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in that dimension. First, we find that both representations of preferences can rationalize the

same “business as usual” economy with no climate externality. Second, we show that once

endogenous climate risks are taken into account, multiplicative preferences recommend a

much tighter policy response. Plausible parametrizations of the model indicate that switch-

ing to the multiplicative preference representation has a similar effect, in terms of policy

recommendations, as increasing the hazard risk of collapse by a factor of 100.
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1 Introduction

A substantial part of the economic literature on climate change discusses climate policy as an

intertemporal trade-off, where the costs of an early intervention are compared with the costs of

later measures. Such an approach is for example the baseline of the prominent contributions by

Stern (2007) and Nordhaus (2008). This line of literature typically presumes that anthropogenic

climate change is gradual and reversible, and that the world, as we know it, will exist for ever

or, at least, that its existence may not be endangered by today’s action (or inaction). However,

recent literature on climate change shows an increasing concern for the risk of abrupt and

irreversible changes in the climate system (e.g. Alley et al., 2003; Kriegler et al., 2009; Lenton

and Ciscar, 2012).1 There is then the possibility that preventive measures that could be taken

today may no longer be available in the future, as a “collapse” might occur in between. The

relevant trade-off is no longer that of present consumption versus future consumption, but that

of consumption versus a risk of catastrophic climate change (Weitzman, 2009).

This paper considers a setting where greenhouse gas emissions increase the hazard risk of

a catastrophic collapse. We define a catastrophic collapse as an irreversible regime shift, with

post-collapse welfare independent of current actions. Such a setting has been studied in several

contributions, starting with Cropper (1976) and including Clarke and Reed (1994), Tsur and

Zemel (1996, 1998), Gjerde et al. (1999), and Karp and Tsur (2011) among others. The most

pessimistic view would be to interpret such a catastrophic collapse as the end of humankind as

we know it. However, it can also consist in falling back in a kind subsistence level. What matters

for the analysis is that no investment can improve post-collapse welfare, so that trajectories after

the regime shift are exogenous.2

Our main objective is to highlight the importance of the intertemporal preference specifica-

1 The study by Lenton and Ciscar (2012) characterizes potentially abrupt and long-lasting changes for some major
elements of the climate system, such as the weakening or shut down of the North Atlantic thermohaline circula-
tion, the melting of the Greenland and the West Antarctic ice sheets, the die-back of the Amazon rainforest and
the increasing frequency and amplitude of El Niño-Southern Oscillation. Such low-probability high-impact events
pose major challenges to decision-makers, as the associated hazard risk, how these relate to human emissions,
and their impact on humankind are highly uncertain.

2 An alternative approach is to consider the risk of “tipping points”, where the realization of the risk affects capital
stock through a damage function, but where the fundamental structure of the system is not affected and thus
continues afterward (see Keller et al., 2004; Lemoine and Traeger, 2013; Cai et al., 2013). In this setting, it
is possible to invest towards welfare enjoyed after the risk is realized. In contrast, we consider the case where
welfare after the collapse is independent of current actions.
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tion when considering the trade-off between consumption and catastrophic risk reduction. In

presence of collapse risk, the time at which the regime shifts occurs is a random variable that

generates a risk on intertemporal utility. For this kind of problems, relying on the standard

discounted utility model is a very peculiar choice, as it involves an assumption of risk neutral-

ity with respect to intertemporal utility (Bommier, 2006). One may however think that for a

given a expected time of collapse, a social planner should prefer to avoid the possibility of a

catastrophic collapse occurring in the very short term, as it would result in very low level of

intertemporal utility. In other words, one may want to account for risk aversion with respect to

intertemporal utility, or using the terminology of Keeney (1980) and Fishburn (1984), introduce

preferences for catastrophe avoidance. This requires departing from from the additive separabil-

ity framework, a simple possibility being to rely on multiplicative preferences. Such preferences,

although much less widespread than additive ones, were used to address a number of issues,

including portfolio choices (Pye, 1973), precautionary savings (van der Ploeg, 1993), the equity

premium (Ahn, 1989). In a social choice setting, Bommier and Zuber (2008) have provided

and axiomatic characterization of a multiplicative model fulfilling the assumption of preference

stationarity. Pure time preferences are then ruled out, but time discounting arises from the

combination of a risk of collapse and preferences for catastrophe avoidance. This multiplicative

model thus reconciles time discounting with an equal treatment of generations.

Although the additive and multiplicative models rely on very different assumptions, we will

show that both models may look very similar when considering an exogenous and constant

catastrophic risk. They may therefore provide two alternative rationalization for the same econ-

omy when climatic risks are not taken into account, what we will refere as “business as usual”

(BAU). Moreover, in absence of climate risks, the similarity between models are shown to ex-

tend, for example, to how the economy would respond to shocks affecting total factor produc-

tivity (TFP). This similarity between models in absence of climate risks contrasts with what is

obtained when an endogenous collapse risk is introduced. The multiplicative model typically

recommends a much more drastic intervention than the additive one. The practical relevance of

our results is illustrated through a set of numerical simulations. In a fist stage both the additive

and multiplicative models are calibrated to approximate the dynamics of the dynamic integrated

model of climate and the economy (DICE) model by Nordhaus (2008) in the BAU scenario. We
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then introduce an endogenous collapse risk. Is is found that the multiplicative model suggests a

significantly higher willingness to reduce the risk of collapse, and thus a more rapid introduction

of emissions control. Thus, although the choice between models might be considered as purely

theoretical with little practical implication in a BAU economy (i.e. when ignoring climate risks),

we show that it is a major driver of the policy response to the existence of catastrophic climate

risks.

The remainder of the paper is organized as follows. In Section 2 we first present the tech-

nological setting. Section 3 is about the social planner’s preferences. Section 4 exposes the

first order conditions that characterize optimal trajectories when working with these models,

and also characterize the steady states. Section 5 reports numerical simulations with a simple

climate-economy model, contrasting optimal paths for additive and multiplicative models under

specific risk profiles. Section 6 concludes.

2 The economy

Time is assumed to be continuous and denoted by the letters t, τ or T .3 To simplify notation,

for any function x(·) that depends on time, we denote by xt (and not by x(t)) its value at time

t. The steady state value of a variable xt is denoted x∗, and its time profile is x. Consistent with

this notation we will denote by G(x) by the value of the functional G applied to the profile x

and by g(xt) the value of the function g taken at the point xt. For any function of time xt, the

notation ẋt will refer to the derivative of x with respect to t, i.e. ẋt = d
dtxt.

Consider an economy where output is associated with a flow of emissions, which we interpret

as greenhouse gas (GHG) emissions. Potential output at time t is denoted yt. It is related to

physical capital at time kt through yt = f(kt). The production function f is assumed to be

increasing and concave. Like in Stockey (1998), emissions are caused by production depending

of an index of the technology zt, with 0 ≤ zt ≤ 1. Actual output at time t is ȳt = ztf(kt). The

ratio of GHG emission et on potential output is given by the differentiable, increasing, convex

3 Working in continuous time allows us to obtain simpler analytical expressions, and we thus use it for the first
sections of the paper. For the numerical part later on, we will formulate the problem in discrete time. Moving
from continuous time to discrete time does not affect the qualitative properties of the problem.
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function ϕ(zt) = et
f(kt)

. GHG concentration in the atmosphere Mt develops as:

Ṁt = et − ψ
(
Mt − M̄

)
= ϕ(zt)f(kt)− ψ

(
Mt − M̄

)
(1)

where ψ is a positive real number (the natural rate of absorption), and M̄ is an equilibrium

value for GHG concentration in the absence of anthropogenic GHG emissions.

