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Abstract

We study strategic information transmission in a Sender-Receiver game where play-
ers’ optimal actions depend on the realization of multiple signals but the players dis-
agree on the relative importance of each piece of news. We characterize a statistical
environment - featuring symmetric loss functions and elliptically distributed param-
eters - in which the Sender’s expected utility depends only on the first moment of
his posterior. Despite disagreement about the use of underlying signals, we demon-
strate the existence of equilibria in differentiable strategies in which the Sender can
credibly communicate posterior means. The existence of smooth communication equi-
libria depends on the relative usefulness of the signal structure to Sender and Receiver,
respectively. We characterize extensive forms in which the quality of information is
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optimally designed of equal importance to Sender and Receiver so that the best equi-
librium in terms of ex ante expected payoffs is a smooth communication equilibrium.
The quality of smooth equilibrium communication is entirely determined by the corre-
lation of interests. Senders with better aligned preferences are endogenously endowed
with better information and therefore give more accurate advice.

JEL: D82

Keywords: strategic information transmission, multi-dimensional cheap talk, monotone

strategies, endogenous information, elliptical distributions

1 Introduction

1.1 Motivation

This paper studies strategic communication when a Sender and a Receiver agree on the

important determinants of optimal decisions but disagree on the relative importance of sev-

eral arguments. We term this relative (dis-)agreement and show that blindly following a

Sender’s recommendations may be perfectly consistent with equilibrium behavior despite

such disagreement.

For concreteness, imagine a politician who needs to decide whether and by how much

she should raise taxes. Envision further that she would like to take her decision taking

into account information about the cost of sovereign debt and the impact of a tax raise

on employment, so she seeks advice from an expert. The expert’s preferences are broadly

aligned with those of the politician: he dislikes higher sovereign debt, but less so if interest

rates remain low, and he dislikes increases in the unemployment rate. However, the relative

importance the advisor attaches to these issues differs from the relative importance attached

to them by the politician. The expert needs to investigate the matter before he can give an

informed answer. Moreover, he can direct his investigations and so chooses to get more or

less precise information about this or the other issue. The politician is free to use the advice

in any way she sees fit - she cannot commit on how to use the expert’s advice up-front. Her

only influence on the quality of advice is through a careful selection of her advisor.

This is a natural situation of strategic communication with several differences to the
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one analyzed in Crawford & Sobel (1982). There are several pieces of information - more

precisely, signals - that should go into the politician’s and the expert’s ideal choice. The

politician and the expert disagree about the aggregation of the signals into a choice. Since

both of them care only about a unidimensional decision that is taken, the conflict is ultimately

unidimensional, despite information being higher dimensional. The way politician and expert

disagree about the choice depends in non-trivial ways on the relative precision of the signals

the expert gathers. If the expert’s signals are relatively more (less) precise on the issues that

are of primary interest to him, then the politician reacts conservatively (progressively) to the

expert’s advice, following his suggestions less (more) than one for one. However, provided

the advisor chooses the relative precisions of the signals he observes the right way, then it

becomes possible that the politician can take the advisor’s recommendation at face value

despite the fact that they disagree on the aggregation of individual pieces of information.

Put differently, the politician can follow the advisor’s conclusions blindly, although it remains

pointless to ask the advisor for the reasons behind his conclusions, that is, the underlying

signals he observed. Even though the last situation seems to be as knife edge as it gets, it is

precisely the situation that arises if the politician selects the best advisor she can get.

In a nut shell, the politician should carefully choose her advisor, delegate investigating

matters to the advisor, and then ask the advisor to state conclusions, skipping the details.

On top of saving time, conclusions can be communicated without conflict, while justifications

for them cannot.

Relative (dis-)agreement is common in practice. Think of a CEO hiring a personal

assistant whom she plans to consult on important matters. Even if the CEO manages to

select an assistant with whom she perfectly agrees for now, it is not to be expected that

they will have perfectly aligned interests on all matters that will come up in the future.

Suppose again that they disagree on the relative importance of several arguments shaping

decisions. Suppose that the assistant does not care about such decisions per se, but starts

to care only if he puts skin into the game, i.e., when he is hired. The CEO can pay the

assistant up front to convince him to work for her. Moreover, the CEO can fine-tune the

working conditions of her assistant in quite some detail so that she can effectively control the

quality of the information that the assistant gets. However, due to time constraints the CEO

cannot observe the signal realizations directly, and therefore needs the assistant to observe
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and communicate them to the CEO who then takes a decision.

The difference to the former situation is that the quality of information is controlled

by the advisee (the CEO) rather than the advisor, as in the politician’s problem. This is

reminiscent of a disclosure or a persuasion game rather than an advisor controlled information

acquisition story. However, in common with the first situation, the CEO optimally endows

the assistant with information that makes his conclusions equally useful to both of them.

Doing so ensures that the CEO can again blindly follow the assistant’s advice and so selects

the optimal communication procedure that maximizes the ex ante expected surplus.

1.2 Setup

The following model of strategic information transmission in the tradition of Crawford &

Sobel (1982) gives rise to these insights. A Sender communicates with a Receiver before the

latter takes a decision that affects both their utilities. The Sender and the Receiver prefer

different decisions to be taken in almost every state of the world. We depart from Crawford

& Sobel (1982) in that we assume that the Sender and the Receiver are both uncertain about

their ideal policy: each player’s ideal choice is equal to the realization of a random variable1.

The conflict between the players is described by a joint distribution over the two-dimensional

state. The Sender gets to observe a two-dimensional signal about the underlying state of the

world and then communicates with the Receiver who finally takes an action. We exploit the

advantages of elliptical distributions to give tractability to our model. Within this statistical

class and for symmetric loss functions, the players would ideally want to choose an action

that corresponds to the conditionally expected value of the random variable that describes

their ideal choice - “their state” - given the information. Moreover, for the elliptical class,

conditional means are linear functions of the signals. This allows to give a precise meaning to

the direction and strength of influence of each given signal on the Sender’s and the Receiver’s

ideal choice. The interesting case corresponds to one where the conditional expectations of

both players (about their states, respectively) are increasing in both signals but each one

of them has a signal that is of primary importance to him/her. In that case, we can talk

about relative (dis-)agreement: they agree on the direction of influence of the signal but they

disagree on how strongly the signal should affect the choice.

1In modern tongue, the bias is state dependent in our model.
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Since information is two-dimensional and there is only one unidimensional choice to make,

the model exhibits a natural source of pooling: the Sender’s conditionally expected utility

depends only on the posterior mean, so Sender types who have observed different signal

realizations giving rise to the same conditional mean pool on the same message. This is both

similar and strikingly different from the partial pooling we know from Crawford & Sobel

(1982). It is similar in that the underlying Sender type is only partially revealed. However,

it is completely different in that the resulting equilibrium is not described by an interval

partition of the state space. In contrast, it is possible that the Sender honestly reveals his

conditional mean and the Receiver rightly takes this message at face value. That is, both

the Sender’s message strategy and the Receiver’s action strategy are strictly monotonic and

differentiable functions of the players’ information. In fact, the strategies are linear. It must

be stressed that this equilibrium exists despite conflicts of interest, that is despite the Sender

and the Receiver disagreeing on how to map signals into choices.

We term equilibria in strictly monotonic and differentiable strategies smooth communica-

tion equilibria. The existence of smooth communication equilibria depends crucially on the

quality of information that the Sender gets to observe. In particular, smooth communication

requires that the Sender’s conditionally optimal choice correlates the same way with both

the Sender’s and the Receiver’s underlying state. Only in this case will the Receiver - who

couldn’t care less about what is good for the Sender - do exactly what she is told; this is be-

cause the conditionally optimal choice of the Receiver conditional on observing the Sender’s

conditionally optimal choice is identically equal to the latter for an information structure

that is equally useful to both Sender and Receiver in the described way. For information

structures that fail to satisfy this requirement, equilibrium communication is partitional,

exactly the way we know it from the existing theories.

While theoretically interesting, why should smooth communication be of any practical

relevance? Information structures that induce smooth communication are optimal in var-

ious extensive forms. The intuition for this result is a simple efficiency argument. E.g.,

information structures that induce smooth communication arise naturally in a symmetric

environment when the player in charge of shaping the environment cares about joint sur-

plus. Think of a situation as in the CEO/personal assistant example, where the CEO-receiver

needs to pay the assistant-sender to convince him to participate and suppose both the assis-
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tant and the CEO have quasilinear utility. However, payments cannot condition on advice

nor on outcomes nor on both. In such a world, the CEO’s payoff is equal to the sum of both

players’ utilities from decision making. Now suppose the CEO can control the precision of

the information the assistant obtains without getting to observe the actual realizations of

the signals. Then, the CEO chooses an information structure that maximizes expected joint

surplus, resulting precisely in an information structure that is equally useful to the assistant

and the CEO. Hence, in this environment, smooth communication is the best equilibrium in

terms of ex ante expected surplus.

Envision another situation like the one in the politician’s and advisor’s case where the

politician-receiver has less of an influence on the information that the advisor-sender ob-

serves. Imagine that the politician can only choose an advisor type. An advisor type is a

joint distribution over the players’ interests based on the information available at the start

of the game. Such information could, e.g., be observable through publicly observable infor-

mation about advisors or through their cv’s and the like. Once an advisor has been selected,

it is the advisor who has the right to choose the relative precision of signals, so the advisor

controls the quality of the information. Clearly, each player has an interest to get infor-

mation that correlates better with his/her underlying interests. However, a novel feature

of our model is that the nature of conflict between advisor and politician depends on the

quality of information. Moreover, the potential conflicts arising in communicating with an

advisor depend on that advisor’s type. When selecting a given type of advisor, the politician

anticipates that this advisor will choose the information that serves him best. We show

that the optimally selected advisor indeed chooses information that is equally useful to both

the advisor and the politician and thus is one with whom the politician can communicate

smoothly.

Smooth communication equilibria are easily tractable and thus lend themselves to com-

parative statics exercises. Sender types with better aligned interests end up being more com-

petent, give more accurate advice, and thus induce a higher volatility of Receiver choices.

However, the logic is subtly different from other approaches. In our model, Senders with

better aligned interests are endogenously endowed with better information and are therefore

rightly perceived as more competent. The loss of information through communication is

the smaller the better interests are aligned and completely vanishes if ex ante interests are
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perfectly correlated.

1.3 Literature

We build on a vast literature on communication and information beginning with Crawford

& Sobel (1982). We have already described the essential ways in which our approach differs

from theirs. The state in our model is a two-dimensional vector and so there is a state

dependent bias in our model. Moreover, the state remains uncertain, so the bias is not

perfectly known. Moreover, information is endogenous through the signals the Sender gets

to observe.

It is clearly crucial that information is two-dimensional; with one piece of information

only, smooth communication equilibria exist only in the trivial case of completely aligned

interests. We are not aware of any model featuring two-dimensional information and a one-

dimensional choice. Battaglini (2002) studies a model with a two-dimensional state and two

signals where the Receiver can perfectly extract all information. Meyer et al. (2013) study

the multidimensional cheap talk problem for the case where there are exogenous restrictions

on the feasible set of policies for the Receiver. The essential differences between these

approaches and ours are that the choice is two-dimensional and that there are two Senders

in these models. Having one Sender only and a one-dimensional choice makes it impossible

to extract all information in our model. In contrast, equilibrium communication is one-

dimensional and therefore involves some pooling by design of the model. Chakraborty &

Harbaugh (2007) and Chakraborty & Harbaugh (2010) study comparative cheap talk where

again both information and choices are at least two-dimensional. They show that the Sender

can always communicate comparative statements - e.g., that one state is larger than the other.

Our communication is not comparative. We derive a one-dimensional statistic as an upper

bound on what can be communicated in any equilibrium in our model. The essential reason

is that the dimension of choice is smaller than the dimension of information. Levy & Razin

(2007) study multi-dimensional cheap talk. However, the Sender has perfect information in

their paper and the dimension of choice equals the dimension of information.

Noise is an important element in our theory. Blume et al. (2007) have shown that noise

in communication may improve upon equilibrium communication. We share that conclu-

sion, for different reasons, however. In Blume et al. (2007), the Sender’s information gets
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destroyed with some probability making the Sender more willing to share his information.

In contrast, no noise is added to the Sender’s message here but the Sender does not have

perfect information to begin with. Noisy information is also present in Moscarini (2007)

who studies competence in a model of central bank communication. Information is both

unidimensional and exogenously given in that approach. Improving information has similar

comparative statics effects in both Moscarini (2007) and the present approach.

