last one, is a partition with

j elements
(d) each term of the sequence is preferred by both players to the next

one (i.e. has a smaller expected residual variance).
The algorithm is the following. Given the n-th term of the sequence

(the n-th partition), the (n + 1)-th is constructed as follows:

(i) If the sub-partition that includes the largest (j − 2) elements of n-th
partition is identical to the sub-partition that includes the largest (j − 2)
elements of P (j − 1), then let the n + 1-th partition be P (j − 1); i.e., let
the first element of the n+ 1-th partition be equal to the union of the first
two elements of the n-th partition. This step concludes the algorithm, and
satisfies condition (d), because, for any k1, k2 with k1 > 1, and k2 > k1+1,

k2 − k1
n′ + 1

�
k2 + k1 + 1

2 (n′ + 2)

�2
+

k1 − 1

n′ + 1

�
k1 + 1 + 1

2 (n′ + 2)

�2
−

k2 − 1

n′ + 1

�
k2 + 1 + 1

2 (n′ + 2)

�2

=
1

4

(k2 − k1) (k2 − 1) (k1 − 1)

(n′ + 2) (n′ + 1)
> 0.

(ii) If the sub-partition that includes the last (j − 2) elements of n-
th partition is not identical to the sub-partition that includes the largest
(j − 2) elements of P (j − 1), then the (n + 1)-th partition is obtained from
the n-th by moving the highest type included in the k-th element pnk into
the (k + 1)-th element pnk+1, where k < j is the highest index that satisfies
the following conditions:

(iia) For l < j − 2, if the sub-partition that includes the last l elements
of n-th partition is identical to the sub-partition that includes the last l

3



elements of P (j − 1), then k < j − l.21

(iib) The cardinality of pnk+1 is strictly smaller than the cardinality of
the k-th element of P (j − 1).

(iic) If the union of pn1 and pn2 is equal to the first element of P (j − 1),
then k > 2.

Because the number of types is finite, the algorithm has an end.
The type-(ii) step can be repeated exactly until the condition for the

type-(i) step is satisfied because, by construction, the cardinality of the l-th
element of P (j − 1) is weakly larger than the cardinality of the (l + 1)-
th element of P (j) , hence the union of the first two elements of P (j)
has cardinality weakly larger than the cardinality of the first element of
P (j − 1).Q.E.D.

Computations omitted from Example 2: First, let us compute
the expert’s payoff when he performs n = 2 trials and fully reveals his
information. It is equal to −Ek(E(θ − Eθ|k, n = 2)2) − b2 − 2c. We may
compute:

−EkE((θ −Eθ)
2|k, n = 2) = Prob(k = 0|n = 2)E((θ −Eθ)2|k = 0, n = 2)

+ Prob(k = 1|n = 2)E((θ −Eθ)2|k = 1, n = 2) + Prob(k = 2|n = 2)E(θ −Eθ)2|k = 2, n = 2)
(A.1)

Note that Prob(k = 0|n = 2) = Prob(k = 0|n = 2) = Prob(k = 2|n =
2) = 1

3
. Also, E(θ − Eθ)2|k = 0, n = 2) = 2E(θ − Eθ)2|k =, n = 2) 3

80
and

E(θ−Eθ)2|k = 1, n = 2) = 1
20
. Substituting this into (A.1) we obtain that

the expert’s total payoff is equal to − 1
24
− b2 − 2c.