We assume the existence of a risk of catastrophic collapse that would move the economy

to a state where consumption and production trajectories are exogenous (i.e. independent of

pre-collapse actions). Intuitively, the nature of this shift is so unpredictable that it is impossible

to readily invest for the post-collapse welfare. Following Clarke and Reed (1994), we assume

that the likelihood of such a collapse is a function of the pollution stock. Formally, we write the

hazard rate of a regime shift as:

µt = µ(Mt)

where µ is an increasing function. Furthermore, we will assume that µ(0) = µ0 > 0, with

µ0 small, so that the hazard rate of collapse also captures exogenous natural events. Note

that we do not consider direct damages associated with increased emissions, either through

damages reducing consumption or as an independent element of people welfare. This would

solely increase incentives to reduce emissions and distract us from the main point of the paper.

The last aspect of the economy is a simple growth model with only one productive sector.

Each period, actual output ȳt can be either consumed ct or invested to accumulate physical

capital. The motion equation for capital is:

k̇t = ztf(kt)− δkt − ct

where δ is the instantaneous rate of capital depreciation. The planner’s problem involves choos-

ing the optimal trajectories for ct and zt, his objective being discussed in the next section.

3 Social preferences

We consider a social planner who deems that welfare at time t exclusively depends on consump-

tion at time t. The planner is aware of the possibility of a regime shift, and that he cannot
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have any influence on what happens after such a shift. Since the regime shift does not occur

deterministically, the planner needs to compare random trajectories. We assume that he is an

expected utility maximizer, in the general sense that the utility index is a weighted sum of in-

tertemporal utilities enjoyed under alternative state of the worlds. In our context, the planner

weights the intertemporal utility associated with all possible collapse date by their respective

probabilities.4

Formally, the time at which the world will experience a regime shift is viewed ex-ante as

random. Therefore, the planner assesses an infinitely long consumption plan c, which may be

interrupted by a regime shift. We will denote by U(c, t) the utility the planner associates to the

case where the consumption profile c is interrupted by a regime shift at time t. The planner will

choose c in order to maximize his expected utility, denoted W (c), which is simply the expected

value of U(c, t) given gt, the distribution function of the random variable t :

W (c) =

∫ +∞

0
U(c, t)gtdt (2)

Further denote by st the probability that the world will still be in the usual regime at time t

(the survival probability). We know from survival analysis that µt = gt
st

= − ṡt
st

. In consequence,

st = exp
(
−
∫ t

0 µτdτ
)

and

gt = µt exp

(
−
∫ t

0
µτdτ

)
= µ(Mt) exp

(
−
∫ t

0
µ(Mτ )dτ

)
. (3)

We can thus re-express the social expected utility (2) as:

W (c) =

∫ +∞

0
U(c, t)µ(Mt) exp

(
−
∫ t

0
µ(Mτ )dτ

)
dt . (4)

Hence the social welfare function is a function of the consumption path as well as the hazard

rate associated with the trajectory of the pollution stock.

In order to focus the discussion, we impose further structure on the planner’s preferences.

4 It is worth emphasizing that assuming expected utility does not involve making assumptions regarding how
consumption is aggregated over time to provide an intertemporal utility. The most common approach consists in
assuming that intertemporal utility is the sum of instantaneous utilities, but other aggregation procedures (e.g.
a multiplicative aggregation) are of course possible.
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First, we assume that preferences are stationary in the sense of Koopmans (1960). This reflects

the view that preferences regarding the future should be independent of the past and of the

calendar date, and ensures that the ensuing plans are time consistent. Second, we assume that

preferences are weakly separable in the sense that their restriction to deterministic consump-

tion paths fulfills the separability assumption described in Gorman (1968). In other words,

in absence of uncertainty, the trade off between welfare at two different moments in time is

independent from what happens in other periods.

As is shown in Bommier (2012), these standard assumptions imply that the utility index,

whose expectation is maximized by the planner, must have either an additive or a multiplicative

structure. More specifically, assuming that exogenous post-collapse welfare is equivalent to the

welfare associated with consuming c for ever, and normalizing (without loss of generality) the

utility function u(.) so that u(c) = 0, we must have:

U(c, t) =

∫ t

0
e−θτu(cτ )dτ in the additive case, (5)

U(c, t) =
1− exp

{
−ε
∫ t

0 u(cτ )dτ
}

ε
in the multiplicative case, (6)

where θ ≥ 0 is the pure rate of time preference and ε ≥ 0 measures the degree of absolute risk

aversion with respect to intertemporal utility (i.e. an increase in ε increases risk aversion in the

sense of Kihlstrom and Mirman (1974)). In the remainder of the paper, we call ε the temporal

risk aversion parameter.

Normative and ethical aspects of additive and multiplicative preferences have been discussed

in Bommier and Zuber (2008). In short, additive preferences assume pure time preference, im-

plying that different generations are given different utility weights as a consequence of their

years or birth. This aspect has often been criticized for being contrary to intergenerational

equity. Multiplicative preferences rule out this possibility but make it possible for the the plan-

ner to exhibit risk aversion with respect to intertemporal utility, or equivalently, preference for

catastrophe avoidance. This may lead the social planner to choose policies that do not optimize

individual welfare in order to reduce the aggregate risk. There is a debate about such ethical im-

plications (Manski and Tetenov, 2007; Fleurbaey, 2010), and we do not suggest that one model
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is more appropriate than the other. Rather, our aim is to highlight implications of alternative

preferences towards social risk in the context of climate change policy.

The additive and multiplicative models are both extension of the case where utility would

be given by U(c, t) =
∫ t

0 u(cτ )dτ . This specification is indeed obtained when θ = 0 in the

additive case and when ε = 0 in the multiplicative case. In the expected utility framework, it is

impossible to combine pure time preference and preferences for catastrophe avoidance without

giving up the assumption of preference stationarity. Stationary preferences exhibiting both pure

time preferences and catastrophe avoidance may be obtained by leaving the domain of expected

utility theory, as in the “risk-sensitive preferences” model introduced by Hansen and Sargent

(1995) and axiomatized in Bommier and LeGrand (2013). In fact, additive and multiplicative

models are just two polar cases in the class of risk-sensitive preferences. Thus, our results

could be extended to a continuum of models in which θ > 0 and ε > 0. Focusing on additive

and multiplicative specifications is however sufficient, and the simplest way, to provide insights

about the importance of the representation of intertemporal preferences.

One final technical consideration worth mentioning is that the integral in Equation (2) does

not necessarily converge. For the problem at hand however, and assuming that θ and ε are non-

negative, this issue can be avoided by making the assumption that consumption is bounded.

For both additive and multiplicative preferences, we can apply integration by part on equa-

tion (4) to obtain:

W (c) =

[
−U(c, t) exp

(
−
∫ t

0
µ(Mτ )dτ

)]+∞

0

+

∫ +∞

0

dU(c, t)

dt
exp

(
−
∫ t

0
µ(Mτ )dτ

)
dt (7)

The first term of the right hand side is zero, and the second one can be simplified by introducing

a function v(µt, ct) from R× R into R given by:

• v(µt, ct) = θ + µt in the additive case;

• v(µt, ct) = µt + εu(ct) in the multiplicative case.

We can now write equation (7) as:

W (c) =

∫ +∞

0
exp

(
−
∫ t

0
v(µ(Mτ ), cτ )dτ

)
u(ct)dt (8)

7



Using equation (8) is convenient, as the difference between both models is restricted to the

function v(µt, ct).