The optimal design of information structures prior to communication is another impor-

tant building block of our model. As we show in an extension to our main results in Theorem

2, if other information structures are selected in the first stage, then we are back in the case

of partitional equilibria, as the known models feature them. There are at least two distinct

approaches to endogenous information structures and we relate to both of them. In the

CEO story above, the Receiver controls the quality of information that the Sender observes.

Ivanov (2010) has first studied this in the strategic communication game and termed it “in-

formational control”. The optimal information structure in Ivanov (2010) remains partitional

so perfect communication is impossible. Gentzkow & Kamenica (2011) analyze a model of

Bayesian persuasion, where a Sender chooses the optimal information to provide a Receiver

with, knowing that the Receiver chooses an action that affects both their payoffs. The key

difference to our approach is the lack of commitment about messages that the Sender sends

to the Receiver in our approach. In Gentzkow & Kamenica (2011), signals are more or

less informative but always truthful. In contrast, in our model, for any given information

structure, the Sender can decide to transmit any message to the Receiver, so information

transmission is strategic as in Crawford & Sobel (1982). As a result, the precision of infor-

mation that reaches the Receiver depends both on the quality of information that the Sender

obtains and on the amount of information that the Sender transmits. The latter effect is

absent in Gentzkow & Kamenica (2011). Moreover, we show that the Sender’s willingness

to transmit information depends crucially on the information that the Sender observes.2

The second way in which endogenous information has been addressed is through informa-

2The idea of endowing agents in a game with information without the principal necessarily obtaining the
same information has been studied extensively in the context of auctions: see, e.g., Eső & Szentes (2007),
Bergemann & Pesendorfer (2007) and Ganuza & Penalva (2010). The common idea in these papers is that
the principal (auctioneer) controls the precision of the agents’ information but does not get to observe the
signals the agents receive.
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tion acquisition by the Sender. Szalay (2005) studies the case of aligned ex post preferences

with commitment to decision rules; Eső and Szalay (in preparation) study the same model

without commitment to decision rules. Argenziano et al. (2013) look at endogenous in-

formation in the case of a Sender who is uniformly biased in one direction; Di Pei (2013)

studies a model where the Sender can choose the partitional information that he observes.

With a biased Sender, the equilibrium remains partitional. This perspective relates to our

politician/advisor example. To isolate the purely strategic effects of different information

structures, we assume here that all information structures are equally costly. Extensions to

other cases are pursued in companion work.

Our model features conflicts whose nature depends on the quality of information. This is

to the best of our knowledge new in the literature. However, there are some approaches that

look at state dependent biases where for some states of the world, the Sender’s preferred

action is larger than the Receiver’s preferred action while the reverse is true for other states.

Such models are studied, e.g., by Stein (1989), Ottaviani & Sørensen (2006a), Ottaviani

& Sørensen (2006b), Alonso et al. (2008), and more recently by Gordon (2010). Smooth

communication equilibria do not exist in these setups, but equilibria inducing a countable

infinity of Receiver actions do. Equilibria with invertible strategies in communication models

have been studied in Kartik (2009), Kartik et al. (2007), and Austen-Smith & Banks (2000).

The former papers involve lying costs, the latter one money-burning. We do not rely on costs

of communication to obtain equilibria in invertible strategies. Li & Madarász (2008) show

that a Sender of unknown bias may be willing to communicate honestly if the distribution

of his bias is symmetric around zero. This is similar in our context. However, our statistical

model is very different from theirs and novel to the literature on strategic communication.

We relate the conflicts in the communication game to the quality of endogenous information

structures and show that a symmetrically distributed bias arises as an optimum of our model.

Finally, our theory relates to models of market microstructure. While economic theo-

rists are used to study strategic communication in the context of Crawford & Sobel (1982),

finance scholars have studied communication in markets extensively. In markets, strategic

communication (of demand) is often thought of in the context of rational expectations or

strategic trade models in the spirit of Grossman & Stiglitz (1980), Hellwig (1980), Vives

(1995), or Kyle (1989); see Vives (2008) for a survey. The reader familiar with this literature
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will find that our theory has much in common with these models. While the majority of

papers in this literature assumes normally distributed noise terms, a small number of papers

extends the results to the context of elliptically distributed noise. We borrow extensively

from the ideas in that work. See in particular Nöldeke & Tröger (2006) and the references

cited therein.

The remainder paper is organized as follows. In section two, we present the model and

the main assumptions. In section three, we define strategies and analyze communication

about signals. In section four we derive and analyze a reduced form model where wlog

communication is about conditional means. We discuss in depth how conflicts between

Sender and Receiver depend on the quality of information that the Sender observes. In

section five, we analyze optimal noise structures from various angles. In section six, we

focus on comparative statics. A final section concludes. Lengthy proofs are gathered in the

Appendix.

2 Model

2.1 Timing

We consider a Sender-Receiver-game with two players and the following underlying decision

problem. The Receiver - henceforth she - needs to choose a decision x that affects the utility

of both the Sender - he from now on - and the Receiver. Preferences are given by

uR (x− ω) and uS (x− η) ,

where ui (x− ·) for i = R, S is a strictly concave, symmetric and differentiable function. The

preferences only depend on the distance between the actual action, x, and the ideal action

described by the bliss points xR(ω) = ω and xS(η) = η, respectively.

At the outset, neither the Sender nor the Receiver know the realization of the random

variables ω and η. However, the Sender privately observes noisy signals of their realizations

according to

sω = ω + εω and sη = η + εη,

where εω and εη are independent noise terms with variances that are determined at the start
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of the game.3 We discuss in section 5 in detail how this is done. Until then, we take the

information structure as arbitrary and given.

After observing the realizations of sω and sη, the Sender sends a message to the Receiver.

The Receiver observes the message - but not the Sender’s information - and then chooses

x. The Receiver cannot commit ex ante how to use the information she receives from the

Sender.

2.2 Feasible Information Structures

We assume that the random variables ω, η, εω, εη are jointly elliptically distributed, with

finite first and second moments. Each of the marginals has mean zero; let σ2
ω, σ

2
η, σ

2
εω , σ

2
εη

denote the variances of the random variables. For convenience, we assume that the joint

distribution has a density. More assumptions are imposed later when needed.

Elliptical distributions can be defined as follows (e.g. Owen & Rabinovitch (1983), p.746).

Definition 1 Let µ be an n-component vector and Σ an (n× n) positive definite symmetric

matrix. Then, an n-component random vector X = (X1, . . . , Xn)′ is said to be distributed

elliptically, X ∼ En(µ,Σ), if and only if for all nonzero n-component scalar vectors α,

all the univariate random variables α′X such that V ar (α′X) is constant follow the same

distribution. If X has a density, then the density function of X, fX(x), can be expressed in

the form fX(x) = cn |Σ|−1/2 g
(
(x− µ)′Σ−1 (x− µ)

)
, for some constant cn and some function

g that is independent of n.

Given that the first two moments exist, µ is the mean vector and Σ is proportional to

(that is, up to a constant factor equal to) the variance-covariance matrix.

Elliptical distributions have convenient properties. We summarize the properties we use

in the following lemma:

Lemma 1 Let X ∼ En (µ,Σ) be elliptically distributed. Further let

X = (X1, X2) , µ = (µ1, µ2) , Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

3The assumption of independence is innocuous since any signal structure can be decomposed in this way.
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where the dimensions of X1, µ1 and Σ11 are, respectively, m, m and m×m.

i) The elliptical distribution is symmetric about µ, i.e.

f(µ+ ∆) = f(µ−∆) ∀∆.

ii) Linear combinations of elliptically distributed random variables are again elliptical.

iii) The conditional distribution of X1|X2 is elliptical, i.e.

X1|X2 ∼ Em
(
µX1 + Σ12Σ

−1
22 (X2 − µX2) ,Σ11 − Σ12Σ

−1
22 Σ21

)
.

Proof. i) by definition, ii) see for example, Fang et al. (1990) Thm 2.16, iii) see for

example, Cambanis et al. (1981) Cor 5.

2.3 Leading examples

The leading example for symmetric loss functions that is commonly used in the literature is

the quadratic

uR (x− ω) = − (x− ω)2 and uS (x− η) = − (x− η)2 .

Examples of elliptical distributions are the normal distribution, Student’s–t distribution, the

exponential power distribution, and the logistic distribution.

While the reader is of course welcome to replace symmetric loss by quadratic loss and

elliptical by normal in what follows, all our results until and including Theorem 1 extend to

the more general environment.

2.4 Ideal choices

Before discussing strategic communication, it is useful to set the stage and investigate the

players’ ideal choices if they had (somehow) access to the same information. The following

result follows conveniently from the statistical structure we have imposed:

Lemma 2 The ideal choice functions of the Receiver and the Sender are

xR (sω, sη) ≡ arg max
x

E
[
uR (x− ω)

∣∣ sω, sη] = E [ω| sω, sη] = αRsω + βRsη
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and

xS (sω, sη) ≡ arg max
x

E
[
uS (x− η)

∣∣ sω, sη] = E [η| sω, sη] = αSsω + βSsη,

where αi, βi for i = R, S are weights, independent of sω, sη.

The result is due to the symmetry of both the loss functions and the posterior distribu-

tions given the information. The lemma is straightforward to see for the case of a quadratic

loss function - because first-order conditions become linear in that case. The extension to

more general, symmetric loss functions follows from the fact that, if the choice x is set equal

to the posterior mean, the posterior distribution is symmetric around the choice. Hence

expected marginal gains to increasing the action are exactly offset by expected marginal

losses. The linear expressions are simply a consequence of elliptical distributions. For future

reference, we note that the weights in the Sender’s ideal choice are

αS = σ2
εη

ρωησωση
(σ2

ω + σ2
εω)(σ2

η + σ2
εη)− (ρωησωση)2

and

βS = σ2
η

σ2
εω − σ

2
ωρ

2
ωη + σ2

ω

(σ2
ω + σ2

εω)(σ2
η + σ2

εη)− (ρωησωση)2

and the weights in the Receiver’s ideal choice are

αR = σ2
ω

σ2
εη + σ2

η − σ2
ηρ

2
ωη(

σ2
ω + σ2

εω

) (
σ2
η + σ2

εη

)
− (ρωησωση)

2
,

and

βR = σ2
εω

σησωρωη(
σ2
ω + σ2

εω

) (
σ2
η + σ2

εη

)
− (ρωησωση)

2
,

where

ρωη ≡
Cov (ω, η)

σωση

is the coefficient of correlation between ω and η.
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2.5 Conflicts and common interests

We can now investigate whether and how the Sender and the Receiver are agreed or disagreed

upon optimal actions as a function of the information they have. Since ω and η have the

same prior mean, the Sender and the Receiver are agreed upon the optimal action if the

Sender does not obtain any new information; formally, this is the limiting case when σ2
εω and

σ2
εη both go to infinity. So, potential conflicts arise only with respect to how new information

should be used. If the coefficient of correlation satisfies ρωη ≤ 0, then the Sender and the

Receiver disagree fundamentally on how news should affect choices. In particular, while

the players’ ideal choices always increase in the signal about their bliss point, for ρωη ≤ 0,

we have βR ≤ 0 and αS ≤ 0. Therefore, xR (sω, sη) increases in sω and (weakly) decreases

in sη, while the exact opposite is true for xS (sω, sη) . We conjecture that no meaningful

communication is possible in that case.

Next it is illuminating to look at the opposite extreme, where players are completely

agreed upon optimal actions. The following lemma states these results formally.

Lemma 3 The Sender and the Receiver are completely agreed upon ideal choices for all

σ2
εη , σ

2
εω ≥ 0 if ρωη = 1 and ση = σω. In the limiting case where σ2

εη → ∞, the Sender and

the Receiver agree on the use of signal sω for all σ2
εω ≥ 0 if σω

ση
= ρωη. In the limiting case

where σ2
εω →∞, the Sender and the Receiver agree on the use of signal sη for all σ2

εη ≥ 0 if
σω
ση

= 1
ρωη
.

The limits are formally identical to the case where there is only one signal available.

Thus, another way to state the result is to say that only one signal is available, so that all

moments exist.

Clearly, we are interested in the case where some communication is possible. On the

other hand, communication becomes interesting from the strategic perspective only if there

is some disagreement. Therefore, we impose the following

Assumption 1: 0 < ρωη < 1.

