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Abstract

Within the last decade kidney exchange became a mainstream paradigm to increase the

number of kidneys transplants. However, compatible pairs do not participate in exchange and

full benefit from exchange can only be realized if they participate. In this paper, we propose a

new incentive scheme that relies on incentivizing participation of compatible pairs in exchange

via an insurance for the patient for a second future renal failure. Welfare and equity analysis

of this scheme is conducted and compared with welfare and equity outcomes of live donation

and live donor organ exchange. The potential role of such an incentive scheme to strengthen

the national kidney exchange system is also presented.
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1 Introduction

Several studies offered new policy suggestions and their welfare analyses in allocating transplant

organs in a “partial equilibrium” setup: for example for deceased donation (cf. Zenios, Chertow, and

Wein, 2000), or for live-donor exchanges (cf. Roth, Sönmez, and Ünver, 2004).

We present the first dynamic model that analyzes welfare and equity consequences of various

deceased-donor allocation, live donation, and live-donor exchange policies across different patient

groups, categorized based on the patients’ blood types, the availability of paired live donors, and

these donors’ blood types when they are available, participating in different phases of transplantation

process for different organs. The model gives us an explanation for some of the observed patterns in

the data.

In particular, we propose a new exchange policy for live donors, which can substantially increase

the number of pairs that can be matched through exchange while reducing inequality across blood

type. We characterize the potential gains from this policy using our new model.

Currently compatible pairs generally do not participate in exchange, as the patient of the pair

directly receives an organ from his donor. Only incompatible pairs participate in exchange. Incom-

patible pairs are either (a) blood-type incompatible (such as with an O blood-type patient and an

A blood-type donor) or (b) blood-type compatible but tissue-type incompatible (such as the recip-

rocal of the above pair, with an A blood-type patient and O blood-type donor who is tissue-type

incompatible with her patient). Because of this asymmetry, blood-type incompatible pairs are sub-

stantially more in number than blood-type compatible pairs participating in exchange. Moreover,

for a blood-type incompatible pair to benefit from exchange with the exception of pairs with A and

B blood types for the donor and the patient, a blood-type compatible pair is needed. However, the

asymmetry in participation puts blood-type incompatible pairs at a high disadvantage and as a result

not all pairs can benefit from exchange and the ones who can benefit have wait for their reciprocal

blood-type compatible pairs to arrive at the pool. On the other hand, if compatible pairs can also

participate in exchange, then the participation asymmetry will disappear, and exchange will benefit

more than 90% of the pairs (cf. Roth, Sönmez, and Ünver, 2005a; Sönmez and Ünver, 2010).

However, it is not possible to force compatible pairs to participate in exchange. We propose to

incentivize participation by linking deceased-donor queue with the exchange pool. It is a common

practice to give priority to live donors on the deceased-donor queue in case they themselves get sick

and need an organ transplant in the future. We propose giving similar incentives to the patients of

compatible donors who give up their own compatible donor’s organ in exchange for another pair’s

compatible organ. In this manner, the patient of a compatible donor receives a “guarantee” not to

wait in the deceased-donor queue by getting a “priority” in case the organ he receives in exchange

fails in the future.

Another benefit of this policy can be seen in creating unified national programs for exchange.
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One of the biggest hurdles that needed to be overcome in kidney exchange in the US is unification

of various kidney exchange programs. It is well established that running a single large program

that encompasses all programs benefits more patients than running separate programs (cf. Roth,

Sönmez, and Ünver, 2004, 2007). On the other hand, linking deceased-donor queue with the live-

donor exchange queue can only be done through the national kidney exchange program governed by

the federal contractor, United Network for Organ Sharing (UNOS), which also directs the deceased-

donor allocation program in the US. We show that in an environment which has multiple exchange

programs, if compatible pairs participate exchange, they would participate through the national

program of UNOS, which has the jurisdiction over the deceased-donor queue, and in turn, this will

attract other pairs to the national program rather than other programs. Hence, our proposed policy

has the potential to unify various exchange programs to create a large exchange platform to exploit

all benefits from exchange for the society.

1.1 Other Findings

We start our analysis by incorporating deceased-donor donation to the model, to predict the steady-

state welfare consequences for different blood-type patients. Two types of deceased donation policies

play an important role for many organs. The first commonly adopted policy is the ABO-identical

allocation where a patient can only receive a transplant from a deceased donor with the same blood

type. The second policy is the ABO-compatible allocation where a patient can receive a transplant

from any compatible blood-type of deceased-donors. Both policies are governed through a priority

allocation scheme which gives the greatest weight to waiting time for the ABO-identical allocation.

We model the priority allocation policy through a first-in-first-out queue. The ABO-compatible

allocation policy leads to a “pooling effect” by equalizing the waiting time of different blood types

whose donors donate / patient receive to / from this group of patients / donors. On the other hand,

ABO-identical allocation policy leads to separation of waiting times for different blood types with

respect to the patient / donor inflow ratios of that blood type.1

Then, we consider live donation. Some patients have paired donors who would like to donate an

organ, such as a kidney or part of the liver, to them. If they have blood- and tissue-type compatibility

they donate to their patients and otherwise they are not utilized. Possibility of live donation helps

unambiguously all patients, those with donors and without donors. We characterize the gains from

live donation in our model. Patients without live paired donors benefit as patients with compatible

1For example, for minorities where B blood type could be a dominant blood type unlike the majority of the

population, deceased donation rates do not differ from the rest of the population, yet people are more prone to need

transplant due to life-style choices are other factors. Hence, the ABO-compatible and ABO-identical allocation policies

are expected to lead to substantially different waiting times for B blood-type patients, who can receive organs from

O blood-type deceased donors besides B blood-type deceased donors.
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live paired donors drop from competition for deceased donors. Among different blood types, O

blood-type deceased-donor queue benefits the least while AB queue benefits the most. O blood-type

patients with a live donor have a lower chance to have a compatible live donor with respect to other

types, as they can only receive from O blood-type donors. AB blood-type patients can receive from

all types, and have the highest rate of compatible donors. On the other hand, A blood-type patients

are more better off than B. As A is a more common blood type in the population, and hence for the

paired donors of the patients with respect to B, and hence,a higher fraction of A blood-type patients

benefit from live donation with respect to B. We quantify the amount of change in waiting time for

a deceased donor in queues for different blood types when compatible live donation is feasible.

Next, we consider live-donor exchanges among incompatible pairs, for organs such as kidneys

and livers. We characterize the welfare consequences of live-donor exchange on different blood type

patients. A live-donor exchange involves the swap of paired live-donor organs of two pairs when the

donors are incompatible with their own patients but compatible with the patient of the other pair.

This causes patients with blood-type compatible donors to be matched immediately either through

direct donation (if compatible) or through exchange (if compatible). On the other hand the patients

who have blood-type incompatible donors need to wait in the pool, and conditional on survival, they

get matched either through exchange with a live donor or with a deceased donor depending on the

population characteristics.

2 A Dynamic Model of Transplant Patients

We consider a comprehensive dynamic organ transplantation model (for organs such as heart, kidney,

liver, and pancreas) to which the deceased-donor queue, live donation for kidneys and livers, and

live-donor kidney and liver exchange can be incorporated. We consider a continuum flow model in

analysis where the number of patients are in Lebesgue measures at a steady state.

Consider patients who need a particular organ transplant. Each patient is represented by his

blood type X ∈ T = {A,B,AB,O}. Suppose pX refers to the probability of having the probability

of X blood type in the population distribution. We assume that there is an inflow πX of blood-type

X people getting sick per unit time. Suppose that in the population of new patients, the expected life

time while living with the disease is distributed with a strictly increasing differentiable distribution

function F (·)2 on the interval [0, T ].3 Thus, among the inflow of πX measure of blood-type X blood-

type patients at a given time, the measure of patients who are alive after t years on is given by

2I.e., the probability density function f(·) is well defined and positive in (0, T ).
3This expectancy is different for different organs due to disease progression and techniques that can be used to

substitute for the deficiency in the body because of the failing organ. For example, kidney patients, who can live on

dialysis, have in general longer survival times.
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πX [1− F (t)].4

In Table 1, survival rates, 1− F (t), for kidneys are listed. 5

Time

6 mo. 1 yr. 2 yr. 3 yr. 4 yr. 5 yr.

On dialysis (for kidneys) 84% 75% 61% 50% 42% 34%

Table 1: Survival rates (1− F (t)) for kidney failures in the US.

At the steady state, when transplantation option is not present, the total mass of blood-type X

blood-type patients is
∫ T

0
πX [1− F (t)]dt.6 (See Figure 1.)

3 Organ Transplantation and Deceased-Donor Queue

The best remedy for organ failure is transplantation. A donor should be both blood- and tissue-type

compatible with a patient, before her organ(s) can be transplanted.7 O blood-type donors are blood-

type compatible with all blood-type patients. A blood-type donors are blood-type compatible with

A and AB blood-type patients and B blood-type donors are blood-type compatible with B and AB

blood-type patients. On the other hand, AB blood-type donors are only blood-type compatible with

AB blood-type patients. Blood-type compatibility is formally defined through a partial order

▷ over blood types, such that X ▷ Y means than X blood-type donors are blood-type compatible

with Y blood-type patients (see Figure 2). Blood type distribution among the US ethnic groups are

reported in Table 2.8 In general O blood type is the most common one, while AB is the rarest; A is

4Hence, πXdt is the 2-dimensional Lebesgue measure of patients who enter in a small time interval dt. By a slight

abuse of terminology, throughout the paper we will refer to 1-dimensional Lebesgue measures of agent sets, which are

in general inflow intensities such as πX , by measure. On the other hand 2-dimensional Lebesgue measures of agents

sets such as πXdt will be referred to as mass.
5The kidney data includes 2005 estimates from National Kidney Organization 2012 Annual Report retrieved from

http://www.usrds.org/2012/pdf/v2 ch5 12.pdf on 02/25/2102 while on dialysis.
6Although we assume that inflow of patients is constant over time, we could easily make it a function of time as

well. For example, population growth is a reason for increase of inflow. Increase in longevity is another reason, which

not only affects πX but also F , as older people have a higher tendency to need organ transplantation. These can be

incorporated in our model easily. In that case a steady state does not exist. However, we can carry all of our analysis

in this paper and draw similar results in that model as a function of time. For simplicity and transparency of our

analysis, we will use a model with constant inflows.
7Tissue-type incompatibility occurs for some organs such as kidneys, while it is not an issue for some other organs

such as livers. Blood-type incompatibility is an issue for all organs.
8Retrieved from http://bloodbook.com on 03/18/2013. US general population is constructed using the ethnic

proportions.
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Figure 1: Steady-state X blood-type patient distribution over waiting time when organ transplan-

tation is not possible. The shaded area is the mass of patients who are alive.

observed more commonly than B, while their rates are substantially different across different ethic

groups: B has a big presence among Asian- and African-American groups while this is not the case

for the white Americans. The world blood-type distribution more or less are similar geographically

according to the origins of the US ethnic groups.

Once a donor is deemed compatible with a patient, she has to be also tissue-type compatible with

the patient. Tissue-type compatibility requires that the patient’s body does not form antibodies

against a donor’s DNA. Throughout the paper we assume that given a patient and a blood-type

compatible donor, tissue rejection occurs with a probability θ < 1.9. For some organs, such as

livers, tissue rejection is not an important problem. In those cases, we can assume θ ≈ 0. On the the

other hand, for other organs, such as kidneys, tissue rejection rate is significant, and hence, θ > 0.

A common source of donation across organs is deceased donors. The deceased-donor queue is

governed by a central entity. For example in the US, for all organ types, United Network for Organ

9In real life, tissue rejection probability may be different across the patient population. In those cases, we can

instead assume, the rejection probability is a random variable θ̂ with a well-defined mean θ. As long as the probability

density function of θ does not include in its support, full rejection probability 1, our analysis in this paper goes through

using its mean θ. It is a reasonable assumption to assume that no patient ever rejects all blood-type compatible donors,

as at least he will always be tissue-type compatible with his perfect HLA-matched donor, i.e., a donor who has the

same 6 tissue-typing proteins on her DNA as him
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Figure 2: Blood-type compatibility partial order ▷

Blood Types Pop. %

O A B AB — (1992)

African American 49% 27% 20% 4% 12.4%

Asian American 40% 28% 27% 5% 3.3%

Native American 79% 16% 4% 1% 0.8%

White American 45% 40% 11% 4% 83.4%

US all 45.6 % 37.8% 12.6% 4%

Table 2: Blood Type Distribution in the US.

Sharing (UNOS) is the federal contractor that is in charge of the queue. We assume throughout the

paper that any patient enrolled in the queue remains in the queue until he receives a transplant or

he dies.

We denote the inflow of the X blood-type deceased donors, as δX < πX per unit time. Across

the blood types, the ratio δX/πX need not be constant. For example, it is well known that among

minority communities, organ failure is more prominent than the white American population while

deceased donation rates are not that significantly different.As blood-type distribution of minorities are

different from the white American population (especially B blood type is observed at a much higher

frequency among Asian- and African-Americans, see Table 2), the ratio δX/πX is not constant across

blood types for the U.S. population: While a very high percentage of the donors, live or deceased,

are white Americans, the patient rate of white Americans is much lower than their donation rate

for kidneys and is only higher for lungs. On the other hand, for kidneys and hearts, patient rate

of African-Americans is higher than their donation rates; while for kidneys and livers, patient rate
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of Asian-Americans are higher from their donation rates. 10 Although these rates are distorted by

many other factors such as live donation possibilities, we can conclude that especially for kidneys

the ratio δB/πB is lower than other blood types.

When a transplanted organ, i.e., graft, fails, the recipient reenters the deceased-donor queue as

a new patient. Repeat patients survival function on the deceased-donor queue is “similar to” that

of primary entrants (for example, that is the case for kidneys), so we assume 1 − F is also their

survival function while waiting in the deceased-donor queue. We assume that ϕd is the steady-state

fraction of the previous recipients whose grafts fail and reenter the deceased queue per new deceased-

donor transplant conducted. 11,12 Thus, if at steady state a ι measure of X blood-type patients

receive a deceased-donor organ per unit time, then a ϕdι measure of previous recipients will reenter

the queue per unit time. In 2005, 13.5%, 7.9%, 4.1%, 5.5% of all new kidney, liver, heart, and lung

patients, respectively, were repeat entrants (Magee et al., 2007). In general, allocation policies do

not differentiate primary transplant patients and repeat transplant patients.