For notational purposes, we write the continuation utility U(c, T ) as the future remaining

expected utility discounted at time T :

U(c, T ) =

∫ +∞

T
exp

(
−
∫ t

T
v(µ(Mτ ), cτ )dτ

)
u(ct)dt. (9)

We shall now define two important concepts.

Definition 1 The social discount rate is:

ρ(c, T ) = − d

dT

(
log

∂W (c)

∂cT

)
|ċT=0 (10)

The discount rate measures how rapidly the marginal utility of consumption is declining with

time, controlling for variations in consumption.5 A similar definition can for example be found

in Epstein (1987).

The second concept quantifies the willingness to sacrifice current consumption to lower the

hazard risk of a regime shift.

Definition 2 The social value of catastrophic risk reduction is:

V(c, T ) = −
(
∂W (c)
∂µT

)/(
∂W (c)
∂cT

)

This social value of catastrophic reduction is therefore simply the opposite of the marginal rate

of substitution between consumption at time t and hazard risk of regime shift at time t. In

the parallel literature on individual choice with endogenous mortality (death being a particular

regime shift), this is called the value of a statistical life.

The following proposition provides expressions for the social discount rate and for the social

value of catastrophic risk reduction for the additive and multiplicative cases:

Proposition 1

(a) In the additive case, ρ(c, T ) = µ(MT ) + θ and V(c, T ) = U(c,T )
u′(cT ) .

5 As we work in continuous time, the derivatives ∂W (c)
∂cT

is to be understood as a Volterra derivative.
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(b) In the multiplicative case, ρ(c, T ) = µ(MT )
1−εU(c,T ) and V(c, T ) = U(c,T )

u′(ct)(1−εU(c,T )) .

Proof. See Appendix A.

In the additive model, the discount rate is just the sum of the rate of pure time preferences

and of the hazard risk of regime shift, as is well known since Yaari (1965). In particular the rate

of time discounting is independent of consumption. In the multiplicative model, the discount

rate involves the continuation utility, which depends on future consumption and future hazard

risk. This implies that changing the parameters of the multiplicative model has a non-trivial

impact on the discount rate as the continuation utility function may depend on these parameters.

Nevertheless, one may show that for a given risk of regime shift a higher ε would lead to a larger

discount rate (Bommier and Zuber, 2008). Indeed if a regime shift occurs, later generations will

not be able to benefit from foregone consumption by early generations, which leads a risk averse

planner to put even more weight on the welfare of early generations.

The social value of catastrophic risk reduction also has very different expressions in both

models. In both cases this value depends positively on the continuation utility (thus on future

consumption), as it increases the cost of a regime shift, and thus the willingness to pay to lower

its risk. In the additive case, continuation utility is a decreasing function of the rate of time

preference. Thus a higher preference for the present imply a lower willingness to pay for risk

reduction. In the multiplicative case the role of risk aversion is less obvious, as it combines two

effects. On the one hand, a greater ε implies a higher aversion to the risk of regime shift, thus

increasing the willingness to pay for risk reduction. On the other hand, in presence of a collapse

risk, a greater ε increases the value of immediate consumption through the discount rate, which

lowers the willingness to pay for risk reduction. The overall effect is ambiguous, which is in line

with findings on the role of risk aversion on preventive measures (Jullien et al., 1999).

In order to get some intuition about the implications of additive and multiplicative pref-

erences in the presence of an endogenous collapse risk, one can observe that in the additive

case:

V(c, T ) =
ρ(c, T )U(c, T )

u′(cT )

1

µt + θ
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while in the multiplicative case:

V(c, T ) =
ρ(c, T )U(c, T )

u′(cT )

1

µt
.

If consumption and the hazard rate of regime shift were to remain constant over the time, then

in both models, one would have ρ(c∗, T )U(c∗, T ) = u(c∗). In that case, the value of catastrophic

risk reduction would be (1 + θ
µ) larger in the multiplicative model than in the additive one.

Predictions of both models would then strongly diverge when the pure rate of time preference

in the additive model is large compared to the hazard risk.

4 Optimal paths and steady states

4.1 Business as usual

We first study the problem of choosing an optimal consumption plan when the hazard risk of

collapse is constant and exogenous. We label this problem the BAU problem because the planner

does not account for the effect of emission on the risk of a catastrophic event. Our objective is to

highlight that the choice between the two social objectives does not matter so much in problems

that focus on intertemporal consumption trade-offs. This contrasts with a setting in which the

planner accounts for the effects of current decisions on the hazard of a catastrophic collapse,

which we discuss next (Section 4.2).

Consider a social planner who faces a hazard risk µt = µ0 in all periods. His objective, which

defines the BAU problem, is:

max
(c,z)

W (c) =

∫ +∞

0
exp

(
−
∫ t

0
v(µ(Mτ ), cτ )dτ

)
u(ct)dt (11)

s.t. k̇t = ztf(kt)− δkt − ct

µ(M) = µ0, ∀M ∈ R

with v(µt, ct) = θ + µ0 in the additive case and v(µt, ct) = µ0 + εu(ct) in the multiplicative case.

Because the stock of pollution does not have a direct effect on welfare and the impact of

pollution on the regime shift is overlooked by the planner, there will be no emission control.

Hence at the optimum we have zt = 1 for all t ∈ R, and we have:
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Proposition 2

(a) If a steady state exists for an interior solution of Problem (11), then it is characterized by the

following equations:

ċt = − u
′(ct)

u′′(ct)

(
f ′(kt)− δ − ρ(c, t)

)
(12)

k̇t = f(kt)− ct (13)

(b) If a steady state exists for an interior solution of Problem (11), then:

(i) In the additive case, it is characterized by the following equations:

µ0 + θ = f ′(k∗)− δ (14)

f(k∗) = c∗ (15)

(ii) In the multiplicative case, it is characterized by the following equations:

µ0 + εu(c∗) = f ′(k∗)− δ (16)

f(k∗) = c∗ (17)

Proof. See Appendix B.

The optimal dynamics described in part (a) of Proposition 2 is the familiar optimal growth

trajectory in a one-sector model. Equation (12) is the Euler equation describing the evolution of

consumption as a function of the difference between the interest rate on capital investments and

the social discount rate. Equation (12) holds for both the additive and multiplicative models, but

the expression of the discount rate ρ(c, t) depends on the specification (Proposition 1). Equation

(13) is the standard motion equation for the state variable.

A noteworthy feature of Proposition 2 is the similarity of the additive and multiplicative

steady state equilibria in the BAU problem, displayed in part (b) of the Proposition. For any θ

it is possible to find an ε such that the additive and multiplicative model yield the same interest

rate in the long run, and hence the same equilibrium consumption and physical capital. In

particular, it suffices to define ε = θ/u(c∗) for the steady state consumption and physical capital
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to be the same in the additive and multiplicative cases.

While the parameters of the models can be calibrated to produce the same BAU steady state

equilibrium, short-term dynamics will differ. For such a calibration, our numerical simulations

will however suggest that optimal BAU paths for the additive and multiplicative models are very

similar (see Section 5.2 below).

4.2 Endogenous catastrophic collapse

We now come to the specific problem studied in this paper, namely the case where the social

planner anticipates the effect of his actions on the probability of a regime shift. In that case, the

social planner seeks to solve the following dynamic optimization problem:

max
(c,z)

W (c) =

∫ +∞

0
exp

(
−
∫ t

0
v(µ(Mτ ), cτ )dτ

)
u(ct)dt (18)

s.t. k̇t = ztf(kt)− δkt − ct

Ṁt = ϕ(zt)f(kt)− ψ(Mt − M̄)

with v(µt, ct) = θ + µt in the additive case and v(µt, ct) = µt + εu(ct) in the multiplicative case.