Assumption 1 implies that, whenever the Sender obtains two informative signals, then

the Sender and the Receiver will disagree on the ideal choice for all signal realizations but

the one where both signals are equal to the prior mean.
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Next, one may wonder what fundamental difference it makes that the signal is two-

dimensional rather than one-dimensional. The answer depends on the model parameters.

For the interesting case, that the following lemma singles out, a two-dimensional signal allows

us to talk about relative disagreement in the sense that the Sender and the Receiver each

have a signal that they find of primary importance to him/her.

Lemma 4 For ρωη ≤ σω
ση
≤ 1

ρωη
, the Receiver is relatively more responsive to signal sω than

the Sender is, αR ≥ αS, and the Sender is relatively more responsive to sη, β
S ≥ βR. For

σω
ση
> 1

ρωη
, the Receiver reacts stronger to any piece of news (that is each of the signals), for

σω
ση
< ρωη, the Sender reacts stronger than the Receiver to any piece of news.

Relative disagreement and our way to model it are the essential contributions of this

paper; conversely, in the case where any player is absolutely more responsive than the other

one - that is, reacts stronger to any piece of news - our structure does not give rise to

substantially new insights.4 Therefore, we focus on what is new here by imposing

Assumption 2: ρωη ≤ σω
ση
≤ 1

ρωη
.

We are now ready to study strategic communication.

3 Strategic communication about signals

We now solve the second stage communication game under asymmetric information, taking

the information structure as given. The first stage in which the information structure is

determined is analyzed in section 5 below. We assume that the Receiver cannot commit to

what action she will take as a function of the message she receives; moreover, information is

soft, so the Sender cannot credibly commit to being honest either. The equilibrium concept

we use is Perfect Bayes Nash Equilibrium. In the equilibria we study, there won’t be any out

of equilibrium messages, so Perfect Bayes Nash Equilibrium and Bayes Nash Equilibrium

coincide.

4In that case, we could as well assume a one-dimensional state and signal.
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3.1 Strategies

Take the information structure - that is the noise variances σ2
εω and σ2

εη - as given. After the

Sender has observed his signals, he communicates a message m ∈ M to the Receiver. The

message space M is assumed to be rich. It is enough to consider pure message strategies

for the Sender.5 A pure Sender strategy maps the Sender’s information into messages M :

R2 → M, (sω, sη) 7→ m. A pure Receiver strategy maps messages into actions, X : M→ R,

m 7→ x. Let f (ω|m) denote the pdf of the Receiver’s posterior over ω given the message

sent by the Sender and let f (η| sω, sη) denote the pdf of the Sender’s posterior over η given

his information.

The Receiver’s optimal action given the Sender’s message is

x∗ (m) ∈ arg max
x∈R

∫
uR (x− ω) f (ω|m) dω.

Note that the Receiver solves a concave problem for arbitrary posteriors f (ω|m). Hence

x∗ (m) is in fact unique and the Receiver never wishes to use a mixed strategy.

The Sender’s optimal message solves

m (sω, sη) ∈ arg max
m∈M

∫
uS (x∗ (m)− η) f (η| sω, sη) dη.

The Receiver updates her information about ω based on the message she receives, so the

posterior distribution satisfies Bayes law.6 Thus, there is no restriction on the message space

and the equilibrium concept is the standard one.

3.2 Non-existence of full communication equilibria

Recall that Assumption 1 implies conflicting interests of the Sender and the Receiver with

respect to the interpretation of new information. Under this situation, there cannot be an

equilibrium where the Sender communicates all his information truthfully. Formally, we have

the following result:

5More specifically, the best equilibria of our game involve pure strategies. Therefore, we abstain from
introducing the notational clutter to deal formally with mixed strategies.

6Let s (m) ≡ {(sω, sη) : m (sω, sη) = m}, then f (ω|m) = f(ω,m)∫∫
s(m)

f(sω,sη)dsωdsη
.
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Lemma 5 Under Assumption 1, there does not exist any equilibrium where m (sω, sη) =

(sω, sη).

Proof. Suppose there exists an equilibrium with m (sω, sη) = (sω, sη). Then, the Receiver’s

posterior is f (ω| sω, sη) resulting in an optimal choice x∗ (sω, sη) = xR (sω, sη) = E [ω| sω, sη] .
By Assumption 1, E [ω| sω, sη] 6= E [η| sω, sη] for any (sω, sη) 6= (0, 0) . Hence, regardless of

the signal structure, as long as the informational environment satisfies Assumption 1, there

cannot be a fully informative equilibrium.

Even if the Sender and the Receiver agree that both signals should be used to reach a good

decision, they disagree with respect to the weight they attach to the individual sources of

information. Therefore, the Sender is not willing to reveal all of his information truthfully to

the Receiver if the latter cannot commit to use the information the way the Sender proposes.

3.3 Sender preferences and conditional expectations

Full revelation is not an equilibrium outcome. If not all the information, how much infor-

mation can in equilibrium be revealed? To answer this question, we need to address the

Sender’s choice between actions he can induce. The following lemma states formally that

the Sender’s preferences over messages (that induce distinct actions) depend only on the

distance between induced actions and the Sender’s conditional expectation of η given his

information.

Lemma 6 The expected utility of the Sender depends only on |x− E [η| sω, sη]|, the distance

between the choice and the conditional mean. Formally, we have∫
u (x′ − η) f (η| sω, sη) dη =

∫
u (x′′ − η) f (η| sω, sη) dη

for any two choices x′, x′′ satisfying x′ − E [η| sω, sη] = E [η| sω, sη]− x′′.

By assumption, the Sender’s vNM-utility function depends only on the distance between

the action and the state η. The proof of the lemma shows that the Sender’s expected utility

depends only on the distance from the action to the posterior expected value of the state η.

The reason is simply that the ideal choice of the Sender is equal to E [η| sω, sη] by Lemma
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2. Moreover, by symmetry of the posterior distribution about E [η| sω, sη], the Sender is

indifferent between any actions that are equally far away from the posterior mean. To get

an intuition why Lemma 6 is true consider the case of quadratic loss functions. The Sender’s

expected utility is then given by∫
− (x− η)2 f (η| sω, sη) dη =

∫
− (x− E [η| sω, sη])2 f (η| sω, sη) dη − V ar (η| sω, sη) ,

making the result obvious for that case.

Since the Sender’s expected utility depends only on |x− E [η| sω, sη]| , Sender types sω, sη

who share the same posterior mean, E [η| sω, sη] , have the same preferences over any two

distinct actions x′ and x′′. Therefore, such types will necessarily pool on the same messages,

implying that at most the posterior mean can be communicated. Hence, without loss we

now reduce the Sender’s message space to the unidimensional space of conditionally expected

means.

3.4 Relevant information

Define the new random variable

θ ≡ E [η |sω, sη ] .

Being a (linear) function of random variables, θ is random as well. Since linear functions

of elliptically distributed random variables are again elliptically distributed, θ follows an

elliptical distribution θ ∼ E (0, σ2
θ) and the joint distribution of ω, η, and θ is elliptical too.

More specifically, the variance of θ is given by

V ar (θ) =
(
αS
)2 (

σ2
ω + σ2

εω

)
+ 2αSβSρωησωση +

(
βS
)2 (

σ2
η + σ2

εη

)
.

Substituting for αS and βS, we have

V ar (θ) = σ2
η

σ2
εω

σ2
ω

+
σ2
εη

σ2
η
ρ2
ωη + 1− ρ2

ωη(
1 +

σ2
εω

σ2
ω

)(
1 +

σ2
εη

σ2
η

)
− ρ2

ωη

. (1)

Likewise, the covariance of ω and θ is given by

Cov (ω, θ) = αSσ2
ω + βSρωησωση,
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and so we have

Cov (ω, θ) = σησωρωη

σ2
εη

σ2
η

+
σ2
εω

σ2
ω

+ 1− ρ2
ωη(

1 +
σ2
εω

σ2
ω

)(
1 +

σ2
εη

σ2
η

)
− ρ2

ωη

. (2)

Finally, we (trivially) have

Cov (η, θ) = V ar (θ) . (3)

4 One-dimensional strategic communication

The two-dimensional model reduces without loss of generality to a one-dimensional one. We

now address communication in the reduced form model. However, it is important to keep the

“micro-foundations” in mind: not any reduced form model is feasible, that is, can be gener-

ated from the underlying information structures. We first derive the set of feasible reduced

form communication models and discuss conflicts and common interests in the reduced form

model. Then we discuss the structure of the most informative communication equilibria; that

is, communication equilibria that induce the highest number of distinct Receiver responses.

These are the equilibria that are commonly studied in the literature.

4.1 Feasible reduced forms and implied conflicts

Ultimately, the players do not care about the signals sω and sη but about the posteriors

arising from them. So, we can equivalently think of a situation where the Sender obtains a

signal θ that is perfectly correlated with his bliss point η, that is Cov (η, θ) = V ar (θ) by

(3) . The correlation of ω and θ depends on the underlying noise structure. To determine

the players’ conflicts when communicating about θ, we again investigate the Receiver’s ideal

choice if she had (somehow) directly access to the information θ. Building on Lemma 1, we

know that

ω| θ ∼ E
(
Cov (ω, θ)

V ar (θ)
θ, σ2

ω(1− ρ2
ωθ)

)
.

Note that the posterior mean depends crucially on the ratio Cov(ω,θ)
V ar(θ)

, the slope of the regres-

sion of ω on θ. The intercept is zero by the fact that the priors of ω and η have the same

19



mean. If Cov(ω,θ)
V ar(θ)

< 1, then the Receiver is conservative relative to the Sender; given a pos-

itive realization of θ, the Receiver’s ideal choice is smaller than the Sender’s and vice versa

for a negative realization. If Cov(ω,θ)
V ar(θ)

> 1, then the Sender is relatively more conservative

than the Receiver; put differently, the Receiver is relatively progressive; from the Sender’s

perspective the Receiver overreacts to news. Finally, if Cov(ω,θ)
V ar(θ)

= 1, then neither the Sender

nor the Receiver is more conservative than the other player. Before we dwell further on this

issue we investigate whether and when all these cases are relevant. The following lemma

characterizes the set of feasible moments Cov (ω, θ) and V ar (θ) .

Lemma 7 Any Cov (ω, θ) ∈ (0, σησωρωη] can be generated from signals with finite variances.

Moreover, for any fixed Cov (ω, θ) = C, the set of feasible variances is by Assumption 2 non-

empty and given by V ar (θ) ∈
[
ση
σω
ρωηC,

ση
σω

1
ρωη
C
]
. By implication

Cov (ω, θ)

V ar (θ)
∈
[
σω
ση
ρωη,

σω
ση

1

ρηω

]
.

The following figure depicts the set of feasible ratios Cov(ω,θ)
V ar(θ)

in three relevant cases that

satisfy Assumptions 1 and 2.

ρωησωση

σ2
ηρ2

ωησ
2
η

Cov(ω, θ) = V ar(θ)
Cov(ω, θ)

V ar(θ)

Cov(ω, θ) = V ar(θ)

ρωησωση

σ2
ηρ2

ωησ
2
η

Cov(ω, θ)

V ar(θ)

Cov(ω, θ) = V ar(θ)

ρωησωση

σ2
ηρ2

ωησ
2
η

Cov(ω, θ)

V ar(θ)

1

Figure 1: Case one (left panel): feasible set for σω
ση
∈
(
ρωη,

1
ρηω

)
; case two (center panel):

feasible set for σω
ση

= ρωη; case three (right panel): feasible set for σω
ση

= 1
ρωη

.

In case one the prior uncertainty satisfies σω
ση
∈
(
ρωη,

1
ρηω

)
, cases two and three depict

the extreme cases where σω
ση

= ρωη or σω
ση

= 1
ρωη
, respectively.
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Usually, the conflict between Sender and Receiver - the bias in terms of the standard

language - is a primitive of the model. In contrast, in the present model conflicts arise

endogenously as a function of the quality of the Sender’s information. Recall that V ar (θ) =

Cov (η, θ) by construction. Therefore, signal structures that imply a Cov(ω,θ)
V ar(θ)

−ratio that is

smaller than unity contain information that is relatively more useful to the Sender than to

the Receiver. As a result, the Receiver obviously would want to rely less on that sort of

information than the Sender would do. Vice versa for information structures that satisfy
Cov(ω,θ)
V ar(θ)

> 1. Finally, if Cov(ω,θ)
V ar(θ)

= 1, then the information is equally useful to the Sender and

the Receiver. Note that all three constellations are possible for some information structures

in case one, while the Receiver is weakly conservative for any feasible information structure

in case two and weakly progressive for any information structure in case three. Note finally,

that for all conflicts described by Assumptions 1 and 2, there exist information structures

that are equally useful to the Sender and the Receiver, that is Cov(ω,θ)
V ar(θ)

= 1. Even though the

Receiver’s ideal choice based on the underlying signals differs from the Sender’s ideal choice

based on these signals, the Receiver’s ideal choice based on θ is identically equal to θ.