3.1 The Deceased-Donor Queue Matching Protocols

The deceased-donor organs are allocated through the points system of UNOS, which is a priority

mechanism. When a deceased donor arrives, the point total for each compatible patient for the donor

is determined. The organ is offered to the patient with the highest point total. If it is rejected by the

patient or his doctor for any reason, then the organ is offered to the next patient, so on. In general,

different point schemes are used for different organs. Deceased donor allocation policies usually differ

across organs and across geographic transplant regions, although usually a centralized mechanism

is used in allocation. For example for kidneys, strict ABO-identical allocation policies are applied.

That is, kidneys of blood-type X are only offered to blood-type X blood-type patients.13 On the

10From the US Department of Health and Human Services - The Office of Minority Health web page for organ

donation https://minorityhealth.hhs.gov/templates/browse.aspx?lvl=3&lvlid=12 retrieved on 02/25/2013.
11 Fraction ϕd is formally calculated as follows: Suppose a measure ι of patients receive transplants per unit time

at steady state. If the patient’s life with a healthy graft ends, two things could be the reason: either the patient dies,

or patient is alive but his graft fails. Of the patients leaving the status of living with a healthy graft, let h1(t) be

the fraction that die after t years from the transplant and h2(t) be the fraction whose grafts fail after t years from

the transplant. Thus, a random patient’s expected lifetime with a healthy graft is distributed with a differentiable

distribution function H(·) in some interval [0, S] such that dH(t)
dt ≡ h(t) ≡ h1(t) + h2(t) where t refers to years passed

since the transplant. We assume that this distribution is independent of how long the patient waited initially in the

queue to receive his previous transplant. Then the inflow of patients reentering the deceased-donor queue at each time

is given by
∫ S

0
ιh2(t)dt = ι

∫ S

0
h2(t)dt. We set ϕd =

∫ S

0
h2(t)d(t). Observe that ϕd <

∫ S

0
h(t)d(t) = 1.

12For simplicity, we assume that it is constant, although it may possibly change as the age distribution of the

patients receiving transplants changes in the deceased-donor queue, i.e., it may be a function of the waiting time.
13In the highly unlikely event that no X blood-type patient is available, then the organ is offered to a compatible

patient.
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other hand, livers are offered to ABO-compatible patients under bylaws of some regions. We inspect

the welfare and distributional consequences of these two policies on different blood-type patients

separately.

Given a fixed blood-type allocation policy, waiting time of a patient is often the most significant

contributor to the points of a patient in deceased-donor allocation for many organs such as kidney,

pancreas, or heart. Therefore, we will model deceased-donor allocation using first-in-first-out

(FIFO from now on) queues for both the ABO-identical and ABO-compatible allocation schemes.14

We analyze these two FIFO matching protocols. We state the following lemma, which will help

us model the steady state of the deceased-donor queue.15

Lemma 1 (FIFO Matching Protocol) Consider the FIFO matching protocol. Suppose that there

is an ordered ω measure of X blood-type patients available in the queue and a σ ≤ ω measure of blood-

type compatible donors arrive. Then

• if σ = ω, then all donors, possibly except a finite (and thus of 0 measure) of them, are almost

surely matched; and

• if σ < ω, then all donors are almost surely matched.

3.2 Steady State of The Deceased-Donor Queue

We are ready to characterize the steady state of the deceased-donor queue under the two FIFO

matching protocols.

3.2.1 ABO-Identical Deceased Donation

Consider any blood type X. In the steady state, as δX < πX , there will always be a positive mass of

X blood-type patients available in the deceased-donor queue. Moreover, as FIFO protocol is used,

the organs of the δX measure will be transplanted to the longest waiting X blood-type patients who

survived in the queue. Thus, by Lemma 1, these donors will be almost surely matched to the longest

waiting cohort of δX measure of patients. We make the following observation regarding the reentries

to the queue (see Figure 3).

14UNOS is preparing to switch to a new deceased-donor kidney allocation scheme that will use a quality-based

allocation scheme for 20% of all allocation, while 80% of all allocation will continue to be done through its current

FIFO type policy.
15This is in spirit similar to the Erdös and Rényi (1960) random graph convergence result. However, in substance

it is different, as we are not using the maximal matching policy as in Erdös and Rényi (1960) but rather the FIFO

matching policy.
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-
New patients πX

Deceased-Donor Queue -Patients receive

deceased-donor organs δX-

Reentering patients ϕdδX

6

Dying patients

Figure 3: Inflow to and outflow from theX blood-type deceased-donor queue under the ABO-identical

deceased donation policy at steady state.

Observation 1 Under ABO-identical deceased-donor allocation policy, as a δX measure of X blood-

type patients receive transplants per unit time, a ϕdδX measure of previous recipients will reenter the

deceased-donor queue per unit time due to graft failure.

Let the receiving cohort have arrived tX years before the current point in time. As there is a

[πX + ϕdδX ][1 − F (tX)] measure of patients in this cohort including reentries and new arrivals, we

should have

[πX + ϕdδX ][1− F (tX)] = δX .

Hence, at steady state, the time spent on the X blood-type queue by the receiving cohort can be

found through tX = F−1(1− δX
πX+ϕdδX

) < T = F−1(1). This is also the waiting time for X blood-type

patients conditional on survival. Based on this analysis, we state the following characterization of

the deceased-donor queue at steady state: (See also Figure 4.)

Theorem 1 (ABO-Identical Deceased Donation) Under the ABO-identical FIFO deceased-donor

allocation policy, at steady state, the (expected) waiting time for X blood-type patients in the deceased-

donor queue is16

tiX = F−1
(
1− δX

πX+ϕdδX

)
, (1)

and the mass of the patients in the deceased-donor queue is∫ tiX

0

[πX + ϕdδX ][1− F (t)]dt.

Proof. It follows from the analysis before the theorem.

16The superscript in deceased donation waiting time tiX or tcX refers to the type of deceased donation policy we

explore, either ABO-identical or ABO-compatible, respectively.
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Figure 4: X blood-type deceased-donor queue under the ABO-identical decease donation

policy at steady state: Incoming deceased donors, of a δX measure, are matched with a δX measure

of the longest waiting patients at each time. New patients, who arrive at an inflow rate of πX , and

reentrants (whose previously received organs failed), who arrive with an inflow rate of ϕdδX , join the

queue. Waiting time conditional on survival decreases from T to tiX = F−1(1 − δX
πX+ϕdδX

). Darker

shaded region refers to the mass of reentrants in the queue.
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3.2.2 ABO-Compatible Deceased Donation

The following lemmata relate the role of blood-type compatibility relationship to the waiting times

of different blood types under the ABO-compatible deceased-donor allocation policy.

Lemma 2 Let X ̸= Y be two blood types such that X ▷ Y . Then under the ABO-compatible FIFO

deceased-donor allocation, waiting times of X and Y blood-type patients at steady state satisfy tcY ≤
tcX .

We make the following formal definition of pooled blood types:

Definition 1 If blood types in some S ⊆ T donate organs only to the blood types in S and they

receive organs only from blood types in S at steady state, and there is no proper subset of S with this

property, then we say that blood types in S are pooled.

For example if O blood-type organs are transplanted to A and B blood-type patients besides O,

and A and B blood-type organs are only transplanted to A and B blood-type patients, respectively,

then {O,A,B} is a pooled set. On the other hand neither {O,A} is pooled (as O blood-type organs

are also transplanted to B blood-type pairs) or {A,B} is pooled (as both A and B blood-type

patients also receive O blood-type organs). The whole blood type set T = {O,A,B,AB} is not

pooled, either, as its proper subset {O,A,B} is pooled. Lemma 3 characterizes the waiting times of

pooled blood types:

Lemma 3 For two distinct blood types X and Y , if Y blood-type patients receive X blood-type organs

at steady state under the ABO-compatible FIFO deceased-donor allocation policy then tcX = tcY .

Moreover, if blood types in S ⊆ T are pooled together then the waiting time of each X ∈ S is

given by

tcX = tS ≡ F−1
(
1−

∑
X∈S δX∑

X∈S(πX+ϕdδX)

)
(2)

Observe that tiX = t{X} as defined in Equation 2 for all blood types X.

Using Lemmata 2 and 3 together with the FIFO feature of the deceased-donor queue policy and

the partial order structure of the blood-type compatibility relationship, we can determine which

types will be pooled together under the ABO-compatible allocation policy:

Theorem 2 (ABO-Compatible Deceased Donation) At steady state, suppose Y blood type has

the longest ABO-identical allocation waiting time and X blood type has the shortest ABO-identical

allocation time among all blood types W with W ▷ Y . Suppose further that tiX < tiY . Then X

and Y blood-type patients will be pooled together (possibly with other types) under ABO-compatible

FIFO allocation. Moreover, we can treat X and Y together as a composite blood type {X, Y } with

deceased-donor inflow δ{X,Y } = δX + δY and patient inflow π{X,Y } = πX + πY such that W ▷ {X,Y }
for all blood types W with W ▷ Y , and {X,Y } ▷ Z for all blood types Z with X ▷ Z.
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Theorem 2 can be iteratively used to determine the ABO-compatible deceased-donor waiting

times for all blood types with the simple mathematical fact that for all a, b, c, d > 0 whenever a
b
< c

d

then a
b
< a+c

b+d
< c

d
:

Pooling procedure for blood types for ABO-compatible deceased donation:

1. Find all waiting times tX as defined in Equation 2 for all X ∈ T .17

2. Suppose X has the longest tW among allW ∈ T . Let Y have the shortest tW among allW ∈ T
with W ▷X.

(a) If Y = X then X is not pooled with any other blood type and tcX = tX . Repeat Step 1

for the remaining blood types T \ {X}.

(b) If Y ̸= X then X is pooled with Y (possibly together with other types). Replace the

two blood types X and Y with the composite blood type S = X ∪ Y and update the

blood-type compatibility partial order ▷ as defined in Theorem 2. Repeat Step 1 for the

new blood type set T :=
(
T \ {X,Y }

)
∪ {S}.

4 Live Donation

Organs such as kidney and liver have live donation possibilities. Especially live kidney donation is

very common and PP% of all donation has been by live donors in 2011.18

We will refer to a live donor as a paired donor. We will assume that each patient has at most one

paired donor. We assume λ fraction of incoming patients have a paired donor (such as a spouse). We

also assume that the blood types of the patient and donor are independent and uncorrelated.19 The

patient and his paired donor are represented as a pair. The blood types of the pair, X−Y ∈ T ×T ,

X being the patient’s and Y being the donor’s blood type, determines the type of the pair.

If the paired-donor of a patient is both blood- and tissue-type compatible then we refer to the

pair as a compatible pair, and otherwise as an incompatible pair. Recall that by assumption

17With a slight abuse of notation, even if X is not a set, it also refers to the set {X}.
18Each human has two kidneys and can have a perfectly healthy life with a single kidney. Also the risk associated

with live donation surgery is very small. There is PP% chance that something will go wrong for the donor, and

PP% chance that the donor will die complications due to surgery. On the other hand, live-donor liver donation is

done through donation of part of a liver, and it is much riskier (there is PP% chance that he donor will die due to

complications associated with donation). The ratio of live donation is much smaller, PP% for liver.
19In reality, if the paired donor is a blood relative of the patient, the blood types of the patient and donor are

correlated through degree of relation and genetic laws. Hence, potentially figuring out the exact correlation can be

complicated. For our purposes, we simply assume the blood types of the patient and his paired donor are uncorrelated

to make our arguments.
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there is a θ probability chance that a blood-type compatible donor being tissue-type incompatible

with a patient. Given a patient with living donor, let pY be the probability of the donor being Y

blood type.

Transplanted organs from live donors can also fail as in the case of transplants from deceased

donors. As in the case of deceased donors, we assume that reentering patients have the same survival

function 1−F as new patients. However, it is well known that the live-donor grafts survive longer than

deceased-donor grafts. We assume that ϕl ≤ ϕd is the fraction of live-donation recipients reentering

the deceased-donor queue per each live-donor organ transplant at steady state. We further assume

that the reentrants (who received a organ previously from either a deceased donor or a live donor)

do not have a paired live donor upon reentry.

Consistent with the donation rates throughout the world, we assume in the rest of the paper the

following:

Assumption 1 There is a shortage of deceased donor organs even in the absence of patients with

living donors, i.e., (1− λ)πX + ϕdδX ≥ δX for all X ∈ T .

We can calculate the inflow measures of different compatible and incompatible pair types:

• AnO blood-type patient needs anO blood-type donor. Thus, (1−θ)pOλπO is the inflow measure

of O blood-type patients with a compatible live donor. On the other hand, θpOλπO is the

measure of incompatible O−O pairs, πOλpY is the measure of O−Y pairs with Y ∈ {A,B,AB},
who are all incompatible.

• AnX ∈ {A,B} blood-type patient can get an organ from O orX blood-type donor. Thus, given

Y ∈ {X,O}, (1 − θ)pY λπX is the inflow measure of X blood-type patients with a compatible

Y blood-type live donor; on the other hand, θpY λπX is the measure of incompatible X − Y

pairs. We have pY λπX as the inflow measure of X − Y pairs with Y ∈ {A,B,AB} \ {X}. The
latter are incompatible pairs.

• An AB blood-type patient can get an organ from all blood-type donors. Thus, (1− θ)pY λπAB

is the inflow measure of compatible AB − Y pairs, and θpY λπAB is the inflow measure of

incompatible AB − Y pairs for all Y ∈ T = {O,A,B,AB}.

For a patient with a paired donor and of blood type X, let plX denote the probability that the donor

is compatible with the patient. Thus, plXλπX is the inflow measure of X blood-type patients with

compatible live donors. These patients receive organs from their paired donors upon entry and they

do not wait in the deceased-donor queue. We make the following observation regarding the allocation

and reentry rates of deceased- and live-donor organ recipients:

Observation 2 At steady state,
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• a plXλπX measure of X blood-type patients receive live donation per unit time without waiting in

the deceased-donor queue, and hence, a ϕlplXλπX measure of previous live donation recipients

reenter the deceased-donor queue per unit time; and

• a δX measure of X blood-type patients receive deceased-donor organs per unit time under ABO-

identical FIFO allocation policy, and hence, a ϕdδXπX measure of previous deceased donation

recipients reenter the queue per unit time.

Hence, when the the total inflow measure of patients entering or reentering to the X blood-type

deceased-donor queue under the ABO-identical FIFO allocation policy is given as

πL,i
X = πX︸︷︷︸

new patients

+ ϕdδX︸ ︷︷ ︸
reentry / deceased

+ ϕlplXλπX︸ ︷︷ ︸
reentry / live

− plXλπX︸ ︷︷ ︸
compatible pairs

. (3)

Above, “reentry / deceased” and “reentry / live” refer to the reentering previous deceased- and live-

donor organ recipients, respectively. Equation 3 and Observation 2 imply that the ABO-identical

allocation waiting time conditional on survival in the X blood-type deceased-donor queue is given

by

tL,iX = F−1

(
1− δX

πL,i
X

)
(4)

conditional on survival (see Figure 5).