Denote π(z) = z− ϕ(z)
ϕ′(z) . The optimal path for an interior solution of Problem (18) is charac-

terized as follows:

Proposition 3

(a) If an interior solution of Problem (18) exists, it is characterized by the following equations:

ċt = − u
′(ct)

u′′(ct)

(
π(zt)f

′(kt)− δ − ρ(ct, t)
)

(19)

żt =
ϕ′(zt)

ϕ′′(zt)

(
ϕ′(zt)µ

′(Mt)V(ct, t) + δ −
{
ψ + π(zt)f

′(kt)
})

(20)

k̇t = ztf(kt)− ct (21)

Ṁt = ϕ(zt)f(kt)− ψ(Mt − M̄) (22)

(b) If a steady state exists for an interior solution of Problem (18), then:
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(i) In the additive case, it is characterized by the following equations:

µ(M∗) + θ = π(z∗)f ′(k∗)− δ (23)

π(z∗)f ′(k∗)− δ + ψ =
u(c∗)

u′(c∗)
µ′(M∗)
µ(M∗)+θϕ

′(z∗) (24)

z∗f(k∗) = c∗ (25)

ϕ(z∗)f(k∗) = ψ(M∗ − M̄) (26)

(ii) In the multiplicative case, it is characterized by the following equations:

µ(M∗) + εu(c∗) = π(z∗)f ′(k∗)− δ (27)

π(z∗)f ′(k∗)− δ + ψ =
u(c∗)

u′(c∗)

µ′(M∗)

µ(M∗)
ϕ′(z∗) (28)

z∗f(k∗) = c∗ (29)

ϕ(z∗)f(k∗) = ψ(M∗ − M̄) (30)

Proof. See Appendix C and Appendix D for the additive and multiplicative cases respectively.

To understand the optimal dynamics described in part (a) of Proposition 3, first remark that

Equation (19) is, like before, the Euler equation. It is adapted to the present setting where net

interest rate rt = π(zt)f
′(kt)− δ is adjusted to take into account the pollution externality.

Equation (20) is an arbitrage condition on emission control. Assume that you divert money

from investments in physical capital to increase emission control (i.e. decrease z). The cost is

given by the net interest rate rt. The benefits is to decrease emissions (in proportion ϕ′(z)), so

that the risk decreases through µ(Mt). The value of this risk reduction is given by V(c). Hence

the net benefit is ϕ′(z)µ′(M)V(c) − ψ, where ψ accounts for the reduction in risk that occurs

through natural absorption. The arbitrage between costs and benefits governs the evolution of

emission control.

A key difference with the BAU problem is that the steady states displayed in part (b) of

Proposition 3 are different in the additive and the multiplicative cases when they are calibrated

to the same BAU interest rate (ε = θ/u(c∗)). The key difference is in the right-hand side of Eq.

(24) and (28). The difference tends to vanish whenever θ is close to 0 (so that the associated

ε is close to 0). Hence, for very low values of the rate of pure time preference (and of the
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temporal risk aversion parameter), the two models behave in a similar way in the long run. This

is consistent with the fact that when θ = ε = 0 the additive and multiplicative preference models

are formally identical. However, as soon as we take some distance with this particular case, the

models provide very distinct predictions, as pure time preferences and risk aversion with respect

to the date of a catastrophic shift have different behavioral implications.

In the additive model, increasing pure time preference has two direct effects. First, it in-

creases the social discount rate (Equation (23)). Second, it decreases the social value of catas-

trophic risk reduction, which is u(c∗)
u′(c∗)(µ(M∗)+θ) in steady state (Equation (24)). From the effect

on the social discount rate, the future matter less for higher values of pure time preference,

inducing less capital accumulation that can result in less consumption and less pollution. On

the contrary, higher values of pure time preference will induce a lower value of catastrophic

reduction, and hence less tight environmental policies that can result in more consumption and

more pollution.

In the multiplicative model, increasing temporal risk aversion has only one direct effect,

which is to increase the social discount rate (Equation (27)). A higher value of the temporal risk

aversion parameter will therefore tend to decrease consumption but it has no direct impact on

the steady state value of social value of catastrophic risk reduction risk, which is u(c∗)
u′(c∗)µ(M∗) . It

may still have an indirect impact through its effect on consumption and GHG concentration. It

is worth noting that for the same value of c∗ and M∗ the value of social value of catastrophic

risk reduction risk is always higher in the multiplicative model than in the additive one. This

suggests that the multiplicative model may be more prone to avoid catastrophic risks.

To study whether this is actually the case, we now turn to a calibrated version of the model.

It will allow us to compare not only the steady state equilibria, but also the optimal dynamics of

the two models. We will also investigate the role of two key parameters: the rate of pure time

preference θ (or the associated temporal risk aversion parameter ε) and the consumption level

c equivalent to the post regime shift welfare.
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Table 1: Parametric specifications for numerical simulations

Parameter Value Source

Production technology: yt = Akαt
A Total factor productivity 8.5 Calibrated
α Share of capital 0.3 Nordhaus (2008)
k0 Initial capital stock 0.99 Calibrated
δ Rate of depreciation 0.1 Nordhaus (2008)

Carbon cycle: ∆Mt = κzβt − ψ
(
Mt − M̄

)
κ Emissions intensity 0.29 Calibrated
β Abatement cost parameter 2.7 Nordhaus (2008)
ψ Exogenous emissions’ decay 0.005 Calibrated
M Pre-industrial stock of emissions 596.4 Nordhaus (2008)
M0 Initial pollution stock 808.9 Nordhaus (2008)

Instantaneous utility function: u(c) = c1−γ−c1−γ
1−γ

γ Marginal utility parameter 2 Calibrated
c Post-collapse consumption 1 –
θ Pure rate of time preference (additive model) 0.015 Nordhaus (2008)
ε Temporal risk aversion (multiplicative model) 0.0014 Calibrated

5 A numerical illustration

5.1 Calibration and solution method

To quantify the implications of alternative preference representations on optimal paths, we for-

mulate a numerical version of the model presented above. Most of the functional forms and

parameter values are taken directly from the Dynamic Integrated model of Climate and the

Economy (DICE) model by Nordhaus (2008), or calibrated to reproduce BAU trajectories in the

DICE model (i.e. no climate externality). These are summarized in Table 1.

Potential output is represented by the function yt = Akαt , with α = 0.3. Given our assump-

tions about social preferences and a depreciation rate of 10% taken from Nordhaus (2008), we

calibrate the TFP parameter (A) such that our BAU steady state output equals per capita output

in 2100 in the DICE model. The initial capital stock (k0) is then chosen such that y0 equals

DICE’s per capita output in the initial year (2005).

The DICE model features a detailed representation of the carbon cycle, whereas we only

have one equation describing the dynamics of the pollution stock (Equation (1)). Nevertheless,
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we find that we can approximate GHG dynamics quite well. First, the initial pollution stock

M0 = 808.9 GtC and the pre-industrial GHG concentration M = 596.4 GtC are taken directly

from DICE. Second, the natural decay of the stock, measured by ψ in our model, is determined

by switching off emissions the DICE model from 2005 onwards, and simulating the evolution

of DICE’s GHG stock. We then choose the parameter ψ such that the trajectory of the pollution

stock in our model (with no additional emissions) matches that of the DICE model. Third, the

function describing emissions per unit of output is specified as ϕ(zt) = κzβt , with β = 2.7 as in

DICE. The parameter κ, measuring uncontrolled emissions intensity per unit of output, is chosen

to closely approximate DICE’s BAU pollution trajectory, given BAU values for for y, k and natural

decay ψ.