To illustrate further, consider case one where σω
ση
∈
(
ρωη,

1
ρηω

)
and imagine three of the

feasible information structures with the same covariance but different levels of variance. For

concreteness, let Cov(ω,θ)

V ar(θ)′ = c′ > 1, Cov(ω,θ)
V ar(θ)′′ = c′′ < 1, and Cov(ω,θ)

V ar(θ)′′′ = c′′′ = 1.The information

structures are depicted in the left panel of the following Figure 2. The right panel of the

figure shows the implied ideal choice functions of the Sender and the Receiver, xS (θ) and

xR (θ) , for the three information structures. Note that by construction xS (θ) = θ for all

three information structures, while xR (θ) = cθ, for c ∈ {c′, c′′, c′′′} .

4.2 Equilibria

We now address equilibrium communication. Our game has the standard plethora of equi-

libria in the communication game. It is always an equilibrium that all Sender types θ pool

on the same message (or mix over all available messages) and the Receiver always chooses

x = 0. This is the babbling equilibrium. In addition to that, partitional equilibria exist

where sets of Sender types within given intervals pool on the same message. More inter-

estingly, depending on the ratio Cov(ω,θ)
V ar(θ)

there can exist a class of equilibria that has not

been studied so far: smooth communication equilibria where the Sender honestly states his
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ρωησωση
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ηρ2
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η
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xR(θ)

xS(θ)

θ

1

Figure 2: Conflict in terms of covariance and variance (left panel), and actions (right panel).

conclusions, that is truthfully reveals θ, and the Receiver rightly takes this recommendation

at face value. These equilibria feature smooth, i.e. infinitely often differentiable Sender and

Receiver strategies, and thus enable perfect communication about θ. This is possible since

interests are aligned in this subspace and the underlying signals that trigger conflict remain

garbled in θ.

In the following two subsections we analyze the most informative equilibria for given

information structures, that is, the equilibria that induce the highest number of Receiver

actions, as a function of the given information structure. First, for general symmetric prefer-

ences, we analyze the situation where the Sender and the Receiver are equally conservative,

that is Cov (ω, θ) = V ar (θ). Second, for quadratic preferences and log-concave densities, we

look at the cases where one player is more conservative and only partitional equilibria exist.

4.2.1 Perfect communication about conditional means

Suppose the Sender communicates his conditionally expected value of η given his information

truthfully to the Receiver, that is

m (θ) = θ for all θ.

The Receiver’s best reply given information θ is

E [ω| θ] =
Cov (ω, θ)

V ar (θ)
θ.
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Clearly, the Sender will only be happy to communicate θ truthfully if the Receiver does

exactly what the Sender would want to do, so

E [ω| θ] = θ for all θ,

which requires that

Cov (ω, θ) = V ar (θ) , (4)

corresponding to exactly the case where the Sender and the Receiver are equally conservative.

The following theorem states this result formally and relates equation (4) to the underlying

noise structure:

Theorem 1 Under Assumptions 1 and 2, there exist information structures, defined by
σ2
εω

σ2
ω

and
σ2
εη

σ2
η
, such that Cov (ω, θ) = V ar (θ) so that a perfectly informative equilibrium in

conditional expectations θ exists. More specifically, for σω
ση
∈
(
ρωη,

1
ρωη

]
, Cov (ω, θ) = V ar (θ)

if and only if
σ2
εω

σ2
ω

and
σ2
εη

σ2
η

satisfy

σ2
εη

σ2
η

=

(
1− σω

ση
ρωη

)
ρωη

(
σω
ση
− ρωη

) σ2
εω

σ2
ω

+

(
1− σω

ση
ρωη

)
ρωη

(
σω
ση
− ρωη

) (1− ρ2
ηω

)
. (5)

For σω
ση

= ρωη, we have Cov (ω, θ) = V ar (θ) iff
σ2
εω

σ2
ω

= 0 and only signal sω is available

(corresponding to the limiting case with two signals where σ2
εη →∞).

Our previous discussion makes the proof of the theorem trivial: equation (5) arises from

plugging αS and βS into (4) and solving. For σω
ση
∈
(
ρωη,

1
ρωη

)
, (5) describes a linear locus

with positive intercept and slope in the signal-noise ratio space. In the extreme case where
σω
ση

= 1
ρωη

, the locus coincides with the horizontal axis: since the Sender is only interested

in η, he does not use signal sω, so the noise ratio
σ2
εω

σ2
ω

becomes irrelevant. In the other

extreme case where σω
ση

= ρωη, the Sender needs to observe ω without noise and to obtain no

information about η to ensure Cov (ω, θ) = V ar (θ) .

Perfect communication about conditional expectations is possible provided that the

Sender’s and the Receiver’s preferences are perfectly aligned in that subspace of the Sender’s

information. In turn, interests are perfectly aligned in that subspace if the regression of
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ω on θ has a slope of unity: even though she would want to, the Receiver cannot extract

more than θ from what she is told. Notice that there is still bunching of Sender types; the

Sender makes garbled statements about the underlying information. However, in contrast

to partitional equilibria, the bunches are very easy to characterize. The surprising element

is that smooth communication strategies can be part of the equilibrium even though the

players disagree, which is clearly the case for σω
ση
∈
(
ρωη,

1
ρωη

)
.

4.2.2 Partitional equilibria

Consider now experiments for which Cov (ω, θ) 6= V ar (θ) . For these experiments, there

exists no equilibrium involving invertible message strategies in θ. We make the following

assumptions:

Assumption 3: uR (x, ω) = − (x− ω)2 and uS (x, ω) = − (x− η)2.

Assumption 4: The distribution of θ has a log-concave density.

Assumption 3 is the leading example of symmetric loss functions that is adopted through-

out the literature. The leading class of distributions that is both elliptical and has a log-

concave density is the normal distribution. These assumptions are convenient to study

partitional equilibria. We can characterize such equilibria with a countable number of mes-

sages mi for i = 1, . . . , n. Under Assumption 3, if Sender types θ ∈ (θi−1, θi] pool on message

mi, then the Receiver optimally responds with the action

x∗i = E [ω| θ ∈ (θi−1, θi]] .

The reason is that under Assumption 3, marginal utility becomes linear. Since preferences

satisfy the single crossing condition, we can characterize the optimal Sender responses by

the marginal types θi who are indifferent between sending message mi and message mi+1.

The indifference condition for type θi is

θi − E [ω| θ ∈ (θi−1, θi]] = E [ω| θ ∈ (θi, θi+1]]− θi.

For elliptical distributions, we have the following convenient property:

E [ω| θ ∈ (θi−1, θi]] = E [E [ω| θ ∈ (θi−1, θi]]| θ] = E [E [ω| θ]| θ ∈ (θi−1, θi]]

=
Cov (ω, θ)

V ar (θ)
E [θ| θ ∈ (θi−1, θi]] ,
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where the equalities in the first line use the law of iterated expectations and the second line

uses the linearity of conditional expectations in the elliptical class. The system of indifference

conditions thus simplifies to

θi −
Cov (ω, θ)

V ar (θ)
E [θ| θ ∈ (θi−1, θi]] =

Cov (ω, θ)

V ar (θ)
E [θ| θ ∈ (θi, θi+1]]− θi.

Log-concavity ensures stability of this system of equations.7

As pointed out above and stated formally in Theorem 2 below, the number of induced

Receiver actions crucially depends on which player is more conservative. For Cov(ω,θ)
V ar(θ)

< 1,

the Receiver is more conservative than the Sender. For Cov(ω,θ)
V ar(θ)

> 1, the Sender is more

conservative than the Receiver.

Theorem 2 Under Assumptions 1 - 4, we have:

i) for any Cov(ω,θ)
V ar(θ)

, there always exists an equilibrium inducing two distinct actions,

ii) for Cov(ω,θ)
V ar(θ)

< 1, there is no upper bound on the number of induced actions,

iii) for Cov(ω,θ)
V ar(θ)

≥ 2 the maximum number of induced actions in equilibrium is n = 2.

It is always an equilibrium if the Sender says either “up” or “down” and the Receiver

responds by taking an action equal to the upward and downward truncated means, respec-

tively, where the point of truncation is the prior mean. This is simply due to the symmetry

of the distributions within the elliptical class and the fact that the Sender and the Receiver

agree based on prior information. This is in stark contrast to models with a unidirectional

bias between the Sender and the Receiver, where communication completely breaks down if

the bias becomes too large.

7It is well known for distributions with log-concave densities that ∂
∂θi−1

E [θ| θ ∈ (θi−1, θi]] ≤ 1 and
∂
∂θi

E [θ| θ ∈ (θi−1, θi]] ≤ 1. Moreover, (as shown, e.g. by Szalay (2012))

∂

∂θi−1
E [θ| θ ∈ (θi−1, θi]] +

∂

∂θi
E [θ| θ ∈ (θi−1, θi]] ≤ 1.

Szalay (2012) uses these properties to demonstrate uniqueness of equilibria inducing a given number of
induced actions in his model. The details how log-concavity enters into the present model can be found in
the proof of Theorem 2.
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Communication with a conservative Receiver works pretty well in the sense that there

exists an equilibrium inducing countably infinitely many actions. Communication is arbi-

trarily precise around the prior mean. In contrast, partition elements farther away from the

prior mean have some size. The reason is simply that the ideal choice functions of the Sender

and the Receiver intersect at the prior mean; moreover, the distance between ideal choices

increases linearly in the distance from the prior mean. These effects are in line with results

in the literature. Gordon (2010) finds that a countably infinite equilibrium exists in case of

an “outward biased” Sender or in other words in case of a conservative Receiver.

The case of a relatively conservative Sender is substantially different. In particular, if

the Receiver wishes to react more than twice as much to new information than the Sender

wishes, then communication almost breaks down. Intuitively, for information structures

where Cov(ω,θ)
V ar(θ)

≥ 2 the Sender’s information is considerably more precise about ω than about

η. Clearly, in that case θ contains primarily information about ω. Therefore, the Sender is

reluctant to give precise information about θ.

We have tried but were unable to get a complete characterization of finite versus infinite

equilibria. The reason is that the case Cov(ω,θ)
V ar(θ)

> 1 counteracts the assumptions that give

regularity to the problem (log-concavity). For the same reason, we have not been able to

show that the number of induced actions in any finite equilibrium is decreasing in Cov(ω,θ)
V ar(θ)

;

however, this is a reasonable conjecture. We pursue these questions in ongoing companion

work.

5 Choosing information structures

In this section, we characterize optimal information structures in various settings. To obtain

such characterizations, we continue to invoke Assumption 3, i.e., assume that both the

Sender and the Receiver have quadratic loss functions. Exploiting that assumption, we

begin by deriving explicit expressions for both players’ equilibrium expected utilities. Then,

we analyze the cases where each player is interested in her decision payoff only and either the

Sender or the Receiver has the right to choose the information structure. This corresponds to

the perspectives taken in the persuasion and disclosure literatures (if the Receiver chooses the

information structure) and the literature on information acquisition (if the Sender chooses
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the information structure). Then, we allow for ex ante payments between the Sender and the

Receiver. More specifically, the Receiver hires a Sender and needs to convince the Sender to

participate by an ex ante payment to the Sender. Moreover, the Receiver can commit to an

information structure, again the perspective taken in the persuasion literature. Finally, we

look at the case where the Receiver can only select the type of Sender, where a Sender’s type

is described by the joint distribution of ω and η. Subsequently, it is the Sender who has the

right to choose the information structure. Perhaps surprisingly, under the latter two extensive

forms, optimal information structures are such that they enable smooth communication.