The analysis in Theorem 2 can be used to find which blood types are pooled together under

ABO-compatible deceased-donor allocation policy by using πX +ϕlplXλπX −plXλπX instead of πX for

all X. This analysis also helps us to pin down the waiting times for a deceased-donor organ under

ABO-compatible allocation. In particular, we will make use of the following lemma:

Lemma 4 Fix a blood type X. ABO-compatible deceased-donor allocation waiting time for every

blood type Y , tcY , is continuous and weakly increasing in πX and continuous and weakly decreasing

in δX ; moreover, for tcX is strictly increasing in πX and strictly decreasing in δX .

We are ready to make a more detailed analysis of how different blood types are affected by the

availability of live donation. Due to the partial-order structure of blood-type compatibility across

blood types, not all blood types will be affected equally when live donation is possible. For example,

O blood type patients are at a disadvantage with respect to other types in finding a compatible

paired donor. In general A blood type is more prominent in the population than B. Therefore, at

random A blood-type patients will have a higher chance of finding a compatible paired donor then B

types, given that they can all receive from O blood-type donors as well as their own types. Finally,

AB blood-type patients have the highest chance of finding a compatible paired donor.
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Figure 5: X blood-type deceased-donor queue under the ABO-identical decease donation

policy and live donation at steady state: Inflow πX of patients increases by the inflow of reen-

tering previous deceased- and live-donor recipients, ϕdδX and ϕlplXλπX , respectively; and decreases

by plXλπX , the outflow of patients who immediately receive an organ from their compatible paired

donors. As a result waiting time for a deceased donor decreases from tiX = F−1

(
1 − δX

πX+ϕdδX

)
to

tL,iX = F−1

(
1 − δX

πX+ϕdδX+ϕlplXλπX−plXλπX

)
= F−1

(
1 − δX

πL,i
X

)
conditional on survival for the ABO-

identical deceased-donor allocation policy. Darker shaded region refers to the mass of reentering

previous live-donor organ recipients in the queue.
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However, depending on the exact shape of the survival function 1−F and the deceased donor to

new patient inflow rates across blood types δX/πX , O blood type does not necessarily experience the

lowest decrease in the waiting time and AB blood type does not necessarily experience the greatest

improvement.

On the other hand, for the benchmark case, where δX/πX , the deceased donor to new patient

inflow ratio, is the same for each blood type, we can make unambiguous predictions regarding the

magnitude of the effects of live donation on deceased donor waiting times under both ABO-identical

and ABO-compatible allocation policies. The following theorem states this result. 20

Theorem 3 (Direct Live Donation and Deceased Donation) Live donation will unambiguously

decrease the steady state ABO-identical and ABO-compatible deceased-donor allocation waiting times

for all blood types.

Consider the benchmark case that the ratio δX/πX is constant across blood types X. Then under

live donation, no blood types pool under ABO-compatible deceased-donor allocation; and furthermore

regardless of the deceased-donor allocation protocol, ABO-identical or ABO-compatible,

• O blood-type patients have the shortest waiting time;

• AB blood-type patients have the longest waiting time, and

• provided that pA > pB, B blood-type patients have a longer waiting time than A blood-type

patients.

5 Live-Donor Exchange

In this section we analyze the effect of having a live-donor exchange program on waiting times of

different patient groups for a donor organ. In practice, the donor of a compatible pair usually directly

donates to the patient and the patient leaves the pool before he enters the deceased-donor queue. For

the incompatible pairs, we assume that a live-donor kidney exchange program operates in parallel

time to the deceased-donor queue. Incompatible pairs are listed in the exchange program. While

waiting for a deceased-donor organ in the queue, they also wait for a paired-exchange to be conducted

with another incompatible pair in the exchange program.

Formally, a two-way exchange matches two pairs where the patient of the first pair is compatible

with the second pair and the patient of the second pair is compatible with the donor of the first pair.

20Although these conclusions seem to have been reached with the help of our assumption that blood types of patients

are uncorrelated with their paired donors, a version of this result will also hold true even if there is positive correlation

in a pair’s blood types; however the magnitude of the difference in eventual waiting times will not be as extreme.
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We refer to such pairs as mutually compatible pairs.21 We refer to the queue of the pairs in the

exchange program as the exchange pool. An exchange matching is a set of exchanges between

mutually compatible pairs such that each pair is matched in at most one exchange.

There can be different policies determining which types of mutually compatible pairs are matched

with each other, as a pair type can be mutually compatible with several other types. We will assume

that the donor exchange is conducted in an optimal manner by matching the most possible measure

of pairs at each point in time. However while selecting among a particular pair from a given type

X − Y , organ exchange is also operated in a FIFO basis.

Not all incompatible pairs have similar features in terms of their abundance. In reality, for

example although an incompatible A−O blood-type patient-donor pair is harder to encounter than

an O − A pair, as A − O pairs are incompatible only when there is tissue rejection between the A

blood-type patient and O blood-type donor, while O − A pairs are always incompatible.

Based on this observation, we make the following assumption: For a given patient - live donor

pair type X − Y , we refer to type Y −X as its reciprocal type.

Assumption 2 We assume that any pair type X − Y such that X ̸= Y and X ▷ Y , its inflow rate

to the exchange pool is not less than its reciprocal type Y −X’s inflow rate to the exchange pool, i.e.

θpXπY ≤ pY πX .
22

Another assumption we make is about the prevalence of A−B and B−A type pairs. This assumption

is made out of notational convenience, and symmetric version of the results would hold if we did not

make this assumption, without loss of generality.

Assumption 3 We assume that pAπB ≤ pBπA, i.e. A−B type pairs do not inflow any slower than

B − A type pairs to the exchange pool.23

To give an idea how easily this assumption is satisfied, recall that for kidneys, around θ = 0.1 and

for livers, θ = 0. For all organs that can be used in exchange in real life, this inequality holds with

a large slack for all populations.

21We can also think of exchanges that can match more than two pairs, such as three-way, four-way etc. For simplicity

we will focus on two-way exchanges in our analysis, however, our results can easily be extended to cover three-way and

four-way exchanges as in Roth, Sönmez, and Ünver (2007). Any sizes of exchanges greater than four will not change

the results as reported in this paper.
22A simple requirement that would make the second condition of the assumption hold is that donor and patient

inflow rates across blood types have a similar ratio i.e., πX/πY ≈ pX/pY for all blood types X,Y . This would be

ensured if live donation and getting sick rates are not too different for different blood types.
23As a separate note, for kidneys Terasaki, Gjertson, and Cecka (1998) report that A − B pairs make up of 5% of

all pairs while B −A pairs make up of 3%. However, our assumption has nothing to do with this observation and all

our results would symmetrically hold if B −A’s were more than A−B’s.
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Through this assumption, all incompatible X − Y pairs with Y ▷X can be matched immediately

with Y −X pairs, as Y −X pairs will always be more in mass than X−Y pairs in the exchange pool.

Observe that the probability of mutual compatibility between an X−Y pair and and an Y −X pair

is (1− θ)2 > 0. We state a slightly different version of Lemma 1 proving this case:

Lemma 5 (Live-Donor Exchange Matching Protocol) Consider an ω measure of pairs de-

noted by the set M and a σ ≤ ω measure of pairs denoted by set N (possibly intersecting with

M), that are mutually blood-type compatible with the pairs in M . Suppose these sets are formed

randomly using the governing population distributions. Then, almost surely there exists an exchange

matching that matches all pairs in N with pairs in M .

Proof. It follows from Erdös and Rényi (1960) random graph convergence theorem.

Using the terminology in Ünver (2010), we classify the pairs into several categories, based on

their desirability in exchange.

Overdemanded pair types are the ones with a blood type donor which can donate to her

patient’s blood type yet they are not of the same blood type. There are A−O,B−O,AB−A,AB−
B,AB−O pair types. Underdemanded pair types are those with a blood type donor that cannot

feasibly donate to her patient’s blood type, excluding types A-B and B-A. That is, underdemanded

types are reciprocals of overdemanded types, and they include O−A,B−O,A−AB,B−AB,O−AB.

Reciprocally demanded pair types are A − B and B − A, as they can be matched with each

other in a donor exchange, when tissue incompatibility does not exist. Finally Self-demanded pair

types are the ones with the same blood-type donor and patient: O −O,A− A,B −B,AB − AB.

The names associated with these classes will be more meaningful after our analysis. The following

lemma shows the role of overdemanded types in exchange (similar results were also reported in Roth,

Sönmez, and Ünver, 2007; Ünver, 2010):

Lemma 6 (Live-Donor Exchange Blood-Type Feasibility) An underdemanded type pair can

only be matched with an overdemanded type pair in an exchange, and overdemanded types can be

used to match other overdemanded, underdemanded, reciprocally demanded, or self-demanded type

pairs. Additionally, reciprocally demanded type pairs can only be used to match the other reciprocally

demanded type pairs and self-demanded type pairs can only be used to match their own type pairs. In

particular:

• An underdemanded O−A (O−B, respectively) type pair can only be matched in an exchange

with a pair from overdemanded types A−O (B−O, respectively) or AB−O. An underdemanded

A−AB (B−AB, respectively) type pair can only be matched in an exchange with a pair from

overdemanded types AB −A (AB −B, respectively) or AB −O. An underdemanded O −AB

type pair can only be matched in an exchange with an overdemanded AB −O type pair.
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• A reciprocally demanded A − B (B − A, respectively) type pair can only be matched in an

exchange with a pair from the other reciprocally demanded B−A (A−B, respectively) or from

overdemanded types AB − A (AB −B, respectively) or AB −O.

• A self-demanded X − X type pair can be matched in an exchange with a pair from the same

type. Additionally, an O − O type pair can only be matched with a pair from overdemanded

types A−O,B−O, or AB−O; an A−A (B−B, respectively) type pair can only be matched

with a pair from overdemanded types AB − A (AB − B, respectively) and AB − O; and an

AB−AB type pair can only be matched with a pair from overdemanded types AB−A,AB−B,

or AB −O.

5.1 ABO-Identical Exchange & Deceased Donation

Next we model how the live-donor exchange pool and deceased-donor queue would evolve under live-

donor donation and optimal exchange technologies. In this subsection we focus on ABO-identical

decease donation. Live-donor exchange is mostly prevalent for kidneys and kidney deceased-donation

is mostly ABO-identical. Recall that only incompatible patient - live-donor pairs participate in

exchange. It turns out that we can make two-way exchange in an ABO-identical manner as well

by matching X − Y type pairs with Y −X type pairs as they become available, and this would be

optimal in the sense that the measure of transplants at each moment will be maximized. We will

discuss ABO-compatible policies for deceased donation and exchange in the next subsection, which

require substantially different tools in analysis.24

Theorem 4 (ABO-identical exchange is optimal ) A policy that dictates matching the longest-

waiting pairs of a type with their longest-waiting reciprocal type pairs at each point in time is optimal

in the sense that it matches the maximum measure of pairs possible at each point in time. Moreover,

this policy maximizes the mass of pairs that can be matched within any close time interval, and in

particular, matches a larger mass of pairs than waiting the pairs to arrive and running the exchange

once at the end of the time interval.

Thus, it is straightforward to calculate the total flow of patients that receive live-donor organs

through exchange for each blood type under the optimal policy proposed in Theorem 4. We denote

24With the availability of live donor exchange, we can separate patients into different groups based on the existence

or non-existence of a live donor and if she exists, compatibility or incompatibility of the live donor. We can measure

the effect of each policy on each of these groups. There are 29 patient groups based on this criterion. As compatible

and incompatible pairs of blood-type compatible pair types receive organs at time 0 under the optimal live-donor

exchange policy, we do not distinguish among them. Therefore, we denote each patient group by the pair type X − Y

if it includes pairs and only by the blood type X of the patient, if it refers to patients without live donors (as subscript

of the relevant welfare variables such as time of waiting for a transplant.
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the measure of pairs matched X blood type patients at each point in time under the optimal policy

that are patients of

• overdemanded type pairs as eodX ,

• self-demanded type pairs as esdX ,

• reciprocally demanded type pairs as erdX , and

• underdemanded type pairs as eudX .

We denote the overall measure of X blood-type patients matched through the optimal exchange

policy at each point in time as eX :

eO = θpOλπO︸ ︷︷ ︸
esdO : O−O pairs

+ θpOλ(πA + πB + πAB)︸ ︷︷ ︸
eudO : O−A, O−B, O−AB pairs

,

eA = θpAλπA︸ ︷︷ ︸
esdA : A−A pairs

+ θpOλπA︸ ︷︷ ︸
eodA : A−O pairs

+ pAλπB︸ ︷︷ ︸
erdA : A−B pairs

+ θpAλπAB︸ ︷︷ ︸
eudA : A−AB pairs

,

eB = θpBλπB︸ ︷︷ ︸
esdB : B−B pairs

+ θpOλπB︸ ︷︷ ︸
eodB : B−O pairs

+ pAλπB︸ ︷︷ ︸
erdB : B−A pairs

+ θpBλπAB︸ ︷︷ ︸
eudA : B−AB pairs

, and (5)

eAB = θpABλπAB︸ ︷︷ ︸
esdAB : AB−AB pairs

+ θ(pO + pA + pB)λπAB︸ ︷︷ ︸
eodAB : AB−O, AB−A, AB−B pairs

.

We use these inflow measures to analyze how the availability of live-donor exchange affects the

waiting time in the deceased-donor queue. As more patients receive live donation in this new regime

with respect to the case where only direct live donation was feasible, the waiting times of patients

improve across all blood types. Some of these pairs will be matched immediately when they enter the

pool: all overdemanded and self-demanded type pairs, and the scarcer reciprocal type B − A pairs;

and some are matched after waiting in the pool: underdemanded type pairs and the more abundant

reciprocal type A− B pairs. The latter pes of pairs are not as fortunate as overdemanded and self-

demanded type pairs. Not all of them will be matched, either through exchange or deceased-donor

donation. They will wait in the exchange pool and the deceased-donor queue simultaneously. In this

case, they will either

• be “pooled” with patients of the same blood type in deceased-donor queue, and some of them

will receive deceased-donor organs while the remaining ones (that are alive) will receive organs

through exchange at the same time as their cohort of patients without live donors receive

deceased-donor organs; or

• wait shorter than their cohort of patients without any live donors and receive live-donor organs

through exchange before their cohort in the deceased-donor queue receive deceased donation.
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First, we focus on the ABO-identical deceased-donor allocation policy. In order to determine the

waiting times. For each blood type X, let

πe
X−Y =

{
θpY λπX if Y ▷ X

pY λπX otherwise
(6)

refer to the inflow measure of new X − Y pairs to the exchange pool and

πd
X = (1− λ)πX︸ ︷︷ ︸

new w/o live donors

+ ϕdδX︸ ︷︷ ︸
reentry / deceased

+ ϕlplXλπX︸ ︷︷ ︸
reentry / live

+ ϕleX︸︷︷︸
reentry / exchange

(7)

be the inflow measure of reentering and new X blood-type patients without live donors. We calculate

the following ratios for each blood type X:

1. The deceased-donor inflow to the inflow of reentering and new patients without live donors

rdX =
δX
πd
X

=
δX

(1− λ)πX + ϕdδX + ϕlplXλπX + ϕleX
.