The hazard risk of catastrophic collapse is described by the function µ(M) = µ0 + µ1(M −

M)σ. The exogenous hazard parameter is set to µ0 = 10−5, which implies a survival probability

of 90% after 10,000 years and 40% after 100,000 years. As the GHG stock increases above

M , the hazard risk increases with parameters µ1 and σ. We consider two alternative param-

eterizations for the hazard function, illustrated in Figure 1. Under the “low” risk profile, the

endogenous part of the hazard risk, µ1(M −M)σ, remains below µ0 when the stock doubles

relative to M , but it increases to 0.01% when the stock triples. This implies that a tripling the

GHG stock would reduce the survival probability by 2.5 percentage points after 1,000 years.

Under the “high” risk profile, the endogenous part of the hazard rate is 100 times larger for the

same pollution stock. The risk of collapse under BAU reaches 1% by 2100, which is in line with

Weitzman (2009). Under this profile, a doubling of the stock reduces the survival probability by

3 percentage points after 100 years.

For both the additive and the multiplicative models, the instantaneous utility function is

given by u(ct) = c1−γ−c1−γ
1−γ . We calibrate γ such that the initial saving rate in the BAU is 22% as

in the Dice model. The post-collapse consumption level c is set to 1, which corresponds to an

85% reduction of the initial consumption level (around $6,500). We stress that our aim is not to

portray a specific catastrophe linked with climate change. Rather we see this numerical exercise

as a way to illustrate the magnitude of the modeling choices. We will examine the importance

of c for our results in Section 5.4.

In the additive model, the pure rate of time preference θ is 1.5% per year, as in the DICE
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Figure 1: Pollution stock and hazard risk of collapse

(a) Low risk profile
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(b) High risk profile
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model. As discussed in Section 4.1, we calibrate the temporal risk aversion parameter in the

multiplicative model such that both models predict the same BAU steady state interest rate.

This is achieved by setting ε = θ/u(c∗), where c∗ is the BAU steady consumption in the additive

model (determined by solving the additive model with µ1 = 0).

We solve the numerical versions of problems (11) and (18) as discrete time non-linear pro-

grams. Indeed the uncertainty about collapse time T is summarized in the function v(µt, ct),

so that tools from mathematical programming can be applied. In an optimization framework

however it is not possible to formulate an infinite horizon program, since it would require max-

imizing a sum with an infinite number of terms subject to an infinite number of constraints.

We thus truncate the horizon of the problem to a finite number of periods, and approximate

the solution to the infinite horizon problem with a state variable targeting approach (Lau et al.,

2002).6 This approach involves formulating the problem in the mixed complementarity format,

which exploits the equilibrium conditions relating the constraints of the primal problem and

their associated multipliers, as defined by the Karush-Kuhn-Tucker conditions. We formulate the

6 If the time horizon of the problem is finite, the optimal shadow values of the stock variables are zero in finite
time. Hence typically, the solution of the finite horizon problem differs from its infinite horizon counterpart.
These terminal effects can be avoided by adding equilibrium conditions targeting the post-terminal evolution
of the shadow values to be consistent with the infinite horizon solution. Following Lau et al. (2002), we use
steady-state conditions relating the rate of change of investment to that of output to target the post-terminal
value of the capital stock. For the pollution stock we relate the rate of change of the technology index to that of
output to target the (negative of the) post-terminal value of the emissions stock.
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system of complementarity relationships in GAMS and solve it with the PATH solver (Dirkse and

Ferris, 1995).

5.2 Business as usual and TFP shock

We start by comparing the BAU paths implied by the additive and multiplicative models. Given

our calibration procedure both models admit the same steady state interest rate, and by Propo-

sition 2 the steady state capital stock and consumption level are identical. In the additive case, it

is possible to derive closed-form solutions for the steady state values of the capital stock and con-

sumption level, and this can be used to validate both the calibration procedure and the accuracy

of the solution method.7

Figure 2 reports the optimal paths for ct and kt, as well as the value of their respective ana-

lytical steady state. All paths converge to their theoretical values, which demonstrates that both

models can rationalize the same BAU economy, but also that we numerically approximate the

true steady state with a high precision. Moreover, while the transition paths can potentially dif-

fer between additive and multiplicative specifications, optimal trajectories are almost identical.

We note that the multiplicative model suggests a slightly more rapid convergence towards the

steady state. This is because the discount rate is endogenous according to the multiplicative

model, and thus changes during the transition.

Further evidence about the similarity between the two choice models in the absence of an

endogenous catastrophic risk is provided by looking at the response to a TFP shock. Figure

2 displays the optimal transition paths under a 5% increase in the TFP parameter (A) from

t = 0 onwards (curve labeled “TFP shock”). We find that both the steady state values and the

transition paths remain almost identical in both models.

7 The analytical steady state in the additive model with µ1 = 0 and zt = 1 is given by:

k∗ =

(
Aα

δ + θ

) 1
1−α

and c∗ = A(k∗)α − δk∗.
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Figure 2: Business as usual calibration and TFP shock
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5.3 Optimal climate policy under endogenous catastrophic collapse

We now consider the case where the planner takes into account the relationship between the

stock of pollution and the hazard risk of catastrophic collapse. Optimal paths for consumption

ct, pollution stock Mt and the hazard risk µt under the two alternative specifications of the risk

profiles and social preferences are reported in Figure 3. We also report BAU trajectories as a

reference, which are labeled as “no risk”.

In the presence of a collapse risk, consumption in every period is lower than under BAU.

However, the magnitude of the decline varies greatly across risk profiles and preferences rep-

resentations. In the additive model, the consumption trajectory under the low risk profile does

not differ significantly from BAU. Similarly, the stock of GHG remains very close to BAU, and the

reduction in the hazard risk is negligible. By 2150, the risk of collapse related to the stock of

pollution is around 0.01% per year.

In our model, the reduction of emissions can be achieved either by using a cleaner but costly

technology (i.e. choosing zt < 1), or slowing down the accumulation of capital by increasing

consumption. As shown in Figure 4, the optimal solution under additive preferences and a low

risk profile only uses the latter option. Since the economy produces with the dirty but efficient

technology (zt = 1), slowing capital accumulation allows the consumption trajectory to remain

close to BAU. In the steady state, however, both capital and consumption are lower than their

BAU counterpart.
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Figure 3: Optimal consumption and pollution under endogenous catastrophic risk

(a) Additive model
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(b) Multiplicative model
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In contrast to the additive model, under multiplicative preferences emissions reductions are

drastic even when the planner faces a low risk profile. The dirty technology is used for the first

15 periods, but then z falls below one and the consumption trajectory significantly diverges from

BAU. This keeps the steady state stock of emissions below 1200 GtC. This threshold, which cor-
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Figure 4: Optimal abatement under endogenous catastrophic risk

(a) Additive model
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(b) Multiplicative model
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responds to a doubling of GHG concentration compared to the pre-industrial level, is therefore

never reached with multiplicative preferences.