5.1 Equilibrium payoffs

In an equilibrium where an uncountable infinity of messages is sent, m (θ) = θ for all θ, the

Receiver’s optimal decision schedule is x∗ (θ) = θ and her expected utility for the quadratic

loss case simplifies to∫ ∫
uR (x∗ − ω) f (ω| θ) dωf (θ) dθ = −V ar (θ) + 2Cov (θ, ω)− V ar (ω)

= Cov (θ, ω)− V ar (ω) ,

where the second equality follows from the fact that Cov (θ, ω) = V ar (θ) in an equilibrium

where x∗ (θ) = θ. If an equilibrium with a countable number of n messages mi for i = 1, . . . , n

is played, types θ ∈ Θi ≡ [θi−1, θi] pool on message mi and thereby induce an optimal

Receiver action x∗i = E [ω| θ ∈ Θi] . The Receiver’s expected payoff in such an equilibrium is∑n

i=1

∫ θi

θi−1

∫
uR (x∗i − ω) f (ω| θ) dωf (θ) dθ

=
Cov (θ, ω)2

V ar (θ)2

(
V ar (θ)−

∑n

i=1
piV ar (θ |θ ∈ Θi )

)
− V ar (ω) .

where pi ≡ Pr (θ ∈ Θi). Note that the two expressions have the common representation

Cov (θ, ω)2

V ar (θ)2

(
V ar (θ)− Ip

∑n

i=1
piV ar (θ |θ ∈ Θi )

)
− V ar (ω) , (6)

where Ip is an indicator variable taking value one if the equilibrium involves a countable

number of actions and zero otherwise. Moreover, a smooth communication equilibrium exists
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only if Cov(θ,ω)
V ar(θ)

= 1. Thus, we can think of the Receiver’s expected utility as of an upper bound

- the expected utility when θ is communicated smoothly - minus an expected loss term that

arises when and only when information is lost through partitional communication.

Likewise, the Sender’s expected utility in any equilibrium inducing x∗ (θ) = θ is∫ ∫
uS (x∗ − η) f (η| θ) dηf (θ) dθ = −V ar (θ) + 2Cov (η, θ)− V ar (η)

= V ar (θ)− V ar (η) ,

where the second equality follows from the fact that E [η| θ] = θ (which is equivalent to

Cov (η, θ) = V ar (θ)). The Sender’s expected utility in an equilibrium that induces a count-

able number of actions x∗i = E [ω| θ ∈ Θi] is∑n

i=1

∫ θi

θi−1

∫
uS (x∗i − η) f (η| θ) dηf (θ) dθ

=

(
2
Cov (ω, θ)

V ar (θ)
− Cov (ω, θ)2

V ar (θ)2

)(
V ar (θ)−

∑n

i=1
piV ar (θ |θ ∈ Θi )

)
− V ar (η) .

Thus, the Sender’s expected utility in any equilibrium can be written conveniently as(
2
Cov (ω, θ)

V ar (θ)
− Cov (ω, θ)2

V ar (θ)2

)(
V ar (θ)− Ip

∑n

i=1
piV ar (θ |θ ∈ Θi )

)
− V ar (η) . (7)

Again, we can decompose expected utility into the upper bound, which is reached if com-

munication is smooth in θ, and expected losses arising when communication is non-smooth.

For convenience of the reader, the elementary calculations behind these simplifications are

gathered in Lemma 8 in the Appendix.

We are now ready to discuss optimal information structures.

5.2 Privately optimal information structures

Suppose first the Receiver has the right to determine the information structure. This is the

perspective taken in the disclosure literature, where a principal chooses the information that

some agent obtains without the principal getting to see the realizations of the agent’s signals.

In the same spirit, suppose the Receiver gets to choose the information structure, but the

Sender alone observes the realizations of signals.
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An optimal information structure from the Receiver’s perspective solves the problem

max
Cov(ω,θ),V ar(θ)

(6) (PR)

s.t. Cov (ω, θ) , V ar (θ) feasible.

A feasible information structure is one that is generated by some given noise-signal ratios.

Likewise, suppose the Sender has the right to choose the information structure. That is

the perspective taken in the literature on information acquisition. An optimal information

structure from his perspective solves the problem

max
Cov(ω,θ),V ar(θ)

(7) (PS)

s.t. Cov (ω, θ) , V ar (θ) feasible.

In line with the tradition in the strategic communication literature, we assume that the most

informative equilibrium is played in each continuation game induced by a given information

structure. Problems (PR) and (PS) are both pretty involved. The reason is as follows.

While the upper bound depends on the information structure in straightforward fashion,

the expected losses due to partitional communication depend in very intricate ways on the

information structure. More specifically, the information structure influences the equilib-

rium partition, the distribution of θ within any given partition element, and the probability

distribution over the partition elements Θi for i = 1, . . . , n. For this reason, we defer a com-

plete characterization of solutions to these problems to a separate paper. Here, we contend

ourselves in establishing qualitative properties of the solutions. An information structure is

said to be optimal from the Receiver’s or the Sender’s perspective if it solves problem (PR)

or (PS) , respectively.

Theorem 3 Under Assumptions 1 - 3, an information structure is optimal from the Re-

ceiver’s (Sender’s) perspective only if it makes her (him) relatively progressive, that is if

Cov (ω, θ) ≥ (≤)V ar (θ) .

Put differently, an information structure cannot be optimal for the Receiver if it makes her

look relatively more conservative than the Sender. The formal proof works as follows. Con-

sider an information structure one, (Cov1 (ω, θ) , V ar1 (θ)), satisfying Cov1 (ω, θ) < V ar1 (θ) .
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Such an information structure is dominated from the Receiver’s perspective. In particular,

it is true that for any such information structure, there exists another information structure

two, (Cov2 (ω, θ) , V ar2 (θ)) say, such that V ar2 (θ) = V ar1 (θ) and Cov2 (ω, θ) = V ar2 (θ) ,

so that the Receiver’s expected payoff under the latter information structure is strictly higher.

Intuitively, suppose the Receiver reacts strictly conservatively to the Sender’s advice.

Then, there are two sources of gains when the information structure is changed to one where

the Sender and the Receiver perfectly agree on how θ is mapped into actions. For the changed

information structure, there is no more loss due to partitional communication, because the

upper bound is tight. Moreover, the new information structure can always be generated

from the former one by increasing Cov (ω, θ) while leaving V ar (θ) unchanged. However,

such a change induces a further increase in the upper bound under smooth communication,

which further boosts the Receiver’s utility. The case where the Sender’s perspective is taken

corresponds simply to the mirror image of the Receiver’s problem, except that in considering

the alternative information structure, we leave the covariance unchanged and change the

variance instead.

The conclusion is very natural: the one who controls the information structure is in

equilibrium the one who is more enthusiastic when it comes to using the information, simply

because she/he chooses information that is relatively more useful to her/him. To see this,

recall again that each of them ultimately cares about how useful this piece of information is

with respect to their underlying motive, that is ω or η, respectively. Since θ is defined as the

conditional expected value of η given the available information, the conditional expectation

of η given θ is identically equal to θ. Hence, V ar (θ) = Cov (η, θ) . Thus, the Receiver prefers

information structures where Cov (ω, θ) ≥ Cov (η, θ) , because these information structures

contain relatively more information about the Receiver’s bliss point rather than the Sender’s

bliss point. Vice versa, the Sender prefers information structures where θ correlates better

with η rather than with ω.

5.3 Joint Surplus-optimal information structures

Consider now a situation where the Sender can opt out, in which case the Receiver has to

choose the action based on prior information alone. Suppose that the Receiver can pay the

Sender ex ante to convince him to participate. However, payments cannot depend on the
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advice nor on outcomes (nor on both advice and outcomes). Suppose further that both the

Sender and the Receiver are risk neutral with respect to money payments. Formally, the

Receiver’s payoff is now

Cov (θ, ω)2

V ar (θ)2

(
V ar (θ)− Ip

∑n

i=1
piV ar (θ |θ ∈ Θi )

)
− V ar (ω)− t,

while the Sender’s payoff is(
2
Cov (ω, θ)

V ar (θ)
− Cov (ω, θ)2

V ar (θ)2

)(
V ar (θ)− Ip

∑n

i=1
piV ar (θ |θ ∈ Θi )

)
− V ar (η) + t.

If the Sender cares only about the decision when he participates - say, because only then he

puts skin into the game - then he will indeed participate if the latter expression is at least

equal to zero. If the Sender cares about the decision in any case, then his equilibrium payoff

needs to be at least equal to −V ar (η) . Since expected utilities in the two situations differ

only by a constant, it does not matter which way we go, so assume the former situation for the

sake of the argument. Clearly, the Receiver chooses the smallest payment that convinces the

Sender to participate. As a result, the Receiver effectively cares about the sum of Receiver

and Sender expected utility from decision making, that is the sum of (6) and (7) . Performing

this summation, and simplifying we obtain the Receiver’s problem:

max
Cov(ω,θ),V ar(θ)

2Cov (ω, θ)− 2
Cov (ω, θ)

V ar (θ)
Ip
∑n

i=1
piV ar (θ |θ ∈ Θi )− V ar (ω)− V ar (η)

(PJ)

s.t. Cov (ω, θ) , V ar (θ) feasible.

Very conveniently, joint expected utility adds up to the sum of the maximally feasible indi-

vidual expected utilities under smooth communication, 2Cov (ω, θ) , minus an expected loss

term arising from partitional communication. The following theorem is now immediate:

Theorem 4 Under Assumptions 1 - 3, the unique solution to the problem of maximizing

joint expected payoff with respect to the information structure, satisfies V ar (θ) = Cov (θ, ω) =

Cov (η, ω) . Equivalently, for σω
ση
∈
(
ρωη,

1
ρωη

]
, in terms of the underlying noise variances,
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the solution is (
σ2
εω , σ

2
εη

)
=

0,

(
1− σω

ση
ρωη

)
ρωη

(
σω
ση
− ρωη

) (1− ρ2
ωη

)
σ2
η

 .

The proof is very simple, so we keep the discussion heuristic. Since
∑n

i=1 piV ar (θ |θ ∈ Θi ) ≥
0, a smooth communication equilibrium - where Ip = 0 - is preferable to a partitional equilib-

rium, provided that the highest Cov (ω, θ) is reached in a smooth communication equilibrium.

Indeed, the highest Cov (θ, ω) is equal to Cov (η, ω) , the covariance between the underlying

motives.

Intuitively, the motives we have identified in the discussion of privately optimal infor-

mation structures exactly offset each other. The Receiver prefers situations in which the

information structure is relatively more useful to her - that is, where Cov (θ, ω) ≥ Cov (θ, η)

- while the Sender prefers situations where the opposite is true - that is, where Cov (θ, η) ≥
Cov (θ, ω) . Since the Sender and the Receiver have the same loss functions, these forces

exactly offset each other. Now, once attention is restricted to information structures that

are equally useful to both of them, so Cov (θ, ω) = Cov (θ, η), the Sender and the Receiver

have completely aligned interests with respect to the quality of information. They both

want to improve the informational content of the information structure. To see this, note

that for information structures where Cov(ω,θ)
V ar(θ)

= 1, the Receiver’s expected utility gross of

payments is Cov (θ, ω) − V ar (ω) , while the Sender’s expected utility gross of payments is

Cov (θ, ω)− V ar (η) , so both expressions are monotonically increasing in Cov (θ, ω) .

5.4 Selecting the advisor

Suppose the Sender has the right to choose the information structure. This is the case if

we think of the Sender as conducting investigations by himself which likely implies that he

also influences the precision of his information. However, the Receiver can select a Sender

out of the set defined by Assumptions 1 and 2. More specifically, take the Receiver’s prior

uncertainty, σω, and any ρωη satisfying Assumption 1 as given and think of the set of available

Sender types, ση, as the ones satisfying Assumption 2. For any given σω and ρωη, the set of

available Sender types thus forms a closed set ση ∈
[
σωρωη,

σω
ρωη

]
, with type ση = σω

ρωη
being the

most uncertain Sender type and type ση = σωρωη being the Sender type facing the smallest
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uncertainty ex ante. Once selected, the Sender chooses an optimal information structure,

that is one that solves problem (PS) . Finally, the Sender and the Receiver communicate in

the most informative way for the chosen conflict and the chosen information structure. The

equilibrium outcome in this extensive form has the following structure:

Theorem 5 Under Assumptions 1 - 3, the Receiver can implement the optimal outcome

from her perspective by choosing the most certain advisor, σ∗η = σωρωη, who then chooses

to observe η without noise, σεη = 0. In the most informative equilibrium, communication is

smooth with V ar
(
θ;σ∗η

)
= Cov

(
θ, ω;σ∗η

)
= Cov

(
η, ω;σ∗η

)
= σ2

ωρ
2
ωη.