2. For each underdemanded type X − Y (i.e., Y ̸= X and Y ▷ X), inflow of incompatible Y −X

to inflow of X − Y pairs:

rX−Y =
πe
Y−X

πe
X−Y

=
θpXλπY
pY λπX

.

3. If there is reciprocal X − Y type then inflow of Y −X to X − Y ratio,

rX−Y =
πe
Y−X

πe
X−Y

=
pXλπY
pY λπX

.

The ratio rdX = δX
πd
X
is relevant if we wanted to allocate all X blood type deceased donors to only X

blood-type patients without live donors. For an pair type X − Y with Y ̸ ▷X, i.e., underdemanded

or reciprocally demanded, the ratio rX−Y =
πe
Y −X

πe
X−Y

is relevant if we did not want X − Y pairs to

receive any deceased donors but only live donors through exchange with their reciprocal type Y −X

pairs under the optimal exchange policy. In these cases, conditional on survival, the waiting time

of X blood-type patients without live donors would be given as tdX = F−1
(
1 − δX

πd
X

)
, and waiting

time of X − Y (when X − Y is an underdemanded type or X − Y = A − B) would be given as

tX−Y = F−1
(
1− πe

Y −X

πe
X−Y

)
.25

However, underdemanded or reciprocally demanded X−Y type pairs have another option besides

waiting for their reciprocal type pairs to arrive. if deceased donors arrive earlier, they can receive

an organ from a deceased donor. By assumption, we assume that patients choose whichever organ,

25The waiting time for B−A type pairs is 0 as they are on the shorter side of the market when compared to A−B

type pairs by assumption.

22



deceased-donor or live-donor, becomes available first. 26 Hence, the patient of an X − Y type pair

will never wait for a Y −X pair for exchange if a deceased organ comes first, i.e. if tX−Y < tdX . As

time is decreasing in r ratios, all we need to do is to compare these ratios in an iterative manner to

decide whether any underdemanded type or A−B type pairs will receive deceased-donor organs:

Pooling procedure for patient - live donor pairs and patients without live donors under ABO-

identical deceased-donor allocation policy:

1. Let X − Y1, ..., X − Yk be the ordered list of underdemanded or reciprocally demanded types

with X blood-type patients ascending in rX−Y ratio. Define for each ℓ = 0, ..., k :

rdX,X−Y1,...,X−Yℓ
=

δX + πe
Y1−X + ...+ πe

Yℓ−X

πd
X + πe

X−Y1
+ ...+ πe

X−Yℓ

. (8)

2. For ℓ ∈ {0, ..., k − 1}, suppose pair types X − Y1, ..., X − Yℓ have already been deemed to be

receiving both deceased donors and live donors through exchange.

• If rX−Yℓ+1
< rdX,X−Y1,...,X−Yℓ

then X−Yℓ+1 pairs receive both live donors through exchange

with Yℓ+1 − X pairs and deceased donors with the rest of the X blood-type patients

without live donors and X−Y1, ..., X−Yℓ pairs. We continue with Step 2 with ℓ := ℓ+1.

• If rX−Yℓ+1
≥ rdX,X−Y1,...,X−Yℓ

then all types X−Yℓ+1, ..., X−Yk only receive donors through

exchange, but no deceased donors. We terminate the procedure.27

Based on this procedure, we state the following theorem:

Theorem 5 (Direct Live Donation, ABO-Identical Exchange and Deceased Donation) Consider

the ABO-identical deceased-donor allocation and live-donor exchange policies. Consider a blood type

X. Conditional on survival, the waiting time for a donor and the measure receiving donation are

given as follows for different X blood-type patient groups:

26This assumption can be rationalized by the risk associated with dying while waiting for an organ and high risk

aversion. To model this choice explicitly under a wider class of preferences, we can introduce additional structure

regarding the cardinal preferences of the patients and the shape of the survival distribution 1 − F (t). The patients

could be willing to wait more for a live donor than a deceased donor as the former kind of graft survives longer,

while waiting for an organ is riskier and could result with death, and is usually inferior in life quality to living with a

functioning graft. The patients will be willing to wait as long as the second disutility does not outweigh the first utility

marginally. When 1 − F (t) is concave (i.e., for t < t′ dying at time t′ is more likely than at time t), an endogenous

incentive driven waiting time gap can be explicitly derived: at steady state when patients can receive a deceased-donor

organ t years after entry, each patient will be willing to wait at most τ(t) years additionally for a live-donor organ.

All our calculations can be modified to include this time gap function without much change.
27When some X − Y pairs receive deceased donation and they reenter the pool, whether the patient of such a pair

reenters as part of a pair or he reenters without a live donor does not have any impact on waiting times. As X − Y

pairs will be pooled with X blood-type patients without live donors, what matters is the total inflow of new and

reentering X − Y pairs and X blood-type patients without live donors, which is the same under either assumption.
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• X blood-type patients who have compatible live donors immediately receive their live donor’s

organ upon entry.

• X blood-type patients who are part of incompatible overdemanded, self-demanded, and if X = B

then, B − A type pairs, immediately receive a live donor organ through exchange upon entry.

• Suppose patients of underdemanded and reciprocally demanded types X − Y1, ..., X − Yℓ receive

both live donation through exchange and deceased donation while patients of underdemanded

and reciprocally demanded types X − Yℓ+1, ..., X − Yk only receive donation through live-donor

exchange. Then:

– Conditional on survival, X blood-type patients without live donors and patients of X −
Y1, ..., X − Yℓ type pairs wait for a donor for

tE,i
X = F−1

(
1−

δX + πe
Y1−X + ...+ πe

Yℓ−X

πd
X + πe

X−Y1
+ ...+ πe

X−Yℓ

)
. (9)

– Conditional on survival, for all m ∈ {ℓ + 1, ..., k}, patients of X − Ymtype pairs wait for

live-donor exchange for

tE,i
X−Ym

= F−1

(
1−

πe
Ym−X

πe
X−Ym

)
. (10)

Proof. It follows from the procedure discussed before the statement of the theorem.

5.2 ABO-Compatible Exchange & Deceased Donation

For some organs such as livers, a deceased-donor queue patient can get precedence in receiving any

ABO-compatible deceased-donor organ. If an egalitarian concern is in place, a similar practice can

be adopted for exchange: AB − O type pairs can be used to match A − AB B − AB or O − AB

pairs, not just O − AB pairs and if two-way exchange is the only available exchange policy, saving

any of them would be efficient in Pareto sense. However, a FIFO policy can also be adopted and an

AB − O type pair can be used in exchange with the longest waiting of these two types. However

these overdemanded types can also receive organs from the deceased donor queue and they will

determine which source to go, either exchange or deceased donor, according to their waiting time.

Sorting out what patient group gets from what source leads to a seemingly complex graph-theory

problem. However, thanks to techniques from combinatorial optimization theory, we can solve this

cumbersome problem quite easily.28

28The same technique can be adopted to determine which blood types will be pooled when exchange is not possible.
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Consider the following two-sided graph, with sides labeled as O and U. Side O consists of 4

nodes O,A,B,AB representing the deceased donor blood types, 5 nodes representing overdemanded

pair types A−O,B−O,AB−O,AB−A,AB−B and type B−A which is on the short side among

the two reciprocally demanded types A−B and B − A:

O = {O,A,B,AB,A−O,B −O,AB −O,AB − A,AB −B,B − A}. (11)

The other side consists of also 10 nodes, 4 representing the blood types of patients without live

donors, 5 for the underdemanded pair types, and 1 for the A−B pair type:

U = {O,A,B,AB,O − A,O −B,O − AB,A− AB,B − AB,A−B}. (12)

The nodes in both sides rate connected with a blood-type feasibility link and these links are rep-

resented by a matrix of 0’s and 1’s, C = [ci,j]i∈O,j∈U. Two types i ∈ O and j ∈ U are linked, i.e.

ci,j = 1, when (1) if i is a blood type, the patient of from a j type (i.e., if j = X is a blood type, the

X blood-type patient of an X−Y pair and if i = X−Y is a pair type then an X blood-type patient

without live donor) can receive an organ from an i blood-type deceased donor, and (2) if i and j

are pair types, then i and j pairs are mutually blood-type compatible to be matched in a two-way

exchange. The graph induced by C is depicted in Figure 6.

b b b b b b b b b b

b b b b b b b b b b

O :

U :

O A B AB A−O B −O AB −O AB −A AB −B B −A

O A B AB O −A O −B O −AB A−AB B −AB A−B

Figure 6: ABO-compatible exchange and deceased donation feasibility graph (O,U, C). Lighter links

correspond to deceased donation possibilities and darker links correspond to exchange possibilities.

Each node h ∈ O ∪U is assigned a weight wh such that wh is the inflow measure of the type of

patient without live donor / deceased donor / pair group h in question:

wh =

{ δh if h ∈ O ∩ T
πd
h if h ∈ U ∩ T
πe
h if h ∈ (O ∪U) ∩ T × T

(13)

where πe
h is defined in Equation 6 and πd

h is defined in Equation 7.
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Now, we determine the least privileged node subset of U as follows: For any V ⊆ U and P ⊆ O

define

CV(P) = {i ∈ P | ci,j = 1 for some j ∈ V}, (14)

and29

rdV(P) =

∑
i∈CV(P)wi∑

j∈V wj

. (15)

Here, CV(P) is the set of deceased donor blood-types and overdemanded pair types in P ⊆ U that

can feasibly matched through deceased donation or exchange with some type in set V ⊆ U; and

rdV(O) is the supply-to-demand ratio for V i.e., the ratio of inflow measures of deceased donor and

pairs on short supply that can be matched with patients without live donors and pairs on long supply

within V. This ratio is the generalization of the rd ratio defined in Equation 8. Now we can find the

subset of U which minimizes rd:30

V1 = arg min
V⊆U

rdV(O); and (16)

P1 = CV1(O). (17)

Then we iteratively construct the partition V1,V2, ...,Vk of U such that

Vℓ = arg min
V⊆U\∪ℓ−1

m=1Vm

rdV(O \ ∪ℓ−1
m=1Pm); and (18)

Pℓ = CVℓ
(O \ ∪ℓ−1

m=1Pm) (19)

This means that the patient and pair groups belonging to Vℓ are the least fortunate, i.e. bottleneck,

after serving the groups in V1, ...,Vℓ−1 and we can assign all deceased donors and pairs belonging to

Pℓ exclusively to patients and pairs of groups in Vℓ that are deemed blood-type feasible by matrix C.

This result follows from the minimum cut - maximum flow theorem of Ford and Fulkerson (1956) in

combinatorial optimization theory.31 Even when we do that their waiting time in the exchange and

deceased donor queues will not be lower than the other groups in U \ ∪ℓ
m=1Vm, as r

d ratio is lowest

for Vℓ once V1, ...,Vℓ−1 are fixed. Moreover, we can make this assignment feasibly, i.e. matching

all deceased donors and incompatible pairs of groups in Vℓ with compatible patients and mutually

compatible pairs of groups in Pℓ at the same waiting time:

tE,c
Vℓ

= F−1(1− rdVℓ
(Pℓ)). (20)

29Similarly define CP(V) = {j ∈ V | ci,j = 1 for some i ∈ P}. We will use these notations later in the proof of

Proposition 1 as well.
30If there are more than one such sets then take largest of them, which is uniquely defined.
31For example, see Katta and Sethuraman (2006), Yılmaz (2009), and ? for uses of the minimum cut - maximum

flow theorem in the probabilistic matching framework.
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Theorem 6 (Direct Live Donation, ABO-Compatible Exchange and Deceased Donation)

Under direct live donation and ABO-compatible exchange and deceased donation, the waiting time

for X blood-type patients without live donors for each X ∈ T , and for all underdemanded type pairs

and pair type A− B, the waiting time is characterized by tE,c
Vℓ

in Equation 20 where Vℓ and Pℓ are

defined as in Equations 13-19.

One can wonder how likely pooling of waiting times would occur between live-donor exchange and

deceased donation. For kidneys, deceased-donor queue additions and removals for each blood type are

summarized in Table 3 using US OPTN data in 2011 in Appendix B. Rates rdX are extrapolated from

the data as 46.5−48.5% for O, 45.7−46.9% for A, 35.9−37.0% for B and 37.5−38.2 for AB. On the

other hand, it is more difficult to access data on both recipient and donor blood types to determine

the arrival rates of pair types. However, assuming roughly similar arrival rates for reciprocal types

X − Y and Y − X, we can conclude that rX−Y = πe
Y−X/π

e
X−Y = θpXπY /pY πX = θ = 0.11 << rdX

for all Y ̸ ▷X, i.e. underdemanded types X − Y . There is a lot of slack in this inequality and even

if reciprocal types do arrive at different rates, as long as the arrival ratio is not too unbalanced in

the favor of overdemanded types, we would still expect this inequality to hold. Hence, we expect

that all underdemanded type pairs will receive both deceased donation and live donation through

exchange even if full benefits from kidney exchanges are fulfilled in the US. On the other hand, it

would be also good to estimate rA−B. Terasaki, Gjertson, and Cecka (1998) report that A−B pairs

make up of 5% and B − A pairs make up of 3% of all pairs. Hence, rA−B = πe
B−A/π

e
A−B = 0.60 is a

good lower bound for this ratio. Observe that rA−B > rdA. Hence, our expectation is that even using

only two-way exchanges no A−B pair would end up receiving deceased donation if all benefits from

exchange are fulfilled in the US.32 In the light of these estimations, Figure 7 depicts A blood-type

deceased-donor queue at the steady state as an example of our predictions.