When we consider the high risk profile, the multiplicative model suggests an immediate

change in the emission technology, with around 40% of output being diverted to lower emissions

through zt. Given this, both the consumption level and the stock of emissions do not grow

beyond their 2010 levels. With the additive model there is still no change in technology in the

first years, and a much smaller adjustment in the long term. In the multiplicative model the

endogenous part of the risk is reduced below the level of the exogenous risk (µ0 =0.001%),

whereas the risk tolerated by the planner under additive preferences is around 0.02% by 2100,

which would reduce the survival probability below 80% after 1,000 years.

On may notice that the trajectory obtained with the additive model and high risk is quite

close to the one derived with the multiplicative model and low risk. Therefore, switching from
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the additive to the multiplicative models has about the same impact as a 100-fold increase in

the hazard risk profile. This suggests that the attention given to the form of social preferences

matters as much as the quantification of risks associated with GHG emissions. In particular,

in the presence of an unusual catastrophic risk such as climate change, where there is little

observations to inform the representation of social preferences, it should at least be recognized

that the assumptions underlying the traditional additive model have tremendous consequences

for policy recommendations.

5.4 On the role of post-collapse welfare and time preferences

Let us now turn to the role of main parameters determining magnitude of the catastrophe,

namely the level of post-collapse consumption c, and the choice of the discount rate in the

additive model.

The choice of c does not influence the qualitative nature of our results, but Figure 5 shows

that it greatly matters for the magnitude of the policy response. The value for c depends on the

kind of collapse risk one may think of, and is thus debatable. Our aim here is only to illustrate

how this parameter influences our results. The value used so far (c = 1) corresponds to an 85

% decrease of consumption. We now consider two additional post-collapse consumption levels:

(i) c = 0.5 (more severe poverty); (ii) c = 0.01, a prospect that could be associated with human

extinction.

Reducing post-collapse consumption from c = 1 to c = 0.5 has a relatively small impact on

optimal paths (compare Figure 3 and Figure 5). Moreover, the change in optimal trajectories is

similar under additive and multiplicative preferences, although the differences between models

remain (i.e. the stock of emissions is significantly lower with the multiplicative model). Simi-

larly, moving to c = 0.01 involves much more drastic intervention but the qualitative differences

between models are preserved.

As for alternative hazard risk schedule, we observe that the path derived with additive pref-

erences and a low value of post-collapse consumption, c = 0.01, is close to the one derived with

multiplicative preferences and c = 1. This suggests a correspondence between the magnitude

of the catastrophic collapse and the choice of the social preference representation. Moreover,

our simulations show that, for both models, c = 0.01 with a low risk profile implies roughly the
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Figure 5: The role of post-collapse consumption level (c) under endogenous hazard risk

(a) Additive model
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(b) Multiplicative model
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same equilibrium as c = 1 with a high risk profile.

The second parameter we consider, the pure rate of time preferences in the additive model

(θ), is a highly contentious parameter in the economic literature on climate change. As we have

shown earlier, it partly determines the difference in how the multiplicative and the additive

model respond to an endogenous hazard risks (see Section 4.2). The value used by Nordhaus

(2008) of 1.5% has been criticized by Stern (2007) among others as being unethically high. In

the following, we thus use a discount rate of 0.1% as in Stern (2007).

We calibrate both choice models so that they yield the same BAU steady state interest rate.

Therefore, the choice of θ also determines the temporal risk aversion parameter in the multi-

plicative model ε. Moreover, changing the discount rate also modifies incentives to accumulate

capital in the BAU, and we re-calibrate the TFP parameter to remain on the same benchmark
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Figure 6: Comparing additive and multiplicative models under low time preferences (θ = 0.1%)

(a) Additive model
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(b) Multiplicative model
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path for output and emissions.8 Figure 6 compares the additive model with a discount rate of

0.1%, with a multiplicative model re-calibrated to produce the same BAU steady state interest

rate. As above, we contrast optimal paths under the low risk profile and two alternative post-

collapse consumption levels, namely c = 0.5 and c = 0.01. We stress that our objective remains

to compare how additive and multiplicative models that rationalize the same BAU economy

respond to information about a hazard risk of catastrophic collapse.

Under a low value for the pure rate of time preference, here θ = 0.1%, optimal trajectories

for additive and multiplicative preferences are very close. This was expected from Proposition

3: the equations defining the steady state become very similar when the pure rate of time pref-

erence approach zero. The simulations further show that, for the particular parametrization we

8 Since our calibration procedure targets the path for output, the BAU consumption path slightly differs from that
reported in Figure 3. The BAU emissions path and associated hazard risk are however exactly identical.
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consider, reducing θ in the additive model significantly increases the abatement efforts, whereas

trajectories for the multiplicative model remain close to those reported in Figure 5. This is so

because reducing θ in the additive model increases the value of catastrophic risk reduction, and

in the present configuration this effect dominates the discounting effect.

We thus conclude that differences between both models are not irreconcilable, and hinge

upon the view of the appropriate pure rate of time preference prevailing in the additive model.

Nevertheless, our simulations indicate that it is the paths of the additive model that converge

towards those of the multiplicative models rather than the opposite. This therefore reinforces

our message that basing policy recommendations solely upon the additive model in conjunction

with a more conventional value for the pure rate of time preference (θ > 1%) has very strong

implications when considering the trade-off between consumption and hazard risk reduction.

6 Concluding remarks

Economic studies about individual portfolio choice have long discussed the role of risk aversion.

It is now well accepted that individuals may dislike taking risk, and that risk aversion is an ele-

ment that has to be integrated in studies about the optimal degree of risk taking. Very similarly,

one might think that discussions on optimal catastrophic risk prevention should account for risk

aversion with respect to intertemporal utility, or equivalently preferences for catastrophe avoid-

ance. Unfortunately, the literature on climate change has not done so, thus far. The reason is

that most studies on climate change rely on models assuming additively separable preferences,

witch are risk neutral with respect to intertemporal utility.

In the current paper, we have considered multiplicative preferences displaying such risk aver-

sion. In the case where catastrophic risks are exogenous and constant, the multiplicative model

behaves almost like the standard additive model. However, as soon as we consider endogenous

catastrophic risks, the two models radically differ, the multiplicative model advocating a much

tighter policy response.

Doing so, we highlight that including preferences for catastrophe avoidance in the analysis

could radically change the conclusion regarding the appropriate level of action. Loosely speak-

ing, the choice of the preference model induces changes in the optimal plans whose magnitude
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is similar to large changes in the catastrophic risk faced by the society. Considering alternative

choice models may therefore seem relevant for the kind of risks we consider.

Ethical questions surrounding preference for catastrophe avoidance have been discussed

elsewhere. Some, like Fleurbaey (2010) would actually argue in favor of risk equity, that is

the opposite of preferences for catastrophe avoidance, because the social planner may dislike

ex-post inequalities. Others, like Keeney (1980), Fishburn (1984), Manski and Tetenov (2007)

or Bommier and Zuber (2008) argue that positive preferences for catastrophe avoidance is the

most natural assumption. Divergence in opinion is possible but so far the debate was limited to

theoretical contributions in social choice theory. Potential implications for concrete problems,

as those related to climate change, have mostly been ignored because of the popularity of the

additive model. The current paper shows that far from being a theoretical curiosity, preferences

for catastrophe avoidance is a key element that cannot reasonably be ignored when considering

endogenous catastrophic risks and, a fortiori, climate change.

26



Appendix A Proof of Proposition 1

Proof of (a).