Next, we consider a deviation to n = 1 trial. Let us show the following:
(i) If the trial fails (k = 0 out of n = 1), then the expert prefers to induce
action 1/4 rather than action 1/2 or action 3/4. It is enough to show that
he prefers 1

4
to 1

2
(The argument for 3/4 follows by monotonicity), which is

so if:

−

� 1

0

�
1

4
− θ − b

�2
(n + 1)!

k!(n− k)!
θk(1−θ)n−kdθ ≥ −

� 1

0

�
1

2
− θ − b

�2
(n + 1)!

k!(n− k)!
θk(1−θ)n−kdθ

(A.2)

With n = 1 and k = 0, (n+1)!
k!(n−k)!θ

k(1− θ)n−k = 2(1− θ), so (A.2) simplifies
to:

−2

� 1

0

�
1

4
− θ − b

�2
(1− θ)dθ + 2

� 1

0

�
1

2
− θ − b

�2
(1− θ)dθ ≥ 0 (A.3)

21For example, if j = 10, if the last three elements of the n−th partition in the sequence
are identical to the last three elements of the target partition, then they shouldn’t be
changed anymore, hence k < 7, so that "at most" a type is taken from the 6-th element
and moved into the 7-th.
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Rearranging terms and integrating, we obtain that (A.3) is equivalent to
1
4

�
1
12
− 2b

�
≥ 0 which holds because b ≤ 1

24
.

(ii) If the trial succeeds (k = 1 out of n = 1), then the expert prefers
to induce action 3/4 rather than action 1/2 or action 1/4. It is enough to
show that he prefers 3

4
to 1

2
(the argument for 1/4 follows by monotonicity),

which is so if:

−

� 1

0

�
3

4
− θ − b

�2
(n + 1)!

k!(n− k)!
θk(1−θ)n−kdθ ≥ −

� 1

0

�
1

2
− θ − b

�2
(n + 1)!

k!(n− k)!
θk(1−θ)n−kdθ

(A.4)

With n = 1 and k = 1, (n+1)!
k!(n−k)!θ

k(1− θ)n−k = 2θ, so (A.4) simplifies to:

−2

� 1

0

�
3

4
− θ − b

�2
θdθ + 2

� 1

0

�
1

2
− θ − b

�2
θdθ ≥ 0 (A.5)

Rearranging terms and integrating, we obtain that (A.5) is equivalent to
1
8

�
1
12

+ 2b
�

> 0 which is trivially satisfied.

Extension of Example 1: We show that Example 1 can be extended
to show that our overinvestment results hold beyond our parametric sta-
tistical model.

Consider an alternative model in which the expert’s information acqui-
sition model consists in choosing the fineness of a partition of the state
space [0, 1] , composed of equally sized intervals. I.e., the expert chooses
the number n of intervals [(k− 1)/n, k/n], k = 1, . . . , n, at cost cn, to then
observe the interval to which θ belongs. It can be shown that, for b ≤ 7

60

and c = 1
35

, there exists an equilibrium of the covert game such that the
decision maker achieves a higher utility than if she acquired information
directly.

Consider direct information acquisition first. The decision-maker’s pay-
off for n = 0 is, again, − 1

12
. If choosing n = 1, the decision maker pays

the cost c, to then take the action 1/4 if θ ∈ [0, 1/2] and the action 3/4 if
θ ∈ (1/2, 1]; thus her expected payoff is −1/48− c. Now, suppose c = 1/15,
so that the decision maker chooses n∗ = 0 if acquiring information directly.
For b ≤ 7/60, we now show that there exists an equilibrium in which the
expert chooses n = 1, i.e., “acquires” the partition {[0, 1/2], (1/2, 1]} of the
state space, and reveals the interval he observed, inducing action y = 1

4

if seeing [0, 1/2] and y = 3
4
if seeing (1/2, 1]. Indeed, if the expert devi-

ates to zero trials, then any message he sends can only induce one of the
equilibrium actions, namely y = 1

4
or y = 3

4
. Because of his upwards bias

(b > 0), he prefers y = 3
4
. The expected utility that the expert obtains

by inducing y = 3
4
is −b2 + 1

2
b − 7

48
. For b ≤ 7

60
and c = 1

35
, this is less

than − 1
48
− b2 − c, so this deviation is unprofitable. Again, showing that

the expert will not deviate to any n > 1 is straightforward and is therefore

5



omitted. Hence, the decision maker achieves a higher utility than if she
acquired information directly.
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