6 A New Proposal: Incentivizing Compatible Pairs to Par-

ticipate in Exchange

One shortcoming of the current live-donor exchange practices is that they only utilize incompatible

pairs. However, if compatible pairs can be incentivized to participate in exchange, then some sort of

a supply balance will be satisfied between reciprocal type pairs in exchange, and hence the exchange

will bring more benefit for all groups of patients. One sensible way of incentivizing compatible pairs

to participate in exchange is to give their patients priority in the deceased donor queue regardless

32There is only one slight caveat in this prediction. Some patients may have a very high tissue-rejection rate, i.e.

θ = 0.11 may not be uniform for all patients. Such patients’ only hope could be deceased donation, and in many

instances they cannot even find compatible deceased donors. However, the number of such patients are relatively

lower.
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Figure 7: A blood-type deceased-donor queue under the ABO-identical deceased donation

policy, live donation, and exchange of incompatible live donors at steady state: Inflow πA

of patients decreases by plAλπA = (1−θ)(pA+pO)λπA as a result of immediate compatible direct live

donation and a further eodA + esdA = θ(pA+ pO)λπA as a result of incompatible live-donor exchange for

A−O and A−A types who do not wait in the deceased-donor queue. Assuming that pAπB ≥ pAπB

and A−B type pairs do not end up receiving deceased donation at time tE,i
A−B (as found in Equation

10), a measure of erdA = pAπB of A−B pairs are matched through exchange. Assuming that A−AB

type pairs both receive deceased donation and participate in exchange, at time tE,i
A (as found in

Equation 9 for A − AB type pairs and A blood-type patients without live donors) a measure of

eudA = θpAλπAB of A − AB pairs are matched through exchange. As a result waiting time in the

deceased-donor queue decreases from tL,iA to tE,i
A , as well. The mass of reentering previous live-donor

exchange participants are not shaded because of the complexity of the figure.
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of their waiting time if their graft transplanted as a result of exchange fails. As noted earlier in the

Introduction, live donors are already incentivized in a similar manner. if a live-donor’s organ fails

in the future she gets a priority in the decease-donor allocation. A similar practice of prioritizing

not only the donor but also patient of a compatible pair may face little resistance in the medical

community. In this section, using the tools we developed in the earlier sections, we analyze the

welfare an equity effects of such a prioritization policy. Thus, when the transplanted graft of a

patient who was part of a compatible pair and acquired this graft through exchange fails, we assume

that the FIFO structure of deceased-allocation policy is altered, and such patients are placed to the

front of the queue. In this case, we can analyze the welfare effects of this policy with respect to the

alternative, regular exchange without compatible pairs.33

We will focus on ABO-identical FIFO deceased-donation policy in this section and the next one,

as this is the primary policy adopted for kidney allocation, which has the most prominent exchange

programs in the world.

Suppose an endogenous proportion ρ of all compatible pairs take up of this option and participate

in exchange. We will maintain the following assumption in this and next sections.

Assumption 4 For any underdemanded type X − Y (i.e., X ▷ Y and X ̸= Y ), suppose [ρ(1− θ) +

θ]pXπY ≤ pY πX .

This assumption ensures that the measure of arriving underdemanded pairs is greater than the

measure of arriving reciprocal overdemanded pairs who are either incompatible or compatible and

willing to participate in exchange for each underdemanded pair type X−Y . This is a simplification.

If this is not the case, any excess of the compatible pairs will not participate in exchange but the

patients will directly receive transplant from their own donors upon reentry. As a result compatible

pairs never wait in the deceased-donor queue.

Moreover, although we assumed ρ is exogenously determined, we would expect, in equilibrium in

the long run, participation percentage ρ is maximized to match the maximum possible number of

incompatible pairs through exchange so that if a non-participating compatible pair were to switch

to participate in exchange, it will not be able to help an additional incompatible pair to receive

donation through exchange, hence a version of the above assumption will hold endogenously.

We assume that we use incompatible pairs in exchange as much as possible and if they are not

feasible to be used anymore, then we use compatible pairs in exchange. We first show that this

approach does not decrease the number of possible incompatible pairs matched in exchange:

Patients of compatible pairs are unambiguously weakly better off under this policy for any ρ.

What about other groups of patients?

33We will abbreviate the new policy with superscript I and add to our variables, referring to Incentivized exchange

with compatible pairs, while regular exchange will continued to be abbreviated by E.
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Hence an optimal incentivized exchange policy dictates matching all incompatible X − Y pairs

with its incompatible reciprocal-type pairs, and if there is excess incompatible X − Y left using

compatible Y − X pairs (if they exist) to save them in exchange. We state this result formally

through the following theorem:

Theorem 7 (ABO-identical optimal exchange with incentivized compatible pairs) When

some compatible pairs participate in exchange with the condition that their reentrant patients are pri-

oritized in the deceased-donor queue, a policy that dictates matching incompatible self-demanded pairs

of one type with each other, and the longest-waiting underdemanded and B − A type pairs of with

their reciprocal-type incompatible and willing compatible pairs at each point in time is optimal in the

sense that it matches the maximum measure of pairs possible at each point in time.

Moreover, this policy maximizes the mass of pairs that can be matched within any closed time

interval, and in particular, matches a larger mass of pairs than waiting the pairs to arrive and

running the exchange once at the end of the time interval.

The following theorem outlines the predictable differences of the outcomes under exchange with

incentivized compatible pairs with respect to regular exchange.

Theorem 8 (Incentivizing compatible pairs to participate in exchange) Under the ABO-identical

deceased-donation and exchange policies with incentivized compatible pairs, with respect to regular ex-

change

1. weakly more patients are matched for each patient group at each point in time, that is, for each

blood type X and Y , X blood-type patients without live donors, incompatible X − Y pairs, and

if they exist, compatible X−Y pairs; underdemanded type pairs are matched at a strictly higher

rate.

2. no compatible pairs of type X − X participate in exchange (incompatible X − X blood types

save each other through exchange);

3. no O blood-type patients are prioritized upon reentry, however reentrant A, B and AB blood-type

patients of previously compatible pairs that participated in exchange will get prioritized;

4. waiting time for underdemanded-type pairs strictly decreases; waiting time for O, A, and B

blood-type deceased donors may increase or decrease; waiting time for AB blood-type deceased

donors increases; waiting time for other patient groups is 0 and does not change.

The proof of this theorem, especially of Statement 4, is also of independent interest, as it quantifies

the sources of changes to the rates of being matched for different patient groups when we switch from

regular exchange to exchange with incentivized compatible pairs. Additionally, Figure 8 provides an

example for A blood-type patients illustrating these effects.
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Figure 8: A blood-type deceased-donor queue under the ABO-identical deceased donation

policy, live donation, and incentivized exchange of incompatible live donors at steady

state when ρ = 1, i.e., all compatible pairs participate in exchange, and pXλπY = pY λπX for all

underdemanded X − Y type pairs: Inflow πA of patients decreases by plAλπA = (1− θ)(pA + pO)λπA

as a result of immediate compatible direct live donation and a further eodA + esdA = θ(pA + pO)λπA

as a result of incompatible live-donor exchange for A − O and A − A types who do not wait in the

deceased-donor queue. Assuming that pAπB ≥ pAπB and A− B type pairs do not end up receiving

deceased donation at time tE,i
A−B (as found in Equation 10), a measure of erdA = pAπB of A− B pairs

are matched through exchange. Assuming that A − AB type pairs both receive deceased donation

and participate in exchange, at time tE,i
A (as found in Equation 9 for A − AB type pairs and A

blood-type patients without live donors) a measure of eudA = θpAλπAB of A− AB pairs are matched

through exchange. As a result waiting time in the deceased-donor queue decreases from tL,iA to tE,i
A ,

as well. The mass of reentering previous live-donor exchange participants are not shaded because of

the complexity of the figure.
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7 Multiple Exchange Platforms and Exchange with Incen-

tivized Compatible Pairs

Although in our model, we assumed that there is a unique central live-donor organ exchange authority,

in reality many parallel platforms compete with each other in the case of kidney exchange in the US.

Due to vagueness of original National Organ Transplant Act of 1984 regarding legality of exchanges,

it had to be amended in 2007 and the US national kidney exchange program started under the

provision of UNOS only in 2010. UNOS is also the federal contractor that oversees the deceased donor

allocation in the US. On the other hand, regional kidney exchange programs had started in early

2000s. For example, New England Program for Kidney Exchange was founded in 2004, while Ohio

Solid Organ Consortium has been conducted ad-hoc kidney exchanges since early 2000s. Currently

most number of kidney exchange operations are done in smaller non-profit programs rather than the

UNOS national program. The downside of this is that the pairs with difficult-to-match patients dues

to severe tissue sensitivity have a much higher chance to be matched in a large pool of pairs rather

than in a small pool. What happens is that smaller programs match internally easier-to-match pairs

and left-over difficult-to-match pairs form the majority of the national program pair pool. Therefore,

such pairs have a very small chance to be matched under the current realm of the market formation.

The advantage of a large kidney exchange program is that it will provide a more efficient system

than several smaller programs (for example, see the simulations reported in RSÜ 2005a; 2007).

The consolidation of multiple programs in a single large kidney exchange program is difficult.

RSÜ 2005b showed that there is no incentive compatible exchange mechanism that would make all

smaller programs reveal their all pairs to the centralized national program, when smaller programs

only care about maximizing the number of their registered pairs matched (Ashlagi and Roth, 2014,

also see). Hence, it is an often debated challenge how to create a single exchange pool with voluntary

participation.

It turns out that our proposal of incentivizing compatible pairs to participate in exchange can also

help us to create a single large exchange pool. Although there are multiple programs for exchange,

and only one of them is also in charge of the administration of the deceased donor queue, as in the

case of UNOS. Hence, we can give the right of incentivizing compatible pairs through priorities upon

reentry only to the UNOS program. We show that such a policy design will cause compatible pairs

to register only at the UNOS national exchange program, which in turn will attract all other pairs to

the UNOS program. Therefore, at equilibrium there will be a unique exchange pool with actual pairs

in it – namely the UNOS national program – driving all other exchange programs out of business.
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7.1 The Exchange Participation Game for Pairs

Consider the following dynamic game. Suppose there are n+1 live-donor kidney exchange platforms

P0, P1, ..., Pn . Platform P0 is the UNOS national exchange program.

Exchange with incentivized compatible pairs is available only in the UNOS program, P0, which

also oversees the deceased donation program. Hence, only the UNOS program gives a priority to

the reentering patient of a compatible pair that previously participated in an exchange conducted

through its program.

Each platform uses an ABO-compatible FIFO optimal exchange policy to maximize the measure of

pairs matched at every instant, while the national program uses the optimal policy by incentivizing

compatible pair participation with deceased donation. In the ABO-compatible FIFO policy, ties

among pairs who arrive at the same time are broken through an even lottery as long as it does not

affect efficiency as explained in Subsection 5.2. Hence, an B-O pair can be matched with an excess

A-B pair (i.e., one remains unmatched after all arriving B-A pairs are matched) or an O-B pair with

equal probability if they have waited the longest and either matching would result with the same

efficiency outcome in terms of maximizing the pairs matched.

We assume that an exogenously determined ρ–fraction of compatible pairs from overdemanded

types automatically participate in exchange at platform P0, and they are not strategic agents such

that Assumption 4 is satisfied. It is straightforward to extend our results to the case when compatible

pairs are strategic agents and ρ is endogenously determined through their own risk attitudes etc.

We assume that compatible overdemanded pairs are always immediately matched, whether they

participate in exchange or not. If there is no available pair in the exchange platform for a compatible

pair to be matched, the compatible pair’s donor donates to her patient immediately and the compat-

ible pair leaves the pool. Patients without live donors are not strategic agents, either. All patients

simultaneously wait at the deceased donation queue.

On the other hand, each patient with an incompatible donor is a strategic agent and would like

to maximize his lifetime expected utility while listing at an exchange platform. As each patient can

die while waiting for a transplant, we assume that receiving an earlier transplant is preferable to

receiving a later transplant. For simplicity of the analysis we assume that a pair chooses whichever

donor arrives earlier from a deceased donor or a live donor. Our results would not have changed if we

explicitly modeled the utility functions of patients over time and live versus deceased donors (such

as, using a measure of expected survival of the transplant).

An incompatible pair can opt in or out of the exchange pool at any point in time after it arrives.

An incompatible pair that registers in an exchange platform waits for a live donor’s kidney or a

deceased donor kidney and has the option to choose to wait for which one.

A patient without a compatible live donor and has not registered in any exchange platform waits

to receive a deceased donor under the ABO-identical FIFO allocation policy.
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We inspect the Nash equilibria of this game. The first lemma is obvious to prove, and we just

state it:

Lemma 7 At any Nash equilibrium of the participation game, if X − Y type pairs registers for

exchange at two distinct exchange platforms with positive probability then their expected waiting times

are the same at these platforms.

In this game any strategy that tells pairs not to participate in exchange at any platform is weakly

dominated. For different ρ, there exists an equilibrium in dominated strategies. For example, there

exists an equilibrium in which no pair participates in exchange when ρ = 0. When ρ > 0, there are

equilibria in which no self-demanded or reciprocally demanded pair participates in exchange. Hence,

we focus on equilibria in undominated strategies:

Proposition 1 In the participation game, there are pure strategy Nash equilibria in undominated

strategies. The total measure of patients matched through exchange or deceased donation is the same

and maximal across all such equilibria for the given ρ; moreover, this total measure strictly increases

in ρ.

There are indeed multiple pure strategy equilibria where different measures of pairs register at

different programs. Some of these equilibria can be constructed in a straightforward manner: Denote

one equilibrium by σ∗ where all pairs register at P0. Consider another strategy profile σ′ where a

sufficiently small fraction ϵ of all pair types register at platform P1, while the rest of the pairs register

at P0, including all of the participating compatible pairs. Now, P1 works as a mini version of P0 with

the same ratio of different pair types registering. Hence, all pairs are matched at the same time at

both P0 and P1 through exchange and (if needed) deceased donation. Thus, σ′ is also an equilibrium,

as no pair has any incentive to deviate.

On the other hand, this kind of an equilibrium allows only a sufficiently small fraction of pairs to

register at platforms other than P0. As otherwise, there will be excess compatible pairs registering at

P0 and underdemanded pairs registering at other platforms will have unilateral incentives to deviate

and register at P0. Thus, this maximum fraction ϵ is inversely related to ρ: as ρ, the participation

rate of compatible pairs, increases, the size of other platforms decrease at equilibria.

Our model does not consider explicitly “difficult to match” pairs, and assumes that each pair has

the same tissue type incompatibility probability. In reality, there exist positive measures of highly

sensitized pairs and their chances of being matched are much smaller when the size of the exchange

pool is small. Hence, from a practical point, a large exchange platform will be more desirable than

several small platforms, although all equilibria in undominated strategies are efficient.

Moreover, it does not matter where some pair type participate in exchange for efficiency purposes.