Using Eq. (8) in the additive case, we obtain:

∂W (c)
∂cT

= exp

(
−
∫ T

0
(θ + µt)dt

)
u′(cT )

and

∂W (c)
∂µT

= −
∫ +∞

T
exp

(
−
∫ t

0
(θ + µτ )dτ

)
u(ct)dt

Hence,

− d

dT

(
log

∂W (c)

∂cT

)
|ċT=0 = −

−(θ + µT ) exp
(
−
∫ T

0 (θ + µt)dt
)
u′(cT )

exp
(
−
∫ T

0 (θ + µt)dt
)
u′(cT )

= θ + µT

and

−
(
∂W (c)
∂µT

)/(
∂W (c)
∂cT

)
=

∫ +∞
T exp(−

∫ t
0 (θ+µτ )dτ)u(ct)dt

exp(−
∫ T
0 (θ+µt)dt)u′(cT )

=
∫ +∞
T exp(−

∫ t
T (θ+µτ )dτ)u(ct)dt

u′(cT ) .

Proof of (b).

Using Eq. (8) in the multiplicative case, we obtain:

∂W (c)
∂cT

= exp

(
−
∫ T

0
(εu(ct) + µt)dt

)
u′(cT )− εu′(cT )

∫ +∞

T
exp

(
−
∫ t

0
(εu(cτ ) + µτ )dτ

)
u(ct)dt

= exp

(
−
∫ T

0
(εu(ct) + µt)dt

)
u′(cT )

(
1− εU(c, T )

)

and

∂W (c)
∂µT

= −
∫ +∞

T
exp

(
−
∫ t

0
(εu(cτ ) + µτ )dτ

)
u(ct)dt = − exp

(
−
∫ T

0
(εu(ct) + µt)dt

)
U(c, T )
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Hence,

− d

dT

(
log

∂W (c)

∂cT

)
|ċT=0 =

−
−(εu(cT ) + µT ) exp

(
−
∫ T

0 (εu(ct) + µt)dt
)
u′(cT ) + εu′(cT ) exp

(
−
∫ T

0 (εu(ct) + µt)dt
)
u(cT )

exp
(
−
∫ T

0 (εu(ct) + µt)dt
)
u′(cT )

(
1− εU(c, T )

)
= µT

1−εU(c,T )

and

−
(
∂W (c)
∂µT

)/(
∂W (c)
∂cT

)
=

exp(−
∫ T
0 (εu(ct)+µt)dt)U(c,T )

exp(−
∫ T
0 (εu(ct)+µt)dt)u′(cT )

(
1−εU(c,T )

) = U(c,T )

u′(cT )
(

1−εU(c,T )
) .

Appendix B Optimal dynamics and steady state: BAU problem

In the case of the additive model, the BAU problem is just the standard Ramsey optimal growth

problem (with µ0+θ replacing θ). So the optimal dynamics and the steady state are well-known.

In the multiplicative case, the BAU problem can be rewritten:

maxc

∫ +∞

0
e−Ωtu(ct)dt

s.t. k̇t = f(kt)− δkt − ct

Ω̇t = µ0 + εu(ct)

The Hamiltonian of this problem is:

H(t, ct, zt, kt,Mt,Ωt) = e−Ωtu(ct) + λt

{
f(kt)− δkt − ct

}
+ηt

{
µ0 + εu(ct)

}
.

The first order necessary conditions of are:

∂H

∂c
= e−Ωtu′(ct)− λt + ηt εu

′(ct) = 0 (31)

λ̇t = −∂H
∂k

= −λt(f ′(kt)− δ) (32)

η̇t = −∂H
∂Ω

= e−Ωt u(ct) (33)
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Equation (33) implies that ηt = η(0)+
∫ t

0 e
−Ωτu(cτ )dτ . The transversality condition limt→+∞ ηt =

0 yields η(0) = −
∫ +∞

0 e−Ωτu(cτ )dτ . Hence ηt = −
∫ +∞
t e−Ωτu(cτ )dτ . Denote Ut =

∫ +∞
t e−(Ωτ−Ωt)u(cτ )dτ

the future expected utility discounted at period t. We obtain

ηt = −e−ΩtUt, (34)

so that, using (33),

U̇t = Ω̇Ut − u(ct). (35)

Using Equation (34), Equation (31) can be rewritten:

e−Ωt
{

1− εUt
}
u′(ct) = λt

Differentiating each term in the above equation with respect to time and dividing by the

corresponding term in the equation, we obtain:

−Ω̇t −
εU̇t

1− εUt
+ ċt

u′′(ct)

u′(ct)
=
λ̇t
λt

Given Equation (35), we obtain Ω̇t + εU̇t
1−εUt =

(1−εUt)Ω̇t+ε
(

Ω̇Ut−u(ct)
)

1−εUt = Ω̇t−εu(ct)
1−εUt = µ0

1−εUt .

Combining this equality, Equation (32) and the previous equation, we have:

ċt =
u′(ct)

u′′(ct)

(
µ0

1− εUt
+
λ̇t
λt

)

= − u
′(ct)

u′′(ct)

(
f ′(kt)− δ −

µ0

1− εUt

)
(36)

In the end, the optimal dynamics for the BAU problem with multiplicative preferences are

given by the dynamic system:

ċt = − u
′(ct)

u′′(ct)

(
f ′(kt)− δ −

µ0

1− εUt

)
(37)

k̇t = f(kt)− ct (38)

U̇t = Ω̇Ut − u(ct) =
(
µ0 + εu(ct)

)
Ut − u(ct) (39)

In a steady state, U̇t = 0 implies that U∗ = u(c∗)
µ0+εu(c∗) , so that µ0

1−εU∗ = µ0 + εu(c∗). Conse-
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quently, in steady state, Equations (37)-(38) yield the Equations (16)-(17), which characterize

a steady state for an interior solution of Problem (11) in the multiplicative case.

Appendix C Optimal dynamics and steady state: Additive model

Denote Ωt =
∫ t

0

{
µ(τ) + θ

}
dτ and notice that Ω̇t = µt + θ = µ(Mt) + θ. Problem (18) can be

rewritten:

maxc,z

∫ +∞

0
e−Ωtu(ct)dt

s.t. k̇t = ztf(kt)− δkt − ct

Ṁt = ϕ(zt)f(kt)− ψ(Mt − M̄)

Ω̇t = µ(Mt) + θ

The Hamiltonian of this problem is

H(t, ct, zt, kt,Mt,Ωt) = e−Ωtu(ct) + λt

{
ztf(kt)− δkt − ct

}
+κt

{
ϕ(zt)f(kt)− ψ(Mt − M̄)

}
+ηt

{
µ(Mt) + θ

}
.

The first order necessary conditions of are:

∂H

∂c
= e−Ωtu′(ct)− λt = 0 (40)

∂H

∂z
= λtf(kt) + κtϕ

′(zt)f(kt) = 0 (41)

λ̇t = −∂H
∂k

= −λtztf ′(kt) + λtδ − κtϕ(zt)f
′(kt) (42)

κ̇t = − ∂H
∂M

= −µ′(Mt)ηt + κt ψ (43)

η̇t = e−Ωtu(ct) (44)

Equation (41) can be rewritten:

κt = − λt
ϕ′(zt)

(45)
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Equation (42) hence becomes:

λ̇t = −
({

zt −
ϕ(zt)

ϕ′(zt)

}
f ′(kt)− δ

)
λt (46)

We denote π(zt) = zt − ϕ(zt)
ϕ′(zt)

. Since ϕ is convex, π is increasing.