The theorem follows straightforwardly from our previous results, so we state the proof

heuristically. Recall that privately optimal information structures are such that each player

would like to end up being relatively progressive. From our discussion of feasible information

structures, recall that the feasible set for any type ση > σωρωη contains elements with

Cov (θ, ω) > V ar (θ) . Eliminating such information structures never hurts the Receiver. In

contrast, by choosing type ση = σωρωη, the Receiver effectively chooses to be in case two of

Figure 1. Thereby, she ensures that the optimal information structures from that Sender’s

perspective within his feasible set satisfies V ar (θ) = Cov (θ, ω) and thus the necessary

condition for optimality from the Receiver’s perspective from Theorem 3. Indeed, this type

can observe everything of interest to him without noise and can still communicate smoothly

with the Receiver. Note that the Sender of type ση = σωρωη could also choose information

structures that would not enable the players to communicate smoothly. However, the point

is that the Sender has no interest to do so. By choosing the appropriate advisor, the Receiver

eliminates conflicts of interests with respect to the choice of information structure.

Note that there is no way the Receiver could do better. Any other Sender type would

choose an information structure that would make the Receiver relatively conservative, Cov(θ,ω)
V ar(θ)

≤
1, possibly strictly so. Moreover, there is no way to make the equilibrium choices more vari-

able than by having the most certain advisor.
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6 Comparative statics of smooth communication equi-

libria

We have argued that smooth communication equilibria have some practical relevance, be-

cause they are induced by information structures that reflect optima of certain problems.

Moreover, smooth communication equilibria are analytically extremely tractable, allowing us

to address questions such as: How does the quality of advice and of decision-making depend

on conflicts of interests? How does prior uncertainty impact on decision-making? While

these questions are far from trivial in other approaches we are familiar with, our model gives

very clear and simple answers.

The equilibrium quality of advice is measured by V ar (θ) in a smooth communication

equilibrium. The higher the variance of induced choices, the better off are both the Sender

and the Receiver. In the most informative equilibrium for the optimal information structure,

we have

V ar (θ) = Cov (ω, η) = ρωησωση.

For the case of equal prior uncertainty, σω = ση, the alignment of interests can simply be

measured by the correlation between ω and η, ρωη. Both the Receiver and the Sender are

better off if interests are better aligned, that is when ρωη is increased. The reason is that a

Sender with better aligned preferences can be given access to better information. Therefore,

an advisor who is more trustworthy will appear more competent: his equilibrium information

is of better quality. The limiting case is perfectly aligned interests, which is of course ruled

out by Assumption 1.

Similarly, if the Receiver manages to select the ideal advisor among those satisfying

Assumptions 1 and 2, then

V ar (θ) = σ2
ωρ

2
ωη,

supporting the same conclusion. The case where ρωη → 1 corresponds to the ideal world

where the best available advisor can be completely trusted. In that limiting case, the Receiver

manages to get perfect information through the Sender.

It is interesting to note that for a given correlation ρωη, higher prior uncertainty has a

positive impact on the quality of decision-making. The reason is that with a high level of

prior uncertainty, the weight attached to new information tends to be higher. Since the
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variance of ideal choices based on prior information only is zero, placing more weight on new

information unambiguously increases the variance.

7 Conclusions

We analyze a Sender-Receiver-Game of strategic communication in which the most informa-

tive equilibrium involves smooth communication and is therefore extremely tractable. The

key ingredients are as follows. The Sender and the Receiver are uncertain about but agreed

upon their most preferred action ex ante; the Sender observes a two-dimensional signal about

the underlying two-dimensional state of nature; while the Sender and the Receiver agree that

both pieces of information are useful to reach a decision, they disagree with respect to the

weight they would ideally attach to each piece of information. Relative, in contrast to abso-

lute disagreement leaves room for perfectly informative communication about a statistic of

the Sender’s information, his conditionally expected mean. Since his preferences for given

information depend only on conditional means, it is impossible to extract more information

from the Sender. Thus, we obtain the standard partial pooling result of cheap talk equi-

libria; however, pooling is much easier to characterize in the most efficient equilibrium of

our game, because only Sender types with the same conditional expectation pool and so we

obtain communication that is perfectly revealing in that space.

The upshot of our theory is that with relative (dis-)agreement, it becomes possible to talk

about conclusions, while it still remains pointless to ask the Sender to justify his conclusions.

E.g., communication by central banks about their anticipated inflation and things the like

is much easier than to discuss how they reached this conclusion. Finally, the equilibrium

is the more informative the better interests are aligned, with a slightly different twist than

other theories predict. The Sender is endogenously endowed with better information when

his interests are better aligned with those of the Receiver. Thus, more trustworthy Senders

are better informed and therefore give more accurate advice.

8 Appendix

Conditioning for elliptical distributions
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The expectation and covariance matrix are as follows

E[ω, η, sω, sη] = (0, 0, 0, 0)′

and

Cov(ω, η, sω, sη) =


σ2
ω ρωησωση σ2

ω ρωησωση

ρωησωση σ2
η ρωησωση σ2

η

σ2
ω ρωησωση σ2

ω + σ2
εω ρωησωση

ρωησωση σ2
η ρωησωση σ2

η + σ2
εη

 .

By Lemma 1 the conditional variances can be calculated via

E [X |Y ] = µX + Σ12Σ
−1
22 (Y − µY )

with

Cov (X, Y ) =

(
Σ11 Σ12

Σ21 Σ22

)
.

Proof of Lemma 2. Let (sω, sη) be the information available and let z = ω, η. Consider

the problem

max
x

∞∫
−∞

u (x− z) f (z| sω, sη) dz.

Since the utility depends only on the distance between x and z we have u′ (x− z) > 0 for

z < x, u′ (x− z) = 0 for x = z, and u′ (x− z) < 0 for z > x.

Consider the candidate solution x∗ = µ ≡ E [z| sω, sη] . The first-order condition can be

written as

∞∫
−∞

u′ (x∗ − z) f (z| sω, sη) dz =

∞∫
−∞

u′ (µ− z) f (z| sω, sη) dz = 0.

Consider two points z1 = µ−∆ and z2 = µ+ ∆ for arbitrary ∆ > 0. By symmetry of u

around its bliss point and symmetry of the distribution around µ, we have

u′ (∆) f (µ−∆| sω, sη) = −u′ (−∆) f (µ+ ∆| sω, sη) .
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Since this holds point-wise for each ∆, it also holds if we integrate over ∆. Thus, the first-

order condition applies at x∗ = µ. By concavity of u in x, only one value of x solves the

first-order condition. Hence, the solution is the one stated in the Lemma.

Proof of Lemma 3. The conditional expectations are

E [η|sω, sη] = αSsω + βSsη (8)

and

E [ω| sω, sη] = αRsω + βRsη, (9)

where αS, βS, αR, βR are defined in the text. Suppose σ2
εη and σ2

εω are both positive and

finite. Equations (8) and (9) are identical for all sω and sη if and only if

σ2
εηρωησωση = σ2

ω

(
σ2
εη + σ2

η − σ2
ηρ

2
ωη

)
and

σ2
η

(
σ2
εω − σ

2
ωρ

2
ωη + σ2

ω

)
= σησωρωησ

2
εω .

This requires that

σ2
η

(
1− ρ2

ωη

)
=

(
ρωηση
σω

− 1

)
σ2
εη

and

σ2
ω

(
1− ρ2

ωη

)
=

(
σωρωη
ση

− 1

)
σ2
εω .

A necessary condition for these two conditions to apply is that ρωη ≥ σω
ση

and ρωη ≥ ση
σω

. Since

ρωη ∈ [−1, 1], this implies that ρωη = ση
σω

= σω
ση

and therefore, ρ2
ωη = 1 and ση = σω.

Consider now the limiting cases where one of the variances goes out of bounds. Applying

l’Hôpital’s rule to (8) and (9) , we get in the limit as σ2
εη →∞

E [ω|sω] =
σ2
ω

σ2
ω + σ2

εω

sω and E [η|sω] =
ρωησωση
σ2
ω + σ2

εω

sω,

so that

E [ω|sω] ≡ E [η|sω] ⇔ ρωηση = σω.
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Likewise, for the case where σ2
εω →∞, we get

E [ω|sη] =
ρωησωση
σ2
η + σ2

εη

sη and E [η|sη] =
σ2
η

σ2
η + σ2

εη

sη,

so

E [ω|sη] ≡ E [η|sη] ⇔ ρωησω = ση.

Proof of Lemma 4. Straightforward manipulations of αR, βR, αS, βS show that

αR ≥ αS ⇔ σ2
ω

(
σ2
η

(
1− ρ2

ωη

))
≥ σ2

εησω (ρωηση − σω)

which is true for arbitrary σ2
εη if and only if σω

ση
≥ ρωη; and likewise,

βS ≥ βR ⇔ σ2
ησ

2
ω

(
1− ρ2

ωη

)
≥ σ2

εωση (σωρωη − ση)

which again is true for arbitrary σ2
εω if and only if σω

ση
≤ 1

ρωη
.

Proof of Lemma 6. Let x′ − E [η| sω, sη] = E [η| sω, sη]− x′′ ≡ z > 0, then∫
u (x′ − η) f (η| sω, sη) dη =

∫
u (z − (η − E [η| sω, sη])) f (η| sω, sη) dη.

The random variable η̂ ≡ η − E [η| sω, sη] has mean zero and symmetric distribution. Let

f̂ ( η̂| sω, sη) denote the standardized distribution (which has mean zero), then we have

f (η| sω, sη) = f̂ (η − E [η| sω, sη]| sω, sη) = f̂ ( η̂| sω, sη) and dη = dη̂.

Take two realizations η̂′, ˆeta
′′

of η̂. By symmetry of u around 0, if η̂′ > 0 and η̂′′ = −η̂′, then

u (z − η̂′) = u (−z − η̂′′) ,

and symmetry of the distribution gives

f̂ ( η̂′| sω, sη) = f̂ ( η̂′′| sω, sη) .

Therefore,

u (z − η̂′) f̂ ( η̂′| sω, sη) = u (−z − η̂′′) f̂ ( η̂′′| sω, sη)
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holds true over the entire support for all pairs of (η̂′,−η̂′), implying that∫
u (z − η̂) f̂ ( η̂| sω, sη) dη̂ =

∫
u (−z − η̂) f̂ ( η̂| sω, sη) dη̂

=

∫
u (−z − (η − E [η| sω, sη])) f (η| sω, sη) dη

=

∫
u (x′′ − η) f (η| sω, sη) dη.

Proof of Lemma 7. Recall that

Cov (ω, θ) = σησωρωη
a+ b+ 1− ρ2

ωη

(1 + a) (1 + b)− ρ2
ωη

,

and

V ar (θ) = σ2
η

a+ bρ2
ωη + 1− ρ2

ωη

(1 + a) (1 + b)− ρ2
ωη

,

where a ≡ σ2
εω

σ2
ω

and b ≡ σ2
εη

σ2
η
.

For future reference, note that

∂Cov (ω, θ)

∂a
= σησωρωη

−b
(
−ρ2

ηω + b+ 1
)(

(1 + a) (1 + b)− ρ2
ωη

)2 ,
∂Cov (ω, θ)

∂b
= σησωρωη

−a
(
−ρ2

ηω + a+ 1
)(

(1 + a) (1 + b)− ρ2
ωη

)2 ,
∂V ar (θ)

∂a
=

∂

∂a
σ2
η

a+ bρ2
ωη + 1− ρ2

ωη

(1 + a) (1 + b)− ρ2
ωη

=
−b2ρ2

ηωσ
2
η(

(1 + a) (1 + b)− ρ2
ωη

)2 ,
and

∂V ar (θ)

∂b
=

∂

∂b
σ2
η

a+ bρ2
ωη + 1− ρ2

ωη

(1 + a) (1 + b)− ρ2
ωη

= σ2
η

−
(
−ρ2

ηω + a+ 1
)2(

(1 + a) (1 + b)− ρ2
ωη

)2 .
It is most convenient to characterize the set of feasible information structures by taking a

level of covariance as given and computing the set of feasible variance levels for the given

level of covariance.
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Thus, let

σησωρωη
a+ b+ 1− ρ2

ωη

(1 + a) (1 + b)− ρ2
ωη

= C.

Note that for a = 0 or b = 0, the covariance is constant and equal to σησωρωη. Moreover, the

covariance is decreasing in a for given b and decreasing in b for given a. We have

lim
b→∞

a+ b+ 1− ρ2
ωη

(1 + a) (1 + b)− ρ2
ωη

=
1

1 + a
,

and

lim
a→∞

a+ b+ 1− ρ2
ωη

(1 + a) (1 + b)− ρ2
ωη

=
1

1 + b
.