For example any positive measure of O−O type incompatible pairs can participate in exchange at any
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platform and they could all be matched with each other without affecting the efficiency of exchange.

On the other hand, if a positive measure of incompatible A − O pairs participated at a platform

where there are no underdemanded pairs, this would decrease the efficiency of the exchange. Hence,

we will refer to all pair types that are not self-demanded as efficiency critical pair types.

Hence, it is important to create a large exchange platform with efficiency critical pair types. Our

main result of this section states under what conditions with compatible pair participation such a

large program can be created:

Theorem 9 In the participation game,

• the maximum total equilibrium measure of registrants at platforms other than the national

exchange program, P0, decreases with increasing ρ; and

• if

ρ >

∑
X−Y ∈O\{B−A} θpY πX + pAπB∑
X−Y ∈O\{B−A}(1− θ)pY πX

,

then the total measure of efficiency critical pairs participating at P0 is more than the sum

of their respective participation rates in other platforms in every undominated pure strategy

equilibrium.

Assumption ρ >
∑

X−Y ∈O\{B−A} θpY πX+pAπB∑
X−Y ∈O\{B−A}(1−θ)pY πX

in the theorem makes sure that the measure of com-

patible pairs participating in exchange are relatively high. In particular with the independent pairing

assumptions across blood types and identical donation and patient blood type distributions reported

on in the United States for kidney exchange, ρ > 32% with θ = 0.11.
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A Appendix: Remaining Proofs

Proof of Lemma 1. We prove it by contradiction: If σ = ω then suppose an infinite or uncountable

number of donors are unmatched, and if σ < ω then suppose a donor is unmatched with a positive

probability under the FIFO policy. Then, in either case, an infinite or uncountable number of patients

are unmatched as well. But then, take a donor who is unmatched, then there exists almost surely

a compatible unmatched patient, as the probability of finding no tissue-type compatible patient is

limn→∞ θn = 0.

Proof of Lemma 2. Since X ̸= Y and X ▷ Y , we have Y ̸ ▷X. Moreover, W ▷ Y for all blood

types W such that W ▷X.

Suppose to the contrary of the claim, tcY > tcX . Then the longest-waiting Y blood-type patients

would receive the maximum number of organs that would otherwise go to X blood-type patients

under the FIFO policy, as they are waiting longer than the longest-waiting X blood-type patients.

Hence, either Y blood-type patients do not wait at all, i.e. tcY = 0 or X blood-type patients never

receive transplant tcX = T . Either case contradicts the assumption.

Proof of Lemma 3. Suppose Y blood-type patients receive X blood-type organs at steady state

under the ABO-compatible FIFO allocation policy. By Lemma 2, tcY ≤ tcX . Suppose the inequality is

strict. Then either all X blood-type organs would go to longest-waiting X blood-type patients, which

would contradict the fact that X blood-type organs are transplanted to Y blood-type patients, or X

blood-type patients would not be waiting at all in the deceased-donor queue, which would contradict

the assumption that tcY < tcX . Hence, t
c
Y = tcX .

Next, suppose that blood types in some S ⊆ T are pooled together. Then there is a chain of

blood types {X1, ..., Xk} = S such that X1 receives from X1 and X2, ..., Xk−1 receives from Xk−1

and Xk. By the previous paragraph, all types in S have the same waiting time under the ABO-

compatible allocation scheme. Moreover, the supply-demand equations for these types are given as,

for all X ∈ S,
σX = [πX + ϕdσX ][1− F (tS)]

where tS is the common waiting time and σX is the measure of organs supplied to X blood-

type patients. At steady state, we observe an inflow ϕdσX of reentrants to the queue. Moreover,∑
X∈S σX =

∑
X∈S δX . Hence summing up left-hand sides and right-hand sides of these equations,

respectively, we get
∑

X∈S δX = [
∑

X∈S(πX+ϕdδX)][1−F (tS)]. Solution for tS is given as in Equation

2.

Proof of Theorem 2. By Lemma 2, tcY ≤ tcX . As t
i
X is the shortest among ti for types that Y can

receive from, the only way tcY ≤ tcX can happen is that Y blood-type patients receive X blood-type

organs at steady state or X pools with another type which has a higher ti than Y . However, the latter
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is not correct by assumption. Therefore, Y and X blood-type patients are pooled (possibly together

with other types). By Lemma 3, tcY = tcX . Moreover, by transferring some of the X blood-type organs

Y and X blood-type patients receive to other compatible-type patients, the waiting time of Y and

X blood-type patients can be adjusted above t{X,Y } but no higher than tiY . Similarly, by transferring

some of the X blood-type organs that Y blood-type patients are receiving to X blood-type patients,

and substituting those with other compatible organs for Y , the waiting time of Y and X blood-type

patients can be adjusted below t{X,AB} but no lower than tiX . Observe that the waiting time of no

donor blood type that is compatible with Y blood-type patients can be made shorter than tiX or

longer than tiY , at steady state, under the constraint of Lemma 3, which says that all donating blood

types to Y blood-type patients will have the same waiting time. Hence, the composite type of X

and Y behaves like Y when it is receiving organs and behaves like X when it is donating organs with

deceased-donor inflow δX + δY and patient inflow πX + πY , by Lemma 3.

Proof of Lemma 4. Suppose that for a given X, the non-negative real line for πX can be divided

into a sequence of open intervals marked by 0 = ϵ0 < ϵ1 < ϵ2 < ... such that for any k, for any

πX ∈ (ϵk, ϵk+1) the sets of pool types remain constant; and the sets of pooled types do change in

transition from ϵ−k to ϵ+k for each k.

For any πX ∈ (ϵk, ϵk+1), Equation 2 gives the waiting time of any pooled set S. Moreover, tcS
strictly increases in πX for the pooled set S that includes X and the waiting times of other types do

not change.

Moreover, waiting times are continuous in πX and bounded in this open interval. Hence, left-

and right-hand limits exist at each ϵk. Next, for some k suppose at πX = ϵk for some blood type

left-hand limit is higher than its value at πX = ϵk for the waiting time, i.e. limπX→ϵ−k
tcZ > tcZ | πX=ϵk

for some Z. Suppose at ϵk, Z is pooled in S1 ∈ 2T . However, as the total inflow of patients,
∑

Y ∈T πY

at πX → ϵ−k can be made arbitrarily close to its value at πX = ϵk, for some types of a pooled set

S2 ∈ 2T \ {S1} at πX → ϵ−k , we necessarily have limπX→ϵ−k
tS2 < tS2 | πX=ϵk . This can only happen if

some Y ∈ S1 ∩ S2 that donates to a blood type in S2 at πX → ϵ−k , which is no longer pooled within

S2 but within S1 at πX = ϵk. But then, this contradicts the definition of ABO-compatible FIFO

policy as some deceased donors of Y blood type, which is no longer pooled in S2 at πX = ϵk, could

be given to the patients of one or more blood types in S2 and their waiting time can be decreased

without making it smaller than the waiting time for S1 at πX = ϵk.

The cases where limπX→ϵ−k
tcZ < tcZ | πX=ϵk , limπX→ϵ+k

tcZ > tcZ | πX=ϵk , and limπX→ϵ+k
tcZ < tcZ | πX=ϵk

are handled in the symmetric manner, leading to a contradiction. Hence, this shows that all blood

types’ ABO-compatible waiting times are continuous in πX .

Since, each waiting time tcY is continuous at each πX = ϵk for all Y ∈ T and it is weakly (and

strictly for Y = X) decreasing at each open interval πX ∈ (ϵk, ϵk+1), then it is weakly (and strictly

for Y = X) decreasing in πX .
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The proof for “decreasing and continuous in δX” is analogous to the proof for “increasing and

continuous in πX” and follows the above proof.

Proof of Theorem 3. Observe that we have plO = pO(1 − θ), plA = (pO + pA)(1 − θ), plB =

(pO + pB)(1 − θ), and plAB = 1 − θ. Hence, plO < plA, p
l
B < plAB. First, consider the ABO-identical

deceased-donor allocation policy. By Equation 4, for any X,

tL,iX = F−1
(
1− δX

(πX−cX)+ϕdδX

)
, (21)

where cX = (1−ϕl)plXλπX ∈ (0, πX) . As t
L,i
X is increasing in net patient inflow, comparing Equation

1 with Equation 21 we conclude for all X, tL,iX < tiX .

Next, consider the ABO-compatible deceased-donor allocation policy. Assume that we introduce

patient - live donor pairs for each blood type one at a time. The net effect of having patients with live

donors is a decrease in the new patient inflow πX by cX for each X (as in the case of ABO-identical

allocation policy). Hence, using Lemma 4 for all four blood types consecutively, we conclude that

tL,cX < tcX for all X.

In the rest of the proof, we analyze the benchmark case where δX/πX is constant across all blood

types X. Then cO ≤ cX for all X and cAB ≥ cX for all X. These in turn imply that tL,iO ≥ tL,iX for all

X and tL,iAB ≤ tL,iX for all X, respectively, since tL,iX is decreasing in cX We also have

δO
πO − cO

≤ δA
πA − cA

,
δB

πB − cB
≤ δAB

πAB − cABδAB

.

Then by Theorem 2 and the procedure following this theorem, using πX − cXδX instead of πX for all

X, we observe that none of the blood types are pooled together when live donation is possible under

the ABO-compatible deceased donation policy. Thus, we also have tL,cX = tL,iX for all X. Further

assume that pA > pB. Then p
l
A > plB. Therefore, cA > cB, which in turn implies δB

πB−cB
< δA

πA−cA
, and

hence, tL,iA < tL,iB .

Proof of Theorem 4. Under the proposed policy, by Lemma 6 all self-demanded pairs can be

matched with their own type pairs as soon as they arrive, and all pairs of type B − A that has the

lower inflow rate by assumption than A−B pairs, will be matched under as soon as they arrive with

their reciprocal type pairs. Hence, under this policy only A − B pairs will remain in the exchange

pool at any point in time. These pairs can only be matched with overdemanded pairs by Lemma 5,

as B − A pairs are already committed to other A−B pairs.

Next consider underdemanded type pairs. These are Y − X type pairs such that Y ̸= X and

Y ▷ X. By Assumption 2, we have θpY πX ≤ pXπY . By Lemma 5, they can only be matched with

overdemanded types. Recall that the inflow of each Y −X type pair to the exchange pool is pY λπX .

Their reciprocal types X − Y , which is overdemanded, has the inflow measure θpXλπY < pY λπX .

Hence, we can match all such overdemanded pairs X − Y (by Lemma 6) as soon as they enter
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the pool under the proposed policy with their reciprocal types pairs. As all overdemanded, self-

demanded, and type W − Z reciprocally demanded pairs are matched as soon as they arrive, by

Lemma 6, the proposed policy achieves the maximum measure of pairs matched. At steady state,

as no incompatible overdemanded-type, self-demanded and B −A types each does wait in the pool,

gets immediately matched, and saves one additional pair, the maximum mass of possible exchanges

is also conducted in this manner in any closed time interval.

On the other hand, if we do not conduct the exchanges immediately whenever they become

available, but after a closed time interval, then some of the patients of overdemanded, self-demanded,

and B−A type pairs who have arrived earlier will not survive. Hence, when we conduct the exchanges

at the end of the time interval, we will match a strictly smaller mass of possible pairs than we would

have matched under the proposed policy.

Proof of Theorem 6. We prove the theorem using the concept of flow networks developed in the

combinatorial optimization and graph theory literature (see for example Korte and Vygen (2002) for

an excellent survey).

This tool will be used to show that, for each ℓ ∈ {1, ..., k}, for each patient group i ∈ Vℓ (as

defined in Equations 16 and 18), we can feasibly serve deceased donors / pairs belonging to groups

in Pℓ (as defined in Equations 17 and 19) to patients of group i at a rate wir
d
Vℓ
(Pℓ) (as defined in

Equations 13, 15, and 20).

A flow network in our context is the directed graph with nodes N = {σ, τ} ∪U ∪V such that σ

is referred to as the source and τ is referred to as the sink. An edge of the flow network originating

from node i and pointing at node j is denoted by (i, j). In particular, each U node is pointed at

by σ. Hence, for each h ∈ U (σ, h) is in the network. Also each node in V points at t. Hence, for

each h ∈ V (h, τ) ∈ V. Moreover, there are edges starting from each node in U and ending at some

nodes in V: for each i ∈ U and j ∈ V, (i, j) is a directed edge if and only if ci,j = 1. Let E be the

set of edges of the network.

We will send flows from the source σ through the edges of the graph and these flows will reach

the sink. For this purpose, each edge (i, j) ∈ E has also a capacity q(i, j) > 0 denoting the maximum

flow it can carry. For all other pairs of nodes (i, j) ̸∈ E , let q(i, j) = 0. Let q = (q(i, j))i,j∈N

denote the capacity vector for all the edges. A flow network is denoted by the pair (N, q). Fix a flow

network (N, q).

A flow function f : N×N → R is a mapping such that for each i, j ∈ N we have (i) if q(i, j) > 0

then 0 ≤ f(i, j) ≤ q(i, j) and if q(i, j) = 0 then f(i, j) ≤ 0, (ii) f(j, i) = −f(i, j), and (iii) if i ̸∈ {σ, τ}
then

∑
h∈N f(i, h) = 0. Property (i) says that an edge cannot carry a flow higher than its capacity,

and in particular, for positive capacity edges the flow cannot be negative and for zero capacity edges

the flow cannot be positive. Property (ii) is a technical one and used for ease of notation making sure

that the flow is a directed quantity but not a scalar: the flow of the reverse of an edge is the negative
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of the flow of the edge. Property (iii) says that for any node other than the source and the sink, the

flows from it and flows into it cancel out, i.e., all flows entering it also leave the node. Let F be the

set of flow functions. We refer to f(i, j) as the flow from node i to j under f . For a subset of nodes

{σ} ⊆ S ⊆ N \ {τ}, the flow from S (to N \ S) under f is denoted by f(S) =
∑

i∈S,j∈N\S f(i, j).

Such a subset of nodes S is denoted as a cut.

The total capacity of a cut S is defined as q(S) =
∑

i∈S,j∈N\S q(i, j), i.e., it is the sum of the

capacities of edges originating from a node in S and ending at a node in N \ S. A minimum cut S

is a cut such that q(S) = min{σ}⊆S′⊆N\{τ} q(S
′), i.e. a cut with the minimum total capacity.

The flow of f is its flow from cut N \ {τ} to cut {τ}, which is also equal to its flow from cut {σ}
to cut N \ {σ}. The maximum flow over the flow network (N, q) is defined as maxf∈F f(N \ {τ}).