Equation (40) yields e−Ωtu′(ct) = λt. Differentiating both terms of the equation with respect

to time and dividing by the corresponding term of the original equation, we obtain:

u′′(ct)
u′(ct)

ċt − Ω̇t = u′′(ct)
u′(ct)

ċt − θ − µ(Mt) = λ̇t
λt

Using Equation (46), we finally get:

ċt = − u
′(ct)

u′′(ct)

(
π(zt)f

′(kt)− δ − θ − µ(Mt)
)

Equation (44) implies that ηt = η(0)+
∫ t

0 e
−Ωτu(cτ )dτ . The transversality condition limt→+∞ ηt =

0 yields η(0) = −
∫ +∞

0 e−Ωτu(cτ )dτ . Hence ηt = −
∫ +∞
t e−Ωτu(cτ )dτ , so that:

ηt = −e−ΩtUt, (47)

and, by (40),

ηt = − Ut
u′(ct)

λt. (48)

Using (45) and (48), Equation (43) becomes:

κ̇t =
(
ψ − µ′(Mt)ϕ

′(zt)
Ut

u′(ct)

)
κt

Differentiating each term in Equation (45) with respect to time and dividing by the corre-

sponding term in (45), we obtain:

κ̇t
κt

= −żt
ϕ′′(zt)

ϕ′(zt)
+
λ̇t
λt
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Hence:

żt =
ϕ′(zt)

ϕ′′(zt)

(
λ̇t
λt
− κ̇t
κt

)

=
ϕ′(zt)

ϕ′′(zt)

(
µ′(Mt)ϕ

′(zt)
Ut

u′(ct)
+ δ −

{
ψ + π(zt)f

′(kt)
})

Gathering all the results and the equations of motion for k and M yields the dynamic system:

ċt = − u
′(ct)

u′′(ct)

(
π(zt)f

′(kt)− δ − ρ(ct, t)
)

(49)

żt =
ϕ′(zt)

ϕ′′(zt)

(
µ′(Mt)ϕ

′(zt)V(ct, t) + δ −
{
ψ + π(zt)f

′(kt)
})

(50)

k̇t = ztf(kt)− ct (51)

Ṁt = ϕ(zt)f(kt)− ψ(Mt − M̄) (52)

In a steady state, U∗ = u(c∗)
µ(M∗)+θ . Hence Equations (49)-(52) yield Equations (49)-(52),

which characterize a steady state for an interior solution of Problem (18) in the additive case.

Appendix D Optimal dynamics and steady state: Multiplicative model

Problem (18) can be rewritten:

maxc,z

∫ +∞

0
e−Ωtu(ct)dt

s.t. k̇t = ztf(kt)− δkt − ct

Ṁt = ϕ(zt)f(kt)− ψ(Mt − M̄)

Ω̇t = µ(Mt) + εu(ct)

The Hamiltonian of this problem is

H(t, ct, zt, kt,Mt,Ωt) = e−Ωtu(ct) + λt

{
ztf(kt)− δkt − ct

}
+κt

{
ϕ(zt)f(kt)− ψ(Mt − M̄)

}
+ηt

{
µ(Mt) + εu(ct)

}
.

32



The first order necessary conditions of are:

∂H

∂c
= e−Ωtu′(ct)− λt + ηt εu

′(ct) = 0 (53)

∂H

∂z
= λtf(kt) + κtϕ

′(zt)f(kt) = 0 (54)

λ̇t = −∂H
∂k

= −λtztf ′(kt) + λtδ − κtϕ(zt)f
′(kt) (55)

κ̇t = − ∂H
∂M

= κt ψ − ηt µ′(Mt) (56)

η̇t = −∂H
∂Ω

= e−Ωt u(ct) (57)

Equation (54) can be rewritten:

κt = − λt
ϕ′(zt)

(58)

Equation (55) hence becomes:

λ̇t = −
(
π(zt)f

′(kt)− δ
)
λt (59)

where π is defined like in Appendix C.

Equation (57) implies that ηt = η(0)+
∫ t

0 e
−Ωτu(cτ )dτ . The transversality condition limt→+∞ ηt =

0 yields η(0) = −
∫ +∞

0 e−Ωτu(cτ )dτ . Hence ηt = −
∫ +∞
t e−Ωτu(cτ )dτ . Denote Ut =

∫ +∞
t e−(Ωτ−Ωt)u(cτ )dτ

the future expected utility discounted at period t. We obtain

ηt = −e−ΩtUt, (60)

so that, using (57),

U̇t = Ω̇Ut − u(ct). (61)

Using Equation (60), Equation (53) can be rewritten:

e−Ωt
{

1− εUt
}
u′(ct) = λt

Differentiating each term in the above equation with respect to time and dividing by the
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corresponding term in the equation, we obtain:

−Ω̇t −
εU̇t

1− εUt
+ ċt

u′′(ct)

u′(ct)
=
λ̇t
λt

Given Equation (61), we obtain Ω̇t + εU̇t
1−εUt =

(1−εUt)Ω̇t+ε
(

Ω̇Ut−u(ct)
)

1−εUt = Ω̇t−εu(ct)
1−εUt = µ(Mt)

1−εUt .

Combining this equality, Equation (59) and the previous equation, we have:

ċt =
u′(ct)

u′′(ct)

(
µ(Mt)

1− εUt
+
λ̇t
λt

)

= − u
′(ct)

u′′(ct)

(
π(zt)f

′(kt)− δ −
µ(Mt)

1− εUt

)
(62)

Equations (53) and (60) also imply λt
ηt

=
(
e−Ωt+εηt

ηt

)
u′(ct) = −1−εUt

Ut u′(ct), so that ηt
κt

=

Ut
1−εUt

ϕ′(zt)
u′(ct)

. Hence Equation (56) can be rewritten:

κ̇t =

{
ψ − Ut

u′(ct)− εu′(ct)Ut
µ′(Mt)ϕ

′(zt)

}
κt (63)

Differentiating each term in Equation (54) with respect to time and dividing by the corre-

sponding term in (54), we obtain:

κ̇t
κt

= −żt
ϕ′′(zt)

ϕ′(zt)
+
λ̇t
λt

Hence, by Equations (59) and (63):

żt =
ϕ′(zt)

ϕ′′(zt)

(
λ̇t
λt
− κ̇t
κt

)

=
ϕ′(zt)

ϕ′′(zt)

(
Ut

u′(ct)− εu′(ct)Ut
µ′(Mt)ϕ

′(zt) + δ −
{
ψ + π(zt)f

′(kt)
})

(64)

Gathering Equations (61), (62), (64), and the equations of motion for k and M yields the
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dynamic system:

ċt = − u
′(ct)

u′′(ct)

(
π(zt)f

′(kt)− δ − ρ(ct, t)
)

(65)

żt =
ϕ′(zt)

ϕ′′(zt)

(
V(ct, t)µ

′(Mt)ϕ
′(zt) + δ −

{
ψ + π(zt)f

′(kt)
})

(66)

k̇t = ztf(kt)− ct (67)

Ṁt = ϕ(zt)f(kt)− ψ(Mt − M̄) (68)

U̇t = Ω̇Ut − u(ct) =
(
µ(Mt) + εu(ct)

)
Ut − u(ct) (69)

In a steady state, U̇t = 0 implies that U∗ = u(c∗)
µ(M∗)+εu(c∗) , so that ρ = µ(M∗)

1−εU∗ = µ(M∗) +εu(c∗)

and V∗ = U∗
u′(c∗)−εu′(c∗)U∗ = u(c∗)

u′(c∗)µ(M∗) . Consequently, in steady state, Equations (65)-(68) yield

the Equations (27)-(30), which characterize a steady state for an interior solution of Problem

(18) in the multiplicative case.
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