So, letting both a and b (in whatever order) go to infinity results in a covariance of zero.

Hence, any C ∈ (0, σησωρωη] can be generated by finite a, b.

For a, b 6= 0, along a locus where the covariance is equal to C, we must have

σησωρωη
−b
(
−ρ2

ηω + b+ 1
)(

(1 + a) (1 + b)− ρ2
ωη

)2da+ σησωρωη
−a
(
−ρ2

ηω + a+ 1
)(

(1 + a) (1 + b)− ρ2
ωη

)2db = 0

so that

−
b
(
−ρ2

ηω + b+ 1
)

a
(
−ρ2

ηω + a+ 1
)da = db,

and a and b are inversely related. Consider now how the variance changes along a locus

where the covariance is constant. Totally differentiating the variance, and substituting for

db as a function of da, we obtain

−b2ρ2
ηωσ

2
η(

(1 + a) (1 + b)− ρ2
ωη

)2da+ σ2
η

−
(
−ρ2

ηω + a+ 1
)2(

(1 + a) (1 + b)− ρ2
ωη

)2db
=

−b2ρ2
ηωσ

2
η(

(1 + a) (1 + b)− ρ2
ωη

)2da− σ2
η

−
(
−ρ2

ηω + a+ 1
)2(

(1 + a) (1 + b)− ρ2
ωη

)2 b
(
−ρ2

ηω + b+ 1
)

a
(
−ρ2

ηω + a+ 1
)da.

Note that

−b2ρ2
ηω + b

(
−ρ2

ηω + b+ 1
) (−ρ2

ηω + a+ 1
)

a
≥ 0

since

−abρ2
ηω +

(
−ρ2

ηω + b+ 1
) (
−ρ2

ηω + a+ 1
)
> 0.

40



Therefore, the variance is increasing in a and is thus minimal for the smallest possible value

of a that generates the desired covariance level and is highest for the highest possible value

of a that generates the covariance.

Consider first the smallest level of a. Since a and b are inversely related, this is the level

associated to b→∞.

lim
b→∞

σησωρωη
a+ b+ 1− ρ2

ωη

(1 + a) (1 + b)− ρ2
ωη

= σησωρωη
1

1 + a
.

Note that any covariance smaller than σησωρωη can be generated this way. a is then deter-

mined by the condition

σησωρωη
1

1 + a
= C

and so
σησωρωη

C
− 1 = a.

Let V (C) denote the smallest possible value of the variance for a given level of C. Substi-

tuting σησωρωη
C
− 1 = a into the variance and taking the limit as b→∞, we obtain

V (C) = σ2
η

ρ2
ωη

σησωρωη
C

=
ση
σω
ρωηC.

Likewise, for b = σησωρωη
C

− 1 and taking the limit as a→∞ we obtain the highest value of

the variance

V (C) = σ2
η

1
σησωρωη

C

=
ση
σω

1

ρωη
C.

It follows that a level of variance is feasible for a given level of C < σησωρωη if

V ∈
[
ση
σω
ρωηC,

ση
σω

1

ρωη
C

]
.

Consider now the case where C = σησωρωη. Since

a+ b+ 1− ρ2
ωη

(1 + a) (1 + b)− ρ2
ωη

= 1

iff ab = 0, the level of covariance requires that either a = 0 or b = 0 or both. Hence, for

C = σησωρωη, we have for b = 0 and a ≥ 0

V ar (θ) = σ2
η

a+ bρ2
ωη + 1− ρ2

ωη

(1 + a) (1 + b)− ρ2
ωη

= σ2
η
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and for a = 0 and b ≥ 0

V ar (θ) = σ2
η

a+ bρ2
ωη + 1− ρ2

ωη

(1 + a) (1 + b)− ρ2
ωη

= σ2
η

bρ2
ωη + 1− ρ2

ωη

1 + b− ρ2
ωη

.

Since limb→∞
bρ2ωη+1−ρ2ωη

1+b−ρ2ωη
= ρ2

ωη, the expression σ2
η
bρ2ωη+1−ρ2ωη

1+b−ρ2ωη
ranges from ρ2

ωησ
2
η to σ2

η.

Proof of Theorem 1. The statement follows from solving Cov (ω, θ) = V ar (θ) for the

underlying noise structure. Recall that

Cov (ω, θ) = σησωρωη
a+ b+ 1− ρ2

ωη

(1 + a) (1 + b)− ρ2
ωη

and

V ar (θ) = σ2
η

a+ bρ2
ωη + 1− ρ2

ωη

(1 + a) (1 + b)− ρ2
ωη

,

where a ≡ σ2
εω

σ2
ω

and b ≡ σ2
εη

σ2
η
. Solving Cov (ω, θ) = V ar (θ) , we obtain

σω
ση
ρωη
(
a+ b+ 1− ρ2

ωη

)
=
(
a+ bρ2

ωη + 1− ρ2
ωη

)
.

Rearranging, we have(
σω
ση
ρωη − ρ2

ωη

)
b = a

(
1− σω

ση
ρωη

)
+

(
1− σω

ση
ρωη

)(
1− ρ2

ωη

)
.

For σω
ση
∈
(
ρωη,

1
ρωη

]
we have σω

ση
− ρωη 6= 0, hence we can divide through by σω

ση
ρωη − ρ2

ωη and

obtain

b = a

(
1− σω

ση
ρωη

)
ρωη

(
σω
ση
− ρωη

) +

(
1− σω

ση
ρωη

)
ρωη

(
σω
ση
− ρωη

) (1− ρ2
ωη

)
.

Consider next the case where σω
ση
− ρωη = 0. Note that

a

(
1− σω

ση
ρωη

)
+

(
1− σω

ση
ρωη

)(
1− ρ2

ωη

)
> 0,

and that for finite b (
σω
ση
ρωη − ρ2

ωη

)
b = 0.
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Hence, Cov (ω, θ) = V ar (θ) only if b is unbounded. Therefore, consider now the limiting

case

lim
b→∞

σ2
η

a+ bρ2
ωη + 1− ρ2

ωη

(1 + a) (1 + b)− ρ2
ωη

= σ2
η

ρ2
ωη

1 + a
.

For a = 0 and in the limit as b→∞

V ar (θ) = ρ2
ωησ

2
η.

Likewise, for a = 0 and in the limit as b→∞

Cov (ω, θ) = σησωρωη.

Clearly, ρ2
ωησ

2
η = σησωρωη for σω

ση
= ρωη.

Proof of Theorem 2. We prove each part in sequence.

i) There is always an equilibrium inducing two distinct actions. Suppose there are just

two messages, up or down, and the Receiver chooses x = E [ω| θ ≥ θ0] if she hears up, and

x = E [ω| θ < θ0] if she hears down. For this to be an equilibrium, type θ0 needs to be

indifferent between the two actions, that is

θ0 − E [ω| θ < θ0] = E [ω| θ ≥ θ0]− θ0.

By symmetry of the distribution, this condition is always satisfied for θ0 = 0, since

−E [ω| θ < 0] = E [ω| θ ≥ 0] .

ii) We show that there is a class of equilibria within which there is no upper bound on

the number of induced actions. Since we want to characterize equilibria with the largest

number of induced actions, and there are such equilibria within the considered class, there

is no loss of generality in focusing on equilibria of that class for our purposes. It proves

convenient to relabel the indices on marginal types θi. Consider a symmetric equilibrium

with thresholds θ1, . . . , θn on the upper half and thresholds θ−1, . . . , θ−n, with θ−i = −θi for

all i. For n even we additionally have a threshold θ0 = 0. The indifference condition of types

θi for i = 2, . . . , n− 1 are given by

θi − E [ω| θ ∈ (θi−1, θi]] = E [ω| θ ∈ (θi, θi+1]]− θi, (10)
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while the last threshold satisfies

θn − E [ω| θ ∈ (θn−1, θn]] = E [ω| θ ≥ θn]− θn. (11)

We proceed as follows: in a first step we show by induction that dθi+1

dθi
≥ 1. Secondly, we

show that given a symmetric equilibrium with n threshold values, we can always construct

a symmetric equilibrium with n + 1 threshold values. Note that for existence it suffices

to consider the case where n is odd, and that because of symmetry we only consider the

threshold values above zero, the same reasoning holds for the mirror images, so that in total

we construct an equilibrium inducing 2 (n+ 1) actions.

Define

c ≡ Cov (ω, θ)

V ar (θ)

and

µ (θi−1, θi) ≡ E [θ| θ ∈ (θi−1, θi]] .

Totally differentiating the indifference condition of type θ1, i.e. θ1 = E [ω| θ ∈ (θ1, θ2]]− θ1,

we find that
dθ2

dθ1

=
2− cµθ1 (θ1, θ2)

cµθ2 (θ1, θ2)
.

By log-concavity of the distribution, we have µθ1 (θ1, θ2) ≤ 1 and µθ2 (θ1, θ2) ≤ 1, so for

c ≤ 1, we have dθ2
dθ1

> 0. Moreover, we also have dθ2
dθ1

> 1, since

2− cµθ1 (θ1, θ2)

cµθ2 (θ1, θ2)
> 1⇔ 2 > c (µθ1 (θ1, θ2) + µθ2 (θ1, θ2))

and the latter inequality is true because the sum in brackets is at most unity for log-concave

distributions.

Totally differentiating condition (10), we have

dθi+1

dθi
=

1− c
2

(
dθi−1

dθi
µθi−1

(θi−1, θi) + µθi (θi−1, θi) + µθi (θi, θi+1)
)

c
2
µθi+1

(θi, θi+1)
.

We now show the induction hypothesis dθi
dθi−1

≥ 1 implies that dθi+1

dθi
≥ 1. In fact, the latter is

equivalent to

1 ≥ c

2

(
dθi−1

dθi
µθi−1

(θi−1, θi) + µθi (θi−1, θi) + µθi (θi, θi+1) + µθi+1
(θi, θi+1)

)
.
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By the induction hypothesis and the log-concavity of the distribution, (which implies that

µθi−1
(θi−1, θi) + µθi (θi−1, θi) ≤ 1 and µθi (θi, θi+1) + µθi+1

(θi, θi+1) ≤ 1), it follows that the

inequality is satisfied for c ≤ 1.

We can construct an equilibrium with n + 1 threshold values (above zero), if we can

satisfy the following two conditions. Firstly, condition (10) must be satisfied for i = 2, . . . , n.

Secondly, θn+1 must satisfy condition (11), i.e.

θn+1 − E [ω| θ ∈ (θn, θn+1]] = E [ω| θ ≥ θn+1]− θn+1. (12)

Let θn1 denote the value of the first threshold θ1 that is consistent with the equilibrium in

n threshold values. (One can show that θn1 is unique.) Since the last threshold θnn in this

equilibrium satisfies condition (11), it is impossible that there exists a threshold θn+1 < ∞
satisfying condition (12). We must therefore reduce θ1 below θn1 .

Let θi (θ1) denote solutions to condition (10) as a function of the initial condition θ1. The

critical one among conditions (10) for the equilibrium with n+ 1 threshold values is

θn (θ1)− E [ω| θ ∈ (θn−1 (θ1) , θn (θ1)]] = E [ω| θ ∈ (θn (θ1) , θn+1 (θ1)]]− θn (θ1) . (13)

The sequence (θ1, . . . , θn (θ1)) is increasing in θ1. We can find a value θn+1 (θ1) that solves

(13) provided that θn−1 (θ1) , θn (θ1) are low enough and provided that

θn (θ1)− E [ω| θ ∈ (θn−1 (θ1) , θn (θ1)]] > lim
θn+1→θn(θ1)

E [ω| θ ∈ (θn (θ1) , θn+1]]− θn (θ1) (14)

and

θn (θ1)− E [ω| θ ∈ (θn−1 (θ1) , θn (θ1)]] < lim
θn+1→∞

E [ω| θ ∈ (θn (θ1) , θn+1]]− θn (θ1) . (15)

The former condition, (14) , can be written as

(2− c) θn (θ1) > cµ (θn−1 (θ1) , θn (θ1)) .