The following is the fundamental theorem that relates the capacities of the edges to the maximum

flow that can be carried over a flow network:

Minimum Cut - Maximum Flow Theorem (Ford and Fulkerson (1956)): The maximum flow over

a flow network is equal to the total capacity of one of its minimum cuts.

One direction of the theorem’s statement, i.e., the maximum flow cannot exceed the total capacity

of a minimum cut is obvious by the definition of a flow function. The other direction is proven through

this theorem.

For our flow network used in the proof of our theorem, we define the capacities as follows (see

Figure 9, where the edges are denoted by lines with arrows and their capacities are written on the

lines; it defines a flow network using the feasible exchange and deceased donation graph given in

Figure 6): For an edge (i, j) such that i ∈ U and j ∈ V, we set its capacity to q(i, j) = +∞.

Hence, it can carry any load. On the other hand, for edge (j, τ) for each j ∈ O, we set its capacity

q(j, τ) = wj, the arrival rate of the deceased donor / pair type j to the pool, as defined in Equation

13. For edge (σ, i) for each i ∈ U, we set its capacity qχ(σ, i) = χwi, where wi is the arrival rate

of the patient without live donor / pair type i to the pool, as defined in Equation 13, and χ ∈ R+

is a parameter that will be changed in our construction. We refer to such a flow network as a

χ–parametric flow network.

The idea behind this construction is as follows: as we increase χ continuously starting from 0,

the flows carried from the source to the rest of the network are set to be equal to the capacities of

the edges from the source for an appropriately defined flow function fχ ∈ F . As χ is close to zero,

all the flows can be carried over the network and hence, {σ} is a minimum cut. We will be able

to increase these continuously until a break point occurs χ1 < 1, i.e. the minimum cut becomes a

proper superset of {σ}. To see that, to the contrary of the claim suppose χ1 ≥ 1. We have the total

capacity of cut N \ {τ} equal to qχ1(N \ {τ}) =
∑

j∈Owj, which should be greater than or equal

to maximum flow over the network. On the other hand, the total capacity of cut {σ} is equal to
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qχ1({σ}) = χ1

∑
i∈Uwi. We increase χ to χ1 so that the flow of fχ1 is equal to qχ1({σ}). However,

this is a contradiction by Assumptions 1, 2, and 3, as the flow of fχ1 , qχ1({σ}) > qχ1(N \ {τ}), the
maximum flow over the network at χ1.

Hence, at χ = χ1 < 1 there will be a minimum cut larger than {σ}, such that we will not be

able to carry all the flows if we exceed χ above χ1. Let {σ} ⊊ N1 be this minimum cut. If there

are multiple such cuts, let N1 be the largest of them. It is straightforward to see that there is a

minimum cut, which includes all minimum cuts as subsets.

What are the properties of this minimum cut? Suppose i ∈ N1 ∩U. Then observe that all j ∈ O

such that ci,j = 1 is also in N1. As otherwise the edge (i, j) with capacity q(i, j) = +∞ would make

the total capacity of the minimum cut equal to +∞. However, this is a contradiction to N1 being

a minimum cut, as the cut {σ} has always a finite total capacity (see Figure 10 for an example of a

possible minimum cut at some χ1).

Hence, whenever i ∈ N1 ∩U then all j ∈ O with ci,j = 1 also satisfy j ∈ N1. Let V1 = N1 ∩U,

and P1 = N1 ∩O. By the above construction P1 = CV1(O) (as defined in Equation 7).

The total capacity of N1 is equal to

qχ1(N1) =
∑

i∈N\V1

qχ1(σ, i) +
∑
j∈P1

q(j, τ) = χ1

∑
i∈N\V1

wi +
∑
j∈P1

wj.

On the other hand, the flow of fχ1 over the network at χ1 is given as

fχ1({σ}) =
∑
i∈U

fχ1(σ, i) = χ1

∑
i∈U

wi.

This is maximum as all the capacity of the edges from σ are used i.e., fχ1(σ, i) = qχ1(σ, i) for all

i ∈ U.

As N1 is a minimum cut, by the Minimum Cut-Maximum Flow Theorem,

qχ1(N1) = fχ1({σ}).

Hence,

χ1

∑
i∈U\V1

wi +
∑
j∈P1

wj = χ1

∑
i∈U

wi,

leading to

χ1 =

∑
j∈P1

wj∑
i∈V1

wi

= rdV1
(P1)

where rd was defined in Equation 15.

Observe that even if we increase χ beyond χ1, the flow over the edges ((σ, i))i∈V1 will not increase

and no additional flow through the increased χ will flow through the nodes j ∈ P1. Therefore, we can

remove the nodes in V1 and P1 from the network and repeat the above exercise iteratively. As result,
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we determine a number of minimum cuts N1, ...,Nk with corresponding node sets in U as V1, ....,Vk

and node sets in O as P1, ...,Pk with breakpoints χ1 < ... < χk < 1 such that Pℓ = CVℓ
(O\∪ℓ−1

ℓ′=1Pℓ′)

and χℓ =
∑

j∈Pℓ
wj∑

i∈Vℓ

= rdVℓ
(Pℓ) for each ℓ ∈ {1, ..., k}.

This proves that for each patient group i ∈ Vℓ, we can feasibly serve deceased donors / pairs

belonging to groups in Pℓ to group i at a rate fχℓ(σ, i) = χℓwi = wir
d
Vℓ
(Pℓ). Hence, we can feasibly

match a measure fχℓ(σ, i) of patients belonging to group i with arriving deceased donors (through

deceased donation) and pairs (through echange) in Pℓ by Lemmas 1 and 5, respectively.

Define tE,c
Vℓ

= F−1(1− rdVℓ
(Pℓ)) for each ℓ. Observe that tE,c

Vk
< tE,c

Vk−1
< ... < tE,c

V1
.

After tE,c
Vk

years of entry, the measure of live patients belonging to the groups in Vk is exactly

equal to
∑

j∈Pk
wj, the measure of arriving deceased donors / pairs belonging to groups in Pk. None

of the other patients belonging to groups in V1, ...,Vk−1 can be matched through deceased donation

or exchange with deceased donors / pairs belonging to Pk. Hence, they have to wait longer than

tE,c
Vk

. Moreover, none of the patients of groups in Vk will be matched with deceased donors / pairs of

groups in P1, ....,Pk−1, as this will decrease their waiting time at the cost of increasing the waiting

time of other groups, contradicting the FIFO protocol. We also proved above that all remaining live

patients/pairs in Vk after tE,c
Vk

years of entry (that is rdVk
(Pk) fraction of the arriving rate) can be

matched with all arriving deceased donors / pairs belonging to groups in Pk. Hence, remaining live

patients belonging to groups in Vk will be matched after tE,c
Vk

years of entry. We repeat the above

argument for each of the remaining sets ℓ = k − 1, ..., 1, concluding the proof of the theorem.

Proof of Theorem 7. Under the proposed policy, using Assumption 4 (similar to the role

of Assumption 2 in the proof of Theorem 4), as soon as they arrive all incompatible and willing

compatible pairs can be matched with incompatible pairs of their reciprocal type by Lemma 5.

A − B and B − A type pairs will be matched with each other, and by Assumption 3, A − B pairs

will remain in the list while B − A pairs will be matched as soon as they enter the exchange pool

by Lemma 5. As no overdemanded pairs are left, more of A−B type pairs or underdemanded-type

pairs cannot be matched. For any blood type X, all incompatible X −X, self-demanded-type, pairs

can already be matched without the use of compatible pairs as they arrive by Lemma 5. Therefore,

none of the compatible X −X type pairs is needed under the incentivized compatible-pair exchange

scheme. Hence, the maximum measure of pairs possible are matched at each point in time under the

proposed policy. At steady state, as no willing overdemanded-type, self-demanded and B −A types

each does wait in the pool, gets immediately matched, and saves one additional pair, the maximum

mass of possible exchanges is also conducted in this manner in any closed time interval.

Similar to the proof of Theorem 4, if we do not conduct the exchanges immediately whenever

they become available, but after a closed time interval, then some of the patients of overdemanded,

self-demanded, and B − A type pairs who have arrived earlier will not survive and some of the

compatible pairs may withdraw themselves from exchange. Hence, when we conduct the exchanges

43



at the end of the time interval, we will match a strictly smaller mass of possible pairs than we would

have matched under the proposed policy.

Proof of Theorem 8. Let ψi,c be the ABO-identical optimal policy explained in Theorem 7 under

exchange with incompatible pairs and incentivized compatible pairs, and φi be the ABO-identical

optimal policy explained in Theorem 4 under exchange with only incompatible pairs. Any reentrant

patient is classified as a patient without live donor. Under ψi,c, no unwilling compatible pairs and

compatible self-demanded pairs, and under φi, no compatible pairs participate in exchange; however,

their patients immediately receive a live donation from their own donors. All willing overdemanded

pairs are matched through exchange with their reciprocal types under both ψi,c and φi as soon as

they enter the pool (by Assumption 4). We first prove Statement 2 and then the rest.

Proof of Statement 1: First consider underdemanded pairs. Suppose that an underdemanded

X −Y pair type is not pooled with X blood-type patients without live donors for deceased donation

under φi. Under ψi,c, that type of pairs is matched at the rate

mX−Y
2 = [ρ(1− θ) + θ]pXλπY , (22)

at each point in time while under φi, they are matched at the rate

mX−Y
1 = θpXλπY , (23)

which is strictly smaller.

Next suppose pair types X1 − Y1, ..., Xℓ − Yℓ are pooled altogether for deceased donation, and

suppose among these pair types, Xℓ∗ − Yℓ∗ is underdemanded. Note that all of these pair types

are either underdemanded or A − B. Each Xk − Yk is matched at the rate mXk−Yk
1 + ϵXk−Yk

1 under

φi, where the rate ϵXk−Yk
1 > 0 is the measure of X − Y pairs whose patients receive deceased

donation and mXk−Yk
1 is defined as in Equation 22. Under ψi,c, mXk−Yk

2 is the measure of the

Y − X pairs willing to participate in exchange, which is strictly larger than mXk−Yk
1 , while the

rate of deceased donation does not change. Hence, while mXk−Yk
2 −mXk−Yk

1 more of Xk − Yk pairs

participate in exchange under ψi,c, fewer of such pairs may receive deceased donation. Suppose

that eXk−Yk
2 is the rate of Xk − Yk pairs receiving deceased donation under ψi,c. We will show that

ιk = [mXk−Yk
2 + ϵXk−Yk

2 ] − [mXk−Yk
1 + ϵXk−Yk

1 ] > 0 for all k. Suppose not for some k. In particular if

there are multiple such k, let k be chosen with the smallest ιk ≤ 0. Hence, as waiting times of all pairs

X1 − Y1, ..., Xℓ − Yℓ is the same under φi, Xk − Yk’s waiting time increases the most among all pairs

or stays the same and no other pair’s waiting time increases under ψi,c. Hence, Xk −Yk continues to

be pooled with X blood-type patients without live donors under ψi,c. As mXℓ∗−Yℓ∗
2 −mXℓ∗−Yℓ∗

1 > 0,

and for all k∗ ̸= ℓ∗ we have, mXk∗−Yk∗
2 −mXk∗−Yk∗

1 ≥ 0, then a higher share of deceased donors should

go to Xk − Yk pairs under ψi,c with respect to φi. Hence, ϵXk−Yk
2 − ϵXk−Yk

1 > 0 implying that ιk > 0,

a contradiction.
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Hence unless A − B is pooled by itself with A blood-type patients without live donors under

φi, any pooled paired group with X blood-type patients without live donors has strictly higher rate

being matched at each point in time under ψi,c.

We continue with other patient groups. All overdemanded pairs and self-demanded pairs receive

live donation under both ψi,c and φi immediately after their arrive. We already showed that under-

demanded pairs strictly benefit from ψi,c. Moreover, by Assumption 3, Theorems 4 and 7, all B−A

pairs are matched with A−B pairs through exchange as soon as they enter the exchange pool. This

and the proof of for underdemanded pairs imply that A− B pairs either benefit under ψi,c (if they

are pooled with an underdemanded type for deceased donation under φi) or they remain indifferent

between the two policies (otherwise). Next consider X blood-type patients without live donors. As

more of underdemanded-type pairs are matched through exchange and the same rate of A−B pairs

pairs participate in exchange under ψi,c, overall fewer of underdemanded-type and A−B type pairs

will be left from the same cohort for deceased donation. Hence, weakly more X blood-type patients

without live donors receive donation under ψi,c.

Proof of Statement 2: Under ψi,c, by Theorem 8 X−X pairs are only matched in exchange with

X −X pairs. Moreover, all incompatible X −X pairs are almost surely matched through exchange

as soon as they arrive with each other. Hence no compatible X −X pairs are used to match them.

Proof of Statement 3: Patient blood type O can form 4 types of pairs: O−O, O−A, O−B, and

O − AB. None of them can form compatible pairs except O − O. By Statement 3, no compatible

O − O pairs participate in exchange. Hence, upon possible reentry under ψi,c, no O blood-type

patients are prioritized. On the other hand, positive measures of compatible overdemanded pairs

with A, B, AB blood-type patients participate in exchange. Therefore, a positive measure of these

patient reenter at steady state and they get prioritized.

Proof of Statement 4: First observe that the waiting time of underdemanded types strictly de-

creases by Statement 1. The waiting times of reciprocally demanded B − A type pairs and A − B

type pairs do not increase by Statement 1. Moreover, self-demanded and overdemanded type pairs

do not wait and get immediately matched under both policies. Finally we consider patients without

live donors. To see how their waiting times are affected we consider he change of rates of exchange

for compatible and incompatible pairs first. We do this analysis for all blood types separately.

• O blood-type patients:

– Compatible pairs: O−O is the only compatible type with O blood-type patients. However,

incompatible O −O pairs are already matched immediately with each other in exchange.

Hence,

κO = 0

measure of compatible pairs with O blood-type patients participates in exchange.

45



– Incompatible pairs: A measure of [ρ(1−θ)+θ]pOλ[πA+πB+πAB] incompatible pairs with

O blood-type patients are matched through exchange with their reciprocal type pairs at

each point in time. This is a net increase of

ιO = ρ(1− θ)pOλ[πA + πB + πAB]

with respect to regular exchange. If some of these pair types are pooled for deceased

donation under exchange with incentivized compatible pairs, then they are also pooled for

deceased donation under regular exchange.

– Patients without live donors:

* Prioritized patients without live donors : As no O blood-type reentrant patients are

prioritized, all O blood-type deceased donors are still given to O blood-type patients

without live donors and there is a

ϕlκO = 0

measure of prioritized O blood-type reentrants per unit time.

* Regular patients without live donors : On the other hand, some additional O blood-type

patients are saved through exchange, an additional rate of

ϕlιO = ϕl[ρ(1− θ)]pOλ[πA + πB + πAB]

of O blood-type patients reenter with respect to regular exchange. These reentrant pa-

tients join the regular deceased donor queue. However, if some underdemanded pairs

with O blood-type patients receive deceased donation under regular exchange regime then

some of these fall from competition for deceased donation under exchange with incen-

tivized compatible pairs. Depending the size of this fallout, the net effect on the net

inflow of O blood-type patients without live donors can be negative or positive, but this

additional inflow to the regular deceased donation queue will be no more than

ϕlιO.

Depending on which of the above effects dominates, the waiting time for regular O blood-

type patients without live donors can slightly increase or decrease under exchange with

incentivized compatible pairs.

• A blood-type patients:

– Compatible pairs: A measure of

κA = ρ(1− θ)pOλπA,

A − O type compatible pairs participate in exchange to save O − A type pairs. Self-

demanded A− A type compatible pairs do not participate in exchange.
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– Incompatible pairs: A measure of [ρ(1 − θ) + θ]pAλπAB of underdemanded type pairs

A− AB are matched through exchange in every point in time. This is a net increase of

ιA = ρ(1− θ)pAλπAB

with respect to regular exchange. If some of these pair types are pooled for deceased

donation under exchange with incentivized compatible pairs, then they are also pooled for

deceased donation under regular exchange.

The reciprocally demanded pair type A−B continues to run a deficit as B−A inflow is –

by Assumption 3 – lower than A−B inflow. If A−B type pairs wait both for B−A type

pairs and decease donors under incentivized exchange, see the case for patients without

live donors to understand the effect of incentivized exchange on their waiting times below.

On the other hand if they are waiting exclusively for B −As under incentivized exchange

policies, then A − B types wait for the same time under both regular and incentivized

exchange, and exactly the same measure of them gets matched in every moment.

– Patients without live donors:

* Prioritized patients without live donors : Patients of some of the A−O type compatible

pairs that previously participated in exchange reenter as their grafts fail. Their inflow

measure is

ϕlκA = ϕlρ(1− θ)pOλπA.

These reentering A blood-type patients, who no longer have live donors, directly go to the

top of the A blood-type deceased-donor queue instead of going to the bottom as under

regular exchange. We will refer to this as incentivized exchange burden. This is also the

rate of the decease donors reserved for these patients.

* Regular patients without live donors : An additional ιA measure of A − AB pairs are

saved by AB − A types through exchange, a measure of

ϕlιA = ϕlρ(1− θ)pAλπAB.

A blood-type patients reenter and join in the regular queue to the A blood-type patients

without live donors. However, if some A − AB pairs receive deceased donation under

regular exchange regime then some of these fall from competition for deceased donation

under exchange with incentivized compatible pairs. Depending the size of this fallout, the

net effect on the net inflow of A blood-type patients without live donors for the regular

queue can be negative or positive, but this additional inflow will be no more than

ϕlιA − ϕlκA.
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As a result, the waiting time for regular A blood-type patients without live donors, can

slightly increase or decrease under exchange with incentivized compatible pairs (see Figure

8 for an example of the overall impact of this new exchange policy on A blood-type

patients).

• B blood-type patients: Symmetric version of A blood-type patients, except that B − A’s are

immediately matched with A−B’s when they enter the pool by the assumption that B −A’s

are on the short side.

• AB blood-type patients:

– Compatible pairs: A total measure of

κAB = ρ(1− θ)[pO + pA + pB]λπAB

compatible AB−O, AB−A, and AB−B type pairs participate in exchange to save their

reciprocals at each point in time. Self-demanded compatible AB −AB type pairs do not

participate in exchange.

– Incompatible pairs: All incompatible pairs with AB blood-type patients are either self-

demanded or overdemanded. Hence, they are matched immediately when they arrive

through exchange with their reciprocal types under both regular exchange and exchange

with incentivized compatible pairs. Hence additionally a

ιAB = 0

measure of incompatible pairs with AB blood-type patients are matched under the new

regime.

– Patients without live donors:

* Prioritized patients without live donors : The reentry burden of AB blood-type patients

from previous compatible pairs that participated in exchange is

ϕlκAB = ϕlρ(1− θ)[pO + pA + pB]λπAB,

which is the rate of prioritization for AB blood-type reentrants to the deceased donor

queue. This is also the rate of the decease donors reserved for these patients.

* Regular patients without live donors : On the other hand, the same measure of AB blood-

type patients reenter at each point in time under both regular exchange and exchange

with incentivized compatible pairs. No pairs with AB blood-type patients are pooled for

deceased donation under either regular exchange or exchange with incentivized compatible

pairs. Hence, a

ϕlιAB = 0
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measure of additional AB blood-type reentrants from previous incompatible pairs reenter

the deceased donor queue. Net increase of rate of entry to the regular AB blood-type

deceased donor queue is negative and equal to

−ϕlκAB.

As a result, the waiting time for regular AB blood-type patients without live donors un-

ambiguously slightly increases under exchange with incentivized compatible pairs. This

holds as all of the prioritized AB blood-type patients receive deceased donation under ex-

change with incentivized compatible pairs, while some patients from the same population

would have died and not received deceased donation under the alternative regime, regular

exchange.

Proof of Proposition 1. Fix ρ ∈ [0, 1] such that Assumption 4 holds. Consider the following

strategy profile σ∗: all pairs register at P0, the national program, with probability 1. As an optimal

exchange mechanism is used, then under this profile the maximal measure of pairs are matched at

each point in time as explained in Theorem 7 and 8. Moreover, σ∗ is a pure strategy equilibrium

in undominated strategies: as no pairs register in any other platform then it is a best response to

register at P0.

Consider an arbitrary pure strategy equilibrium profile σ in undominated strategies. Each pair

registers at a unique exchange platform with probability one as soon as it arrives.

We prove that all pairs belonging to overdemanded pair types and pair type B −A are matched

with pairs belonging to underdemanded types or pair type A − B immediately when they arrive

under σ. To the contrary, suppose there is a platform Pa where a positive measure of pairs of a

type X − Y ∈ O ∩ T × T , i.e., overdemanded or type B − A, are not matched with pairs of types

in U ∩ T × T , i.e., either underdemanded or type A − B, at σ when they arrive with a positive

probability (using the notation in Subsection 5.2).

Consider any pair typeW1−Z1 in setU that has cX−Y,W1−Z1 = 1 (i.e., that is mutually blood-type

compatible with an X − Y type pair using the same notation). All pairs of type W1 − Z1 should

be matched immediately at σ, as otherwise such a pair x can register at Pa and can be immediately

matched with probability 1 with one of the X − Y pairs at σ. The reason for this is as follows:

As pair x is of measure 0 and a positive measure of X − Y pairs are either being matched with

other overdemanded pairs or not being matched at all, the platform Pa, which is using an optimal

exchange policy with randomization when there are multiple possible pairs to match, will match

pair x immediately with probability 1. This implies that all W1 − Z1 type pairs are matched with

probability 1 through exchange when they arrive at σ by Lemma 7.
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Suppose P1 ⊆ O∩T ×T is the set of overdemanded pair types or type B−A with whichW1−Z1

type pairs are mutually blood-type compatible: that is, P1 = C{W1−Z1}(O ∩ T × T ). Observe that

AB−O ∈ P1. LetV1 ⊆ U∩T ×T be the set of underdemanded pair types or A−B that are mutually

blood-type compatible with the types in P1: that is, V1 = CP1(U ∩ T × T ). As AB − O ∈ P1, we

have V1 = U ∩ T × T = {O−A,O−B,O−AB,A−AB,A−AB,B −AB,A−B} (see Figure 6).

All pairs belonging to types in V1 should be matched immediately with probability 1 at σ, as

otherwise, one pair that does not get matched immediately with positive probability can register at

a platform where a positive measure of W1 − Z1 type pairs register at σ. As all W1 − Z1 pairs are

matched immediately with pairs of types in P1 and this one pair is of measure 0, it would guarantee

to be matched immediately as well.

Pairs of types in U ∩ T × T can only be matched with pairs of types in O ∩ T × T . We have

a measure of e1 =
∑

X−Y ∈U∩T ×T \{A−B}[θ + ρ(1 − θ)]pY λπX + pBλπA underdemanded and A − B

pairs being matched through exchange at every moment in time at σ. However, the total measure of

overdemanded and B −A pairs arriving at each moment is only e2 =
∑

Y−X:O∩T ×T \{B−A}[θ + ρ(1−
θ)]pXλπY + pAλπB. By Assumptions 2 and 4, e2 > e1. Hence, a positive measure of underdemanded

pairs should wait under any feasible exchange scheme, contradicting the fact that all pairs of types

in U ∩ T × T are matched immediately.

Thus, we showed that all pairs of types in O∩T ×T matched to pairs of types in U∩T ×T under

equilibrium. As any positive measure of self-demanded types can be matched with each other at any

platform, equilibrium σ maximizes the total measure of pairs being matched through exchange, and

hence, through deceased donation, as well.

As ρ goes up, the measure of pairs of types in O∩ T × T goes up. Hence, more underdemanded

and overdemanded pairs are matched at any equilibrium, while the measure of reciprocally demanded

pairs matched in exchange stays constant. On the other hand, if patients without live donors are

pooled with some types in U∩ T × T before ρ goes up, the measure of such patients being matched

also increases.

Proof of Theorem 9. By Proposition 1, as the maximal measure of pairs are matched at pure

Nash equilibria in undominated strategies, the worst equilibrium in undominated strategies for P0

is the best equilibrium for other platforms. The measure of pairs matched in every moment in time

through exchange in any pure strategy equilibrium in undominated strategies is given as∑
X−X∈T ×T

θpXλπX + 2
∑

X−Y ∈O\{B−A}

[θ + ρ(1− θ)]pY λπX + 2pAλπB

where [ρ(1− θ)]pY λπX is the measure of compatible pairs participating in exchange, which also save

the same amount of the underdemanded or A−B pairs through exchange. In the worst equilibrium

for P0 only the compatible pairs participate in exchange at P0 among all overdemanded and B − A
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pairs. Hence no B − A pair participates at P0. Among the underdemanded pairs and A − B type

pairs, the participation at P0 is such that exactly ρ(1− θ)]pY λπX survive and get matched with the

compatible pairs. Contrary to the claim, suppose that as ρ increases, the participation of overall

pairs decreases or stays the same at P0 under the worst equilibrium. Then, more compatible pairs

are available of each (feasible) type, the waiting time for the underdemanded pairs registered at P0

decreases while the waiting time at other programs for the same types stay the same of increases.

This leads to a contradiction.

Now, if

ρ >

∑
X−Y ∈O\{B−A} θpY πX + pAπB∑
X−Y ∈O\{B−A}(1− θ)pY πX

,

then

2
∑

X−Y ∈O\{B−A}

ρ(1− θ)pY λπX > 2
∑

X−Y ∈O\{B−A}

θpY λπX + 2pAλπB,

where the left-hand side denotes the least measure of pairs matched at P0 at each point in time at

any equilibrium with undominated pure strategies and the right-hand side denotes the maximum

total measure of efficiency critical pairs matched outside of P0 at an equilibrium.

Therefore, more pairs of types in O register at P0 at any pure undominated equilibrium, as half

of the above measures belong to pairs of types in O registering at P0 (left-hand side) and other

platforms in total (right-hand side), respectively. To the contrary to the claim suppose less or equal

measure of pairs of types in U register at P0 than as more pairs of types in U are matched within

P0 then at all other platforms combined, some pair type X − Y ∈ U will have a lower waiting time

at P0 than some other platform outside, leading to a contradiction to Lemma 7.

B Appendix: ABO-Identical Exchange and Extrapolations

Using US Kidney Transplant Data

Inflow rates of patients without live donors are not given in the data. Live donation rates include

some direct live-donor transplants as well as some exchanges, which are not much wide spread,

yet. A number of them is missing as some patients receive their compatible live donors kidney

without ever being listed in the deceased-donor queue. We use blood-type distribution for deceased

donors reported in Table 3 for both live donors and θ = 11% as the probability of tissue rejection.

For an O blood type patient with a live donor, the probability of having his donor compatible is

plO = (1 − θ)pO = 0.89 × 0.48 = 0.427. If all exchanges involved patients arriving in 2011, then

there were 2, 272− 442 = 1830 direct live-donor transplants for O patients. On the other hand, if all

51



Blood Types Total

O A B AB

Additions to the Queue 16, 240 11, 237 4, 832 1, 260 33, 568

Live-Donor Recipients at the Queue 2, 272 1, 998 674 209 5, 153

- through exchange 199 167 58 18 442

Deceased-Donor Organs 5, 290 4, 026 1, 319 392 11, 026

Estimates

plX 42.7% 75.2% 53.3% 89%

rdX = δX/π
d
X 46.5-48.5% 45.7-46.9% 35.9-37.0% 37.5-38.2%

Table 3: Arrivals to and transplants from the kidney deceased-donor queue in 2011 in the US.

Data obtained from national data at http://www.http://optn.transplant.hrsa.gov on 02/25/2013.

Deceased donor numbers reported in data for each blood type and the empirical fact that 1.48

kidneys are harvested from each deceased donor are used to find the number of deceased-donor

kidneys available.

exchanges involved patients who arrived before 2011 or never listed in the deceased-donor queue , then

there were 2, 272 direct live-donor transplants for O patients. These two boundary numbers respond

to 42.7% of all O patients with O donors. These in turn lead to between 4, 855 and 5, 321 O patients

with live donors being added to the deceased-donor queue in 2011. Hence, the number of patients

without live donors including reentries arriving in 2011 is given between 16, 260 − 5, 321 = 10, 919

and 16, 260−4, 855 = 11, 385. On the other hand, only 5, 290 O deceased-donors arrived. These give

us a lower bound on the rate rdO = δO/π
d
O = 0.465 − 0.485. Similar calculations yield the rd rates

reported in the Table 3 for other blood types.
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Figure 9: The χ–parametric flow network for the proof of Theorem 6, using the exchange and

deceased donation feasibility graph in Figure 6. In order to prevent confusion, the nodes representing

patients without live donors (i.e., blood types in U as defined in Equation 12) are superscripted by

p and the nodes representing deceased donors (i.e., blood types in O as defined in Equation 11) are

superscripted by d.
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Hence, N1∩O = P1 = CV1(O) = {Od, Ad, Bd}. The edges from N1 to N\N1 are denoted by dotted

pointed lines. This cut’s total capacity is qχ1(N1) = δA+δB+δAB+χ1(π
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