This condition is always satisfied for c ≤ 1. To see this, note that

(2− c) θn (θ1) ≥ θn (θ1) > µ (θn−1 (θ1) , θn (θ1)) ≥ cµ (θn−1 (θ1) , θn (θ1)) ,

where the critical inequality follows from the fact that θn (θ1) > θn−1 (θ1) .
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Consider the latter condition, (15) . The left-hand side is increasing in θ1. To see this,

note that

dθn (θ1)

dθ1

− c
(
µθn−1 (θn−1 (θ1) , θn (θ1))

dθn−1 (θ1)

dθ1

+ µθn (θn−1 (θ1) , θn (θ1))
dθn (θ1)

dθ1

)
=

dθn (θ1)

dθ1

(
1− c

(
µθn−1 (θn−1 (θ1) , θn (θ1))

dθn−1 (θ1)

dθn (θ1)
+ µθn (θn−1 (θ1) , θn (θ1))

))
≥ 0.

Thus, reducing θ1 below θn1 reduces the value of the left-hand side. On the other hand, the

right-hand side

E [ω| θ ≥ θn (θ1)]− θn (θ1)

is decreasing in θn (θ1) since c ≤ 1 and E [θ| θ ≥ θn (θ1)]− θn (θ1) is decreasing in θn (θ1) due

to log-concavity. Thus, reducing θ1 below θn1 increases the value of the right hand side of

(15) . It follows that for θ1 small enough, we can satisfy (13) .

It remains to be shown that θn+1 satisfies condition (12), i.e. that we can chose θ1 small

enough. Define

D ≡ θn+1 − E [ω| θ ∈ (θn (θ1) , θn+1]]− (E [ω| θ ≥ θn+1]− θn+1) ,

and note that D is increasing in θn+1 (due to log-concavity and c ≤ 1). Hence, we can find

θn+1 that sets D equal to zero if on the one hand

lim
θn+1→θn(θ1)

D < 0,

and on the other hand

lim
θn+1→∞

D > 0.

The latter condition does not constrain us in any way. Now consider the former. Rearranging,

we have

lim
θn+1→θn(θ1)

D = (1− c) θn (θ1)− (E [ω| θ ≥ θn (θ1)]− θn (θ1))

= (2− c) θn (θ1)− E [ω| θ ≥ θn (θ1)] .

So for the former condition we need to have

θn (θ1) <
c

2− c
µ (θn (θ1) ,∞) .
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For θ1 small enough, this inequality is satisfied, since c
2−c ∈ (0, 1] , θn (θ1) goes to zero as θ1

does, in which case the right-hand side remains bounded away from zero.

We conclude that we can set θ1 low enough to find a new equilibrium value θn+1
1 so that

for θ1 = θn+1
1 , a new equilibrium inducing 2 (n+ 1) actions is constructed. It follows that

there is no upper bound on n for c ≤ 1.

iii) For c ≥ 2, the maximum number of induced actions is two. From part i), we know that

there always exists an equilibrium with two distinct induced actions. Consider a candidate

equilibrium inducing three actions, the middle one being equal to zero. The indifference

condition for type θ1 is
1

2
E [ω| θ > θ1] = θ1.

Using E [ω| θ > θ1] = cE [θ| θ > θ1], we have

c

2
E [θ| θ > θ1] = θ1.

Since c
2
≥ 1 and E [θ| θ > θ1] > θ1 for any finite θ1, no solution can exist. Similarly, the

equilibrium condition for θ1 in any equilibrium with an odd number of induced actions and

n ≥ 5 is

θ1 =
c

2
E [θ| θ ∈ (θ1, θ2]] ,

so, by the same argument, there is no such solution.

The indifference condition for the first threshold in any equilibrium with an even number

of induced actions and n ≥ 4 for arbitrary θ2 is given by

θ1 − E [ω| θ ∈ (0, θ1]] = E [ω| θ ∈ (θ1, θ2]]− θ1.

For c ≥ 2 we immediately get the following contradiction

2θ1 = c (E [θ| θ ∈ (0, θ1]] + E [θ| θ ∈ (θ1, θ2]]) > c (0 + θ1) .

Hence there does not exist any θ1 and no equilibrium with n even and n ≥ 4.

Lemma 8 In a partitional equilibrium∑n

i=1

∫ θi

θi−1

∫
uR (x∗i − ω) f (ω| θ) dωf (θ) dθ

=
Cov (θ, ω)2

V ar (θ)2

(
V ar (θ)−

∑n

i=1
piV ar (θ |θ ∈ Θi )

)
− V ar (ω)
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and ∑n

i=1

∫ θi

θi−1

∫
uR (x∗i − ω) f (ω| θ) dωf (θ) dθ

=
Cov (θ, ω)2

V ar (θ)2

(
V ar (θ)−

∑n

i=1
piV ar (θ |θ ∈ Θi )

)
− V ar (ω) .

Proof of Lemma 8. The Sender’s payoff is

∑n

i=1

∫ θi

θi−1

∫
uS (x∗i − η) f (η| θ) dηf (θ) dθ.

Expanding the square around E [ω| θ] , we can rewrite this as

−
∑n

i=1

∫ θi

θi−1

∫
(x∗i − E [ω| θ] + E [ω| θ]− η)2 f (η| θ) dηf (θ) dθ

= −
∑n

i=1

∫ θi

θi−1

∫ (
(x∗i − E [ω| θ])2 + 2 (x∗i − E [ω| θ]) (E [ω| θ]− η) + (E [ω| θ]− η)2) f (η| θ) dηf (θ) dθ

= −
∑n

i=1

∫ θi

θi−1

(x∗i − E [ω| θ])2 f (θ) dθ −
∑n

i=1

∫ θi

θi−1

2 (x∗i − E [ω| θ]) (E [ω| θ]− θ) f (θ) dθ

−
∑n

i=1

∫ θi

θi−1

∫
(E [ω| θ]− η)2 f (η| θ) dηf (θ) dθ

We now compute each term more explicitly, proceeding backwards. Term three can be

written as

−
∑n

i=1

∫ θi

θi−1

∫
(E [ω| θ]− η)2 f (η| θ) dηf (θ) dθ

= −
∑n

i=1

∫ θi

θi−1

∫ (
E [ω| θ]2 − 2θE [ω| θ] + η2

)
f (η| θ) dηf (θ) dθ

= −

(
Cov (ω, θ)2

V ar (θ)2 V ar (θ)− 2
Cov (ω, θ)

V ar (θ)
V ar (θ) + V ar (η)

)

= −

(
Cov (ω, θ)2

V ar (θ)
− 2Cov (ω, θ) + V ar (η)

)
.
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Term two can be rewritten as

−
∑n

i=1

∫ θi

θi−1

2 (x∗i − E [ω| θ]) (E [ω| θ]− θ) f (θ) dθ

= −
∑n

i=1

∫ θi

θi−1

2
Cov (ω, θ)

V ar (θ)
(E [θ| θ ∈ [θi−1, θi]]− θ)

(
Cov (ω, θ)

V ar (θ)
− 1

)
θf (θ) dθ

= −2

(
Cov (ω, θ)

V ar (θ)
− 1

)
Cov (ω, θ)

V ar (θ)

∑n

i=1
pi

∫ θi

θi−1

(
E [θ| θ ∈ [θi−1, θi]] θ − θ2

) f (θ)

pi
dθ

= 2

(
Cov (ω, θ)

V ar (θ)
− 1

)
Cov (ω, θ)

V ar (θ)

∑n

i=1
piV ar (θ| θ ∈ [θi−1, θi])

+2
Cov (ω, θ)

V ar (θ)

(
Cov (ω, θ)

V ar (θ)
− 1

)∑n

i=1

∫ θi

θi−1

θ2f (θ) dθ

= 2
Cov (ω, θ)

V ar (θ)

(
Cov (ω, θ)

V ar (θ)
− 1

)(
V ar (θ)−

∑n

i=1
Pr (θ ∈ [θi−1, θi]) E [θ| θ ∈ [θi−1, θi]]

2
)

Finally, term one can be written as

−
∑n

i=1

∫ θi

θi−1

(x∗i − E [ω| θ])2 f (θ) dθ

= −
∑n

i=1

∫ θi

θi−1

Cov (ω, θ)2

V ar (θ)2 (E [θ| θ ∈ [θi−1, θi]]− θ)2 f (θ) dθ

= −Cov (ω, θ)2

V ar (θ)2

∑n

i=1
piV ar (θ| θ ∈ [θi−1, θi]) .

Summing up, we can write

∑n

i=1

∫ θi

θi−1

∫
uS (x∗i − η) f (η| θ) dηf (θ) dθ

=

(
Cov (ω, θ)2

V ar (θ)2 − 2
Cov (ω, θ)

V ar (θ)

)∑n

i=1
piV ar (θ| θ ∈ [θi−1, θi])

−

(
Cov (ω, θ)2

V ar (θ)
− 2Cov (ω, θ) + V ar (η)

)
.

Likewise, the Receiver’s expected utility,
∑n

i=1

∫ θi
θi−1

∫
uR (x∗i − ω) f (ω| θ) dωf (θ) dθ, takes

49



the form

−
∑n

i=1

∫ θi

θi−1

∫
(x∗i − E [ω| θ] + E [ω| θ]− ω)2 f (ω| θ) dωf (θ) dθ

=−
∑n

i=1

∫ θi

θi−1

∫ (
(x∗i − E [ω| θ])2 + 2 (x∗i − E [ω| θ]) (E [ω| θ]− ω) + (E [ω| θ]− ω)2) f (ω| θ) dωf (θ) dθ

=−
∑n

i=1

∫ θi

θi−1

(x∗i − E [ω| θ])2 f (θ) dθ −

(
Cov (θ, ω)2

V ar (θ)2 V ar (θ)− 2
Cov (θ, ω)2

V ar (θ)
+ V ar (ω)

)

=−
∑n

i=1

∫ θi

θi−1

(x∗i − E [ω| θ])2 f (θ) dθ +
Cov (θ, ω)2

V ar (θ)2 V ar (θ)− V ar (ω)

= −Cov (ω, θ)2

V ar (θ)2

∑n

i=1
piV ar (θ |θ ∈ Θi ) +

Cov (θ, ω)2

V ar (θ)2 V ar (θ)− V ar (ω) .

Proof of Theorem 3. The proof is split into two parts. The first part establishes the

Receiver’s preferences over information structures 1 and 2 described in the main text; the

second part adapts the analysis to the Sender’s problem.

The Receiver prefers information structure 2, since

V ar2 (θ)− V ar (ω)

=
Cov2 (θ, ω)2

V ar2 (θ)2 V ar2 (θ)− V ar (ω) =
Cov2 (θ, ω)2

V ar1 (θ)2 V ar1 (θ)− V ar (ω)

>
Cov1 (θ, ω)2

V ar1 (θ)2

(
V ar1 (θ)− Ip

∑n

i=1
piV ar1 (θ |θ ∈ Θi )

)
− V ar (ω) ,

where V ar1 (θ |θ ∈ Θi ) is the conditional variance (conditional on the truncated set Θi)

under information structure 1. The left-most expression is the Receiver’s expected utility in

the truthful and smooth equilibrium, which is feasible under structure 2. It follows that -

provided we can find (Cov2 (ω, θ) , V ar2 (θ)) satisfying V ar2 (θ) = V ar1 (θ) and Cov2 (ω, θ) =

V ar2 (θ) - that information structure (Cov1 (ω, θ) , V ar1 (θ)) is dominated. Note that under

Assumptions 1 and 2, an information structure 2 with the said properties indeed exists.

Consider now the Sender’s problem. The Sender’s expected payoff is(
2
Cov (ω, θ)

V ar (θ)
− Cov (ω, θ)2

V ar (θ)2

)(
V ar (θ)− Ip

∑n

i=1
piV ar (θ |θ ∈ Θi )

)
− V ar (η) .
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Note that the term 2c− c2 is maximized at c = 1. Therefore,

V ar2 (θ)− V ar (η)

=

(
2
Cov2 (ω, θ)

V ar2 (θ)
− Cov2 (ω, θ)2

V ar2 (θ)2

)
V ar2 (θ)− V ar (η)

>

(
2
Cov1 (ω, θ)

V ar1 (θ)
− Cov1 (ω, θ)2

V ar1 (θ)2

)(
V ar1 (θ)−

∑n

i=1
piV ar (θ |θ ∈ Θi )

)
− V ar (η) .

The left-most expression is the equilibrium utility in the smooth and truthful equilibrium

under information structure 2; note that the truthful equilibrium is feasible under this struc-

ture. The right-hand side of the inequality is the equilibrium expected utility under the best

feasible equilibrium under information structure 1.
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